1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2022 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17 
18 /**
19  * @brief Functions and data declarations.
20  */
21 
22 #ifndef ASTCENC_INTERNAL_INCLUDED
23 #define ASTCENC_INTERNAL_INCLUDED
24 
25 #include <algorithm>
26 #include <cstddef>
27 #include <cstdint>
28 #if defined(ASTCENC_DIAGNOSTICS)
29 	#include <cstdio>
30 #endif
31 #include <cstdlib>
32 
33 #include "astcenc.h"
34 #include "astcenc_mathlib.h"
35 #include "astcenc_vecmathlib.h"
36 
37 /**
38  * @brief Make a promise to the compiler's optimizer.
39  *
40  * A promise is an expression that the optimizer is can assume is true for to help it generate
41  * faster code. Common use cases for this are to promise that a for loop will iterate more than
42  * once, or that the loop iteration count is a multiple of a vector length, which avoids pre-loop
43  * checks and can avoid loop tails if loops are unrolled by the auto-vectorizer.
44  */
45 #if defined(NDEBUG)
46 	#if !defined(__clang__) && defined(_MSC_VER)
47 		#define promise(cond) __assume(cond)
48 	#elif defined(__clang__)
49 		#if __has_builtin(__builtin_assume)
50 			#define promise(cond) __builtin_assume(cond)
51 		#elif __has_builtin(__builtin_unreachable)
52 			#define promise(cond) if (!(cond)) { __builtin_unreachable(); }
53 		#else
54 			#define promise(cond)
55 		#endif
56 	#else // Assume GCC
57 		#define promise(cond) if (!(cond)) { __builtin_unreachable(); }
58 	#endif
59 #else
60 	#define promise(cond) assert(cond)
61 #endif
62 
63 /* ============================================================================
64   Constants
65 ============================================================================ */
66 #if !defined(ASTCENC_BLOCK_MAX_TEXELS)
67 	#define ASTCENC_BLOCK_MAX_TEXELS 216 // A 3D 6x6x6 block
68 #endif
69 
70 /** @brief The maximum number of texels a block can support (6x6x6 block). */
71 static constexpr unsigned int BLOCK_MAX_TEXELS { ASTCENC_BLOCK_MAX_TEXELS };
72 
73 /** @brief The maximum number of components a block can support. */
74 static constexpr unsigned int BLOCK_MAX_COMPONENTS { 4 };
75 
76 /** @brief The maximum number of partitions a block can support. */
77 static constexpr unsigned int BLOCK_MAX_PARTITIONS { 4 };
78 
79 /** @brief The number of partitionings, per partition count, suported by the ASTC format. */
80 static constexpr unsigned int BLOCK_MAX_PARTITIONINGS { 1024 };
81 
82 /** @brief The maximum number of weights used during partition selection for texel clustering. */
83 static constexpr uint8_t BLOCK_MAX_KMEANS_TEXELS { 64 };
84 
85 /** @brief The maximum number of weights a block can support. */
86 static constexpr unsigned int BLOCK_MAX_WEIGHTS { 64 };
87 
88 /** @brief The maximum number of weights a block can support per plane in 2 plane mode. */
89 static constexpr unsigned int BLOCK_MAX_WEIGHTS_2PLANE { BLOCK_MAX_WEIGHTS / 2 };
90 
91 /** @brief The minimum number of weight bits a candidate encoding must encode. */
92 static constexpr unsigned int BLOCK_MIN_WEIGHT_BITS { 24 };
93 
94 /** @brief The maximum number of weight bits a candidate encoding can encode. */
95 static constexpr unsigned int BLOCK_MAX_WEIGHT_BITS { 96 };
96 
97 /** @brief The index indicating a bad (unused) block mode in the remap array. */
98 static constexpr uint16_t BLOCK_BAD_BLOCK_MODE { 0xFFFFu };
99 
100 /** @brief The index indicating a bad (unused) partitioning in the remap array. */
101 static constexpr uint16_t BLOCK_BAD_PARTITIONING { 0xFFFFu };
102 
103 /** @brief The number of partition index bits supported by the ASTC format . */
104 static constexpr unsigned int PARTITION_INDEX_BITS { 10 };
105 
106 /** @brief The offset of the plane 2 weights in shared weight arrays. */
107 static constexpr unsigned int WEIGHTS_PLANE2_OFFSET { BLOCK_MAX_WEIGHTS_2PLANE };
108 
109 /** @brief The sum of quantized weights for one texel. */
110 static constexpr float WEIGHTS_TEXEL_SUM { 16.0f };
111 
112 /** @brief The number of block modes supported by the ASTC format. */
113 static constexpr unsigned int WEIGHTS_MAX_BLOCK_MODES { 2048 };
114 
115 /** @brief The number of weight grid decimation modes supported by the ASTC format. */
116 static constexpr unsigned int WEIGHTS_MAX_DECIMATION_MODES { 87 };
117 
118 /** @brief The high default error used to initialize error trackers. */
119 static constexpr float ERROR_CALC_DEFAULT { 1e30f };
120 
121 /**
122  * @brief The minimum texel count for a block to use the one partition fast path.
123  *
124  * This setting skips 4x4 and 5x4 block sizes.
125  */
126 static constexpr unsigned int TUNE_MIN_TEXELS_MODE0_FASTPATH { 24 };
127 
128 /**
129  * @brief The maximum number of candidate encodings tested for each encoding mode.
130  *
131  * This can be dynamically reduced by the compression quality preset.
132  */
133 static constexpr unsigned int TUNE_MAX_TRIAL_CANDIDATES { 8 };
134 
135 /**
136  * @brief The maximum number of candidate partitionings tested for each encoding mode.
137  *
138  * This can be dynamically reduced by the compression quality preset.
139  */
140 static constexpr unsigned int TUNE_MAX_PARTITIIONING_CANDIDATES { 32 };
141 
142 /**
143  * @brief The maximum quant level using full angular endpoint search method.
144  *
145  * The angular endpoint search is used to find the min/max weight that should
146  * be used for a given quantization level. It is effective but expensive, so
147  * we only use it where it has the most value - low quant levels with wide
148  * spacing. It is used below TUNE_MAX_ANGULAR_QUANT (inclusive). Above this we
149  * assume the min weight is 0.0f, and the max weight is 1.0f.
150  *
151  * Note the angular algorithm is vectorized, and using QUANT_12 exactly fills
152  * one 8-wide vector. Decreasing by one doesn't buy much performance, and
153  * increasing by one is disproportionately expensive.
154  */
155 static constexpr unsigned int TUNE_MAX_ANGULAR_QUANT { 7 }; /* QUANT_12 */
156 
157 
158 static_assert((BLOCK_MAX_TEXELS % ASTCENC_SIMD_WIDTH) == 0,
159               "BLOCK_MAX_TEXELS must be multiple of ASTCENC_SIMD_WIDTH");
160 
161 static_assert((BLOCK_MAX_WEIGHTS % ASTCENC_SIMD_WIDTH) == 0,
162               "BLOCK_MAX_WEIGHTS must be multiple of ASTCENC_SIMD_WIDTH");
163 
164 static_assert((WEIGHTS_MAX_BLOCK_MODES % ASTCENC_SIMD_WIDTH) == 0,
165               "WEIGHTS_MAX_BLOCK_MODES must be multiple of ASTCENC_SIMD_WIDTH");
166 
167 
168 /* ============================================================================
169   Commonly used data structures
170 ============================================================================ */
171 
172 /**
173  * @brief The ASTC endpoint formats.
174  *
175  * Note, the values here are used directly in the encoding in the format so do not rearrange.
176  */
177 enum endpoint_formats
178 {
179 	FMT_LUMINANCE = 0,
180 	FMT_LUMINANCE_DELTA = 1,
181 	FMT_HDR_LUMINANCE_LARGE_RANGE = 2,
182 	FMT_HDR_LUMINANCE_SMALL_RANGE = 3,
183 	FMT_LUMINANCE_ALPHA = 4,
184 	FMT_LUMINANCE_ALPHA_DELTA = 5,
185 	FMT_RGB_SCALE = 6,
186 	FMT_HDR_RGB_SCALE = 7,
187 	FMT_RGB = 8,
188 	FMT_RGB_DELTA = 9,
189 	FMT_RGB_SCALE_ALPHA = 10,
190 	FMT_HDR_RGB = 11,
191 	FMT_RGBA = 12,
192 	FMT_RGBA_DELTA = 13,
193 	FMT_HDR_RGB_LDR_ALPHA = 14,
194 	FMT_HDR_RGBA = 15
195 };
196 
197 /**
198  * @brief The ASTC quantization methods.
199  *
200  * Note, the values here are used directly in the encoding in the format so do not rearrange.
201  */
202 enum quant_method
203 {
204 	QUANT_2 = 0,
205 	QUANT_3 = 1,
206 	QUANT_4 = 2,
207 	QUANT_5 = 3,
208 	QUANT_6 = 4,
209 	QUANT_8 = 5,
210 	QUANT_10 = 6,
211 	QUANT_12 = 7,
212 	QUANT_16 = 8,
213 	QUANT_20 = 9,
214 	QUANT_24 = 10,
215 	QUANT_32 = 11,
216 	QUANT_40 = 12,
217 	QUANT_48 = 13,
218 	QUANT_64 = 14,
219 	QUANT_80 = 15,
220 	QUANT_96 = 16,
221 	QUANT_128 = 17,
222 	QUANT_160 = 18,
223 	QUANT_192 = 19,
224 	QUANT_256 = 20
225 };
226 
227 /**
228  * @brief The number of levels use by an ASTC quantization method.
229  *
230  * @param method   The quantization method
231  *
232  * @return   The number of levels used by @c method.
233  */
get_quant_level(quant_method method)234 static inline unsigned int get_quant_level(quant_method method)
235 {
236 	switch (method)
237 	{
238 	case QUANT_2:   return   2;
239 	case QUANT_3:   return   3;
240 	case QUANT_4:   return   4;
241 	case QUANT_5:   return   5;
242 	case QUANT_6:   return   6;
243 	case QUANT_8:   return   8;
244 	case QUANT_10:  return  10;
245 	case QUANT_12:  return  12;
246 	case QUANT_16:  return  16;
247 	case QUANT_20:  return  20;
248 	case QUANT_24:  return  24;
249 	case QUANT_32:  return  32;
250 	case QUANT_40:  return  40;
251 	case QUANT_48:  return  48;
252 	case QUANT_64:  return  64;
253 	case QUANT_80:  return  80;
254 	case QUANT_96:  return  96;
255 	case QUANT_128: return 128;
256 	case QUANT_160: return 160;
257 	case QUANT_192: return 192;
258 	case QUANT_256: return 256;
259 	}
260 
261 	// Unreachable - the enum is fully described
262 	return 0;
263 }
264 
265 /**
266  * @brief Computed metrics about a partition in a block.
267  */
268 struct partition_metrics
269 {
270 	/** @brief The error-weighted average color in the partition. */
271 	vfloat4 avg;
272 
273 	/** @brief The dominant error-weighted direction in the partition. */
274 	vfloat4 dir;
275 };
276 
277 /**
278  * @brief Computed lines for a a three component analysis.
279  */
280 struct partition_lines3
281 {
282 	/** @brief Line for uncorrelated chroma. */
283 	line3 uncor_line;
284 
285 	/** @brief Line for correlated chroma, passing though the origin. */
286 	line3 samec_line;
287 
288 	/** @brief Post-processed line for uncorrelated chroma. */
289 	processed_line3 uncor_pline;
290 
291 	/** @brief Post-processed line for correlated chroma, passing though the origin. */
292 	processed_line3 samec_pline;
293 
294 	/** @brief The length of the line for uncorrelated chroma. */
295 	float uncor_line_len;
296 
297 	/** @brief The length of the line for correlated chroma. */
298 	float samec_line_len;
299 };
300 
301 /**
302  * @brief The partition information for a single partition.
303  *
304  * ASTC has a total of 1024 candidate partitions for each of 2/3/4 partition counts, although this
305  * 1024 includes seeds that generate duplicates of other seeds and seeds that generate completely
306  * empty partitions. These are both valid encodings, but astcenc will skip both during compression
307  * as they are not useful.
308  */
309 struct partition_info
310 {
311 	/** @brief The number of partitions in this partitioning. */
312 	uint16_t partition_count;
313 
314 	/** @brief The index (seed) of this partitioning. */
315 	uint16_t partition_index;
316 
317 	/**
318 	 * @brief The number of texels in each partition.
319 	 *
320 	 * Note that some seeds result in zero texels assigned to a partition are valid, but are skipped
321 	 * by this compressor as there is no point spending bits encoding an unused color endpoint.
322 	 */
323 	uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS];
324 
325 	/** @brief The partition of each texel in the block. */
326 	uint8_t partition_of_texel[BLOCK_MAX_TEXELS];
327 
328 	/** @brief The list of texels in each partition. */
329 	uint8_t texels_of_partition[BLOCK_MAX_PARTITIONS][BLOCK_MAX_TEXELS];
330 };
331 
332 /**
333  * @brief The weight grid information for a single decimation pattern.
334  *
335  * ASTC can store one weight per texel, but is also capable of storing lower resolution weight grids
336  * that are interpolated during decompression to assign a with to a texel. Storing fewer weights
337  * can free up a substantial amount of bits that we can then spend on more useful things, such as
338  * more accurate endpoints and weights, or additional partitions.
339  *
340  * This data structure is used to store information about a single weight grid decimation pattern,
341  * for a single block size.
342  */
343 struct decimation_info
344 {
345 	/** @brief The total number of texels in the block. */
346 	uint8_t texel_count;
347 
348 	/** @brief The maximum number of stored weights that contribute to each texel, between 1 and 4. */
349 	uint8_t max_texel_weight_count;
350 
351 	/** @brief The total number of weights stored. */
352 	uint8_t weight_count;
353 
354 	/** @brief The number of stored weights in the X dimension. */
355 	uint8_t weight_x;
356 
357 	/** @brief The number of stored weights in the Y dimension. */
358 	uint8_t weight_y;
359 
360 	/** @brief The number of stored weights in the Z dimension. */
361 	uint8_t weight_z;
362 
363 	/** @brief The number of stored weights that contribute to each texel, between 1 and 4. */
364 	uint8_t texel_weight_count[BLOCK_MAX_TEXELS];
365 
366 	/** @brief The weight index of the N weights that need to be interpolated for each texel. */
367 	uint8_t texel_weights_4t[4][BLOCK_MAX_TEXELS];
368 
369 	/** @brief The bilinear interpolation weighting of the N input weights for each texel, between 0 and 16. */
370 	uint8_t texel_weights_int_4t[4][BLOCK_MAX_TEXELS];
371 
372 	/** @brief The bilinear interpolation weighting of the N input weights for each texel, between 0 and 1. */
373 	alignas(ASTCENC_VECALIGN) float texel_weights_float_4t[4][BLOCK_MAX_TEXELS];
374 
375 	/** @brief The number of texels that each stored weight contributes to. */
376 	uint8_t weight_texel_count[BLOCK_MAX_WEIGHTS];
377 
378 	/** @brief The list of weights that contribute to each texel. */
379 	uint8_t weight_texel[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
380 
381 	/** @brief The list of weight indices that contribute to each texel. */
382 	alignas(ASTCENC_VECALIGN) float weights_flt[BLOCK_MAX_TEXELS][BLOCK_MAX_WEIGHTS];
383 
384 	/**
385 	 * @brief Folded structure for faster access:
386 	 *     texel_weights_texel[i][j][.] = texel_weights[.][weight_texel[i][j]]
387 	 */
388 	uint8_t texel_weights_texel[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS][4];
389 
390 	/**
391 	 * @brief Folded structure for faster access:
392 	 *     texel_weights_float_texel[i][j][.] = texel_weights_float[.][weight_texel[i][j]]
393 	 */
394 	float texel_weights_float_texel[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS][4];
395 };
396 
397 /**
398  * @brief Metadata for single block mode for a specific block size.
399  */
400 struct block_mode
401 {
402 	/** @brief The block mode index in the ASTC encoded form. */
403 	uint16_t mode_index;
404 
405 	/** @brief The decimation mode index in the compressor reindexed list. */
406 	uint8_t decimation_mode;
407 
408 	/** @brief The weight quantization used by this block mode. */
409 	uint8_t quant_mode;
410 
411 	/** @brief The weight quantization used by this block mode. */
412 	uint8_t weight_bits;
413 
414 	/** @brief Is a dual weight plane used by this block mode? */
415 	uint8_t is_dual_plane : 1;
416 
417 	/**
418 	 * @brief Get the weight quantization used by this block mode.
419 	 *
420 	 * @return The quantization level.
421 	 */
get_weight_quant_modeblock_mode422 	inline quant_method get_weight_quant_mode() const
423 	{
424 		return static_cast<quant_method>(this->quant_mode);
425 	}
426 };
427 
428 /**
429  * @brief Metadata for single decimation mode for a specific block size.
430  */
431 struct decimation_mode
432 {
433 	/** @brief The max weight precision for 1 plane, or -1 if not supported. */
434 	int8_t maxprec_1plane;
435 
436 	/** @brief The max weight precision for 2 planes, or -1 if not supported. */
437 	int8_t maxprec_2planes;
438 
439 	/**
440 	 * @brief Bitvector indicating weight quant modes used by active 1 plane block modes.
441 	 *
442 	 * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
443 	 */
444 	uint16_t refprec_1_plane;
445 
446 	/**
447 	 * @brief Bitvector indicating weight quant methods used by active 2 plane block modes.
448 	 *
449 	 * Bit 0 = QUANT_2, Bit 1 = QUANT_3, etc.
450 	 */
451 	uint16_t refprec_2_planes;
452 
453 	/**
454 	 * @brief Set a 1 plane weight quant as active.
455 	 *
456 	 * @param weight_quant   The quant method to set.
457 	 */
set_ref_1_planedecimation_mode458 	void set_ref_1_plane(quant_method weight_quant)
459 	{
460 		refprec_1_plane |= (1 << weight_quant);
461 	}
462 
463 	/**
464 	 * @brief Test if this mode is active below a given 1 plane weight quant (inclusive).
465 	 *
466 	 * @param max_weight_quant   The max quant method to test.
467 	 */
is_ref_1_planedecimation_mode468 	bool is_ref_1_plane(quant_method max_weight_quant) const
469 	{
470 		uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
471 		return (refprec_1_plane & mask) != 0;
472 	}
473 
474 	/**
475 	 * @brief Set a 2 plane weight quant as active.
476 	 *
477 	 * @param weight_quant   The quant method to set.
478 	 */
set_ref_2_planedecimation_mode479 	void set_ref_2_plane(quant_method weight_quant)
480 	{
481 		refprec_2_planes |= static_cast<uint16_t>(1 << weight_quant);
482 	}
483 
484 	/**
485 	 * @brief Test if this mode is active below a given 2 plane weight quant (inclusive).
486 	 *
487 	 * @param max_weight_quant   The max quant method to test.
488 	 */
is_ref_2_planedecimation_mode489 	bool is_ref_2_plane(quant_method max_weight_quant) const
490 	{
491 		uint16_t mask = static_cast<uint16_t>((1 << (max_weight_quant + 1)) - 1);
492 		return (refprec_2_planes & mask) != 0;
493 	}
494 };
495 
496 /**
497  * @brief Data tables for a single block size.
498  *
499  * The decimation tables store the information to apply weight grid dimension reductions. We only
500  * store the decimation modes that are actually needed by the current context; many of the possible
501  * modes will be unused (too many weights for the current block size or disabled by heuristics). The
502  * actual number of weights stored is @c decimation_mode_count, and the @c decimation_modes and
503  * @c decimation_tables arrays store the active modes contiguously at the start of the array. These
504  * entries are not stored in any particular order.
505  *
506  * The block mode tables store the unpacked block mode settings. Block modes are stored in the
507  * compressed block as an 11 bit field, but for any given block size and set of compressor
508  * heuristics, only a subset of the block modes will be used. The actual number of block modes
509  * stored is indicated in @c block_mode_count, and the @c block_modes array store the active modes
510  * contiguously at the start of the array. These entries are stored in incrementing "packed" value
511  * order, which doesn't mean much once unpacked. To allow decompressors to reference the packed data
512  * efficiently the @c block_mode_packed_index array stores the mapping between physical ID and the
513  * actual remapped array index.
514  */
515 struct block_size_descriptor
516 {
517 	/** @brief The block X dimension, in texels. */
518 	uint8_t xdim;
519 
520 	/** @brief The block Y dimension, in texels. */
521 	uint8_t ydim;
522 
523 	/** @brief The block Z dimension, in texels. */
524 	uint8_t zdim;
525 
526 	/** @brief The block total texel count. */
527 	uint8_t texel_count;
528 
529 	/**
530 	 * @brief The number of stored decimation modes which are "always" modes.
531 	 *
532 	 * Always modes are stored at the start of the decimation_modes list.
533 	 */
534 	unsigned int decimation_mode_count_always;
535 
536 	/** @brief The number of stored decimation modes for selected encodings. */
537 	unsigned int decimation_mode_count_selected;
538 
539 	/** @brief The number of stored decimation modes for any encoding. */
540 	unsigned int decimation_mode_count_all;
541 
542 	/**
543 	 * @brief The number of stored block modes which are "always" modes.
544 	 *
545 	 * Always modes are stored at the start of the block_modes list.
546 	 */
547 	unsigned int block_mode_count_1plane_always;
548 
549 	/** @brief The number of stored block modes for active 1 plane encodings. */
550 	unsigned int block_mode_count_1plane_selected;
551 
552 	/** @brief The number of stored block modes for active 1 and 2 plane encodings. */
553 	unsigned int block_mode_count_1plane_2plane_selected;
554 
555 	/** @brief The number of stored block modes for any encoding. */
556 	unsigned int block_mode_count_all;
557 
558 	/** @brief The number of selected partitionings for 1/2/3/4 partitionings. */
559 	unsigned int partitioning_count_selected[BLOCK_MAX_PARTITIONS];
560 
561 	/** @brief The number of partitionings for 1/2/3/4 partitionings. */
562 	unsigned int partitioning_count_all[BLOCK_MAX_PARTITIONS];
563 
564 	/** @brief The active decimation modes, stored in low indices. */
565 	decimation_mode decimation_modes[WEIGHTS_MAX_DECIMATION_MODES];
566 
567 	/** @brief The active decimation tables, stored in low indices. */
568 	alignas(ASTCENC_VECALIGN) decimation_info decimation_tables[WEIGHTS_MAX_DECIMATION_MODES];
569 
570 	/** @brief The packed block mode array index, or @c BLOCK_BAD_BLOCK_MODE if not active. */
571 	uint16_t block_mode_packed_index[WEIGHTS_MAX_BLOCK_MODES];
572 
573 	/** @brief The active block modes, stored in low indices. */
574 	block_mode block_modes[WEIGHTS_MAX_BLOCK_MODES];
575 
576 	/** @brief The active partition tables, stored in low indices per-count. */
577 	partition_info partitionings[(3 * BLOCK_MAX_PARTITIONINGS) + 1];
578 
579 	/**
580 	 * @brief The packed partition table array index, or @c BLOCK_BAD_PARTITIONING if not active.
581 	 *
582 	 * Indexed by partition_count - 2, containing 2, 3 and 4 partitions.
583 	 */
584 	uint16_t partitioning_packed_index[3][BLOCK_MAX_PARTITIONINGS];
585 
586 	/** @brief The active texels for k-means partition selection. */
587 	uint8_t kmeans_texels[BLOCK_MAX_KMEANS_TEXELS];
588 
589 	/**
590 	 * @brief The canonical 2-partition coverage pattern used during block partition search.
591 	 *
592 	 * Indexed by remapped index, not physical index.
593 	 */
594 	uint64_t coverage_bitmaps_2[BLOCK_MAX_PARTITIONINGS][2];
595 
596 	/**
597 	 * @brief The canonical 3-partition coverage pattern used during block partition search.
598 	 *
599 	 * Indexed by remapped index, not physical index.
600 	 */
601 	uint64_t coverage_bitmaps_3[BLOCK_MAX_PARTITIONINGS][3];
602 
603 	/**
604 	 * @brief The canonical 4-partition coverage pattern used during block partition search.
605 	 *
606 	 * Indexed by remapped index, not physical index.
607 	 */
608 	uint64_t coverage_bitmaps_4[BLOCK_MAX_PARTITIONINGS][4];
609 
610 	/**
611 	 * @brief Get the block mode structure for index @c block_mode.
612 	 *
613 	 * This function can only return block modes that are enabled by the current compressor config.
614 	 * Decompression from an arbitrary source should not use this without first checking that the
615 	 * packed block mode index is not @c BLOCK_BAD_BLOCK_MODE.
616 	 *
617 	 * @param block_mode   The packed block mode index.
618 	 *
619 	 * @return The block mode structure.
620 	 */
get_block_modeblock_size_descriptor621 	const block_mode& get_block_mode(unsigned int block_mode) const
622 	{
623 		unsigned int packed_index = this->block_mode_packed_index[block_mode];
624 		assert(packed_index != BLOCK_BAD_BLOCK_MODE && packed_index < this->block_mode_count_all);
625 		return this->block_modes[packed_index];
626 	}
627 
628 	/**
629 	 * @brief Get the decimation mode structure for index @c decimation_mode.
630 	 *
631 	 * This function can only return decimation modes that are enabled by the current compressor
632 	 * config. The mode array is stored packed, but this is only ever indexed by the packed index
633 	 * stored in the @c block_mode and never exists in an unpacked form.
634 	 *
635 	 * @param decimation_mode   The packed decimation mode index.
636 	 *
637 	 * @return The decimation mode structure.
638 	 */
get_decimation_modeblock_size_descriptor639 	const decimation_mode& get_decimation_mode(unsigned int decimation_mode) const
640 	{
641 		return this->decimation_modes[decimation_mode];
642 	}
643 
644 	/**
645 	 * @brief Get the decimation info structure for index @c decimation_mode.
646 	 *
647 	 * This function can only return decimation modes that are enabled by the current compressor
648 	 * config. The mode array is stored packed, but this is only ever indexed by the packed index
649 	 * stored in the @c block_mode and never exists in an unpacked form.
650 	 *
651 	 * @param decimation_mode   The packed decimation mode index.
652 	 *
653 	 * @return The decimation info structure.
654 	 */
get_decimation_infoblock_size_descriptor655 	const decimation_info& get_decimation_info(unsigned int decimation_mode) const
656 	{
657 		return this->decimation_tables[decimation_mode];
658 	}
659 
660 	/**
661 	 * @brief Get the partition info table for a given partition count.
662 	 *
663 	 * @param partition_count   The number of partitions we want the table for.
664 	 *
665 	 * @return The pointer to the table of 1024 entries (for 2/3/4 parts) or 1 entry (for 1 part).
666 	 */
get_partition_tableblock_size_descriptor667 	const partition_info* get_partition_table(unsigned int partition_count) const
668 	{
669 		if (partition_count == 1)
670 		{
671 			partition_count = 5;
672 		}
673 		unsigned int index = (partition_count - 2) * BLOCK_MAX_PARTITIONINGS;
674 		return this->partitionings + index;
675 	}
676 
677 	/**
678 	 * @brief Get the partition info structure for a given partition count and seed.
679 	 *
680 	 * @param partition_count   The number of partitions we want the info for.
681 	 * @param index             The partition seed (between 0 and 1023).
682 	 *
683 	 * @return The partition info structure.
684 	 */
get_partition_infoblock_size_descriptor685 	const partition_info& get_partition_info(unsigned int partition_count, unsigned int index) const
686 	{
687 		unsigned int packed_index = 0;
688 		if (partition_count >= 2)
689 		{
690 			packed_index = this->partitioning_packed_index[partition_count - 2][index];
691 		}
692 
693 		assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
694 		auto& result = get_partition_table(partition_count)[packed_index];
695 		assert(index == result.partition_index);
696 		return result;
697 	}
698 
699 	/**
700 	 * @brief Get the partition info structure for a given partition count and seed.
701 	 *
702 	 * @param partition_count   The number of partitions we want the info for.
703 	 * @param packed_index      The raw array offset.
704 	 *
705 	 * @return The partition info structure.
706 	 */
get_raw_partition_infoblock_size_descriptor707 	const partition_info& get_raw_partition_info(unsigned int partition_count, unsigned int packed_index) const
708 	{
709 		assert(packed_index != BLOCK_BAD_PARTITIONING && packed_index < this->partitioning_count_all[partition_count - 1]);
710 		auto& result = get_partition_table(partition_count)[packed_index];
711 		return result;
712 	}
713 };
714 
715 /**
716  * @brief The image data for a single block.
717  *
718  * The @c data_[rgba] fields store the image data in an encoded SoA float form designed for easy
719  * vectorization. Input data is converted to float and stored as values between 0 and 65535. LDR
720  * data is stored as direct UNORM data, HDR data is stored as LNS data.
721  *
722  * The @c rgb_lns and @c alpha_lns fields that assigned a per-texel use of HDR are only used during
723  * decompression. The current compressor will always use HDR endpoint formats when in HDR mode.
724  */
725 struct image_block
726 {
727 	/** @brief The input (compress) or output (decompress) data for the red color component. */
728 	alignas(ASTCENC_VECALIGN) float data_r[BLOCK_MAX_TEXELS];
729 
730 	/** @brief The input (compress) or output (decompress) data for the green color component. */
731 	alignas(ASTCENC_VECALIGN) float data_g[BLOCK_MAX_TEXELS];
732 
733 	/** @brief The input (compress) or output (decompress) data for the blue color component. */
734 	alignas(ASTCENC_VECALIGN) float data_b[BLOCK_MAX_TEXELS];
735 
736 	/** @brief The input (compress) or output (decompress) data for the alpha color component. */
737 	alignas(ASTCENC_VECALIGN) float data_a[BLOCK_MAX_TEXELS];
738 
739 	/** @brief The number of texels in the block. */
740 	uint8_t texel_count;
741 
742 	/** @brief The original data for texel 0 for constant color block encoding. */
743 	vfloat4 origin_texel;
744 
745 	/** @brief The min component value of all texels in the block. */
746 	vfloat4 data_min;
747 
748 	/** @brief The mean component value of all texels in the block. */
749 	vfloat4 data_mean;
750 
751 	/** @brief The max component value of all texels in the block. */
752 	vfloat4 data_max;
753 
754 	/** @brief The relative error significance of the color channels. */
755 	vfloat4 channel_weight;
756 
757 	/** @brief Is this grayscale block where R == G == B for all texels? */
758 	bool grayscale;
759 
760 	/** @brief Set to 1 if a texel is using HDR RGB endpoints (decompression only). */
761 	uint8_t rgb_lns[BLOCK_MAX_TEXELS];
762 
763 	/** @brief Set to 1 if a texel is using HDR alpha endpoints (decompression only). */
764 	uint8_t alpha_lns[BLOCK_MAX_TEXELS];
765 
766 	/** @brief The X position of this block in the input or output image. */
767 	unsigned int xpos;
768 
769 	/** @brief The Y position of this block in the input or output image. */
770 	unsigned int ypos;
771 
772 	/** @brief The Z position of this block in the input or output image. */
773 	unsigned int zpos;
774 
775 	/**
776 	 * @brief Get an RGBA texel value from the data.
777 	 *
778 	 * @param index   The texel index.
779 	 *
780 	 * @return The texel in RGBA component ordering.
781 	 */
texelimage_block782 	inline vfloat4 texel(unsigned int index) const
783 	{
784 		return vfloat4(data_r[index],
785 		               data_g[index],
786 		               data_b[index],
787 		               data_a[index]);
788 	}
789 
790 	/**
791 	 * @brief Get an RGB texel value from the data.
792 	 *
793 	 * @param index   The texel index.
794 	 *
795 	 * @return The texel in RGB0 component ordering.
796 	 */
texel3image_block797 	inline vfloat4 texel3(unsigned int index) const
798 	{
799 		return vfloat3(data_r[index],
800 		               data_g[index],
801 		               data_b[index]);
802 	}
803 
804 	/**
805 	 * @brief Get the default alpha value for endpoints that don't store it.
806 	 *
807 	 * The default depends on whether the alpha endpoint is LDR or HDR.
808 	 *
809 	 * @return The alpha value in the scaled range used by the compressor.
810 	 */
get_default_alphaimage_block811 	inline float get_default_alpha() const
812 	{
813 		return this->alpha_lns[0] ? static_cast<float>(0x7800) : static_cast<float>(0xFFFF);
814 	}
815 
816 	/**
817 	 * @brief Test if a single color channel is constant across the block.
818 	 *
819 	 * Constant color channels are easier to compress as interpolating between two identical colors
820 	 * always returns the same value, irrespective of the weight used. They therefore can be ignored
821 	 * for the purposes of weight selection and use of a second weight plane.
822 	 *
823 	 * @return @c true if the channel is constant across the block, @c false otherwise.
824 	 */
is_constant_channelimage_block825 	inline bool is_constant_channel(int channel) const
826 	{
827 		vmask4 lane_mask = vint4::lane_id() == vint4(channel);
828 		vmask4 color_mask = this->data_min == this->data_max;
829 		return any(lane_mask & color_mask);
830 	}
831 
832 	/**
833 	 * @brief Test if this block is a luminance block with constant 1.0 alpha.
834 	 *
835 	 * @return @c true if the block is a luminance block , @c false otherwise.
836 	 */
is_luminanceimage_block837 	inline bool is_luminance() const
838 	{
839 		float default_alpha = this->get_default_alpha();
840 		bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
841 		              (this->data_max.lane<3>() == default_alpha);
842 		return this->grayscale && alpha1;
843 	}
844 
845 	/**
846 	 * @brief Test if this block is a luminance block with variable alpha.
847 	 *
848 	 * @return @c true if the block is a luminance + alpha block , @c false otherwise.
849 	 */
is_luminancealphaimage_block850 	inline bool is_luminancealpha() const
851 	{
852 		float default_alpha = this->get_default_alpha();
853 		bool alpha1 = (this->data_min.lane<3>() == default_alpha) &&
854 		              (this->data_max.lane<3>() == default_alpha);
855 		return this->grayscale && !alpha1;
856 	}
857 };
858 
859 /**
860  * @brief Data structure storing the color endpoints for a block.
861  */
862 struct endpoints
863 {
864 	/** @brief The number of partition endpoints stored. */
865 	unsigned int partition_count;
866 
867 	/** @brief The colors for endpoint 0. */
868 	vfloat4 endpt0[BLOCK_MAX_PARTITIONS];
869 
870 	/** @brief The colors for endpoint 1. */
871 	vfloat4 endpt1[BLOCK_MAX_PARTITIONS];
872 };
873 
874 /**
875  * @brief Data structure storing the color endpoints and weights.
876  */
877 struct endpoints_and_weights
878 {
879 	/** @brief True if all active values in weight_error_scale are the same. */
880 	bool is_constant_weight_error_scale;
881 
882 	/** @brief The color endpoints. */
883 	endpoints ep;
884 
885 	/** @brief The ideal weight for each texel; may be undecimated or decimated. */
886 	alignas(ASTCENC_VECALIGN) float weights[BLOCK_MAX_TEXELS];
887 
888 	/** @brief The ideal weight error scaling for each texel; may be undecimated or decimated. */
889 	alignas(ASTCENC_VECALIGN) float weight_error_scale[BLOCK_MAX_TEXELS];
890 };
891 
892 /**
893  * @brief Utility storing estimated errors from choosing particular endpoint encodings.
894  */
895 struct encoding_choice_errors
896 {
897 	/** @brief Error of using LDR RGB-scale instead of complete endpoints. */
898 	float rgb_scale_error;
899 
900 	/** @brief Error of using HDR RGB-scale instead of complete endpoints. */
901 	float rgb_luma_error;
902 
903 	/** @brief Error of using luminance instead of RGB. */
904 	float luminance_error;
905 
906 	/** @brief Error of discarding alpha and using a constant 1.0 alpha. */
907 	float alpha_drop_error;
908 
909 	/** @brief Can we use delta offset encoding? */
910 	bool can_offset_encode;
911 
912 	/** @brief Can we use blue contraction encoding? */
913 	bool can_blue_contract;
914 };
915 
916 /**
917  * @brief Preallocated working buffers, allocated per thread during context creation.
918  */
919 struct alignas(ASTCENC_VECALIGN) compression_working_buffers
920 {
921 	/** @brief Ideal endpoints and weights for plane 1. */
922 	endpoints_and_weights ei1;
923 
924 	/** @brief Ideal endpoints and weights for plane 2. */
925 	endpoints_and_weights ei2;
926 
927 	/**
928 	 * @brief Decimated ideal weight values in the ~0-1 range.
929 	 *
930 	 * Note that values can be slightly below zero or higher than one due to
931 	 * endpoint extents being inside the ideal color representation.
932 	 *
933 	 * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
934 	 */
935 	alignas(ASTCENC_VECALIGN) float dec_weights_ideal[WEIGHTS_MAX_DECIMATION_MODES * BLOCK_MAX_WEIGHTS];
936 
937 	/**
938 	 * @brief Decimated quantized weight values in the unquantized 0-64 range.
939 	 *
940 	 * For two planes, second plane starts at @c WEIGHTS_PLANE2_OFFSET offsets.
941 	 */
942 	uint8_t dec_weights_uquant[WEIGHTS_MAX_BLOCK_MODES * BLOCK_MAX_WEIGHTS];
943 
944 	/** @brief Error of the best encoding combination for each block mode. */
945 	alignas(ASTCENC_VECALIGN) float errors_of_best_combination[WEIGHTS_MAX_BLOCK_MODES];
946 
947 	/** @brief The best color quant for each block mode. */
948 	uint8_t best_quant_levels[WEIGHTS_MAX_BLOCK_MODES];
949 
950 	/** @brief The best color quant for each block mode if modes are the same and we have spare bits. */
951 	uint8_t best_quant_levels_mod[WEIGHTS_MAX_BLOCK_MODES];
952 
953 	/** @brief The best endpoint format for each partition. */
954 	uint8_t best_ep_formats[WEIGHTS_MAX_BLOCK_MODES][BLOCK_MAX_PARTITIONS];
955 
956 	/** @brief The total bit storage needed for quantized weights for each block mode. */
957 	int8_t qwt_bitcounts[WEIGHTS_MAX_BLOCK_MODES];
958 
959 	/** @brief The cumulative error for quantized weights for each block mode. */
960 	float qwt_errors[WEIGHTS_MAX_BLOCK_MODES];
961 
962 	/** @brief The low weight value in plane 1 for each block mode. */
963 	float weight_low_value1[WEIGHTS_MAX_BLOCK_MODES];
964 
965 	/** @brief The high weight value in plane 1 for each block mode. */
966 	float weight_high_value1[WEIGHTS_MAX_BLOCK_MODES];
967 
968 	/** @brief The low weight value in plane 1 for each quant level and decimation mode. */
969 	float weight_low_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
970 
971 	/** @brief The high weight value in plane 1 for each quant level and decimation mode. */
972 	float weight_high_values1[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
973 
974 	/** @brief The low weight value in plane 2 for each block mode. */
975 	float weight_low_value2[WEIGHTS_MAX_BLOCK_MODES];
976 
977 	/** @brief The high weight value in plane 2 for each block mode. */
978 	float weight_high_value2[WEIGHTS_MAX_BLOCK_MODES];
979 
980 	/** @brief The low weight value in plane 2 for each quant level and decimation mode. */
981 	float weight_low_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
982 
983 	/** @brief The high weight value in plane 2 for each quant level and decimation mode. */
984 	float weight_high_values2[WEIGHTS_MAX_DECIMATION_MODES][TUNE_MAX_ANGULAR_QUANT + 1];
985 };
986 
987 struct dt_init_working_buffers
988 {
989 	uint8_t weight_count_of_texel[BLOCK_MAX_TEXELS];
990 	uint8_t grid_weights_of_texel[BLOCK_MAX_TEXELS][4];
991 	uint8_t weights_of_texel[BLOCK_MAX_TEXELS][4];
992 
993 	uint8_t texel_count_of_weight[BLOCK_MAX_WEIGHTS];
994 	uint8_t texels_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
995 	uint8_t texel_weights_of_weight[BLOCK_MAX_WEIGHTS][BLOCK_MAX_TEXELS];
996 };
997 
998 /**
999  * @brief Weight quantization transfer table.
1000  *
1001  * ASTC can store texel weights at many quantization levels, so for performance we store essential
1002  * information about each level as a precomputed data structure. Unquantized weights are integers
1003  * or floats in the range [0, 64].
1004  *
1005  * This structure provides a table, used to estimate the closest quantized weight for a given
1006  * floating-point weight. For each quantized weight, the corresponding unquantized values. For each
1007  * quantized weight, a previous-value and a next-value.
1008 */
1009 struct quant_and_transfer_table
1010 {
1011 	/** @brief The quantization level used. */
1012 	quant_method method;
1013 
1014 	/** @brief The unscrambled unquantized value. */
1015 	int8_t quant_to_unquant[32];
1016 
1017 	/** @brief The scrambling order: scrambled_quant = map[unscrambled_quant]. */
1018 	int8_t scramble_map[32];
1019 
1020 	/** @brief The unscrambling order: unscrambled_unquant = map[scrambled_quant]. */
1021 	int8_t unscramble_and_unquant_map[32];
1022 
1023 	/**
1024 	 * @brief A table of previous-and-next weights, indexed by the current unquantized value.
1025 	 *  * bits 7:0 = previous-index, unquantized
1026 	 *  * bits 15:8 = next-index, unquantized
1027 	 */
1028 	uint16_t prev_next_values[65];
1029 };
1030 
1031 /** @brief The precomputed quant and transfer table. */
1032 extern const quant_and_transfer_table quant_and_xfer_tables[12];
1033 
1034 /** @brief The block is an error block, and will return error color or NaN. */
1035 static constexpr uint8_t SYM_BTYPE_ERROR { 0 };
1036 
1037 /** @brief The block is a constant color block using FP16 colors. */
1038 static constexpr uint8_t SYM_BTYPE_CONST_F16 { 1 };
1039 
1040 /** @brief The block is a constant color block using UNORM16 colors. */
1041 static constexpr uint8_t SYM_BTYPE_CONST_U16 { 2 };
1042 
1043 /** @brief The block is a normal non-constant color block. */
1044 static constexpr uint8_t SYM_BTYPE_NONCONST { 3 };
1045 
1046 /**
1047  * @brief A symbolic representation of a compressed block.
1048  *
1049  * The symbolic representation stores the unpacked content of a single
1050  * @c physical_compressed_block, in a form which is much easier to access for
1051  * the rest of the compressor code.
1052  */
1053 struct symbolic_compressed_block
1054 {
1055 	/** @brief The block type, one of the @c SYM_BTYPE_* constants. */
1056 	uint8_t block_type;
1057 
1058 	/** @brief The number of partitions; valid for @c NONCONST blocks. */
1059 	uint8_t partition_count;
1060 
1061 	/** @brief Non-zero if the color formats matched; valid for @c NONCONST blocks. */
1062 	uint8_t color_formats_matched;
1063 
1064 	/** @brief The plane 2 color component, or -1 if single plane; valid for @c NONCONST blocks. */
1065 	int8_t plane2_component;
1066 
1067 	/** @brief The block mode; valid for @c NONCONST blocks. */
1068 	uint16_t block_mode;
1069 
1070 	/** @brief The partition index; valid for @c NONCONST blocks if 2 or more partitions. */
1071 	uint16_t partition_index;
1072 
1073 	/** @brief The endpoint color formats for each partition; valid for @c NONCONST blocks. */
1074 	uint8_t color_formats[BLOCK_MAX_PARTITIONS];
1075 
1076 	/** @brief The endpoint color quant mode; valid for @c NONCONST blocks. */
1077 	quant_method quant_mode;
1078 
1079 	/** @brief The error of the current encoding; valid for @c NONCONST blocks. */
1080 	float errorval;
1081 
1082 	// We can't have both of these at the same time
1083 	union {
1084 		/** @brief The constant color; valid for @c CONST blocks. */
1085 		int constant_color[BLOCK_MAX_COMPONENTS];
1086 
1087 		/** @brief The quantized endpoint color pairs; valid for @c NONCONST blocks. */
1088 		uint8_t color_values[BLOCK_MAX_PARTITIONS][8];
1089 	};
1090 
1091 	/** @brief The quantized and decimated weights.
1092 	 *
1093 	 * Weights are stored in the 0-64 unpacked range allowing them to be used
1094 	 * directly in encoding passes without per-use unpacking. Packing happens
1095 	 * when converting to/from the physical bitstream encoding.
1096 	 *
1097 	 * If dual plane, the second plane starts at @c weights[WEIGHTS_PLANE2_OFFSET].
1098 	 */
1099 	uint8_t weights[BLOCK_MAX_WEIGHTS];
1100 
1101 	/**
1102 	 * @brief Get the weight quantization used by this block mode.
1103 	 *
1104 	 * @return The quantization level.
1105 	 */
get_color_quant_modesymbolic_compressed_block1106 	inline quant_method get_color_quant_mode() const
1107 	{
1108 		return this->quant_mode;
1109 	}
1110 };
1111 
1112 /**
1113  * @brief A physical representation of a compressed block.
1114  *
1115  * The physical representation stores the raw bytes of the format in memory.
1116  */
1117 struct physical_compressed_block
1118 {
1119 	/** @brief The ASTC encoded data for a single block. */
1120 	uint8_t data[16];
1121 };
1122 
1123 
1124 /**
1125  * @brief Parameter structure for @c compute_pixel_region_variance().
1126  *
1127  * This function takes a structure to avoid spilling arguments to the stack on every function
1128  * invocation, as there are a lot of parameters.
1129  */
1130 struct pixel_region_args
1131 {
1132 	/** @brief The image to analyze. */
1133 	const astcenc_image* img;
1134 
1135 	/** @brief The component swizzle pattern. */
1136 	astcenc_swizzle swz;
1137 
1138 	/** @brief Should the algorithm bother with Z axis processing? */
1139 	bool have_z;
1140 
1141 	/** @brief The kernel radius for alpha processing. */
1142 	unsigned int alpha_kernel_radius;
1143 
1144 	/** @brief The X dimension of the working data to process. */
1145 	unsigned int size_x;
1146 
1147 	/** @brief The Y dimension of the working data to process. */
1148 	unsigned int size_y;
1149 
1150 	/** @brief The Z dimension of the working data to process. */
1151 	unsigned int size_z;
1152 
1153 	/** @brief The X position of first src and dst data in the data set. */
1154 	unsigned int offset_x;
1155 
1156 	/** @brief The Y position of first src and dst data in the data set. */
1157 	unsigned int offset_y;
1158 
1159 	/** @brief The Z position of first src and dst data in the data set. */
1160 	unsigned int offset_z;
1161 
1162 	/** @brief The working memory buffer. */
1163 	vfloat4 *work_memory;
1164 };
1165 
1166 /**
1167  * @brief Parameter structure for @c compute_averages_proc().
1168  */
1169 struct avg_args
1170 {
1171 	/** @brief The arguments for the nested variance computation. */
1172 	pixel_region_args arg;
1173 
1174 	/** @brief The image X dimensions. */
1175 	unsigned int img_size_x;
1176 
1177 	/** @brief The image Y dimensions. */
1178 	unsigned int img_size_y;
1179 
1180 	/** @brief The image Z dimensions. */
1181 	unsigned int img_size_z;
1182 
1183 	/** @brief The maximum working block dimensions in X and Y dimensions. */
1184 	unsigned int blk_size_xy;
1185 
1186 	/** @brief The maximum working block dimensions in Z dimensions. */
1187 	unsigned int blk_size_z;
1188 
1189 	/** @brief The working block memory size. */
1190 	unsigned int work_memory_size;
1191 };
1192 
1193 #if defined(ASTCENC_DIAGNOSTICS)
1194 /* See astcenc_diagnostic_trace header for details. */
1195 class TraceLog;
1196 #endif
1197 
1198 /**
1199  * @brief The astcenc compression context.
1200  */
1201 struct astcenc_contexti
1202 {
1203 	/** @brief The configuration this context was created with. */
1204 	astcenc_config config;
1205 
1206 	/** @brief The thread count supported by this context. */
1207 	unsigned int thread_count;
1208 
1209 	/** @brief The block size descriptor this context was created with. */
1210 	block_size_descriptor* bsd;
1211 
1212 	/*
1213 	 * Fields below here are not needed in a decompress-only build, but some remain as they are
1214 	 * small and it avoids littering the code with #ifdefs. The most significant contributors to
1215 	 * large structure size are omitted.
1216 	 */
1217 
1218 	/** @brief The input image alpha channel averages table, may be @c nullptr if not needed. */
1219 	float* input_alpha_averages;
1220 
1221 	/** @brief The scratch working buffers, one per thread (see @c thread_count). */
1222 	compression_working_buffers* working_buffers;
1223 
1224 #if !defined(ASTCENC_DECOMPRESS_ONLY)
1225 	/** @brief The pixel region and variance worker arguments. */
1226 	avg_args avg_preprocess_args;
1227 #endif
1228 
1229 #if defined(ASTCENC_DIAGNOSTICS)
1230 	/**
1231 	 * @brief The diagnostic trace logger.
1232 	 *
1233 	 * Note that this is a singleton, so can only be used in single threaded mode. It only exists
1234 	 * here so we have a reference to close the file at the end of the capture.
1235 	 */
1236 	TraceLog* trace_log;
1237 #endif
1238 };
1239 
1240 /* ============================================================================
1241   Functionality for managing block sizes and partition tables.
1242 ============================================================================ */
1243 
1244 /**
1245  * @brief Populate the block size descriptor for the target block size.
1246  *
1247  * This will also initialize the partition table metadata, which is stored as part of the BSD
1248  * structure.
1249  *
1250  * @param      x_texels                 The number of texels in the block X dimension.
1251  * @param      y_texels                 The number of texels in the block Y dimension.
1252  * @param      z_texels                 The number of texels in the block Z dimension.
1253  * @param      can_omit_modes           Can we discard modes and partitionings that astcenc won't use?
1254  * @param      partition_count_cutoff   The partition count cutoff to use, if we can omit partitionings.
1255  * @param      mode_cutoff              The block mode percentile cutoff [0-1].
1256  * @param[out] bsd                      The descriptor to initialize.
1257  */
1258 void init_block_size_descriptor(
1259 	unsigned int x_texels,
1260 	unsigned int y_texels,
1261 	unsigned int z_texels,
1262 	bool can_omit_modes,
1263 	unsigned int partition_count_cutoff,
1264 	float mode_cutoff,
1265 	block_size_descriptor& bsd);
1266 
1267 /**
1268  * @brief Populate the partition tables for the target block size.
1269  *
1270  * Note the @c bsd descriptor must be initialized by calling @c init_block_size_descriptor() before
1271  * calling this function.
1272  *
1273  * @param[out] bsd                      The block size information structure to populate.
1274  * @param      can_omit_partitionings   True if we can we drop partitionings that astcenc won't use.
1275  * @param      partition_count_cutoff   The partition count cutoff to use, if we can omit partitionings.
1276  */
1277 void init_partition_tables(
1278 	block_size_descriptor& bsd,
1279 	bool can_omit_partitionings,
1280 	unsigned int partition_count_cutoff);
1281 
1282 /**
1283  * @brief Get the percentile table for 2D block modes.
1284  *
1285  * This is an empirically determined prioritization of which block modes to use in the search in
1286  * terms of their centile (lower centiles = more useful).
1287  *
1288  * Returns a dynamically allocated array; caller must free with delete[].
1289  *
1290  * @param xdim The block x size.
1291  * @param ydim The block y size.
1292  *
1293  * @return The unpacked table.
1294  */
1295 const float* get_2d_percentile_table(
1296 	unsigned int xdim,
1297 	unsigned int ydim);
1298 
1299 /**
1300  * @brief Query if a 2D block size is legal.
1301  *
1302  * @return True if legal, false otherwise.
1303  */
1304 bool is_legal_2d_block_size(
1305 	unsigned int xdim,
1306 	unsigned int ydim);
1307 
1308 /**
1309  * @brief Query if a 3D block size is legal.
1310  *
1311  * @return True if legal, false otherwise.
1312  */
1313 bool is_legal_3d_block_size(
1314 	unsigned int xdim,
1315 	unsigned int ydim,
1316 	unsigned int zdim);
1317 
1318 /* ============================================================================
1319   Functionality for managing BISE quantization and unquantization.
1320 ============================================================================ */
1321 
1322 /**
1323  * @brief The precomputed table for quantizing color values.
1324  *
1325  * Returned value is in the ASTC BISE scrambled order.
1326  *
1327  * Indexed by [quant_mode - 4][data_value].
1328  */
1329 extern const uint8_t color_quant_tables[17][256];
1330 
1331 /**
1332  * @brief The precomputed table for unquantizing color values.
1333  *
1334  * Returned value is in the ASTC BISE scrambled order.
1335  *
1336  * Indexed by [quant_mode - 4][data_value].
1337  */
1338 extern const uint8_t color_unquant_tables[17][256];
1339 
1340 /**
1341  * @brief The precomputed quant mode storage table.
1342  *
1343  * Indexing by [integer_count/2][bits] gives us the quantization level for a given integer count and
1344  * number of compressed storage bits. Returns -1 for cases where the requested integer count cannot
1345  * ever fit in the supplied storage size.
1346  */
1347 extern const int8_t quant_mode_table[10][128];
1348 
1349 /**
1350  * @brief Encode a packed string using BISE.
1351  *
1352  * Note that BISE can return strings that are not a whole number of bytes in length, and ASTC can
1353  * start storing strings in a block at arbitrary bit offsets in the encoded data.
1354  *
1355  * @param         quant_level       The BISE alphabet size.
1356  * @param         character_count   The number of characters in the string.
1357  * @param         input_data        The unpacked string, one byte per character.
1358  * @param[in,out] output_data       The output packed string.
1359  * @param         bit_offset        The starting offset in the output storage.
1360  */
1361 void encode_ise(
1362 	quant_method quant_level,
1363 	unsigned int character_count,
1364 	const uint8_t* input_data,
1365 	uint8_t* output_data,
1366 	unsigned int bit_offset);
1367 
1368 /**
1369  * @brief Decode a packed string using BISE.
1370  *
1371  * Note that BISE input strings are not a whole number of bytes in length, and ASTC can start
1372  * strings at arbitrary bit offsets in the encoded data.
1373  *
1374  * @param         quant_level       The BISE alphabet size.
1375  * @param         character_count   The number of characters in the string.
1376  * @param         input_data        The packed string.
1377  * @param[in,out] output_data       The output storage, one byte per character.
1378  * @param         bit_offset        The starting offset in the output storage.
1379  */
1380 void decode_ise(
1381 	quant_method quant_level,
1382 	unsigned int character_count,
1383 	const uint8_t* input_data,
1384 	uint8_t* output_data,
1385 	unsigned int bit_offset);
1386 
1387 /**
1388  * @brief Return the number of bits needed to encode an ISE sequence.
1389  *
1390  * This implementation assumes that the @c quant level is untrusted, given it may come from random
1391  * data being decompressed, so we return an arbitrary unencodable size if that is the case.
1392  *
1393  * @param character_count   The number of items in the sequence.
1394  * @param quant_level       The desired quantization level.
1395  *
1396  * @return The number of bits needed to encode the BISE string.
1397  */
1398 unsigned int get_ise_sequence_bitcount(
1399 	unsigned int character_count,
1400 	quant_method quant_level);
1401 
1402 /* ============================================================================
1403   Functionality for managing color partitioning.
1404 ============================================================================ */
1405 
1406 /**
1407  * @brief Compute averages and dominant directions for each partition in a 2 component texture.
1408  *
1409  * @param      pi           The partition info for the current trial.
1410  * @param      blk          The image block color data to be compressed.
1411  * @param      component1   The first component included in the analysis.
1412  * @param      component2   The second component included in the analysis.
1413  * @param[out] pm           The output partition metrics.
1414  *                          - Only pi.partition_count array entries actually get initialized.
1415  *                          - Direction vectors @c pm.dir are not normalized.
1416  */
1417 void compute_avgs_and_dirs_2_comp(
1418 	const partition_info& pi,
1419 	const image_block& blk,
1420 	unsigned int component1,
1421 	unsigned int component2,
1422 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1423 
1424 /**
1425  * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1426  *
1427  * @param      pi                  The partition info for the current trial.
1428  * @param      blk                 The image block color data to be compressed.
1429  * @param      omitted_component   The component excluded from the analysis.
1430  * @param[out] pm                  The output partition metrics.
1431  *                                 - Only pi.partition_count array entries actually get initialized.
1432  *                                 - Direction vectors @c pm.dir are not normalized.
1433  */
1434 void compute_avgs_and_dirs_3_comp(
1435 	const partition_info& pi,
1436 	const image_block& blk,
1437 	unsigned int omitted_component,
1438 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1439 
1440 /**
1441  * @brief Compute averages and dominant directions for each partition in a 3 component texture.
1442  *
1443  * This is a specialization of @c compute_avgs_and_dirs_3_comp where the omitted component is
1444  * always alpha, a common case during partition search.
1445  *
1446  * @param      pi    The partition info for the current trial.
1447  * @param      blk   The image block color data to be compressed.
1448  * @param[out] pm    The output partition metrics.
1449  *                   - Only pi.partition_count array entries actually get initialized.
1450  *                   - Direction vectors @c pm.dir are not normalized.
1451  */
1452 void compute_avgs_and_dirs_3_comp_rgb(
1453 	const partition_info& pi,
1454 	const image_block& blk,
1455 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1456 
1457 /**
1458  * @brief Compute averages and dominant directions for each partition in a 4 component texture.
1459  *
1460  * @param      pi    The partition info for the current trial.
1461  * @param      blk   The image block color data to be compressed.
1462  * @param[out] pm    The output partition metrics.
1463  *                   - Only pi.partition_count array entries actually get initialized.
1464  *                   - Direction vectors @c pm.dir are not normalized.
1465  */
1466 void compute_avgs_and_dirs_4_comp(
1467 	const partition_info& pi,
1468 	const image_block& blk,
1469 	partition_metrics pm[BLOCK_MAX_PARTITIONS]);
1470 
1471 /**
1472  * @brief Compute the RGB error for uncorrelated and same chroma projections.
1473  *
1474  * The output of compute averages and dirs is post processed to define two lines, both of which go
1475  * through the mean-color-value.  One line has a direction defined by the dominant direction; this
1476  * is used to assess the error from using an uncorrelated color representation. The other line goes
1477  * through (0,0,0) and is used to assess the error from using an RGBS color representation.
1478  *
1479  * This function computes the squared error when using these two representations.
1480  *
1481  * @param         pi            The partition info for the current trial.
1482  * @param         blk           The image block color data to be compressed.
1483  * @param[in,out] plines        Processed line inputs, and line length outputs.
1484  * @param[out]    uncor_error   The cumulative error for using the uncorrelated line.
1485  * @param[out]    samec_error   The cumulative error for using the same chroma line.
1486  */
1487 void compute_error_squared_rgb(
1488 	const partition_info& pi,
1489 	const image_block& blk,
1490 	partition_lines3 plines[BLOCK_MAX_PARTITIONS],
1491 	float& uncor_error,
1492 	float& samec_error);
1493 
1494 /**
1495  * @brief Compute the RGBA error for uncorrelated and same chroma projections.
1496  *
1497  * The output of compute averages and dirs is post processed to define two lines, both of which go
1498  * through the mean-color-value.  One line has a direction defined by the dominant direction; this
1499  * is used to assess the error from using an uncorrelated color representation. The other line goes
1500  * through (0,0,0,1) and is used to assess the error from using an RGBS color representation.
1501  *
1502  * This function computes the squared error when using these two representations.
1503  *
1504  * @param      pi              The partition info for the current trial.
1505  * @param      blk             The image block color data to be compressed.
1506  * @param      uncor_plines    Processed uncorrelated partition lines for each partition.
1507  * @param      samec_plines    Processed same chroma partition lines for each partition.
1508  * @param[out] uncor_lengths   The length of each components deviation from the line.
1509  * @param[out] samec_lengths   The length of each components deviation from the line.
1510  * @param[out] uncor_error     The cumulative error for using the uncorrelated line.
1511  * @param[out] samec_error     The cumulative error for using the same chroma line.
1512  */
1513 void compute_error_squared_rgba(
1514 	const partition_info& pi,
1515 	const image_block& blk,
1516 	const processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS],
1517 	const processed_line4 samec_plines[BLOCK_MAX_PARTITIONS],
1518 	float uncor_lengths[BLOCK_MAX_PARTITIONS],
1519 	float samec_lengths[BLOCK_MAX_PARTITIONS],
1520 	float& uncor_error,
1521 	float& samec_error);
1522 
1523 /**
1524  * @brief Find the best set of partitions to trial for a given block.
1525  *
1526  * On return the @c best_partitions list will contain the two best partition
1527  * candidates; one assuming data has uncorrelated chroma and one assuming the
1528  * data has correlated chroma. The best candidate is returned first in the list.
1529  *
1530  * @param      bsd                      The block size information.
1531  * @param      blk                      The image block color data to compress.
1532  * @param      partition_count          The number of partitions in the block.
1533  * @param      partition_search_limit   The number of candidate partition encodings to trial.
1534  * @param[out] best_partitions          The best partition candidates.
1535  * @param      requested_candidates     The number of requsted partitionings. May return fewer if
1536  *                                      candidates are not avaiable.
1537  *
1538  * @return The actual number of candidates returned.
1539  */
1540 unsigned int find_best_partition_candidates(
1541 	const block_size_descriptor& bsd,
1542 	const image_block& blk,
1543 	unsigned int partition_count,
1544 	unsigned int partition_search_limit,
1545 	unsigned int best_partitions[TUNE_MAX_PARTITIIONING_CANDIDATES],
1546 	unsigned int requested_candidates);
1547 
1548 /* ============================================================================
1549   Functionality for managing images and image related data.
1550 ============================================================================ */
1551 
1552 /**
1553  * @brief Setup computation of regional averages in an image.
1554  *
1555  * This must be done by only a single thread per image, before any thread calls
1556  * @c compute_averages().
1557  *
1558  * Results are written back into @c img->input_alpha_averages.
1559  *
1560  * @param      img                   The input image data, also holds output data.
1561  * @param      alpha_kernel_radius   The kernel radius (in pixels) for alpha mods.
1562  * @param      swz                   Input data component swizzle.
1563  * @param[out] ag                    The average variance arguments to init.
1564  *
1565  * @return The number of tasks in the processing stage.
1566  */
1567 unsigned int init_compute_averages(
1568 	const astcenc_image& img,
1569 	unsigned int alpha_kernel_radius,
1570 	const astcenc_swizzle& swz,
1571 	avg_args& ag);
1572 
1573 /**
1574  * @brief Compute averages for a pixel region.
1575  *
1576  * The routine computes both in a single pass, using a summed-area table to decouple the running
1577  * time from the averaging/variance kernel size.
1578  *
1579  * @param[out] ctx   The compressor context storing the output data.
1580  * @param      arg   The input parameter structure.
1581  */
1582 void compute_pixel_region_variance(
1583 	astcenc_contexti& ctx,
1584 	const pixel_region_args& arg);
1585 /**
1586  * @brief Load a single image block from the input image.
1587  *
1588  * @param      decode_mode   The compression color profile.
1589  * @param      img           The input image data.
1590  * @param[out] blk           The image block to populate.
1591  * @param      bsd           The block size information.
1592  * @param      xpos          The block X coordinate in the input image.
1593  * @param      ypos          The block Y coordinate in the input image.
1594  * @param      zpos          The block Z coordinate in the input image.
1595  * @param      swz           The swizzle to apply on load.
1596  */
1597 void load_image_block(
1598 	astcenc_profile decode_mode,
1599 	const astcenc_image& img,
1600 	image_block& blk,
1601 	const block_size_descriptor& bsd,
1602 	unsigned int xpos,
1603 	unsigned int ypos,
1604 	unsigned int zpos,
1605 	const astcenc_swizzle& swz);
1606 
1607 /**
1608  * @brief Load a single image block from the input image.
1609  *
1610  * This specialized variant can be used only if the block is 2D LDR U8 data,
1611  * with no swizzle.
1612  *
1613  * @param      decode_mode   The compression color profile.
1614  * @param      img           The input image data.
1615  * @param[out] blk           The image block to populate.
1616  * @param      bsd           The block size information.
1617  * @param      xpos          The block X coordinate in the input image.
1618  * @param      ypos          The block Y coordinate in the input image.
1619  * @param      zpos          The block Z coordinate in the input image.
1620  * @param      swz           The swizzle to apply on load.
1621  */
1622 void load_image_block_fast_ldr(
1623 	astcenc_profile decode_mode,
1624 	const astcenc_image& img,
1625 	image_block& blk,
1626 	const block_size_descriptor& bsd,
1627 	unsigned int xpos,
1628 	unsigned int ypos,
1629 	unsigned int zpos,
1630 	const astcenc_swizzle& swz);
1631 
1632 /**
1633  * @brief Store a single image block to the output image.
1634  *
1635  * @param[out] img    The output image data.
1636  * @param      blk    The image block to export.
1637  * @param      bsd    The block size information.
1638  * @param      xpos   The block X coordinate in the input image.
1639  * @param      ypos   The block Y coordinate in the input image.
1640  * @param      zpos   The block Z coordinate in the input image.
1641  * @param      swz    The swizzle to apply on store.
1642  */
1643 void store_image_block(
1644 	astcenc_image& img,
1645 	const image_block& blk,
1646 	const block_size_descriptor& bsd,
1647 	unsigned int xpos,
1648 	unsigned int ypos,
1649 	unsigned int zpos,
1650 	const astcenc_swizzle& swz);
1651 
1652 /* ============================================================================
1653   Functionality for computing endpoint colors and weights for a block.
1654 ============================================================================ */
1655 
1656 /**
1657  * @brief Compute ideal endpoint colors and weights for 1 plane of weights.
1658  *
1659  * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1660  * defines an exact position on the partition color line. We can then use these to assess the error
1661  * introduced by removing and quantizing the weight grid.
1662  *
1663  * @param      blk   The image block color data to compress.
1664  * @param      pi    The partition info for the current trial.
1665  * @param[out] ei    The endpoint and weight values.
1666  */
1667 void compute_ideal_colors_and_weights_1plane(
1668 	const image_block& blk,
1669 	const partition_info& pi,
1670 	endpoints_and_weights& ei);
1671 
1672 /**
1673  * @brief Compute ideal endpoint colors and weights for 2 planes of weights.
1674  *
1675  * The ideal endpoints define a color line for the partition. For each texel the ideal weight
1676  * defines an exact position on the partition color line. We can then use these to assess the error
1677  * introduced by removing and quantizing the weight grid.
1678  *
1679  * @param      bsd                The block size information.
1680  * @param      blk                The image block color data to compress.
1681  * @param      plane2_component   The component assigned to plane 2.
1682  * @param[out] ei1                The endpoint and weight values for plane 1.
1683  * @param[out] ei2                The endpoint and weight values for plane 2.
1684  */
1685 void compute_ideal_colors_and_weights_2planes(
1686 	const block_size_descriptor& bsd,
1687 	const image_block& blk,
1688 	unsigned int plane2_component,
1689 	endpoints_and_weights& ei1,
1690 	endpoints_and_weights& ei2);
1691 
1692 /**
1693  * @brief Compute the optimal unquantized weights for a decimation table.
1694  *
1695  * After computing ideal weights for the case for a complete weight grid, we we want to compute the
1696  * ideal weights for the case where weights exist only for some texels. We do this with a
1697  * steepest-descent grid solver which works as follows:
1698  *
1699  * First, for each actual weight, perform a weighted averaging of the texels affected by the weight.
1700  * Then, set step size to <some initial value> and attempt one step towards the original ideal
1701  * weight if it helps to reduce error.
1702  *
1703  * @param      ei                       The non-decimated endpoints and weights.
1704  * @param      di                       The selected weight decimation.
1705  * @param[out] dec_weight_ideal_value   The ideal values for the decimated weight set.
1706  */
1707 void compute_ideal_weights_for_decimation(
1708 	const endpoints_and_weights& ei,
1709 	const decimation_info& di,
1710 	float* dec_weight_ideal_value);
1711 
1712 /**
1713  * @brief Compute the optimal quantized weights for a decimation table.
1714  *
1715  * We test the two closest weight indices in the allowed quantization range and keep the weight that
1716  * is the closest match.
1717  *
1718  * @param      di                        The selected weight decimation.
1719  * @param      low_bound                 The lowest weight allowed.
1720  * @param      high_bound                The highest weight allowed.
1721  * @param      dec_weight_ideal_value    The ideal weight set.
1722  * @param[out] dec_weight_quant_uvalue   The output quantized weight as a float.
1723  * @param[out] dec_weight_uquant         The output quantized weight as encoded int.
1724  * @param      quant_level               The desired weight quant level.
1725  */
1726 void compute_quantized_weights_for_decimation(
1727 	const decimation_info& di,
1728 	float low_bound,
1729 	float high_bound,
1730 	const float* dec_weight_ideal_value,
1731 	float* dec_weight_quant_uvalue,
1732 	uint8_t* dec_weight_uquant,
1733 	quant_method quant_level);
1734 
1735 /**
1736  * @brief Compute the error of a decimated weight set for 1 plane.
1737  *
1738  * After computing ideal weights for the case with one weight per texel, we want to compute the
1739  * error for decimated weight grids where weights are stored at a lower resolution. This function
1740  * computes the error of the reduced grid, compared to the full grid.
1741  *
1742  * @param eai                       The ideal weights for the full grid.
1743  * @param di                        The selected weight decimation.
1744  * @param dec_weight_quant_uvalue   The quantized weights for the decimated grid.
1745  *
1746  * @return The accumulated error.
1747  */
1748 float compute_error_of_weight_set_1plane(
1749 	const endpoints_and_weights& eai,
1750 	const decimation_info& di,
1751 	const float* dec_weight_quant_uvalue);
1752 
1753 /**
1754  * @brief Compute the error of a decimated weight set for 2 planes.
1755  *
1756  * After computing ideal weights for the case with one weight per texel, we want to compute the
1757  * error for decimated weight grids where weights are stored at a lower resolution. This function
1758  * computes the error of the reduced grid, compared to the full grid.
1759  *
1760  * @param eai1                             The ideal weights for the full grid and plane 1.
1761  * @param eai2                             The ideal weights for the full grid and plane 2.
1762  * @param di                               The selected weight decimation.
1763  * @param dec_weight_quant_uvalue_plane1   The quantized weights for the decimated grid plane 1.
1764  * @param dec_weight_quant_uvalue_plane2   The quantized weights for the decimated grid plane 2.
1765  *
1766  * @return The accumulated error.
1767  */
1768 float compute_error_of_weight_set_2planes(
1769 	const endpoints_and_weights& eai1,
1770 	const endpoints_and_weights& eai2,
1771 	const decimation_info& di,
1772 	const float* dec_weight_quant_uvalue_plane1,
1773 	const float* dec_weight_quant_uvalue_plane2);
1774 
1775 /**
1776  * @brief Pack a single pair of color endpoints as effectively as possible.
1777  *
1778  * The user requests a base color endpoint mode in @c format, but the quantizer may choose a
1779  * delta-based representation. It will report back the format variant it actually used.
1780  *
1781  * @param      color0        The input unquantized color0 endpoint for absolute endpoint pairs.
1782  * @param      color1        The input unquantized color1 endpoint for absolute endpoint pairs.
1783  * @param      rgbs_color    The input unquantized RGBS variant endpoint for same chroma endpoints.
1784  * @param      rgbo_color    The input unquantized RGBS variant endpoint for HDR endpoints.
1785  * @param      format        The desired base format.
1786  * @param[out] output        The output storage for the quantized colors/
1787  * @param      quant_level   The quantization level requested.
1788  *
1789  * @return The actual endpoint mode used.
1790  */
1791 uint8_t pack_color_endpoints(
1792 	vfloat4 color0,
1793 	vfloat4 color1,
1794 	vfloat4 rgbs_color,
1795 	vfloat4 rgbo_color,
1796 	int format,
1797 	uint8_t* output,
1798 	quant_method quant_level);
1799 
1800 /**
1801  * @brief Unpack a single pair of encoded and quantized color endpoints.
1802  *
1803  * @param      decode_mode   The decode mode (LDR, HDR).
1804  * @param      format        The color endpoint mode used.
1805  * @param      quant_level   The quantization level used.
1806  * @param      input         The raw array of encoded input integers. The length of this array
1807  *                           depends on @c format; it can be safely assumed to be large enough.
1808  * @param[out] rgb_hdr       Is the endpoint using HDR for the RGB channels?
1809  * @param[out] alpha_hdr     Is the endpoint using HDR for the A channel?
1810  * @param[out] output0       The output color for endpoint 0.
1811  * @param[out] output1       The output color for endpoint 1.
1812  */
1813 void unpack_color_endpoints(
1814 	astcenc_profile decode_mode,
1815 	int format,
1816 	quant_method quant_level,
1817 	const uint8_t* input,
1818 	bool& rgb_hdr,
1819 	bool& alpha_hdr,
1820 	vint4& output0,
1821 	vint4& output1);
1822 
1823 /**
1824  * @brief Unpack a set of quantized and decimated weights.
1825  *
1826  * TODO: Can we skip this for non-decimated weights now that the @c scb is
1827  * already storing unquantized weights?
1828  *
1829  * @param      bsd              The block size information.
1830  * @param      scb              The symbolic compressed encoding.
1831  * @param      di               The weight grid decimation table.
1832  * @param      is_dual_plane    @c true if this is a dual plane block, @c false otherwise.
1833  * @param[out] weights_plane1   The output array for storing the plane 1 weights.
1834  * @param[out] weights_plane2   The output array for storing the plane 2 weights.
1835  */
1836 void unpack_weights(
1837 	const block_size_descriptor& bsd,
1838 	const symbolic_compressed_block& scb,
1839 	const decimation_info& di,
1840 	bool is_dual_plane,
1841 	int weights_plane1[BLOCK_MAX_TEXELS],
1842 	int weights_plane2[BLOCK_MAX_TEXELS]);
1843 
1844 /**
1845  * @brief Identify, for each mode, which set of color endpoint produces the best result.
1846  *
1847  * Returns the best @c tune_candidate_limit best looking modes, along with the ideal color encoding
1848  * combination for each. The modified quantization level can be used when all formats are the same,
1849  * as this frees up two additional bits of storage.
1850  *
1851  * @param      pi                            The partition info for the current trial.
1852  * @param      blk                           The image block color data to compress.
1853  * @param      ep                            The ideal endpoints.
1854  * @param      qwt_bitcounts                 Bit counts for different quantization methods.
1855  * @param      qwt_errors                    Errors for different quantization methods.
1856  * @param      tune_candidate_limit          The max number of candidates to return, may be less.
1857  * @param      start_block_mode              The first block mode to inspect.
1858  * @param      end_block_mode                The last block mode to inspect.
1859  * @param[out] partition_format_specifiers   The best formats per partition.
1860  * @param[out] block_mode                    The best packed block mode indexes.
1861  * @param[out] quant_level                   The best color quant level.
1862  * @param[out] quant_level_mod               The best color quant level if endpoints are the same.
1863  * @param[out] tmpbuf                        Preallocated scratch buffers for the compressor.
1864  *
1865  * @return The actual number of candidate matches returned.
1866  */
1867 unsigned int compute_ideal_endpoint_formats(
1868 	const partition_info& pi,
1869 	const image_block& blk,
1870 	const endpoints& ep,
1871 	const int8_t* qwt_bitcounts,
1872 	const float* qwt_errors,
1873 	unsigned int tune_candidate_limit,
1874 	unsigned int start_block_mode,
1875 	unsigned int end_block_mode,
1876 	uint8_t partition_format_specifiers[TUNE_MAX_TRIAL_CANDIDATES][BLOCK_MAX_PARTITIONS],
1877 	int block_mode[TUNE_MAX_TRIAL_CANDIDATES],
1878 	quant_method quant_level[TUNE_MAX_TRIAL_CANDIDATES],
1879 	quant_method quant_level_mod[TUNE_MAX_TRIAL_CANDIDATES],
1880 	compression_working_buffers& tmpbuf);
1881 
1882 /**
1883  * @brief For a given 1 plane weight set recompute the endpoint colors.
1884  *
1885  * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
1886  * recompute the ideal colors for a specific weight set.
1887  *
1888  * @param         blk                  The image block color data to compress.
1889  * @param         pi                   The partition info for the current trial.
1890  * @param         di                   The weight grid decimation table.
1891  * @param         dec_weights_uquant   The quantized weight set.
1892  * @param[in,out] ep                   The color endpoints (modifed in place).
1893  * @param[out]    rgbs_vectors         The RGB+scale vectors for LDR blocks.
1894  * @param[out]    rgbo_vectors         The RGB+offset vectors for HDR blocks.
1895  */
1896 void recompute_ideal_colors_1plane(
1897 	const image_block& blk,
1898 	const partition_info& pi,
1899 	const decimation_info& di,
1900 	const uint8_t* dec_weights_uquant,
1901 	endpoints& ep,
1902 	vfloat4 rgbs_vectors[BLOCK_MAX_PARTITIONS],
1903 	vfloat4 rgbo_vectors[BLOCK_MAX_PARTITIONS]);
1904 
1905 /**
1906  * @brief For a given 2 plane weight set recompute the endpoint colors.
1907  *
1908  * As we quantize and decimate weights the optimal endpoint colors may change slightly, so we must
1909  * recompute the ideal colors for a specific weight set.
1910  *
1911  * @param         blk                         The image block color data to compress.
1912  * @param         bsd                         The block_size descriptor.
1913  * @param         di                          The weight grid decimation table.
1914  * @param         dec_weights_uquant_plane1   The quantized weight set for plane 1.
1915  * @param         dec_weights_uquant_plane2   The quantized weight set for plane 2.
1916  * @param[in,out] ep                          The color endpoints (modifed in place).
1917  * @param[out]    rgbs_vector                 The RGB+scale color for LDR blocks.
1918  * @param[out]    rgbo_vector                 The RGB+offset color for HDR blocks.
1919  * @param         plane2_component            The component assigned to plane 2.
1920  */
1921 void recompute_ideal_colors_2planes(
1922 	const image_block& blk,
1923 	const block_size_descriptor& bsd,
1924 	const decimation_info& di,
1925 	const uint8_t* dec_weights_uquant_plane1,
1926 	const uint8_t* dec_weights_uquant_plane2,
1927 	endpoints& ep,
1928 	vfloat4& rgbs_vector,
1929 	vfloat4& rgbo_vector,
1930 	int plane2_component);
1931 
1932 /**
1933  * @brief Expand the angular tables needed for the alternative to PCA that we use.
1934  */
1935 void prepare_angular_tables();
1936 
1937 /**
1938  * @brief Compute the angular endpoints for one plane for each block mode.
1939  *
1940  * @param      only_always              Only consider block modes that are always enabled.
1941  * @param      bsd                      The block size descriptor for the current trial.
1942  * @param      dec_weight_ideal_value   The ideal decimated unquantized weight values.
1943  * @param      max_weight_quant         The maximum block mode weight quantization allowed.
1944  * @param[out] tmpbuf                   Preallocated scratch buffers for the compressor.
1945  */
1946 void compute_angular_endpoints_1plane(
1947 	bool only_always,
1948 	const block_size_descriptor& bsd,
1949 	const float* dec_weight_ideal_value,
1950 	unsigned int max_weight_quant,
1951 	compression_working_buffers& tmpbuf);
1952 
1953 /**
1954  * @brief Compute the angular endpoints for two planes for each block mode.
1955  *
1956  * @param      bsd                      The block size descriptor for the current trial.
1957  * @param      dec_weight_ideal_value   The ideal decimated unquantized weight values.
1958  * @param      max_weight_quant         The maximum block mode weight quantization allowed.
1959  * @param[out] tmpbuf                   Preallocated scratch buffers for the compressor.
1960  */
1961 void compute_angular_endpoints_2planes(
1962 	const block_size_descriptor& bsd,
1963 	const float* dec_weight_ideal_value,
1964 	unsigned int max_weight_quant,
1965 	compression_working_buffers& tmpbuf);
1966 
1967 /* ============================================================================
1968   Functionality for high level compression and decompression access.
1969 ============================================================================ */
1970 
1971 /**
1972  * @brief Compress an image block into a physical block.
1973  *
1974  * @param      ctx      The compressor context and configuration.
1975  * @param      blk      The image block color data to compress.
1976  * @param[out] pcb      The physical compressed block output.
1977  * @param[out] tmpbuf   Preallocated scratch buffers for the compressor.
1978  */
1979 void compress_block(
1980 	const astcenc_contexti& ctx,
1981 	const image_block& blk,
1982 	physical_compressed_block& pcb,
1983 	compression_working_buffers& tmpbuf);
1984 
1985 /**
1986  * @brief Decompress a symbolic block in to an image block.
1987  *
1988  * @param      decode_mode   The decode mode (LDR, HDR, etc).
1989  * @param      bsd           The block size information.
1990  * @param      xpos          The X coordinate of the block in the overall image.
1991  * @param      ypos          The Y coordinate of the block in the overall image.
1992  * @param      zpos          The Z coordinate of the block in the overall image.
1993  * @param[out] blk           The decompressed image block color data.
1994  */
1995 void decompress_symbolic_block(
1996 	astcenc_profile decode_mode,
1997 	const block_size_descriptor& bsd,
1998 	int xpos,
1999 	int ypos,
2000 	int zpos,
2001 	const symbolic_compressed_block& scb,
2002 	image_block& blk);
2003 
2004 /**
2005  * @brief Compute the error between a symbolic block and the original input data.
2006  *
2007  * This function is specialized for 2 plane and 1 partition search.
2008  *
2009  * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2010  *
2011  * @param config   The compressor config.
2012  * @param bsd      The block size information.
2013  * @param scb      The symbolic compressed encoding.
2014  * @param blk      The original image block color data.
2015  *
2016  * @return Returns the computed error, or a negative value if the encoding
2017  *         should be rejected for any reason.
2018  */
2019 float compute_symbolic_block_difference_2plane(
2020 	const astcenc_config& config,
2021 	const block_size_descriptor& bsd,
2022 	const symbolic_compressed_block& scb,
2023 	const image_block& blk);
2024 
2025 /**
2026  * @brief Compute the error between a symbolic block and the original input data.
2027  *
2028  * This function is specialized for 1 plane and N partition search.
2029  *
2030  * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2031  *
2032  * @param config   The compressor config.
2033  * @param bsd      The block size information.
2034  * @param scb      The symbolic compressed encoding.
2035  * @param blk      The original image block color data.
2036  *
2037  * @return Returns the computed error, or a negative value if the encoding
2038  *         should be rejected for any reason.
2039  */
2040 float compute_symbolic_block_difference_1plane(
2041 	const astcenc_config& config,
2042 	const block_size_descriptor& bsd,
2043 	const symbolic_compressed_block& scb,
2044 	const image_block& blk);
2045 
2046 /**
2047  * @brief Compute the error between a symbolic block and the original input data.
2048  *
2049  * This function is specialized for 1 plane and 1 partition search.
2050  *
2051  * In RGBM mode this will reject blocks that attempt to encode a zero M value.
2052  *
2053  * @param config   The compressor config.
2054  * @param bsd      The block size information.
2055  * @param scb      The symbolic compressed encoding.
2056  * @param blk      The original image block color data.
2057  *
2058  * @return Returns the computed error, or a negative value if the encoding
2059  *         should be rejected for any reason.
2060  */
2061 float compute_symbolic_block_difference_1plane_1partition(
2062 	const astcenc_config& config,
2063 	const block_size_descriptor& bsd,
2064 	const symbolic_compressed_block& scb,
2065 	const image_block& blk);
2066 
2067 /**
2068  * @brief Convert a symbolic representation into a binary physical encoding.
2069  *
2070  * It is assumed that the symbolic encoding is valid and encodable, or
2071  * previously flagged as an error block if an error color it to be encoded.
2072  *
2073  * @param      bsd   The block size information.
2074  * @param      scb   The symbolic representation.
2075  * @param[out] pcb   The binary encoded data.
2076  */
2077 void symbolic_to_physical(
2078 	const block_size_descriptor& bsd,
2079 	const symbolic_compressed_block& scb,
2080 	physical_compressed_block& pcb);
2081 
2082 /**
2083  * @brief Convert a binary physical encoding into a symbolic representation.
2084  *
2085  * This function can cope with arbitrary input data; output blocks will be
2086  * flagged as an error block if the encoding is invalid.
2087  *
2088  * @param      bsd   The block size information.
2089  * @param      pcb   The binary encoded data.
2090  * @param[out] scb   The output symbolic representation.
2091  */
2092 void physical_to_symbolic(
2093 	const block_size_descriptor& bsd,
2094 	const physical_compressed_block& pcb,
2095 	symbolic_compressed_block& scb);
2096 
2097 /* ============================================================================
2098 Platform-specific functions.
2099 ============================================================================ */
2100 /**
2101  * @brief Run-time detection if the host CPU supports the POPCNT extension.
2102  *
2103  * @return @c true if supported, @c false if not.
2104  */
2105 bool cpu_supports_popcnt();
2106 
2107 /**
2108  * @brief Run-time detection if the host CPU supports F16C extension.
2109  *
2110  * @return @c true if supported, @c false if not.
2111  */
2112 bool cpu_supports_f16c();
2113 
2114 /**
2115  * @brief Run-time detection if the host CPU supports SSE 4.1 extension.
2116  *
2117  * @return @c true if supported, @c false if not.
2118  */
2119 bool cpu_supports_sse41();
2120 
2121 /**
2122  * @brief Run-time detection if the host CPU supports AVX 2 extension.
2123  *
2124  * @return @c true if supported, @c false if not.
2125  */
2126 bool cpu_supports_avx2();
2127 
2128 /**
2129  * @brief Allocate an aligned memory buffer.
2130  *
2131  * Allocated memory must be freed by aligned_free;
2132  *
2133  * @param size    The desired buffer size.
2134  * @param align   The desired buffer alignment; must be 2^N.
2135  *
2136  * @return The memory buffer pointer or nullptr on allocation failure.
2137  */
2138 template<typename T>
aligned_malloc(size_t size,size_t align)2139 T* aligned_malloc(size_t size, size_t align)
2140 {
2141 	void* ptr;
2142 	int error = 0;
2143 
2144 #if defined(_WIN32)
2145 	ptr = _aligned_malloc(size, align);
2146 #else
2147 	error = posix_memalign(&ptr, align, size);
2148 #endif
2149 
2150 	if (error || (!ptr))
2151 	{
2152 		return nullptr;
2153 	}
2154 
2155 	return static_cast<T*>(ptr);
2156 }
2157 
2158 /**
2159  * @brief Free an aligned memory buffer.
2160  *
2161  * @param ptr   The buffer to free.
2162  */
2163 template<typename T>
aligned_free(T * ptr)2164 void aligned_free(T* ptr)
2165 {
2166 #if defined(_WIN32)
2167 	_aligned_free(reinterpret_cast<void*>(ptr));
2168 #else
2169 	free(reinterpret_cast<void*>(ptr));
2170 #endif
2171 }
2172 
2173 #endif
2174