1 /*
2  * Copyright (C) 2023 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_generator_riscv64.h"
18 
19 #include "android-base/logging.h"
20 #include "android-base/macros.h"
21 #include "arch/riscv64/jni_frame_riscv64.h"
22 #include "arch/riscv64/registers_riscv64.h"
23 #include "base/arena_containers.h"
24 #include "base/macros.h"
25 #include "class_root-inl.h"
26 #include "code_generator_utils.h"
27 #include "dwarf/register.h"
28 #include "gc/heap.h"
29 #include "gc/space/image_space.h"
30 #include "heap_poisoning.h"
31 #include "intrinsics_list.h"
32 #include "intrinsics_riscv64.h"
33 #include "jit/profiling_info.h"
34 #include "linker/linker_patch.h"
35 #include "mirror/class-inl.h"
36 #include "optimizing/nodes.h"
37 #include "optimizing/profiling_info_builder.h"
38 #include "runtime.h"
39 #include "scoped_thread_state_change-inl.h"
40 #include "stack_map_stream.h"
41 #include "trace.h"
42 #include "utils/label.h"
43 #include "utils/riscv64/assembler_riscv64.h"
44 #include "utils/stack_checks.h"
45 
46 namespace art HIDDEN {
47 namespace riscv64 {
48 
49 // Placeholder values embedded in instructions, patched at link time.
50 constexpr uint32_t kLinkTimeOffsetPlaceholderHigh = 0x12345;
51 constexpr uint32_t kLinkTimeOffsetPlaceholderLow = 0x678;
52 
53 // Compare-and-jump packed switch generates approx. 3 + 1.5 * N 32-bit
54 // instructions for N cases.
55 // Table-based packed switch generates approx. 10 32-bit instructions
56 // and N 32-bit data words for N cases.
57 // We switch to the table-based method starting with 6 entries.
58 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 6;
59 
60 static constexpr XRegister kCoreCalleeSaves[] = {
61     // S1(TR) is excluded as the ART thread register.
62     S0, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, RA
63 };
64 
65 static constexpr FRegister kFpuCalleeSaves[] = {
66     FS0, FS1, FS2, FS3, FS4, FS5, FS6, FS7, FS8, FS9, FS10, FS11
67 };
68 
69 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kRiscv64PointerSize, x).Int32Value()
70 
RegisterOrZeroBitPatternLocation(HInstruction * instruction)71 Location RegisterOrZeroBitPatternLocation(HInstruction* instruction) {
72   DCHECK(!DataType::IsFloatingPointType(instruction->GetType()));
73   return IsZeroBitPattern(instruction)
74       ? Location::ConstantLocation(instruction)
75       : Location::RequiresRegister();
76 }
77 
FpuRegisterOrZeroBitPatternLocation(HInstruction * instruction)78 Location FpuRegisterOrZeroBitPatternLocation(HInstruction* instruction) {
79   DCHECK(DataType::IsFloatingPointType(instruction->GetType()));
80   return IsZeroBitPattern(instruction)
81       ? Location::ConstantLocation(instruction)
82       : Location::RequiresFpuRegister();
83 }
84 
InputXRegisterOrZero(Location location)85 XRegister InputXRegisterOrZero(Location location) {
86   if (location.IsConstant()) {
87     DCHECK(location.GetConstant()->IsZeroBitPattern());
88     return Zero;
89   } else {
90     return location.AsRegister<XRegister>();
91   }
92 }
93 
ValueLocationForStore(HInstruction * value)94 Location ValueLocationForStore(HInstruction* value) {
95   if (IsZeroBitPattern(value)) {
96     return Location::ConstantLocation(value);
97   } else if (DataType::IsFloatingPointType(value->GetType())) {
98     return Location::RequiresFpuRegister();
99   } else {
100     return Location::RequiresRegister();
101   }
102 }
103 
Riscv64ReturnLocation(DataType::Type return_type)104 Location Riscv64ReturnLocation(DataType::Type return_type) {
105   switch (return_type) {
106     case DataType::Type::kBool:
107     case DataType::Type::kUint8:
108     case DataType::Type::kInt8:
109     case DataType::Type::kUint16:
110     case DataType::Type::kInt16:
111     case DataType::Type::kUint32:
112     case DataType::Type::kInt32:
113     case DataType::Type::kReference:
114     case DataType::Type::kUint64:
115     case DataType::Type::kInt64:
116       return Location::RegisterLocation(A0);
117 
118     case DataType::Type::kFloat32:
119     case DataType::Type::kFloat64:
120       return Location::FpuRegisterLocation(FA0);
121 
122     case DataType::Type::kVoid:
123       return Location::NoLocation();
124   }
125 }
126 
OneRegInReferenceOutSaveEverythingCallerSaves()127 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
128   InvokeRuntimeCallingConvention calling_convention;
129   RegisterSet caller_saves = RegisterSet::Empty();
130   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
131   DCHECK_EQ(
132       calling_convention.GetRegisterAt(0),
133       calling_convention.GetReturnLocation(DataType::Type::kReference).AsRegister<XRegister>());
134   return caller_saves;
135 }
136 
137 template <ClassStatus kStatus>
ShiftedSignExtendedClassStatusValue()138 static constexpr int64_t ShiftedSignExtendedClassStatusValue() {
139   // This is used only for status values that have the highest bit set.
140   static_assert(CLZ(enum_cast<uint32_t>(kStatus)) == kClassStatusLsbPosition);
141   constexpr uint32_t kShiftedStatusValue = enum_cast<uint32_t>(kStatus) << kClassStatusLsbPosition;
142   static_assert(kShiftedStatusValue >= 0x80000000u);
143   return static_cast<int64_t>(kShiftedStatusValue) - (INT64_C(1) << 32);
144 }
145 
146 // Split a 64-bit address used by JIT to the nearest 4KiB-aligned base address and a 12-bit
147 // signed offset. It is usually cheaper to materialize the aligned address than the full address.
SplitJitAddress(uint64_t address)148 std::pair<uint64_t, int32_t> SplitJitAddress(uint64_t address) {
149   uint64_t bits0_11 = address & UINT64_C(0xfff);
150   uint64_t bit11 = address & UINT64_C(0x800);
151   // Round the address to nearest 4KiB address because the `imm12` has range [-0x800, 0x800).
152   uint64_t base_address = (address & ~UINT64_C(0xfff)) + (bit11 << 1);
153   int32_t imm12 = dchecked_integral_cast<int32_t>(bits0_11) -
154                   dchecked_integral_cast<int32_t>(bit11 << 1);
155   return {base_address, imm12};
156 }
157 
ReadBarrierMarkEntrypointOffset(Location ref)158 int32_t ReadBarrierMarkEntrypointOffset(Location ref) {
159   DCHECK(ref.IsRegister());
160   int reg = ref.reg();
161   DCHECK(T0 <= reg && reg <= T6 && reg != TR) << reg;
162   // Note: Entrypoints for registers X30 (T5) and X31 (T6) are stored in entries
163   // for X0 (Zero) and X1 (RA) because these are not valid registers for marking
164   // and we currently have slots only up to register 29.
165   int entry_point_number = (reg >= 30) ? reg - 30 : reg;
166   return Thread::ReadBarrierMarkEntryPointsOffset<kRiscv64PointerSize>(entry_point_number);
167 }
168 
GetReturnLocation(DataType::Type return_type)169 Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) {
170   return Riscv64ReturnLocation(return_type);
171 }
172 
GetReturnLocation(DataType::Type type) const173 Location InvokeDexCallingConventionVisitorRISCV64::GetReturnLocation(DataType::Type type) const {
174   return Riscv64ReturnLocation(type);
175 }
176 
GetMethodLocation() const177 Location InvokeDexCallingConventionVisitorRISCV64::GetMethodLocation() const {
178   return Location::RegisterLocation(kArtMethodRegister);
179 }
180 
GetNextLocation(DataType::Type type)181 Location InvokeDexCallingConventionVisitorRISCV64::GetNextLocation(DataType::Type type) {
182   Location next_location;
183   if (type == DataType::Type::kVoid) {
184     LOG(FATAL) << "Unexpected parameter type " << type;
185   }
186 
187   // Note: Unlike the RISC-V C/C++ calling convention, managed ABI does not use
188   // GPRs to pass FP args when we run out of FPRs.
189   if (DataType::IsFloatingPointType(type) &&
190       float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
191     next_location =
192         Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++));
193   } else if (!DataType::IsFloatingPointType(type) &&
194              (gp_index_ < calling_convention.GetNumberOfRegisters())) {
195     next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index_++));
196   } else {
197     size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
198     next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) :
199                                                   Location::StackSlot(stack_offset);
200   }
201 
202   // Space on the stack is reserved for all arguments.
203   stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
204 
205   return next_location;
206 }
207 
GetNextLocation(DataType::Type type)208 Location CriticalNativeCallingConventionVisitorRiscv64::GetNextLocation(DataType::Type type) {
209   DCHECK_NE(type, DataType::Type::kReference);
210 
211   Location location = Location::NoLocation();
212   if (DataType::IsFloatingPointType(type)) {
213     if (fpr_index_ < kParameterFpuRegistersLength) {
214       location = Location::FpuRegisterLocation(kParameterFpuRegisters[fpr_index_]);
215       ++fpr_index_;
216     } else {
217       // Native ABI allows passing excessive FP args in GPRs. This is facilitated by
218       // inserting fake conversion intrinsic calls (`Double.doubleToRawLongBits()`
219       // or `Float.floatToRawIntBits()`) by `CriticalNativeAbiFixupRiscv64`.
220       // Remaining FP args shall be passed on the stack.
221       CHECK_EQ(gpr_index_, kRuntimeParameterCoreRegistersLength);
222     }
223   } else {
224     // Native ABI uses the same core registers as a runtime call.
225     if (gpr_index_ < kRuntimeParameterCoreRegistersLength) {
226       location = Location::RegisterLocation(kRuntimeParameterCoreRegisters[gpr_index_]);
227       ++gpr_index_;
228     }
229   }
230   if (location.IsInvalid()) {
231     // Only a `float` gets a single slot. Integral args need to be sign-extended to 64 bits.
232     if (type == DataType::Type::kFloat32) {
233       location = Location::StackSlot(stack_offset_);
234     } else {
235       location = Location::DoubleStackSlot(stack_offset_);
236     }
237     stack_offset_ += kFramePointerSize;
238 
239     if (for_register_allocation_) {
240       location = Location::Any();
241     }
242   }
243   return location;
244 }
245 
GetReturnLocation(DataType::Type type) const246 Location CriticalNativeCallingConventionVisitorRiscv64::GetReturnLocation(
247     DataType::Type type) const {
248   // The result is returned the same way in native ABI and managed ABI. No result conversion is
249   // needed, see comments in `Riscv64JniCallingConvention::RequiresSmallResultTypeExtension()`.
250   InvokeDexCallingConventionVisitorRISCV64 dex_calling_convention;
251   return dex_calling_convention.GetReturnLocation(type);
252 }
253 
GetMethodLocation() const254 Location CriticalNativeCallingConventionVisitorRiscv64::GetMethodLocation() const {
255   // Pass the method in the hidden argument T0.
256   return Location::RegisterLocation(T0);
257 }
258 
259 #define __ down_cast<CodeGeneratorRISCV64*>(codegen)->GetAssembler()->  // NOLINT
260 
HandleInvoke(HInvoke * instruction)261 void LocationsBuilderRISCV64::HandleInvoke(HInvoke* instruction) {
262   InvokeDexCallingConventionVisitorRISCV64 calling_convention_visitor;
263   CodeGenerator::CreateCommonInvokeLocationSummary(instruction, &calling_convention_visitor);
264 }
265 
266 class CompileOptimizedSlowPathRISCV64 : public SlowPathCodeRISCV64 {
267  public:
CompileOptimizedSlowPathRISCV64(HSuspendCheck * suspend_check,XRegister base,int32_t imm12)268   CompileOptimizedSlowPathRISCV64(HSuspendCheck* suspend_check, XRegister base, int32_t imm12)
269       : SlowPathCodeRISCV64(suspend_check),
270         base_(base),
271         imm12_(imm12) {}
272 
EmitNativeCode(CodeGenerator * codegen)273   void EmitNativeCode(CodeGenerator* codegen) override {
274     uint32_t entrypoint_offset =
275         GetThreadOffset<kRiscv64PointerSize>(kQuickCompileOptimized).Int32Value();
276     __ Bind(GetEntryLabel());
277     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
278     riscv64::ScratchRegisterScope srs(riscv64_codegen->GetAssembler());
279     XRegister counter = srs.AllocateXRegister();
280     __ LoadConst32(counter, ProfilingInfo::GetOptimizeThreshold());
281     __ Sh(counter, base_, imm12_);
282     if (instruction_ != nullptr) {
283       // Only saves live vector regs for SIMD.
284       SaveLiveRegisters(codegen, instruction_->GetLocations());
285     }
286     __ Loadd(RA, TR, entrypoint_offset);
287     // Note: we don't record the call here (and therefore don't generate a stack
288     // map), as the entrypoint should never be suspended.
289     __ Jalr(RA);
290     if (instruction_ != nullptr) {
291       // Only restores live vector regs for SIMD.
292       RestoreLiveRegisters(codegen, instruction_->GetLocations());
293     }
294     __ J(GetExitLabel());
295   }
296 
GetDescription() const297   const char* GetDescription() const override { return "CompileOptimizedSlowPath"; }
298 
299  private:
300   XRegister base_;
301   const int32_t imm12_;
302 
303   DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathRISCV64);
304 };
305 
306 class SuspendCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 {
307  public:
SuspendCheckSlowPathRISCV64(HSuspendCheck * instruction,HBasicBlock * successor)308   SuspendCheckSlowPathRISCV64(HSuspendCheck* instruction, HBasicBlock* successor)
309       : SlowPathCodeRISCV64(instruction), successor_(successor) {}
310 
EmitNativeCode(CodeGenerator * codegen)311   void EmitNativeCode(CodeGenerator* codegen) override {
312     LocationSummary* locations = instruction_->GetLocations();
313     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
314     __ Bind(GetEntryLabel());
315     SaveLiveRegisters(codegen, locations);  // Only saves live vector registers for SIMD.
316     riscv64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
317     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
318     RestoreLiveRegisters(codegen, locations);  // Only restores live vector registers for SIMD.
319     if (successor_ == nullptr) {
320       __ J(GetReturnLabel());
321     } else {
322       __ J(riscv64_codegen->GetLabelOf(successor_));
323     }
324   }
325 
GetReturnLabel()326   Riscv64Label* GetReturnLabel() {
327     DCHECK(successor_ == nullptr);
328     return &return_label_;
329   }
330 
GetDescription() const331   const char* GetDescription() const override { return "SuspendCheckSlowPathRISCV64"; }
332 
GetSuccessor() const333   HBasicBlock* GetSuccessor() const { return successor_; }
334 
335  private:
336   // If not null, the block to branch to after the suspend check.
337   HBasicBlock* const successor_;
338 
339   // If `successor_` is null, the label to branch to after the suspend check.
340   Riscv64Label return_label_;
341 
342   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathRISCV64);
343 };
344 
345 class NullCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 {
346  public:
NullCheckSlowPathRISCV64(HNullCheck * instr)347   explicit NullCheckSlowPathRISCV64(HNullCheck* instr) : SlowPathCodeRISCV64(instr) {}
348 
EmitNativeCode(CodeGenerator * codegen)349   void EmitNativeCode(CodeGenerator* codegen) override {
350     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
351     __ Bind(GetEntryLabel());
352     if (instruction_->CanThrowIntoCatchBlock()) {
353       // Live registers will be restored in the catch block if caught.
354       SaveLiveRegisters(codegen, instruction_->GetLocations());
355     }
356     riscv64_codegen->InvokeRuntime(
357         kQuickThrowNullPointer, instruction_, instruction_->GetDexPc(), this);
358     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
359   }
360 
IsFatal() const361   bool IsFatal() const override { return true; }
362 
GetDescription() const363   const char* GetDescription() const override { return "NullCheckSlowPathRISCV64"; }
364 
365  private:
366   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathRISCV64);
367 };
368 
369 class BoundsCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 {
370  public:
BoundsCheckSlowPathRISCV64(HBoundsCheck * instruction)371   explicit BoundsCheckSlowPathRISCV64(HBoundsCheck* instruction)
372       : SlowPathCodeRISCV64(instruction) {}
373 
EmitNativeCode(CodeGenerator * codegen)374   void EmitNativeCode(CodeGenerator* codegen) override {
375     LocationSummary* locations = instruction_->GetLocations();
376     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
377     __ Bind(GetEntryLabel());
378     if (instruction_->CanThrowIntoCatchBlock()) {
379       // Live registers will be restored in the catch block if caught.
380       SaveLiveRegisters(codegen, instruction_->GetLocations());
381     }
382     // We're moving two locations to locations that could overlap, so we need a parallel
383     // move resolver.
384     InvokeRuntimeCallingConvention calling_convention;
385     codegen->EmitParallelMoves(locations->InAt(0),
386                                Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
387                                DataType::Type::kInt32,
388                                locations->InAt(1),
389                                Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
390                                DataType::Type::kInt32);
391     QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() ?
392                                          kQuickThrowStringBounds :
393                                          kQuickThrowArrayBounds;
394     riscv64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
395     CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
396     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
397   }
398 
IsFatal() const399   bool IsFatal() const override { return true; }
400 
GetDescription() const401   const char* GetDescription() const override { return "BoundsCheckSlowPathRISCV64"; }
402 
403  private:
404   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathRISCV64);
405 };
406 
407 class LoadClassSlowPathRISCV64 : public SlowPathCodeRISCV64 {
408  public:
LoadClassSlowPathRISCV64(HLoadClass * cls,HInstruction * at)409   LoadClassSlowPathRISCV64(HLoadClass* cls, HInstruction* at) : SlowPathCodeRISCV64(at), cls_(cls) {
410     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
411     DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
412   }
413 
EmitNativeCode(CodeGenerator * codegen)414   void EmitNativeCode(CodeGenerator* codegen) override {
415     LocationSummary* locations = instruction_->GetLocations();
416     Location out = locations->Out();
417     const uint32_t dex_pc = instruction_->GetDexPc();
418     bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
419     bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
420 
421     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
422     __ Bind(GetEntryLabel());
423     SaveLiveRegisters(codegen, locations);
424 
425     InvokeRuntimeCallingConvention calling_convention;
426     if (must_resolve_type) {
427       DCHECK(IsSameDexFile(cls_->GetDexFile(), riscv64_codegen->GetGraph()->GetDexFile()) ||
428              riscv64_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) ||
429              ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(),
430                              &cls_->GetDexFile()));
431       dex::TypeIndex type_index = cls_->GetTypeIndex();
432       __ LoadConst32(calling_convention.GetRegisterAt(0), type_index.index_);
433       if (cls_->NeedsAccessCheck()) {
434         CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
435         riscv64_codegen->InvokeRuntime(
436             kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this);
437       } else {
438         CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
439         riscv64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
440       }
441       // If we also must_do_clinit, the resolved type is now in the correct register.
442     } else {
443       DCHECK(must_do_clinit);
444       Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
445       riscv64_codegen->MoveLocation(
446           Location::RegisterLocation(calling_convention.GetRegisterAt(0)), source, cls_->GetType());
447     }
448     if (must_do_clinit) {
449       riscv64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
450       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
451     }
452 
453     // Move the class to the desired location.
454     if (out.IsValid()) {
455       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
456       DataType::Type type = DataType::Type::kReference;
457       DCHECK_EQ(type, instruction_->GetType());
458       riscv64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
459     }
460     RestoreLiveRegisters(codegen, locations);
461 
462     __ J(GetExitLabel());
463   }
464 
GetDescription() const465   const char* GetDescription() const override { return "LoadClassSlowPathRISCV64"; }
466 
467  private:
468   // The class this slow path will load.
469   HLoadClass* const cls_;
470 
471   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathRISCV64);
472 };
473 
474 class DeoptimizationSlowPathRISCV64 : public SlowPathCodeRISCV64 {
475  public:
DeoptimizationSlowPathRISCV64(HDeoptimize * instruction)476   explicit DeoptimizationSlowPathRISCV64(HDeoptimize* instruction)
477       : SlowPathCodeRISCV64(instruction) {}
478 
EmitNativeCode(CodeGenerator * codegen)479   void EmitNativeCode(CodeGenerator* codegen) override {
480     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
481     __ Bind(GetEntryLabel());
482     LocationSummary* locations = instruction_->GetLocations();
483     SaveLiveRegisters(codegen, locations);
484     InvokeRuntimeCallingConvention calling_convention;
485     __ LoadConst32(calling_convention.GetRegisterAt(0),
486                    static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
487     riscv64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
488     CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
489   }
490 
GetDescription() const491   const char* GetDescription() const override { return "DeoptimizationSlowPathRISCV64"; }
492 
493  private:
494   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathRISCV64);
495 };
496 
497 // Slow path generating a read barrier for a GC root.
498 class ReadBarrierForRootSlowPathRISCV64 : public SlowPathCodeRISCV64 {
499  public:
ReadBarrierForRootSlowPathRISCV64(HInstruction * instruction,Location out,Location root)500   ReadBarrierForRootSlowPathRISCV64(HInstruction* instruction, Location out, Location root)
501       : SlowPathCodeRISCV64(instruction), out_(out), root_(root) {
502   }
503 
EmitNativeCode(CodeGenerator * codegen)504   void EmitNativeCode(CodeGenerator* codegen) override {
505     DCHECK(codegen->EmitReadBarrier());
506     LocationSummary* locations = instruction_->GetLocations();
507     DataType::Type type = DataType::Type::kReference;
508     XRegister reg_out = out_.AsRegister<XRegister>();
509     DCHECK(locations->CanCall());
510     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
511     DCHECK(instruction_->IsLoadClass() ||
512            instruction_->IsLoadString() ||
513            (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
514         << "Unexpected instruction in read barrier for GC root slow path: "
515         << instruction_->DebugName();
516 
517     __ Bind(GetEntryLabel());
518     SaveLiveRegisters(codegen, locations);
519 
520     InvokeRuntimeCallingConvention calling_convention;
521     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
522     riscv64_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
523                                   root_,
524                                   DataType::Type::kReference);
525     riscv64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
526                                    instruction_,
527                                    instruction_->GetDexPc(),
528                                    this);
529     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
530     riscv64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
531 
532     RestoreLiveRegisters(codegen, locations);
533     __ J(GetExitLabel());
534   }
535 
GetDescription() const536   const char* GetDescription() const override { return "ReadBarrierForRootSlowPathRISCV64"; }
537 
538  private:
539   const Location out_;
540   const Location root_;
541 
542   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathRISCV64);
543 };
544 
545 class MethodEntryExitHooksSlowPathRISCV64 : public SlowPathCodeRISCV64 {
546  public:
MethodEntryExitHooksSlowPathRISCV64(HInstruction * instruction)547   explicit MethodEntryExitHooksSlowPathRISCV64(HInstruction* instruction)
548       : SlowPathCodeRISCV64(instruction) {}
549 
EmitNativeCode(CodeGenerator * codegen)550   void EmitNativeCode(CodeGenerator* codegen) override {
551     LocationSummary* locations = instruction_->GetLocations();
552     QuickEntrypointEnum entry_point =
553         (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook;
554     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
555     __ Bind(GetEntryLabel());
556     SaveLiveRegisters(codegen, locations);
557     if (instruction_->IsMethodExitHook()) {
558       __ Li(A4, riscv64_codegen->GetFrameSize());
559     }
560     riscv64_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this);
561     RestoreLiveRegisters(codegen, locations);
562     __ J(GetExitLabel());
563   }
564 
GetDescription() const565   const char* GetDescription() const override {
566     return "MethodEntryExitHooksSlowPathRISCV";
567   }
568 
569  private:
570   DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathRISCV64);
571 };
572 
573 class ArraySetSlowPathRISCV64 : public SlowPathCodeRISCV64 {
574  public:
ArraySetSlowPathRISCV64(HInstruction * instruction)575   explicit ArraySetSlowPathRISCV64(HInstruction* instruction) : SlowPathCodeRISCV64(instruction) {}
576 
EmitNativeCode(CodeGenerator * codegen)577   void EmitNativeCode(CodeGenerator* codegen) override {
578     LocationSummary* locations = instruction_->GetLocations();
579     __ Bind(GetEntryLabel());
580     SaveLiveRegisters(codegen, locations);
581 
582     InvokeRuntimeCallingConvention calling_convention;
583     HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
584     parallel_move.AddMove(
585         locations->InAt(0),
586         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
587         DataType::Type::kReference,
588         nullptr);
589     parallel_move.AddMove(
590         locations->InAt(1),
591         Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
592         DataType::Type::kInt32,
593         nullptr);
594     parallel_move.AddMove(
595         locations->InAt(2),
596         Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
597         DataType::Type::kReference,
598         nullptr);
599     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
600 
601     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
602     riscv64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
603     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
604     RestoreLiveRegisters(codegen, locations);
605     __ J(GetExitLabel());
606   }
607 
GetDescription() const608   const char* GetDescription() const override { return "ArraySetSlowPathRISCV64"; }
609 
610  private:
611   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathRISCV64);
612 };
613 
614 class TypeCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 {
615  public:
TypeCheckSlowPathRISCV64(HInstruction * instruction,bool is_fatal)616   explicit TypeCheckSlowPathRISCV64(HInstruction* instruction, bool is_fatal)
617       : SlowPathCodeRISCV64(instruction), is_fatal_(is_fatal) {}
618 
EmitNativeCode(CodeGenerator * codegen)619   void EmitNativeCode(CodeGenerator* codegen) override {
620     LocationSummary* locations = instruction_->GetLocations();
621 
622     uint32_t dex_pc = instruction_->GetDexPc();
623     DCHECK(instruction_->IsCheckCast()
624            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
625     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
626 
627     __ Bind(GetEntryLabel());
628     if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
629       SaveLiveRegisters(codegen, locations);
630     }
631 
632     // We're moving two locations to locations that could overlap, so we need a parallel
633     // move resolver.
634     InvokeRuntimeCallingConvention calling_convention;
635     codegen->EmitParallelMoves(locations->InAt(0),
636                                Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
637                                DataType::Type::kReference,
638                                locations->InAt(1),
639                                Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
640                                DataType::Type::kReference);
641     if (instruction_->IsInstanceOf()) {
642       riscv64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
643       CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
644       DataType::Type ret_type = instruction_->GetType();
645       Location ret_loc = calling_convention.GetReturnLocation(ret_type);
646       riscv64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
647     } else {
648       DCHECK(instruction_->IsCheckCast());
649       riscv64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
650       CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
651     }
652 
653     if (!is_fatal_) {
654       RestoreLiveRegisters(codegen, locations);
655       __ J(GetExitLabel());
656     }
657   }
658 
GetDescription() const659   const char* GetDescription() const override { return "TypeCheckSlowPathRISCV64"; }
660 
IsFatal() const661   bool IsFatal() const override { return is_fatal_; }
662 
663  private:
664   const bool is_fatal_;
665 
666   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathRISCV64);
667 };
668 
669 class DivZeroCheckSlowPathRISCV64 : public SlowPathCodeRISCV64 {
670  public:
DivZeroCheckSlowPathRISCV64(HDivZeroCheck * instruction)671   explicit DivZeroCheckSlowPathRISCV64(HDivZeroCheck* instruction)
672       : SlowPathCodeRISCV64(instruction) {}
673 
EmitNativeCode(CodeGenerator * codegen)674   void EmitNativeCode(CodeGenerator* codegen) override {
675     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
676     __ Bind(GetEntryLabel());
677     riscv64_codegen->InvokeRuntime(
678         kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
679     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
680   }
681 
IsFatal() const682   bool IsFatal() const override { return true; }
683 
GetDescription() const684   const char* GetDescription() const override { return "DivZeroCheckSlowPathRISCV64"; }
685 
686  private:
687   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathRISCV64);
688 };
689 
690 class ReadBarrierMarkSlowPathRISCV64 : public SlowPathCodeRISCV64 {
691  public:
ReadBarrierMarkSlowPathRISCV64(HInstruction * instruction,Location ref,Location entrypoint)692   ReadBarrierMarkSlowPathRISCV64(HInstruction* instruction, Location ref, Location entrypoint)
693       : SlowPathCodeRISCV64(instruction), ref_(ref), entrypoint_(entrypoint) {
694     DCHECK(entrypoint.IsRegister());
695   }
696 
GetDescription() const697   const char* GetDescription() const override { return "ReadBarrierMarkSlowPathRISCV64"; }
698 
EmitNativeCode(CodeGenerator * codegen)699   void EmitNativeCode(CodeGenerator* codegen) override {
700     DCHECK(codegen->EmitReadBarrier());
701     LocationSummary* locations = instruction_->GetLocations();
702     XRegister ref_reg = ref_.AsRegister<XRegister>();
703     DCHECK(locations->CanCall());
704     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
705     DCHECK(instruction_->IsInstanceFieldGet() ||
706            instruction_->IsStaticFieldGet() ||
707            instruction_->IsArrayGet() ||
708            instruction_->IsArraySet() ||
709            instruction_->IsLoadClass() ||
710            instruction_->IsLoadString() ||
711            instruction_->IsInstanceOf() ||
712            instruction_->IsCheckCast() ||
713            (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
714         << "Unexpected instruction in read barrier marking slow path: "
715         << instruction_->DebugName();
716 
717     __ Bind(GetEntryLabel());
718     // No need to save live registers; it's taken care of by the
719     // entrypoint. Also, there is no need to update the stack mask,
720     // as this runtime call will not trigger a garbage collection.
721     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
722     DCHECK(ref_reg >= T0 && ref_reg != TR);
723 
724     // "Compact" slow path, saving two moves.
725     //
726     // Instead of using the standard runtime calling convention (input
727     // and output in A0 and V0 respectively):
728     //
729     //   A0 <- ref
730     //   V0 <- ReadBarrierMark(A0)
731     //   ref <- V0
732     //
733     // we just use rX (the register containing `ref`) as input and output
734     // of a dedicated entrypoint:
735     //
736     //   rX <- ReadBarrierMarkRegX(rX)
737     //
738     riscv64_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this);
739     DCHECK_NE(entrypoint_.AsRegister<XRegister>(), TMP);  // A taken branch can clobber `TMP`.
740     __ Jalr(entrypoint_.AsRegister<XRegister>());  // Clobbers `RA` (used as the `entrypoint_`).
741     __ J(GetExitLabel());
742   }
743 
744  private:
745   // The location (register) of the marked object reference.
746   const Location ref_;
747 
748   // The location of the already loaded entrypoint.
749   const Location entrypoint_;
750 
751   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathRISCV64);
752 };
753 
754 class LoadStringSlowPathRISCV64 : public SlowPathCodeRISCV64 {
755  public:
LoadStringSlowPathRISCV64(HLoadString * instruction)756   explicit LoadStringSlowPathRISCV64(HLoadString* instruction)
757       : SlowPathCodeRISCV64(instruction) {}
758 
EmitNativeCode(CodeGenerator * codegen)759   void EmitNativeCode(CodeGenerator* codegen) override {
760     DCHECK(instruction_->IsLoadString());
761     DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry);
762     LocationSummary* locations = instruction_->GetLocations();
763     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
764     const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
765     CodeGeneratorRISCV64* riscv64_codegen = down_cast<CodeGeneratorRISCV64*>(codegen);
766     InvokeRuntimeCallingConvention calling_convention;
767     __ Bind(GetEntryLabel());
768     SaveLiveRegisters(codegen, locations);
769 
770     __ LoadConst32(calling_convention.GetRegisterAt(0), string_index.index_);
771     riscv64_codegen->InvokeRuntime(
772         kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
773     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
774 
775     DataType::Type type = DataType::Type::kReference;
776     DCHECK_EQ(type, instruction_->GetType());
777     riscv64_codegen->MoveLocation(
778         locations->Out(), calling_convention.GetReturnLocation(type), type);
779     RestoreLiveRegisters(codegen, locations);
780 
781     __ J(GetExitLabel());
782   }
783 
GetDescription() const784   const char* GetDescription() const override { return "LoadStringSlowPathRISCV64"; }
785 
786  private:
787   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathRISCV64);
788 };
789 
790 #undef __
791 #define __ down_cast<Riscv64Assembler*>(GetAssembler())->  // NOLINT
792 
793 template <typename Reg,
794           void (Riscv64Assembler::*opS)(Reg, FRegister, FRegister),
795           void (Riscv64Assembler::*opD)(Reg, FRegister, FRegister)>
FpBinOp(Reg rd,FRegister rs1,FRegister rs2,DataType::Type type)796 inline void InstructionCodeGeneratorRISCV64::FpBinOp(
797     Reg rd, FRegister rs1, FRegister rs2, DataType::Type type) {
798   Riscv64Assembler* assembler = down_cast<CodeGeneratorRISCV64*>(codegen_)->GetAssembler();
799   if (type == DataType::Type::kFloat32) {
800     (assembler->*opS)(rd, rs1, rs2);
801   } else {
802     DCHECK_EQ(type, DataType::Type::kFloat64);
803     (assembler->*opD)(rd, rs1, rs2);
804   }
805 }
806 
FAdd(FRegister rd,FRegister rs1,FRegister rs2,DataType::Type type)807 void InstructionCodeGeneratorRISCV64::FAdd(
808     FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) {
809   FpBinOp<FRegister, &Riscv64Assembler::FAddS, &Riscv64Assembler::FAddD>(rd, rs1, rs2, type);
810 }
811 
FSub(FRegister rd,FRegister rs1,FRegister rs2,DataType::Type type)812 inline void InstructionCodeGeneratorRISCV64::FSub(
813     FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) {
814   FpBinOp<FRegister, &Riscv64Assembler::FSubS, &Riscv64Assembler::FSubD>(rd, rs1, rs2, type);
815 }
816 
FDiv(FRegister rd,FRegister rs1,FRegister rs2,DataType::Type type)817 inline void InstructionCodeGeneratorRISCV64::FDiv(
818     FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) {
819   FpBinOp<FRegister, &Riscv64Assembler::FDivS, &Riscv64Assembler::FDivD>(rd, rs1, rs2, type);
820 }
821 
FMul(FRegister rd,FRegister rs1,FRegister rs2,DataType::Type type)822 inline void InstructionCodeGeneratorRISCV64::FMul(
823     FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) {
824   FpBinOp<FRegister, &Riscv64Assembler::FMulS, &Riscv64Assembler::FMulD>(rd, rs1, rs2, type);
825 }
826 
FMin(FRegister rd,FRegister rs1,FRegister rs2,DataType::Type type)827 inline void InstructionCodeGeneratorRISCV64::FMin(
828     FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) {
829   FpBinOp<FRegister, &Riscv64Assembler::FMinS, &Riscv64Assembler::FMinD>(rd, rs1, rs2, type);
830 }
831 
FMax(FRegister rd,FRegister rs1,FRegister rs2,DataType::Type type)832 inline void InstructionCodeGeneratorRISCV64::FMax(
833     FRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) {
834   FpBinOp<FRegister, &Riscv64Assembler::FMaxS, &Riscv64Assembler::FMaxD>(rd, rs1, rs2, type);
835 }
836 
FEq(XRegister rd,FRegister rs1,FRegister rs2,DataType::Type type)837 inline void InstructionCodeGeneratorRISCV64::FEq(
838     XRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) {
839   FpBinOp<XRegister, &Riscv64Assembler::FEqS, &Riscv64Assembler::FEqD>(rd, rs1, rs2, type);
840 }
841 
FLt(XRegister rd,FRegister rs1,FRegister rs2,DataType::Type type)842 inline void InstructionCodeGeneratorRISCV64::FLt(
843     XRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) {
844   FpBinOp<XRegister, &Riscv64Assembler::FLtS, &Riscv64Assembler::FLtD>(rd, rs1, rs2, type);
845 }
846 
FLe(XRegister rd,FRegister rs1,FRegister rs2,DataType::Type type)847 inline void InstructionCodeGeneratorRISCV64::FLe(
848     XRegister rd, FRegister rs1, FRegister rs2, DataType::Type type) {
849   FpBinOp<XRegister, &Riscv64Assembler::FLeS, &Riscv64Assembler::FLeD>(rd, rs1, rs2, type);
850 }
851 
852 template <typename Reg,
853           void (Riscv64Assembler::*opS)(Reg, FRegister),
854           void (Riscv64Assembler::*opD)(Reg, FRegister)>
FpUnOp(Reg rd,FRegister rs1,DataType::Type type)855 inline void InstructionCodeGeneratorRISCV64::FpUnOp(
856     Reg rd, FRegister rs1, DataType::Type type) {
857   Riscv64Assembler* assembler = down_cast<CodeGeneratorRISCV64*>(codegen_)->GetAssembler();
858   if (type == DataType::Type::kFloat32) {
859     (assembler->*opS)(rd, rs1);
860   } else {
861     DCHECK_EQ(type, DataType::Type::kFloat64);
862     (assembler->*opD)(rd, rs1);
863   }
864 }
865 
FAbs(FRegister rd,FRegister rs1,DataType::Type type)866 inline void InstructionCodeGeneratorRISCV64::FAbs(
867     FRegister rd, FRegister rs1, DataType::Type type) {
868   FpUnOp<FRegister, &Riscv64Assembler::FAbsS, &Riscv64Assembler::FAbsD>(rd, rs1, type);
869 }
870 
FNeg(FRegister rd,FRegister rs1,DataType::Type type)871 inline void InstructionCodeGeneratorRISCV64::FNeg(
872     FRegister rd, FRegister rs1, DataType::Type type) {
873   FpUnOp<FRegister, &Riscv64Assembler::FNegS, &Riscv64Assembler::FNegD>(rd, rs1, type);
874 }
875 
FMv(FRegister rd,FRegister rs1,DataType::Type type)876 inline void InstructionCodeGeneratorRISCV64::FMv(
877     FRegister rd, FRegister rs1, DataType::Type type) {
878   FpUnOp<FRegister, &Riscv64Assembler::FMvS, &Riscv64Assembler::FMvD>(rd, rs1, type);
879 }
880 
FMvX(XRegister rd,FRegister rs1,DataType::Type type)881 inline void InstructionCodeGeneratorRISCV64::FMvX(
882     XRegister rd, FRegister rs1, DataType::Type type) {
883   FpUnOp<XRegister, &Riscv64Assembler::FMvXW, &Riscv64Assembler::FMvXD>(rd, rs1, type);
884 }
885 
FClass(XRegister rd,FRegister rs1,DataType::Type type)886 void InstructionCodeGeneratorRISCV64::FClass(
887     XRegister rd, FRegister rs1, DataType::Type type) {
888   FpUnOp<XRegister, &Riscv64Assembler::FClassS, &Riscv64Assembler::FClassD>(rd, rs1, type);
889 }
890 
Load(Location out,XRegister rs1,int32_t offset,DataType::Type type)891 void InstructionCodeGeneratorRISCV64::Load(
892     Location out, XRegister rs1, int32_t offset, DataType::Type type) {
893   switch (type) {
894     case DataType::Type::kBool:
895     case DataType::Type::kUint8:
896       __ Loadbu(out.AsRegister<XRegister>(), rs1, offset);
897       break;
898     case DataType::Type::kInt8:
899       __ Loadb(out.AsRegister<XRegister>(), rs1, offset);
900       break;
901     case DataType::Type::kUint16:
902       __ Loadhu(out.AsRegister<XRegister>(), rs1, offset);
903       break;
904     case DataType::Type::kInt16:
905       __ Loadh(out.AsRegister<XRegister>(), rs1, offset);
906       break;
907     case DataType::Type::kInt32:
908       __ Loadw(out.AsRegister<XRegister>(), rs1, offset);
909       break;
910     case DataType::Type::kInt64:
911       __ Loadd(out.AsRegister<XRegister>(), rs1, offset);
912       break;
913     case DataType::Type::kReference:
914       __ Loadwu(out.AsRegister<XRegister>(), rs1, offset);
915       break;
916     case DataType::Type::kFloat32:
917       __ FLoadw(out.AsFpuRegister<FRegister>(), rs1, offset);
918       break;
919     case DataType::Type::kFloat64:
920       __ FLoadd(out.AsFpuRegister<FRegister>(), rs1, offset);
921       break;
922     case DataType::Type::kUint32:
923     case DataType::Type::kUint64:
924     case DataType::Type::kVoid:
925       LOG(FATAL) << "Unreachable type " << type;
926       UNREACHABLE();
927   }
928 }
929 
Store(Location value,XRegister rs1,int32_t offset,DataType::Type type)930 void InstructionCodeGeneratorRISCV64::Store(
931     Location value, XRegister rs1, int32_t offset, DataType::Type type) {
932   DCHECK_IMPLIES(value.IsConstant(), IsZeroBitPattern(value.GetConstant()));
933   if (kPoisonHeapReferences && type == DataType::Type::kReference && !value.IsConstant()) {
934     riscv64::ScratchRegisterScope srs(GetAssembler());
935     XRegister tmp = srs.AllocateXRegister();
936     __ Mv(tmp, value.AsRegister<XRegister>());
937     codegen_->PoisonHeapReference(tmp);
938     __ Storew(tmp, rs1, offset);
939     return;
940   }
941   switch (type) {
942     case DataType::Type::kBool:
943     case DataType::Type::kUint8:
944     case DataType::Type::kInt8:
945       __ Storeb(InputXRegisterOrZero(value), rs1, offset);
946       break;
947     case DataType::Type::kUint16:
948     case DataType::Type::kInt16:
949       __ Storeh(InputXRegisterOrZero(value), rs1, offset);
950       break;
951     case DataType::Type::kFloat32:
952       if (!value.IsConstant()) {
953         __ FStorew(value.AsFpuRegister<FRegister>(), rs1, offset);
954         break;
955       }
956       FALLTHROUGH_INTENDED;
957     case DataType::Type::kInt32:
958     case DataType::Type::kReference:
959       __ Storew(InputXRegisterOrZero(value), rs1, offset);
960       break;
961     case DataType::Type::kFloat64:
962       if (!value.IsConstant()) {
963         __ FStored(value.AsFpuRegister<FRegister>(), rs1, offset);
964         break;
965       }
966       FALLTHROUGH_INTENDED;
967     case DataType::Type::kInt64:
968       __ Stored(InputXRegisterOrZero(value), rs1, offset);
969       break;
970     case DataType::Type::kUint32:
971     case DataType::Type::kUint64:
972     case DataType::Type::kVoid:
973       LOG(FATAL) << "Unreachable type " << type;
974       UNREACHABLE();
975   }
976 }
977 
StoreSeqCst(Location value,XRegister rs1,int32_t offset,DataType::Type type,HInstruction * instruction)978 void InstructionCodeGeneratorRISCV64::StoreSeqCst(Location value,
979                                                   XRegister rs1,
980                                                   int32_t offset,
981                                                   DataType::Type type,
982                                                   HInstruction* instruction) {
983   if (DataType::Size(type) >= 4u) {
984     // Use AMOSWAP for 32-bit and 64-bit data types.
985     ScratchRegisterScope srs(GetAssembler());
986     XRegister swap_src = kNoXRegister;
987     if (kPoisonHeapReferences && type == DataType::Type::kReference && !value.IsConstant()) {
988       swap_src = srs.AllocateXRegister();
989       __ Mv(swap_src, value.AsRegister<XRegister>());
990       codegen_->PoisonHeapReference(swap_src);
991     } else if (DataType::IsFloatingPointType(type) && !value.IsConstant()) {
992       swap_src = srs.AllocateXRegister();
993       FMvX(swap_src, value.AsFpuRegister<FRegister>(), type);
994     } else {
995       swap_src = InputXRegisterOrZero(value);
996     }
997     XRegister addr = rs1;
998     if (offset != 0) {
999       addr = srs.AllocateXRegister();
1000       __ AddConst64(addr, rs1, offset);
1001     }
1002     if (DataType::Is64BitType(type)) {
1003       __ AmoSwapD(Zero, swap_src, addr, AqRl::kRelease);
1004     } else {
1005       __ AmoSwapW(Zero, swap_src, addr, AqRl::kRelease);
1006     }
1007     if (instruction != nullptr) {
1008       codegen_->MaybeRecordImplicitNullCheck(instruction);
1009     }
1010   } else {
1011     // Use fences for smaller data types.
1012     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
1013     Store(value, rs1, offset, type);
1014     if (instruction != nullptr) {
1015       codegen_->MaybeRecordImplicitNullCheck(instruction);
1016     }
1017     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
1018   }
1019 }
1020 
ShNAdd(XRegister rd,XRegister rs1,XRegister rs2,DataType::Type type)1021 void InstructionCodeGeneratorRISCV64::ShNAdd(
1022     XRegister rd, XRegister rs1, XRegister rs2, DataType::Type type) {
1023   switch (type) {
1024     case DataType::Type::kBool:
1025     case DataType::Type::kUint8:
1026     case DataType::Type::kInt8:
1027       DCHECK_EQ(DataType::SizeShift(type), 0u);
1028       __ Add(rd, rs1, rs2);
1029       break;
1030     case DataType::Type::kUint16:
1031     case DataType::Type::kInt16:
1032       DCHECK_EQ(DataType::SizeShift(type), 1u);
1033       __ Sh1Add(rd, rs1, rs2);
1034       break;
1035     case DataType::Type::kInt32:
1036     case DataType::Type::kReference:
1037     case DataType::Type::kFloat32:
1038       DCHECK_EQ(DataType::SizeShift(type), 2u);
1039       __ Sh2Add(rd, rs1, rs2);
1040       break;
1041     case DataType::Type::kInt64:
1042     case DataType::Type::kFloat64:
1043       DCHECK_EQ(DataType::SizeShift(type), 3u);
1044       __ Sh3Add(rd, rs1, rs2);
1045       break;
1046     case DataType::Type::kUint32:
1047     case DataType::Type::kUint64:
1048     case DataType::Type::kVoid:
1049       LOG(FATAL) << "Unreachable type " << type;
1050       UNREACHABLE();
1051   }
1052 }
1053 
GetAssembler() const1054 Riscv64Assembler* ParallelMoveResolverRISCV64::GetAssembler() const {
1055   return codegen_->GetAssembler();
1056 }
1057 
EmitMove(size_t index)1058 void ParallelMoveResolverRISCV64::EmitMove(size_t index) {
1059   MoveOperands* move = moves_[index];
1060   codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType());
1061 }
1062 
EmitSwap(size_t index)1063 void ParallelMoveResolverRISCV64::EmitSwap(size_t index) {
1064   MoveOperands* move = moves_[index];
1065   codegen_->SwapLocations(move->GetDestination(), move->GetSource(), move->GetType());
1066 }
1067 
SpillScratch(int reg)1068 void ParallelMoveResolverRISCV64::SpillScratch([[maybe_unused]] int reg) {
1069   LOG(FATAL) << "Unimplemented";
1070   UNREACHABLE();
1071 }
1072 
RestoreScratch(int reg)1073 void ParallelMoveResolverRISCV64::RestoreScratch([[maybe_unused]] int reg) {
1074   LOG(FATAL) << "Unimplemented";
1075   UNREACHABLE();
1076 }
1077 
Exchange(int index1,int index2,bool double_slot)1078 void ParallelMoveResolverRISCV64::Exchange(int index1, int index2, bool double_slot) {
1079   // We have 2 scratch X registers and 1 scratch F register that we can use. We prefer
1080   // to use X registers for the swap but if both offsets are too big, we need to reserve
1081   // one of the X registers for address adjustment and use an F register.
1082   bool use_fp_tmp2 = false;
1083   if (!IsInt<12>(index2)) {
1084     if (!IsInt<12>(index1)) {
1085       use_fp_tmp2 = true;
1086     } else {
1087       std::swap(index1, index2);
1088     }
1089   }
1090   DCHECK_IMPLIES(!IsInt<12>(index2), use_fp_tmp2);
1091 
1092   Location loc1(double_slot ? Location::DoubleStackSlot(index1) : Location::StackSlot(index1));
1093   Location loc2(double_slot ? Location::DoubleStackSlot(index2) : Location::StackSlot(index2));
1094   riscv64::ScratchRegisterScope srs(GetAssembler());
1095   Location tmp = Location::RegisterLocation(srs.AllocateXRegister());
1096   DataType::Type tmp_type = double_slot ? DataType::Type::kInt64 : DataType::Type::kInt32;
1097   Location tmp2 = use_fp_tmp2
1098       ? Location::FpuRegisterLocation(srs.AllocateFRegister())
1099       : Location::RegisterLocation(srs.AllocateXRegister());
1100   DataType::Type tmp2_type = use_fp_tmp2
1101       ? (double_slot ? DataType::Type::kFloat64 : DataType::Type::kFloat32)
1102       : tmp_type;
1103 
1104   codegen_->MoveLocation(tmp, loc1, tmp_type);
1105   codegen_->MoveLocation(tmp2, loc2, tmp2_type);
1106   if (use_fp_tmp2) {
1107     codegen_->MoveLocation(loc2, tmp, tmp_type);
1108   } else {
1109     // We cannot use `Stored()` or `Storew()` via `MoveLocation()` because we have
1110     // no more scratch registers available. Use `Sd()` or `Sw()` explicitly.
1111     DCHECK(IsInt<12>(index2));
1112     if (double_slot) {
1113       __ Sd(tmp.AsRegister<XRegister>(), SP, index2);
1114     } else {
1115       __ Sw(tmp.AsRegister<XRegister>(), SP, index2);
1116     }
1117     srs.FreeXRegister(tmp.AsRegister<XRegister>());  // Free a temporary for `MoveLocation()`.
1118   }
1119   codegen_->MoveLocation(loc1, tmp2, tmp2_type);
1120 }
1121 
InstructionCodeGeneratorRISCV64(HGraph * graph,CodeGeneratorRISCV64 * codegen)1122 InstructionCodeGeneratorRISCV64::InstructionCodeGeneratorRISCV64(HGraph* graph,
1123                                                                  CodeGeneratorRISCV64* codegen)
1124     : InstructionCodeGenerator(graph, codegen),
1125       assembler_(codegen->GetAssembler()),
1126       codegen_(codegen) {}
1127 
GenerateClassInitializationCheck(SlowPathCodeRISCV64 * slow_path,XRegister class_reg)1128 void InstructionCodeGeneratorRISCV64::GenerateClassInitializationCheck(
1129     SlowPathCodeRISCV64* slow_path, XRegister class_reg) {
1130   ScratchRegisterScope srs(GetAssembler());
1131   XRegister tmp = srs.AllocateXRegister();
1132   XRegister tmp2 = srs.AllocateXRegister();
1133 
1134   // We shall load the full 32-bit status word with sign-extension and compare as unsigned
1135   // to a sign-extended shifted status value. This yields the same comparison as loading and
1136   // materializing unsigned but the constant is materialized with a single LUI instruction.
1137   __ Loadw(tmp, class_reg, mirror::Class::StatusOffset().SizeValue());  // Sign-extended.
1138   __ Li(tmp2, ShiftedSignExtendedClassStatusValue<ClassStatus::kVisiblyInitialized>());
1139   __ Bltu(tmp, tmp2, slow_path->GetEntryLabel());
1140   __ Bind(slow_path->GetExitLabel());
1141 }
1142 
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * instruction,XRegister temp)1143 void InstructionCodeGeneratorRISCV64::GenerateBitstringTypeCheckCompare(
1144     HTypeCheckInstruction* instruction, XRegister temp) {
1145   UNUSED(instruction);
1146   UNUSED(temp);
1147   LOG(FATAL) << "Unimplemented";
1148 }
1149 
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)1150 void InstructionCodeGeneratorRISCV64::GenerateSuspendCheck(HSuspendCheck* instruction,
1151                                                            HBasicBlock* successor) {
1152   if (instruction->IsNoOp()) {
1153     if (successor != nullptr) {
1154       __ J(codegen_->GetLabelOf(successor));
1155     }
1156     return;
1157   }
1158 
1159   if (codegen_->CanUseImplicitSuspendCheck()) {
1160     LOG(FATAL) << "Unimplemented ImplicitSuspendCheck";
1161     return;
1162   }
1163 
1164   SuspendCheckSlowPathRISCV64* slow_path =
1165       down_cast<SuspendCheckSlowPathRISCV64*>(instruction->GetSlowPath());
1166 
1167   if (slow_path == nullptr) {
1168     slow_path =
1169         new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathRISCV64(instruction, successor);
1170     instruction->SetSlowPath(slow_path);
1171     codegen_->AddSlowPath(slow_path);
1172     if (successor != nullptr) {
1173       DCHECK(successor->IsLoopHeader());
1174     }
1175   } else {
1176     DCHECK_EQ(slow_path->GetSuccessor(), successor);
1177   }
1178 
1179   ScratchRegisterScope srs(GetAssembler());
1180   XRegister tmp = srs.AllocateXRegister();
1181   __ Loadw(tmp, TR, Thread::ThreadFlagsOffset<kRiscv64PointerSize>().Int32Value());
1182   static_assert(Thread::SuspendOrCheckpointRequestFlags() != std::numeric_limits<uint32_t>::max());
1183   static_assert(IsPowerOfTwo(Thread::SuspendOrCheckpointRequestFlags() + 1u));
1184   // Shift out other bits. Use an instruction that can be 16-bit with the "C" Standard Extension.
1185   __ Slli(tmp, tmp, CLZ(static_cast<uint64_t>(Thread::SuspendOrCheckpointRequestFlags())));
1186   if (successor == nullptr) {
1187     __ Bnez(tmp, slow_path->GetEntryLabel());
1188     __ Bind(slow_path->GetReturnLabel());
1189   } else {
1190     __ Beqz(tmp, codegen_->GetLabelOf(successor));
1191     __ J(slow_path->GetEntryLabel());
1192     // slow_path will return to GetLabelOf(successor).
1193   }
1194 }
1195 
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)1196 void InstructionCodeGeneratorRISCV64::GenerateReferenceLoadOneRegister(
1197     HInstruction* instruction,
1198     Location out,
1199     uint32_t offset,
1200     Location maybe_temp,
1201     ReadBarrierOption read_barrier_option) {
1202   XRegister out_reg = out.AsRegister<XRegister>();
1203   if (read_barrier_option == kWithReadBarrier) {
1204     DCHECK(codegen_->EmitReadBarrier());
1205     if (kUseBakerReadBarrier) {
1206       // Load with fast path based Baker's read barrier.
1207       // /* HeapReference<Object> */ out = *(out + offset)
1208       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
1209                                                       out,
1210                                                       out_reg,
1211                                                       offset,
1212                                                       maybe_temp,
1213                                                       /* needs_null_check= */ false);
1214     } else {
1215       // Load with slow path based read barrier.
1216       // Save the value of `out` into `maybe_temp` before overwriting it
1217       // in the following move operation, as we will need it for the
1218       // read barrier below.
1219       __ Mv(maybe_temp.AsRegister<XRegister>(), out_reg);
1220       // /* HeapReference<Object> */ out = *(out + offset)
1221       __ Loadwu(out_reg, out_reg, offset);
1222       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
1223     }
1224   } else {
1225     // Plain load with no read barrier.
1226     // /* HeapReference<Object> */ out = *(out + offset)
1227     __ Loadwu(out_reg, out_reg, offset);
1228     codegen_->MaybeUnpoisonHeapReference(out_reg);
1229   }
1230 }
1231 
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)1232 void InstructionCodeGeneratorRISCV64::GenerateReferenceLoadTwoRegisters(
1233     HInstruction* instruction,
1234     Location out,
1235     Location obj,
1236     uint32_t offset,
1237     Location maybe_temp,
1238     ReadBarrierOption read_barrier_option) {
1239   XRegister out_reg = out.AsRegister<XRegister>();
1240   XRegister obj_reg = obj.AsRegister<XRegister>();
1241   if (read_barrier_option == kWithReadBarrier) {
1242     DCHECK(codegen_->EmitReadBarrier());
1243     if (kUseBakerReadBarrier) {
1244       // Load with fast path based Baker's read barrier.
1245       // /* HeapReference<Object> */ out = *(obj + offset)
1246       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
1247                                                       out,
1248                                                       obj_reg,
1249                                                       offset,
1250                                                       maybe_temp,
1251                                                       /* needs_null_check= */ false);
1252     } else {
1253       // Load with slow path based read barrier.
1254       // /* HeapReference<Object> */ out = *(obj + offset)
1255       __ Loadwu(out_reg, obj_reg, offset);
1256       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
1257     }
1258   } else {
1259     // Plain load with no read barrier.
1260     // /* HeapReference<Object> */ out = *(obj + offset)
1261     __ Loadwu(out_reg, obj_reg, offset);
1262     codegen_->MaybeUnpoisonHeapReference(out_reg);
1263   }
1264 }
1265 
AddGcRootBakerBarrierBarrierSlowPath(HInstruction * instruction,Location root,Location temp)1266 SlowPathCodeRISCV64* CodeGeneratorRISCV64::AddGcRootBakerBarrierBarrierSlowPath(
1267     HInstruction* instruction, Location root, Location temp) {
1268   SlowPathCodeRISCV64* slow_path =
1269       new (GetScopedAllocator()) ReadBarrierMarkSlowPathRISCV64(instruction, root, temp);
1270   AddSlowPath(slow_path);
1271   return slow_path;
1272 }
1273 
EmitBakerReadBarierMarkingCheck(SlowPathCodeRISCV64 * slow_path,Location root,Location temp)1274 void CodeGeneratorRISCV64::EmitBakerReadBarierMarkingCheck(
1275     SlowPathCodeRISCV64* slow_path, Location root, Location temp) {
1276   const int32_t entry_point_offset = ReadBarrierMarkEntrypointOffset(root);
1277   // Loading the entrypoint does not require a load acquire since it is only changed when
1278   // threads are suspended or running a checkpoint.
1279   __ Loadd(temp.AsRegister<XRegister>(), TR, entry_point_offset);
1280   __ Bnez(temp.AsRegister<XRegister>(), slow_path->GetEntryLabel());
1281   __ Bind(slow_path->GetExitLabel());
1282 }
1283 
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,XRegister obj,uint32_t offset,ReadBarrierOption read_barrier_option,Riscv64Label * label_low)1284 void CodeGeneratorRISCV64::GenerateGcRootFieldLoad(HInstruction* instruction,
1285                                                    Location root,
1286                                                    XRegister obj,
1287                                                    uint32_t offset,
1288                                                    ReadBarrierOption read_barrier_option,
1289                                                    Riscv64Label* label_low) {
1290   DCHECK_IMPLIES(label_low != nullptr, offset == kLinkTimeOffsetPlaceholderLow) << offset;
1291   XRegister root_reg = root.AsRegister<XRegister>();
1292   if (read_barrier_option == kWithReadBarrier) {
1293     DCHECK(EmitReadBarrier());
1294     if (kUseBakerReadBarrier) {
1295       // Note that we do not actually check the value of `GetIsGcMarking()`
1296       // to decide whether to mark the loaded GC root or not.  Instead, we
1297       // load into `temp` (T6) the read barrier mark entry point corresponding
1298       // to register `root`. If `temp` is null, it means that `GetIsGcMarking()`
1299       // is false, and vice versa.
1300       //
1301       //     GcRoot<mirror::Object> root = *(obj+offset);  // Original reference load.
1302       //     temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
1303       //     if (temp != null) {
1304       //       root = temp(root)
1305       //     }
1306       //
1307       // TODO(riscv64): Introduce a "marking register" that holds the pointer to one of the
1308       // register marking entrypoints if marking (null if not marking) and make sure that
1309       // marking entrypoints for other registers are at known offsets, so that we can call
1310       // them using the "marking register" plus the offset embedded in the JALR instruction.
1311 
1312       if (label_low != nullptr) {
1313         __ Bind(label_low);
1314       }
1315       // /* GcRoot<mirror::Object> */ root = *(obj + offset)
1316       __ Loadwu(root_reg, obj, offset);
1317       static_assert(
1318           sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
1319           "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
1320           "have different sizes.");
1321       static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
1322                     "art::mirror::CompressedReference<mirror::Object> and int32_t "
1323                     "have different sizes.");
1324 
1325       // Use RA as temp. It is clobbered in the slow path anyway.
1326       Location temp = Location::RegisterLocation(RA);
1327       SlowPathCodeRISCV64* slow_path =
1328           AddGcRootBakerBarrierBarrierSlowPath(instruction, root, temp);
1329       EmitBakerReadBarierMarkingCheck(slow_path, root, temp);
1330     } else {
1331       // GC root loaded through a slow path for read barriers other
1332       // than Baker's.
1333       // /* GcRoot<mirror::Object>* */ root = obj + offset
1334       if (label_low != nullptr) {
1335         __ Bind(label_low);
1336       }
1337       __ AddConst32(root_reg, obj, offset);
1338       // /* mirror::Object* */ root = root->Read()
1339       GenerateReadBarrierForRootSlow(instruction, root, root);
1340     }
1341   } else {
1342     // Plain GC root load with no read barrier.
1343     // /* GcRoot<mirror::Object> */ root = *(obj + offset)
1344     if (label_low != nullptr) {
1345       __ Bind(label_low);
1346     }
1347     __ Loadwu(root_reg, obj, offset);
1348     // Note that GC roots are not affected by heap poisoning, thus we
1349     // do not have to unpoison `root_reg` here.
1350   }
1351 }
1352 
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,Riscv64Label * true_target,Riscv64Label * false_target)1353 void InstructionCodeGeneratorRISCV64::GenerateTestAndBranch(HInstruction* instruction,
1354                                                             size_t condition_input_index,
1355                                                             Riscv64Label* true_target,
1356                                                             Riscv64Label* false_target) {
1357   HInstruction* cond = instruction->InputAt(condition_input_index);
1358 
1359   if (true_target == nullptr && false_target == nullptr) {
1360     // Nothing to do. The code always falls through.
1361     return;
1362   } else if (cond->IsIntConstant()) {
1363     // Constant condition, statically compared against "true" (integer value 1).
1364     if (cond->AsIntConstant()->IsTrue()) {
1365       if (true_target != nullptr) {
1366         __ J(true_target);
1367       }
1368     } else {
1369       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
1370       if (false_target != nullptr) {
1371         __ J(false_target);
1372       }
1373     }
1374     return;
1375   }
1376 
1377   // The following code generates these patterns:
1378   //  (1) true_target == nullptr && false_target != nullptr
1379   //        - opposite condition true => branch to false_target
1380   //  (2) true_target != nullptr && false_target == nullptr
1381   //        - condition true => branch to true_target
1382   //  (3) true_target != nullptr && false_target != nullptr
1383   //        - condition true => branch to true_target
1384   //        - branch to false_target
1385   if (IsBooleanValueOrMaterializedCondition(cond)) {
1386     // The condition instruction has been materialized, compare the output to 0.
1387     Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
1388     DCHECK(cond_val.IsRegister());
1389     if (true_target == nullptr) {
1390       __ Beqz(cond_val.AsRegister<XRegister>(), false_target);
1391     } else {
1392       __ Bnez(cond_val.AsRegister<XRegister>(), true_target);
1393     }
1394   } else {
1395     // The condition instruction has not been materialized, use its inputs as
1396     // the comparison and its condition as the branch condition.
1397     HCondition* condition = cond->AsCondition();
1398     DataType::Type type = condition->InputAt(0)->GetType();
1399     LocationSummary* locations = condition->GetLocations();
1400     IfCondition if_cond = condition->GetCondition();
1401     Riscv64Label* branch_target = true_target;
1402 
1403     if (true_target == nullptr) {
1404       if_cond = condition->GetOppositeCondition();
1405       branch_target = false_target;
1406     }
1407 
1408     switch (type) {
1409       case DataType::Type::kFloat32:
1410       case DataType::Type::kFloat64:
1411         GenerateFpCondition(if_cond, condition->IsGtBias(), type, locations, branch_target);
1412         break;
1413       default:
1414         // Integral types and reference equality.
1415         GenerateIntLongCompareAndBranch(if_cond, locations, branch_target);
1416         break;
1417     }
1418   }
1419 
1420   // If neither branch falls through (case 3), the conditional branch to `true_target`
1421   // was already emitted (case 2) and we need to emit a jump to `false_target`.
1422   if (true_target != nullptr && false_target != nullptr) {
1423     __ J(false_target);
1424   }
1425 }
1426 
DivRemOneOrMinusOne(HBinaryOperation * instruction)1427 void InstructionCodeGeneratorRISCV64::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
1428   DCHECK(instruction->IsDiv() || instruction->IsRem());
1429   DataType::Type type = instruction->GetResultType();
1430 
1431   LocationSummary* locations = instruction->GetLocations();
1432   Location second = locations->InAt(1);
1433   DCHECK(second.IsConstant());
1434 
1435   XRegister out = locations->Out().AsRegister<XRegister>();
1436   XRegister dividend = locations->InAt(0).AsRegister<XRegister>();
1437   int64_t imm = Int64FromConstant(second.GetConstant());
1438   DCHECK(imm == 1 || imm == -1);
1439 
1440   if (instruction->IsRem()) {
1441     __ Mv(out, Zero);
1442   } else {
1443     if (imm == -1) {
1444       if (type == DataType::Type::kInt32) {
1445         __ Subw(out, Zero, dividend);
1446       } else {
1447         DCHECK_EQ(type, DataType::Type::kInt64);
1448         __ Sub(out, Zero, dividend);
1449       }
1450     } else if (out != dividend) {
1451       __ Mv(out, dividend);
1452     }
1453   }
1454 }
1455 
DivRemByPowerOfTwo(HBinaryOperation * instruction)1456 void InstructionCodeGeneratorRISCV64::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
1457   DCHECK(instruction->IsDiv() || instruction->IsRem());
1458   DataType::Type type = instruction->GetResultType();
1459   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64) << type;
1460 
1461   LocationSummary* locations = instruction->GetLocations();
1462   Location second = locations->InAt(1);
1463   DCHECK(second.IsConstant());
1464 
1465   XRegister out = locations->Out().AsRegister<XRegister>();
1466   XRegister dividend = locations->InAt(0).AsRegister<XRegister>();
1467   int64_t imm = Int64FromConstant(second.GetConstant());
1468   int64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
1469   int ctz_imm = CTZ(abs_imm);
1470   DCHECK_GE(ctz_imm, 1);  // Division by +/-1 is handled by `DivRemOneOrMinusOne()`.
1471 
1472   ScratchRegisterScope srs(GetAssembler());
1473   XRegister tmp = srs.AllocateXRegister();
1474   // Calculate the negative dividend adjustment `tmp = dividend < 0 ? abs_imm - 1 : 0`.
1475   // This adjustment is needed for rounding the division result towards zero.
1476   if (type == DataType::Type::kInt32 || ctz_imm == 1) {
1477     // A 32-bit dividend is sign-extended to 64-bit, so we can use the upper bits.
1478     // And for a 64-bit division by +/-2, we need just the sign bit.
1479     DCHECK_IMPLIES(type == DataType::Type::kInt32, ctz_imm < 32);
1480     __ Srli(tmp, dividend, 64 - ctz_imm);
1481   } else {
1482     // For other 64-bit divisions, we need to replicate the sign bit.
1483     __ Srai(tmp, dividend, 63);
1484     __ Srli(tmp, tmp, 64 - ctz_imm);
1485   }
1486   // The rest of the calculation can use 64-bit operations even for 32-bit div/rem.
1487   __ Add(tmp, tmp, dividend);
1488   if (instruction->IsDiv()) {
1489     __ Srai(out, tmp, ctz_imm);
1490     if (imm < 0) {
1491       __ Neg(out, out);
1492     }
1493   } else {
1494     if (ctz_imm <= 11) {
1495       __ Andi(tmp, tmp, -abs_imm);
1496     } else {
1497       ScratchRegisterScope srs2(GetAssembler());
1498       XRegister tmp2 = srs2.AllocateXRegister();
1499       __ Li(tmp2, -abs_imm);
1500       __ And(tmp, tmp, tmp2);
1501     }
1502     __ Sub(out, dividend, tmp);
1503   }
1504 }
1505 
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)1506 void InstructionCodeGeneratorRISCV64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
1507   DCHECK(instruction->IsDiv() || instruction->IsRem());
1508   LocationSummary* locations = instruction->GetLocations();
1509   XRegister dividend = locations->InAt(0).AsRegister<XRegister>();
1510   XRegister out = locations->Out().AsRegister<XRegister>();
1511   Location second = locations->InAt(1);
1512   int64_t imm = Int64FromConstant(second.GetConstant());
1513   DataType::Type type = instruction->GetResultType();
1514   ScratchRegisterScope srs(GetAssembler());
1515   XRegister tmp = srs.AllocateXRegister();
1516 
1517   // TODO: optimize with constant.
1518   __ LoadConst64(tmp, imm);
1519   if (instruction->IsDiv()) {
1520     if (type == DataType::Type::kInt32) {
1521       __ Divw(out, dividend, tmp);
1522     } else {
1523       __ Div(out, dividend, tmp);
1524     }
1525   } else {
1526     if (type == DataType::Type::kInt32)  {
1527       __ Remw(out, dividend, tmp);
1528     } else {
1529       __ Rem(out, dividend, tmp);
1530     }
1531   }
1532 }
1533 
GenerateDivRemIntegral(HBinaryOperation * instruction)1534 void InstructionCodeGeneratorRISCV64::GenerateDivRemIntegral(HBinaryOperation* instruction) {
1535   DCHECK(instruction->IsDiv() || instruction->IsRem());
1536   DataType::Type type = instruction->GetResultType();
1537   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64) << type;
1538 
1539   LocationSummary* locations = instruction->GetLocations();
1540   XRegister out = locations->Out().AsRegister<XRegister>();
1541   Location second = locations->InAt(1);
1542 
1543   if (second.IsConstant()) {
1544     int64_t imm = Int64FromConstant(second.GetConstant());
1545     if (imm == 0) {
1546       // Do not generate anything. DivZeroCheck would prevent any code to be executed.
1547     } else if (imm == 1 || imm == -1) {
1548       DivRemOneOrMinusOne(instruction);
1549     } else if (IsPowerOfTwo(AbsOrMin(imm))) {
1550       DivRemByPowerOfTwo(instruction);
1551     } else {
1552       DCHECK(imm <= -2 || imm >= 2);
1553       GenerateDivRemWithAnyConstant(instruction);
1554     }
1555   } else {
1556     XRegister dividend = locations->InAt(0).AsRegister<XRegister>();
1557     XRegister divisor = second.AsRegister<XRegister>();
1558     if (instruction->IsDiv()) {
1559       if (type == DataType::Type::kInt32) {
1560         __ Divw(out, dividend, divisor);
1561       } else {
1562         __ Div(out, dividend, divisor);
1563       }
1564     } else {
1565       if (type == DataType::Type::kInt32) {
1566         __ Remw(out, dividend, divisor);
1567       } else {
1568         __ Rem(out, dividend, divisor);
1569       }
1570     }
1571   }
1572 }
1573 
GenerateIntLongCondition(IfCondition cond,LocationSummary * locations)1574 void InstructionCodeGeneratorRISCV64::GenerateIntLongCondition(IfCondition cond,
1575                                                                LocationSummary* locations) {
1576   XRegister rd = locations->Out().AsRegister<XRegister>();
1577   GenerateIntLongCondition(cond, locations, rd, /*to_all_bits=*/ false);
1578 }
1579 
GenerateIntLongCondition(IfCondition cond,LocationSummary * locations,XRegister rd,bool to_all_bits)1580 void InstructionCodeGeneratorRISCV64::GenerateIntLongCondition(IfCondition cond,
1581                                                                LocationSummary* locations,
1582                                                                XRegister rd,
1583                                                                bool to_all_bits) {
1584   XRegister rs1 = locations->InAt(0).AsRegister<XRegister>();
1585   Location rs2_location = locations->InAt(1);
1586   bool use_imm = rs2_location.IsConstant();
1587   int64_t imm = use_imm ? CodeGenerator::GetInt64ValueOf(rs2_location.GetConstant()) : 0;
1588   XRegister rs2 = use_imm ? kNoXRegister : rs2_location.AsRegister<XRegister>();
1589   bool reverse_condition = false;
1590   switch (cond) {
1591     case kCondEQ:
1592     case kCondNE:
1593       if (!use_imm) {
1594         __ Sub(rd, rs1, rs2);  // SUB is OK here even for 32-bit comparison.
1595       } else if (imm != 0) {
1596         DCHECK(IsInt<12>(-imm));
1597         __ Addi(rd, rs1, -imm);  // ADDI is OK here even for 32-bit comparison.
1598       }  // else test `rs1` directly without subtraction for `use_imm && imm == 0`.
1599       if (cond == kCondEQ) {
1600         __ Seqz(rd, (use_imm && imm == 0) ? rs1 : rd);
1601       } else {
1602         __ Snez(rd, (use_imm && imm == 0) ? rs1 : rd);
1603       }
1604       break;
1605 
1606     case kCondLT:
1607     case kCondGE:
1608       if (use_imm) {
1609         DCHECK(IsInt<12>(imm));
1610         __ Slti(rd, rs1, imm);
1611       } else {
1612         __ Slt(rd, rs1, rs2);
1613       }
1614       // Calculate `rs1 >= rhs` as `!(rs1 < rhs)` since there's only the SLT but no SGE.
1615       reverse_condition = (cond == kCondGE);
1616       break;
1617 
1618     case kCondLE:
1619     case kCondGT:
1620       if (use_imm) {
1621         // Calculate `rs1 <= imm` as `rs1 < imm + 1`.
1622         DCHECK(IsInt<12>(imm + 1));  // The value that overflows would fail this check.
1623         __ Slti(rd, rs1, imm + 1);
1624       } else {
1625         __ Slt(rd, rs2, rs1);
1626       }
1627       // Calculate `rs1 > imm` as `!(rs1 < imm + 1)` and calculate
1628       // `rs1 <= rs2` as `!(rs2 < rs1)` since there's only the SLT but no SGE.
1629       reverse_condition = ((cond == kCondGT) == use_imm);
1630       break;
1631 
1632     case kCondB:
1633     case kCondAE:
1634       if (use_imm) {
1635         // Sltiu sign-extends its 12-bit immediate operand before the comparison
1636         // and thus lets us compare directly with unsigned values in the ranges
1637         // [0, 0x7ff] and [0x[ffffffff]fffff800, 0x[ffffffff]ffffffff].
1638         DCHECK(IsInt<12>(imm));
1639         __ Sltiu(rd, rs1, imm);
1640       } else {
1641         __ Sltu(rd, rs1, rs2);
1642       }
1643       // Calculate `rs1 AE rhs` as `!(rs1 B rhs)` since there's only the SLTU but no SGEU.
1644       reverse_condition = (cond == kCondAE);
1645       break;
1646 
1647     case kCondBE:
1648     case kCondA:
1649       if (use_imm) {
1650         // Calculate `rs1 BE imm` as `rs1 B imm + 1`.
1651         // Sltiu sign-extends its 12-bit immediate operand before the comparison
1652         // and thus lets us compare directly with unsigned values in the ranges
1653         // [0, 0x7ff] and [0x[ffffffff]fffff800, 0x[ffffffff]ffffffff].
1654         DCHECK(IsInt<12>(imm + 1));  // The value that overflows would fail this check.
1655         __ Sltiu(rd, rs1, imm + 1);
1656       } else {
1657         __ Sltu(rd, rs2, rs1);
1658       }
1659       // Calculate `rs1 A imm` as `!(rs1 B imm + 1)` and calculate
1660       // `rs1 BE rs2` as `!(rs2 B rs1)` since there's only the SLTU but no SGEU.
1661       reverse_condition = ((cond == kCondA) == use_imm);
1662       break;
1663   }
1664   if (to_all_bits) {
1665     // Store the result to all bits; in other words, "true" is represented by -1.
1666     if (reverse_condition) {
1667       __ Addi(rd, rd, -1);  // 0 -> -1, 1 -> 0
1668     } else {
1669       __ Neg(rd, rd);  // 0 -> 0, 1 -> -1
1670     }
1671   } else {
1672     if (reverse_condition) {
1673       __ Xori(rd, rd, 1);
1674     }
1675   }
1676 }
1677 
GenerateIntLongCompareAndBranch(IfCondition cond,LocationSummary * locations,Riscv64Label * label)1678 void InstructionCodeGeneratorRISCV64::GenerateIntLongCompareAndBranch(IfCondition cond,
1679                                                                       LocationSummary* locations,
1680                                                                       Riscv64Label* label) {
1681   XRegister left = locations->InAt(0).AsRegister<XRegister>();
1682   Location right_location = locations->InAt(1);
1683   if (right_location.IsConstant()) {
1684     DCHECK_EQ(CodeGenerator::GetInt64ValueOf(right_location.GetConstant()), 0);
1685     switch (cond) {
1686       case kCondEQ:
1687       case kCondBE:  // <= 0 if zero
1688         __ Beqz(left, label);
1689         break;
1690       case kCondNE:
1691       case kCondA:  // > 0 if non-zero
1692         __ Bnez(left, label);
1693         break;
1694       case kCondLT:
1695         __ Bltz(left, label);
1696         break;
1697       case kCondGE:
1698         __ Bgez(left, label);
1699         break;
1700       case kCondLE:
1701         __ Blez(left, label);
1702         break;
1703       case kCondGT:
1704         __ Bgtz(left, label);
1705         break;
1706       case kCondB:  // always false
1707         break;
1708       case kCondAE:  // always true
1709         __ J(label);
1710         break;
1711     }
1712   } else {
1713     XRegister right_reg = right_location.AsRegister<XRegister>();
1714     switch (cond) {
1715       case kCondEQ:
1716         __ Beq(left, right_reg, label);
1717         break;
1718       case kCondNE:
1719         __ Bne(left, right_reg, label);
1720         break;
1721       case kCondLT:
1722         __ Blt(left, right_reg, label);
1723         break;
1724       case kCondGE:
1725         __ Bge(left, right_reg, label);
1726         break;
1727       case kCondLE:
1728         __ Ble(left, right_reg, label);
1729         break;
1730       case kCondGT:
1731         __ Bgt(left, right_reg, label);
1732         break;
1733       case kCondB:
1734         __ Bltu(left, right_reg, label);
1735         break;
1736       case kCondAE:
1737         __ Bgeu(left, right_reg, label);
1738         break;
1739       case kCondBE:
1740         __ Bleu(left, right_reg, label);
1741         break;
1742       case kCondA:
1743         __ Bgtu(left, right_reg, label);
1744         break;
1745     }
1746   }
1747 }
1748 
GenerateFpCondition(IfCondition cond,bool gt_bias,DataType::Type type,LocationSummary * locations,Riscv64Label * label)1749 void InstructionCodeGeneratorRISCV64::GenerateFpCondition(IfCondition cond,
1750                                                           bool gt_bias,
1751                                                           DataType::Type type,
1752                                                           LocationSummary* locations,
1753                                                           Riscv64Label* label) {
1754   DCHECK_EQ(label != nullptr, locations->Out().IsInvalid());
1755   ScratchRegisterScope srs(GetAssembler());
1756   XRegister rd =
1757       (label != nullptr) ? srs.AllocateXRegister() : locations->Out().AsRegister<XRegister>();
1758   GenerateFpCondition(cond, gt_bias, type, locations, label, rd, /*to_all_bits=*/ false);
1759 }
1760 
GenerateFpCondition(IfCondition cond,bool gt_bias,DataType::Type type,LocationSummary * locations,Riscv64Label * label,XRegister rd,bool to_all_bits)1761 void InstructionCodeGeneratorRISCV64::GenerateFpCondition(IfCondition cond,
1762                                                           bool gt_bias,
1763                                                           DataType::Type type,
1764                                                           LocationSummary* locations,
1765                                                           Riscv64Label* label,
1766                                                           XRegister rd,
1767                                                           bool to_all_bits) {
1768   // RISCV-V FP compare instructions yield the following values:
1769   //                      l<r  l=r  l>r Unordered
1770   //             FEQ l,r   0    1    0    0
1771   //             FLT l,r   1    0    0    0
1772   //             FLT r,l   0    0    1    0
1773   //             FLE l,r   1    1    0    0
1774   //             FLE r,l   0    1    1    0
1775   //
1776   // We can calculate the `Compare` results using the following formulas:
1777   //                      l<r  l=r  l>r Unordered
1778   //     Compare/gt_bias  -1    0    1    1       = ((FLE l,r) ^ 1) - (FLT l,r)
1779   //     Compare/lt_bias  -1    0    1   -1       = ((FLE r,l) - 1) + (FLT r,l)
1780   // These are emitted in `VisitCompare()`.
1781   //
1782   // This function emits a fused `Condition(Compare(., .), 0)`. If we compare the
1783   // `Compare` results above with 0, we get the following values and formulas:
1784   //                      l<r  l=r  l>r Unordered
1785   //     CondEQ/-          0    1    0    0       = (FEQ l, r)
1786   //     CondNE/-          1    0    1    1       = (FEQ l, r) ^ 1
1787   //     CondLT/gt_bias    1    0    0    0       = (FLT l,r)
1788   //     CondLT/lt_bias    1    0    0    1       = (FLE r,l) ^ 1
1789   //     CondLE/gt_bias    1    1    0    0       = (FLE l,r)
1790   //     CondLE/lt_bias    1    1    0    1       = (FLT r,l) ^ 1
1791   //     CondGT/gt_bias    0    0    1    1       = (FLE l,r) ^ 1
1792   //     CondGT/lt_bias    0    0    1    0       = (FLT r,l)
1793   //     CondGE/gt_bias    0    1    1    1       = (FLT l,r) ^ 1
1794   //     CondGE/lt_bias    0    1    1    0       = (FLE r,l)
1795   // (CondEQ/CondNE comparison with zero yields the same result with gt_bias and lt_bias.)
1796   //
1797   // If the condition is not materialized, the `^ 1` is not emitted,
1798   // instead the condition is reversed by emitting BEQZ instead of BNEZ.
1799 
1800   FRegister rs1 = locations->InAt(0).AsFpuRegister<FRegister>();
1801   FRegister rs2 = locations->InAt(1).AsFpuRegister<FRegister>();
1802 
1803   bool reverse_condition = false;
1804   switch (cond) {
1805     case kCondEQ:
1806       FEq(rd, rs1, rs2, type);
1807       break;
1808     case kCondNE:
1809       FEq(rd, rs1, rs2, type);
1810       reverse_condition = true;
1811       break;
1812     case kCondLT:
1813       if (gt_bias) {
1814         FLt(rd, rs1, rs2, type);
1815       } else {
1816         FLe(rd, rs2, rs1, type);
1817         reverse_condition = true;
1818       }
1819       break;
1820     case kCondLE:
1821       if (gt_bias) {
1822         FLe(rd, rs1, rs2, type);
1823       } else {
1824         FLt(rd, rs2, rs1, type);
1825         reverse_condition = true;
1826       }
1827       break;
1828     case kCondGT:
1829       if (gt_bias) {
1830         FLe(rd, rs1, rs2, type);
1831         reverse_condition = true;
1832       } else {
1833         FLt(rd, rs2, rs1, type);
1834       }
1835       break;
1836     case kCondGE:
1837       if (gt_bias) {
1838         FLt(rd, rs1, rs2, type);
1839         reverse_condition = true;
1840       } else {
1841         FLe(rd, rs2, rs1, type);
1842       }
1843       break;
1844     default:
1845       LOG(FATAL) << "Unexpected floating-point condition " << cond;
1846       UNREACHABLE();
1847   }
1848 
1849   if (label != nullptr) {
1850     if (reverse_condition) {
1851       __ Beqz(rd, label);
1852     } else {
1853       __ Bnez(rd, label);
1854     }
1855   } else if (to_all_bits) {
1856     // Store the result to all bits; in other words, "true" is represented by -1.
1857     if (reverse_condition) {
1858       __ Addi(rd, rd, -1);  // 0 -> -1, 1 -> 0
1859     } else {
1860       __ Neg(rd, rd);  // 0 -> 0, 1 -> -1
1861     }
1862   } else {
1863     if (reverse_condition) {
1864       __ Xori(rd, rd, 1);
1865     }
1866   }
1867 }
1868 
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,XRegister obj,uint32_t offset,Location temp,bool needs_null_check)1869 void CodeGeneratorRISCV64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
1870                                                                  Location ref,
1871                                                                  XRegister obj,
1872                                                                  uint32_t offset,
1873                                                                  Location temp,
1874                                                                  bool needs_null_check) {
1875   GenerateReferenceLoadWithBakerReadBarrier(
1876       instruction, ref, obj, offset, /*index=*/ Location::NoLocation(), temp, needs_null_check);
1877 }
1878 
GenerateArrayLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,XRegister obj,uint32_t data_offset,Location index,Location temp,bool needs_null_check)1879 void CodeGeneratorRISCV64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
1880                                                                  Location ref,
1881                                                                  XRegister obj,
1882                                                                  uint32_t data_offset,
1883                                                                  Location index,
1884                                                                  Location temp,
1885                                                                  bool needs_null_check) {
1886   GenerateReferenceLoadWithBakerReadBarrier(
1887       instruction, ref, obj, data_offset, index, temp, needs_null_check);
1888 }
1889 
GenerateReferenceLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,XRegister obj,uint32_t offset,Location index,Location temp,bool needs_null_check)1890 void CodeGeneratorRISCV64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
1891                                                                      Location ref,
1892                                                                      XRegister obj,
1893                                                                      uint32_t offset,
1894                                                                      Location index,
1895                                                                      Location temp,
1896                                                                      bool needs_null_check) {
1897   // For now, use the same approach as for GC roots plus unpoison the reference if needed.
1898   // TODO(riscv64): Implement checking if the holder is black.
1899   UNUSED(temp);
1900 
1901   DCHECK(EmitBakerReadBarrier());
1902   XRegister reg = ref.AsRegister<XRegister>();
1903   if (index.IsValid()) {
1904     DCHECK(!needs_null_check);
1905     DCHECK(index.IsRegister());
1906     DataType::Type type = DataType::Type::kReference;
1907     DCHECK_EQ(type, instruction->GetType());
1908     if (instruction->IsArrayGet()) {
1909       // /* HeapReference<Object> */ ref = *(obj + index * element_size + offset)
1910       instruction_visitor_.ShNAdd(reg, index.AsRegister<XRegister>(), obj, type);
1911     } else {
1912       // /* HeapReference<Object> */ ref = *(obj + index + offset)
1913       DCHECK(instruction->IsInvoke());
1914       DCHECK(instruction->GetLocations()->Intrinsified());
1915       __ Add(reg, index.AsRegister<XRegister>(), obj);
1916     }
1917     __ Loadwu(reg, reg, offset);
1918   } else {
1919     // /* HeapReference<Object> */ ref = *(obj + offset)
1920     __ Loadwu(reg, obj, offset);
1921     if (needs_null_check) {
1922       MaybeRecordImplicitNullCheck(instruction);
1923     }
1924   }
1925   MaybeUnpoisonHeapReference(reg);
1926 
1927   // Slow path marking the reference.
1928   XRegister tmp = RA;  // Use RA as temp. It is clobbered in the slow path anyway.
1929   SlowPathCodeRISCV64* slow_path = new (GetScopedAllocator()) ReadBarrierMarkSlowPathRISCV64(
1930       instruction, ref, Location::RegisterLocation(tmp));
1931   AddSlowPath(slow_path);
1932 
1933   const int32_t entry_point_offset = ReadBarrierMarkEntrypointOffset(ref);
1934   // Loading the entrypoint does not require a load acquire since it is only changed when
1935   // threads are suspended or running a checkpoint.
1936   __ Loadd(tmp, TR, entry_point_offset);
1937   __ Bnez(tmp, slow_path->GetEntryLabel());
1938   __ Bind(slow_path->GetExitLabel());
1939 }
1940 
AddReadBarrierSlowPath(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)1941 SlowPathCodeRISCV64* CodeGeneratorRISCV64::AddReadBarrierSlowPath(HInstruction* instruction,
1942                                                                   Location out,
1943                                                                   Location ref,
1944                                                                   Location obj,
1945                                                                   uint32_t offset,
1946                                                                   Location index) {
1947   UNUSED(instruction);
1948   UNUSED(out);
1949   UNUSED(ref);
1950   UNUSED(obj);
1951   UNUSED(offset);
1952   UNUSED(index);
1953   LOG(FATAL) << "Unimplemented";
1954   UNREACHABLE();
1955 }
1956 
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)1957 void CodeGeneratorRISCV64::GenerateReadBarrierSlow(HInstruction* instruction,
1958                                                    Location out,
1959                                                    Location ref,
1960                                                    Location obj,
1961                                                    uint32_t offset,
1962                                                    Location index) {
1963   UNUSED(instruction);
1964   UNUSED(out);
1965   UNUSED(ref);
1966   UNUSED(obj);
1967   UNUSED(offset);
1968   UNUSED(index);
1969   LOG(FATAL) << "Unimplemented";
1970 }
1971 
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)1972 void CodeGeneratorRISCV64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
1973                                                         Location out,
1974                                                         Location ref,
1975                                                         Location obj,
1976                                                         uint32_t offset,
1977                                                         Location index) {
1978   if (EmitReadBarrier()) {
1979     // Baker's read barriers shall be handled by the fast path
1980     // (CodeGeneratorRISCV64::GenerateReferenceLoadWithBakerReadBarrier).
1981     DCHECK(!kUseBakerReadBarrier);
1982     // If heap poisoning is enabled, unpoisoning will be taken care of
1983     // by the runtime within the slow path.
1984     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
1985   } else if (kPoisonHeapReferences) {
1986     UnpoisonHeapReference(out.AsRegister<XRegister>());
1987   }
1988 }
1989 
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)1990 void CodeGeneratorRISCV64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
1991                                                           Location out,
1992                                                           Location root) {
1993   DCHECK(EmitReadBarrier());
1994 
1995   // Insert a slow path based read barrier *after* the GC root load.
1996   //
1997   // Note that GC roots are not affected by heap poisoning, so we do
1998   // not need to do anything special for this here.
1999   SlowPathCodeRISCV64* slow_path =
2000       new (GetScopedAllocator()) ReadBarrierForRootSlowPathRISCV64(instruction, out, root);
2001   AddSlowPath(slow_path);
2002 
2003   __ J(slow_path->GetEntryLabel());
2004   __ Bind(slow_path->GetExitLabel());
2005 }
2006 
HandleGoto(HInstruction * instruction,HBasicBlock * successor)2007 void InstructionCodeGeneratorRISCV64::HandleGoto(HInstruction* instruction,
2008                                                  HBasicBlock* successor) {
2009   if (successor->IsExitBlock()) {
2010     DCHECK(instruction->GetPrevious()->AlwaysThrows());
2011     return;  // no code needed
2012   }
2013 
2014   HBasicBlock* block = instruction->GetBlock();
2015   HInstruction* previous = instruction->GetPrevious();
2016   HLoopInformation* info = block->GetLoopInformation();
2017 
2018   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
2019     codegen_->MaybeIncrementHotness(info->GetSuspendCheck(), /*is_frame_entry=*/ false);
2020     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
2021     return;  // `GenerateSuspendCheck()` emitted the jump.
2022   }
2023   if (block->IsEntryBlock() && previous != nullptr && previous->IsSuspendCheck()) {
2024     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
2025   }
2026   if (!codegen_->GoesToNextBlock(block, successor)) {
2027     __ J(codegen_->GetLabelOf(successor));
2028   }
2029 }
2030 
GenPackedSwitchWithCompares(XRegister adjusted,XRegister temp,uint32_t num_entries,HBasicBlock * switch_block)2031 void InstructionCodeGeneratorRISCV64::GenPackedSwitchWithCompares(XRegister adjusted,
2032                                                                   XRegister temp,
2033                                                                   uint32_t num_entries,
2034                                                                   HBasicBlock* switch_block) {
2035   // Note: The `adjusted` register holds `value - lower_bound`. If the `lower_bound` is 0,
2036   // `adjusted` is the original `value` register and we must not clobber it. Otherwise,
2037   // `adjusted` is the `temp`. The caller already emitted the `adjusted < num_entries` check.
2038 
2039   // Create a set of compare/jumps.
2040   ArrayRef<HBasicBlock* const> successors(switch_block->GetSuccessors());
2041   uint32_t index = 0;
2042   for (; num_entries - index >= 2u; index += 2u) {
2043     // Jump to `successors[index]` if `value == lower_bound + index`.
2044     // Note that `adjusted` holds `value - lower_bound - index`.
2045     __ Beqz(adjusted, codegen_->GetLabelOf(successors[index]));
2046     if (num_entries - index == 2u) {
2047       break;  // The last entry shall match, so the branch shall be unconditional.
2048     }
2049     // Jump to `successors[index + 1]` if `value == lower_bound + index + 1`.
2050     // Modify `adjusted` to hold `value - lower_bound - index - 2` for this comparison.
2051     __ Addi(temp, adjusted, -2);
2052     adjusted = temp;
2053     __ Bltz(adjusted, codegen_->GetLabelOf(successors[index + 1]));
2054   }
2055   // For the last entry, unconditionally jump to `successors[num_entries - 1]`.
2056   __ J(codegen_->GetLabelOf(successors[num_entries - 1u]));
2057 }
2058 
GenTableBasedPackedSwitch(XRegister adjusted,XRegister temp,uint32_t num_entries,HBasicBlock * switch_block)2059 void InstructionCodeGeneratorRISCV64::GenTableBasedPackedSwitch(XRegister adjusted,
2060                                                                 XRegister temp,
2061                                                                 uint32_t num_entries,
2062                                                                 HBasicBlock* switch_block) {
2063   // Note: The `adjusted` register holds `value - lower_bound`. If the `lower_bound` is 0,
2064   // `adjusted` is the original `value` register and we must not clobber it. Otherwise,
2065   // `adjusted` is the `temp`. The caller already emitted the `adjusted < num_entries` check.
2066 
2067   // Create a jump table.
2068   ArenaVector<Riscv64Label*> labels(num_entries,
2069                                     __ GetAllocator()->Adapter(kArenaAllocSwitchTable));
2070   const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
2071   for (uint32_t i = 0; i < num_entries; i++) {
2072     labels[i] = codegen_->GetLabelOf(successors[i]);
2073   }
2074   JumpTable* table = __ CreateJumpTable(std::move(labels));
2075 
2076   // Load the address of the jump table.
2077   // Note: The `LoadLabelAddress()` emits AUIPC+ADD. It is possible to avoid the ADD and
2078   // instead embed that offset in the LW below as well as all jump table entries but
2079   // that would need some invasive changes in the jump table handling in the assembler.
2080   ScratchRegisterScope srs(GetAssembler());
2081   XRegister table_base = srs.AllocateXRegister();
2082   __ LoadLabelAddress(table_base, table->GetLabel());
2083 
2084   // Load the PC difference from the jump table.
2085   // TODO(riscv64): Use SH2ADD from the Zba extension.
2086   __ Slli(temp, adjusted, 2);
2087   __ Add(temp, temp, table_base);
2088   __ Lw(temp, temp, 0);
2089 
2090   // Compute the absolute target address by adding the table start address
2091   // (the table contains offsets to targets relative to its start).
2092   __ Add(temp, temp, table_base);
2093   // And jump.
2094   __ Jr(temp);
2095 }
2096 
VecAddress(LocationSummary * locations,size_t size,XRegister * adjusted_base)2097 int32_t InstructionCodeGeneratorRISCV64::VecAddress(LocationSummary* locations,
2098                                                     size_t size,
2099                                                     /*out*/ XRegister* adjusted_base) {
2100   UNUSED(locations);
2101   UNUSED(size);
2102   UNUSED(adjusted_base);
2103   LOG(FATAL) << "Unimplemented";
2104   UNREACHABLE();
2105 }
2106 
HandleBinaryOp(HBinaryOperation * instruction)2107 void LocationsBuilderRISCV64::HandleBinaryOp(HBinaryOperation* instruction) {
2108   DCHECK_EQ(instruction->InputCount(), 2u);
2109   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2110   DataType::Type type = instruction->GetResultType();
2111   switch (type) {
2112     case DataType::Type::kInt32:
2113     case DataType::Type::kInt64: {
2114       locations->SetInAt(0, Location::RequiresRegister());
2115       HInstruction* right = instruction->InputAt(1);
2116       bool can_use_imm = false;
2117       if (instruction->IsMin() || instruction->IsMax()) {
2118         can_use_imm = IsZeroBitPattern(instruction);
2119       } else if (right->IsConstant()) {
2120         int64_t imm = CodeGenerator::GetInt64ValueOf(right->AsConstant());
2121         can_use_imm = IsInt<12>(instruction->IsSub() ? -imm : imm);
2122       }
2123       if (can_use_imm) {
2124         locations->SetInAt(1, Location::ConstantLocation(right));
2125       } else {
2126         locations->SetInAt(1, Location::RequiresRegister());
2127       }
2128       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2129       break;
2130     }
2131 
2132     case DataType::Type::kFloat32:
2133     case DataType::Type::kFloat64:
2134       locations->SetInAt(0, Location::RequiresFpuRegister());
2135       locations->SetInAt(1, Location::RequiresFpuRegister());
2136       if (instruction->IsMin() || instruction->IsMax()) {
2137         locations->SetOut(Location::RequiresFpuRegister(), Location::kOutputOverlap);
2138       } else {
2139         locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2140       }
2141       break;
2142 
2143     default:
2144       LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type;
2145       UNREACHABLE();
2146   }
2147 }
2148 
HandleBinaryOp(HBinaryOperation * instruction)2149 void InstructionCodeGeneratorRISCV64::HandleBinaryOp(HBinaryOperation* instruction) {
2150   DataType::Type type = instruction->GetType();
2151   LocationSummary* locations = instruction->GetLocations();
2152 
2153   switch (type) {
2154     case DataType::Type::kInt32:
2155     case DataType::Type::kInt64: {
2156       XRegister rd = locations->Out().AsRegister<XRegister>();
2157       XRegister rs1 = locations->InAt(0).AsRegister<XRegister>();
2158       Location rs2_location = locations->InAt(1);
2159 
2160       bool use_imm = rs2_location.IsConstant();
2161       XRegister rs2 = use_imm ? kNoXRegister : rs2_location.AsRegister<XRegister>();
2162       int64_t imm = use_imm ? CodeGenerator::GetInt64ValueOf(rs2_location.GetConstant()) : 0;
2163 
2164       if (instruction->IsAnd()) {
2165         if (use_imm) {
2166           __ Andi(rd, rs1, imm);
2167         } else {
2168           __ And(rd, rs1, rs2);
2169         }
2170       } else if (instruction->IsOr()) {
2171         if (use_imm) {
2172           __ Ori(rd, rs1, imm);
2173         } else {
2174           __ Or(rd, rs1, rs2);
2175         }
2176       } else if (instruction->IsXor()) {
2177         if (use_imm) {
2178           __ Xori(rd, rs1, imm);
2179         } else {
2180           __ Xor(rd, rs1, rs2);
2181         }
2182       } else if (instruction->IsAdd() || instruction->IsSub()) {
2183         if (type == DataType::Type::kInt32) {
2184           if (use_imm) {
2185             __ Addiw(rd, rs1, instruction->IsSub() ? -imm : imm);
2186           } else if (instruction->IsAdd()) {
2187             __ Addw(rd, rs1, rs2);
2188           } else {
2189             DCHECK(instruction->IsSub());
2190             __ Subw(rd, rs1, rs2);
2191           }
2192         } else {
2193           if (use_imm) {
2194             __ Addi(rd, rs1, instruction->IsSub() ? -imm : imm);
2195           } else if (instruction->IsAdd()) {
2196             __ Add(rd, rs1, rs2);
2197           } else {
2198             DCHECK(instruction->IsSub());
2199             __ Sub(rd, rs1, rs2);
2200           }
2201         }
2202       } else if (instruction->IsMin()) {
2203         DCHECK_IMPLIES(use_imm, imm == 0);
2204         __ Min(rd, rs1, use_imm ? Zero : rs2);
2205       } else {
2206         DCHECK(instruction->IsMax());
2207         DCHECK_IMPLIES(use_imm, imm == 0);
2208         __ Max(rd, rs1, use_imm ? Zero : rs2);
2209       }
2210       break;
2211     }
2212     case DataType::Type::kFloat32:
2213     case DataType::Type::kFloat64: {
2214       FRegister rd = locations->Out().AsFpuRegister<FRegister>();
2215       FRegister rs1 = locations->InAt(0).AsFpuRegister<FRegister>();
2216       FRegister rs2 = locations->InAt(1).AsFpuRegister<FRegister>();
2217       if (instruction->IsAdd()) {
2218         FAdd(rd, rs1, rs2, type);
2219       } else if (instruction->IsSub()) {
2220         FSub(rd, rs1, rs2, type);
2221       } else {
2222         DCHECK(instruction->IsMin() || instruction->IsMax());
2223         // If one of the operands is NaN and the other is not, riscv64 instructions FMIN/FMAX
2224         // return the other operand while we want to return the NaN operand.
2225         DCHECK_NE(rd, rs1);  // Requested `Location::kOutputOverlap`.
2226         DCHECK_NE(rd, rs2);  // Requested `Location::kOutputOverlap`.
2227         ScratchRegisterScope srs(GetAssembler());
2228         XRegister tmp = srs.AllocateXRegister();
2229         XRegister tmp2 = srs.AllocateXRegister();
2230         Riscv64Label done;
2231         // Return `rs1` if it's NaN.
2232         FClass(tmp, rs1, type);
2233         __ Li(tmp2, kFClassNaNMinValue);
2234         FMv(rd, rs1, type);
2235         __ Bgeu(tmp, tmp2, &done);
2236         // Return `rs2` if it's NaN.
2237         FClass(tmp, rs2, type);
2238         FMv(rd, rs2, type);
2239         __ Bgeu(tmp, tmp2, &done);
2240         // Calculate Min/Max for non-NaN arguments.
2241         if (instruction->IsMin()) {
2242           FMin(rd, rs1, rs2, type);
2243         } else {
2244           FMax(rd, rs1, rs2, type);
2245         }
2246         __ Bind(&done);
2247       }
2248       break;
2249     }
2250     default:
2251       LOG(FATAL) << "Unexpected binary operation type " << type;
2252       UNREACHABLE();
2253   }
2254 }
2255 
HandleCondition(HCondition * instruction)2256 void LocationsBuilderRISCV64::HandleCondition(HCondition* instruction) {
2257   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2258   switch (instruction->InputAt(0)->GetType()) {
2259     case DataType::Type::kFloat32:
2260     case DataType::Type::kFloat64:
2261       locations->SetInAt(0, Location::RequiresFpuRegister());
2262       locations->SetInAt(1, Location::RequiresFpuRegister());
2263       break;
2264 
2265     default: {
2266       locations->SetInAt(0, Location::RequiresRegister());
2267       HInstruction* rhs = instruction->InputAt(1);
2268       bool use_imm = false;
2269       if (rhs->IsConstant()) {
2270         int64_t imm = CodeGenerator::GetInt64ValueOf(rhs->AsConstant());
2271         if (instruction->IsEmittedAtUseSite()) {
2272           // For `HIf`, materialize all non-zero constants with an `HParallelMove`.
2273           // Note: For certain constants and conditions, the code could be improved.
2274           // For example, 2048 takes two instructions to materialize but the negative
2275           // -2048 could be embedded in ADDI for EQ/NE comparison.
2276           use_imm = (imm == 0);
2277         } else {
2278           // Constants that cannot be embedded in an instruction's 12-bit immediate shall be
2279           // materialized with an `HParallelMove`. This simplifies the code and avoids cases
2280           // with arithmetic overflow. Adjust the `imm` if needed for a particular instruction.
2281           switch (instruction->GetCondition()) {
2282             case kCondEQ:
2283             case kCondNE:
2284               imm = -imm;  // ADDI with negative immediate (there is no SUBI).
2285               break;
2286             case kCondLE:
2287             case kCondGT:
2288             case kCondBE:
2289             case kCondA:
2290               imm += 1;    // SLTI/SLTIU with adjusted immediate (there is no SLEI/SLEIU).
2291               break;
2292             default:
2293               break;
2294           }
2295           use_imm = IsInt<12>(imm);
2296         }
2297       }
2298       if (use_imm) {
2299         locations->SetInAt(1, Location::ConstantLocation(rhs));
2300       } else {
2301         locations->SetInAt(1, Location::RequiresRegister());
2302       }
2303       break;
2304     }
2305   }
2306   if (!instruction->IsEmittedAtUseSite()) {
2307     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2308   }
2309 }
2310 
HandleCondition(HCondition * instruction)2311 void InstructionCodeGeneratorRISCV64::HandleCondition(HCondition* instruction) {
2312   if (instruction->IsEmittedAtUseSite()) {
2313     return;
2314   }
2315 
2316   DataType::Type type = instruction->InputAt(0)->GetType();
2317   LocationSummary* locations = instruction->GetLocations();
2318   switch (type) {
2319     case DataType::Type::kFloat32:
2320     case DataType::Type::kFloat64:
2321       GenerateFpCondition(instruction->GetCondition(), instruction->IsGtBias(), type, locations);
2322       return;
2323     default:
2324       // Integral types and reference equality.
2325       GenerateIntLongCondition(instruction->GetCondition(), locations);
2326       return;
2327   }
2328 }
2329 
HandleShift(HBinaryOperation * instruction)2330 void LocationsBuilderRISCV64::HandleShift(HBinaryOperation* instruction) {
2331   DCHECK(instruction->IsShl() ||
2332          instruction->IsShr() ||
2333          instruction->IsUShr() ||
2334          instruction->IsRor());
2335 
2336   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2337   DataType::Type type = instruction->GetResultType();
2338   switch (type) {
2339     case DataType::Type::kInt32:
2340     case DataType::Type::kInt64: {
2341       locations->SetInAt(0, Location::RequiresRegister());
2342       locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2343       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2344       break;
2345     }
2346     default:
2347       LOG(FATAL) << "Unexpected shift type " << type;
2348       UNREACHABLE();
2349   }
2350 }
2351 
HandleShift(HBinaryOperation * instruction)2352 void InstructionCodeGeneratorRISCV64::HandleShift(HBinaryOperation* instruction) {
2353   DCHECK(instruction->IsShl() ||
2354          instruction->IsShr() ||
2355          instruction->IsUShr() ||
2356          instruction->IsRor());
2357   LocationSummary* locations = instruction->GetLocations();
2358   DataType::Type type = instruction->GetType();
2359 
2360   switch (type) {
2361     case DataType::Type::kInt32:
2362     case DataType::Type::kInt64: {
2363       XRegister rd = locations->Out().AsRegister<XRegister>();
2364       XRegister rs1 = locations->InAt(0).AsRegister<XRegister>();
2365       Location rs2_location = locations->InAt(1);
2366 
2367       if (rs2_location.IsConstant()) {
2368         int64_t imm = CodeGenerator::GetInt64ValueOf(rs2_location.GetConstant());
2369         uint32_t shamt =
2370             imm & (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance);
2371 
2372         if (shamt == 0) {
2373           if (rd != rs1) {
2374             __ Mv(rd, rs1);
2375           }
2376         } else if (type == DataType::Type::kInt32) {
2377           if (instruction->IsShl()) {
2378             __ Slliw(rd, rs1, shamt);
2379           } else if (instruction->IsShr()) {
2380             __ Sraiw(rd, rs1, shamt);
2381           } else if (instruction->IsUShr()) {
2382             __ Srliw(rd, rs1, shamt);
2383           } else {
2384             DCHECK(instruction->IsRor());
2385             __ Roriw(rd, rs1, shamt);
2386           }
2387         } else {
2388           if (instruction->IsShl()) {
2389             __ Slli(rd, rs1, shamt);
2390           } else if (instruction->IsShr()) {
2391             __ Srai(rd, rs1, shamt);
2392           } else if (instruction->IsUShr()) {
2393             __ Srli(rd, rs1, shamt);
2394           } else {
2395             DCHECK(instruction->IsRor());
2396             __ Rori(rd, rs1, shamt);
2397           }
2398         }
2399       } else {
2400         XRegister rs2 = rs2_location.AsRegister<XRegister>();
2401         if (type == DataType::Type::kInt32) {
2402           if (instruction->IsShl()) {
2403             __ Sllw(rd, rs1, rs2);
2404           } else if (instruction->IsShr()) {
2405             __ Sraw(rd, rs1, rs2);
2406           } else if (instruction->IsUShr()) {
2407             __ Srlw(rd, rs1, rs2);
2408           } else {
2409             DCHECK(instruction->IsRor());
2410             __ Rorw(rd, rs1, rs2);
2411           }
2412         } else {
2413           if (instruction->IsShl()) {
2414             __ Sll(rd, rs1, rs2);
2415           } else if (instruction->IsShr()) {
2416             __ Sra(rd, rs1, rs2);
2417           } else if (instruction->IsUShr()) {
2418             __ Srl(rd, rs1, rs2);
2419           } else {
2420             DCHECK(instruction->IsRor());
2421             __ Ror(rd, rs1, rs2);
2422           }
2423         }
2424       }
2425       break;
2426     }
2427     default:
2428       LOG(FATAL) << "Unexpected shift operation type " << type;
2429   }
2430 }
2431 
MaybeMarkGCCard(XRegister object,XRegister value,bool value_can_be_null)2432 void CodeGeneratorRISCV64::MaybeMarkGCCard(XRegister object,
2433                                            XRegister value,
2434                                            bool value_can_be_null) {
2435   Riscv64Label done;
2436   if (value_can_be_null) {
2437     __ Beqz(value, &done);
2438   }
2439   MarkGCCard(object);
2440   __ Bind(&done);
2441 }
2442 
MarkGCCard(XRegister object)2443 void CodeGeneratorRISCV64::MarkGCCard(XRegister object) {
2444   ScratchRegisterScope srs(GetAssembler());
2445   XRegister card = srs.AllocateXRegister();
2446   XRegister temp = srs.AllocateXRegister();
2447   // Load the address of the card table into `card`.
2448   __ Loadd(card, TR, Thread::CardTableOffset<kRiscv64PointerSize>().Int32Value());
2449 
2450   // Calculate the address of the card corresponding to `object`.
2451   __ Srli(temp, object, gc::accounting::CardTable::kCardShift);
2452   __ Add(temp, card, temp);
2453   // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
2454   // `object`'s card.
2455   //
2456   // Register `card` contains the address of the card table. Note that the card
2457   // table's base is biased during its creation so that it always starts at an
2458   // address whose least-significant byte is equal to `kCardDirty` (see
2459   // art::gc::accounting::CardTable::Create). Therefore the SB instruction
2460   // below writes the `kCardDirty` (byte) value into the `object`'s card
2461   // (located at `card + object >> kCardShift`).
2462   //
2463   // This dual use of the value in register `card` (1. to calculate the location
2464   // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
2465   // (no need to explicitly load `kCardDirty` as an immediate value).
2466   __ Sb(card, temp, 0);  // No scratch register left for `Storeb()`.
2467 }
2468 
CheckGCCardIsValid(XRegister object)2469 void CodeGeneratorRISCV64::CheckGCCardIsValid(XRegister object) {
2470   Riscv64Label done;
2471   ScratchRegisterScope srs(GetAssembler());
2472   XRegister card = srs.AllocateXRegister();
2473   XRegister temp = srs.AllocateXRegister();
2474   // Load the address of the card table into `card`.
2475   __ Loadd(card, TR, Thread::CardTableOffset<kRiscv64PointerSize>().Int32Value());
2476 
2477   // Calculate the address of the card corresponding to `object`.
2478   __ Srli(temp, object, gc::accounting::CardTable::kCardShift);
2479   __ Add(temp, card, temp);
2480   // assert (!clean || !self->is_gc_marking)
2481   __ Lb(temp, temp, 0);
2482   static_assert(gc::accounting::CardTable::kCardClean == 0);
2483   __ Bnez(temp, &done);
2484   __ Loadw(temp, TR, Thread::IsGcMarkingOffset<kRiscv64PointerSize>().Int32Value());
2485   __ Beqz(temp, &done);
2486   __ Unimp();
2487   __ Bind(&done);
2488 }
2489 
HandleFieldSet(HInstruction * instruction)2490 void LocationsBuilderRISCV64::HandleFieldSet(HInstruction* instruction) {
2491   LocationSummary* locations =
2492       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2493   locations->SetInAt(0, Location::RequiresRegister());
2494   locations->SetInAt(1, ValueLocationForStore(instruction->InputAt(1)));
2495 }
2496 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null,WriteBarrierKind write_barrier_kind)2497 void InstructionCodeGeneratorRISCV64::HandleFieldSet(HInstruction* instruction,
2498                                                      const FieldInfo& field_info,
2499                                                      bool value_can_be_null,
2500                                                      WriteBarrierKind write_barrier_kind) {
2501   DataType::Type type = field_info.GetFieldType();
2502   LocationSummary* locations = instruction->GetLocations();
2503   XRegister obj = locations->InAt(0).AsRegister<XRegister>();
2504   Location value = locations->InAt(1);
2505   DCHECK_IMPLIES(value.IsConstant(), IsZeroBitPattern(value.GetConstant()));
2506   bool is_volatile = field_info.IsVolatile();
2507   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
2508 
2509   if (is_volatile) {
2510     StoreSeqCst(value, obj, offset, type, instruction);
2511   } else {
2512     Store(value, obj, offset, type);
2513     codegen_->MaybeRecordImplicitNullCheck(instruction);
2514   }
2515 
2516   bool needs_write_barrier =
2517       codegen_->StoreNeedsWriteBarrier(type, instruction->InputAt(1), write_barrier_kind);
2518   if (needs_write_barrier) {
2519     if (value.IsConstant()) {
2520       DCHECK_EQ(write_barrier_kind, WriteBarrierKind::kEmitBeingReliedOn);
2521       codegen_->MarkGCCard(obj);
2522     } else {
2523       codegen_->MaybeMarkGCCard(
2524           obj,
2525           value.AsRegister<XRegister>(),
2526           value_can_be_null && write_barrier_kind == WriteBarrierKind::kEmitNotBeingReliedOn);
2527     }
2528   } else if (codegen_->ShouldCheckGCCard(type, instruction->InputAt(1), write_barrier_kind)) {
2529     codegen_->CheckGCCardIsValid(obj);
2530   }
2531 }
2532 
HandleFieldGet(HInstruction * instruction)2533 void LocationsBuilderRISCV64::HandleFieldGet(HInstruction* instruction) {
2534   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
2535 
2536   bool object_field_get_with_read_barrier =
2537       (instruction->GetType() == DataType::Type::kReference) && codegen_->EmitReadBarrier();
2538   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
2539       instruction,
2540       object_field_get_with_read_barrier
2541           ? LocationSummary::kCallOnSlowPath
2542           : LocationSummary::kNoCall);
2543 
2544   // Input for object receiver.
2545   locations->SetInAt(0, Location::RequiresRegister());
2546 
2547   if (DataType::IsFloatingPointType(instruction->GetType())) {
2548     locations->SetOut(Location::RequiresFpuRegister());
2549   } else {
2550     // The output overlaps for an object field get when read barriers
2551     // are enabled: we do not want the load to overwrite the object's
2552     // location, as we need it to emit the read barrier.
2553     locations->SetOut(
2554         Location::RequiresRegister(),
2555         object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2556   }
2557 
2558   if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
2559     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
2560     // We need a temporary register for the read barrier marking slow
2561     // path in CodeGeneratorRISCV64::GenerateFieldLoadWithBakerReadBarrier.
2562     locations->AddTemp(Location::RequiresRegister());
2563   }
2564 }
2565 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)2566 void InstructionCodeGeneratorRISCV64::HandleFieldGet(HInstruction* instruction,
2567                                                      const FieldInfo& field_info) {
2568   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
2569   DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
2570   DataType::Type type = instruction->GetType();
2571   LocationSummary* locations = instruction->GetLocations();
2572   Location obj_loc = locations->InAt(0);
2573   XRegister obj = obj_loc.AsRegister<XRegister>();
2574   Location dst_loc = locations->Out();
2575   bool is_volatile = field_info.IsVolatile();
2576   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
2577 
2578   if (is_volatile) {
2579     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
2580   }
2581 
2582   if (type == DataType::Type::kReference && codegen_->EmitBakerReadBarrier()) {
2583     // /* HeapReference<Object> */ dst = *(obj + offset)
2584     Location temp_loc = locations->GetTemp(0);
2585     // Note that a potential implicit null check is handled in this
2586     // CodeGeneratorRISCV64::GenerateFieldLoadWithBakerReadBarrier call.
2587     codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
2588                                                     dst_loc,
2589                                                     obj,
2590                                                     offset,
2591                                                     temp_loc,
2592                                                     /* needs_null_check= */ true);
2593   } else {
2594     Load(dst_loc, obj, offset, type);
2595     codegen_->MaybeRecordImplicitNullCheck(instruction);
2596   }
2597 
2598   if (is_volatile) {
2599     codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
2600   }
2601 
2602   if (type == DataType::Type::kReference && !codegen_->EmitBakerReadBarrier()) {
2603     // If read barriers are enabled, emit read barriers other than
2604     // Baker's using a slow path (and also unpoison the loaded
2605     // reference, if heap poisoning is enabled).
2606     codegen_->MaybeGenerateReadBarrierSlow(instruction, dst_loc, dst_loc, obj_loc, offset);
2607   }
2608 }
2609 
GenerateMethodEntryExitHook(HInstruction * instruction)2610 void InstructionCodeGeneratorRISCV64::GenerateMethodEntryExitHook(HInstruction* instruction) {
2611   SlowPathCodeRISCV64* slow_path =
2612       new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathRISCV64(instruction);
2613   codegen_->AddSlowPath(slow_path);
2614 
2615   ScratchRegisterScope temps(GetAssembler());
2616   XRegister tmp = temps.AllocateXRegister();
2617 
2618   if (instruction->IsMethodExitHook()) {
2619     // Check if we are required to check if the caller needs a deoptimization. Strictly speaking it
2620     // would be sufficient to check if CheckCallerForDeopt bit is set. Though it is faster to check
2621     // if it is just non-zero. kCHA bit isn't used in debuggable runtimes as cha optimization is
2622     // disabled in debuggable runtime. The other bit is used when this method itself requires a
2623     // deoptimization due to redefinition. So it is safe to just check for non-zero value here.
2624     __ Loadwu(tmp, SP, codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
2625     __ Bnez(tmp, slow_path->GetEntryLabel());
2626   }
2627 
2628   uint64_t hook_offset = instruction->IsMethodExitHook() ?
2629       instrumentation::Instrumentation::HaveMethodExitListenersOffset().SizeValue() :
2630       instrumentation::Instrumentation::HaveMethodEntryListenersOffset().SizeValue();
2631   auto [base_hook_address, hook_imm12] = SplitJitAddress(
2632       reinterpret_cast64<uint64_t>(Runtime::Current()->GetInstrumentation()) + hook_offset);
2633   __ LoadConst64(tmp, base_hook_address);
2634   __ Lbu(tmp, tmp, hook_imm12);
2635   // Check if there are any method entry / exit listeners. If no, continue.
2636   __ Beqz(tmp, slow_path->GetExitLabel());
2637   // Check if there are any slow (jvmti / trace with thread cpu time) method entry / exit listeners.
2638   // If yes, just take the slow path.
2639   static_assert(instrumentation::Instrumentation::kFastTraceListeners == 1u);
2640   __ Addi(tmp, tmp, -1);
2641   __ Bnez(tmp, slow_path->GetEntryLabel());
2642 
2643   // Check if there is place in the buffer to store a new entry, if no, take the slow path.
2644   int32_t trace_buffer_index_offset =
2645       Thread::TraceBufferIndexOffset<kRiscv64PointerSize>().Int32Value();
2646   __ Loadd(tmp, TR, trace_buffer_index_offset);
2647   __ Addi(tmp, tmp, -dchecked_integral_cast<int32_t>(kNumEntriesForWallClock));
2648   __ Bltz(tmp, slow_path->GetEntryLabel());
2649 
2650   // Update the index in the `Thread`.
2651   __ Stored(tmp, TR, trace_buffer_index_offset);
2652 
2653   // Allocate second core scratch register. We can no longer use `Stored()`
2654   // and similar macro instructions because there is no core scratch register left.
2655   XRegister tmp2 = temps.AllocateXRegister();
2656 
2657   // Calculate the entry address in the buffer.
2658   // /*addr*/ tmp = TR->GetMethodTraceBuffer() + sizeof(void*) * /*index*/ tmp;
2659   __ Loadd(tmp2, TR, Thread::TraceBufferPtrOffset<kRiscv64PointerSize>().SizeValue());
2660   __ Sh3Add(tmp, tmp, tmp2);
2661 
2662   // Record method pointer and trace action.
2663   __ Ld(tmp2, SP, 0);
2664   // Use last two bits to encode trace method action. For MethodEntry it is 0
2665   // so no need to set the bits since they are 0 already.
2666   DCHECK_GE(ArtMethod::Alignment(kRuntimePointerSize), static_cast<size_t>(4));
2667   static_assert(enum_cast<int32_t>(TraceAction::kTraceMethodEnter) == 0);
2668   static_assert(enum_cast<int32_t>(TraceAction::kTraceMethodExit) == 1);
2669   if (instruction->IsMethodExitHook()) {
2670     __ Ori(tmp2, tmp2, enum_cast<int32_t>(TraceAction::kTraceMethodExit));
2671   }
2672   static_assert(IsInt<12>(kMethodOffsetInBytes));  // No free scratch register for `Stored()`.
2673   __ Sd(tmp2, tmp, kMethodOffsetInBytes);
2674 
2675   // Record the timestamp.
2676   __ RdTime(tmp2);
2677   static_assert(IsInt<12>(kTimestampOffsetInBytes));  // No free scratch register for `Stored()`.
2678   __ Sd(tmp2, tmp, kTimestampOffsetInBytes);
2679 
2680   __ Bind(slow_path->GetExitLabel());
2681 }
2682 
VisitAbove(HAbove * instruction)2683 void LocationsBuilderRISCV64::VisitAbove(HAbove* instruction) {
2684   HandleCondition(instruction);
2685 }
2686 
VisitAbove(HAbove * instruction)2687 void InstructionCodeGeneratorRISCV64::VisitAbove(HAbove* instruction) {
2688   HandleCondition(instruction);
2689 }
2690 
VisitAboveOrEqual(HAboveOrEqual * instruction)2691 void LocationsBuilderRISCV64::VisitAboveOrEqual(HAboveOrEqual* instruction) {
2692   HandleCondition(instruction);
2693 }
2694 
VisitAboveOrEqual(HAboveOrEqual * instruction)2695 void InstructionCodeGeneratorRISCV64::VisitAboveOrEqual(HAboveOrEqual* instruction) {
2696   HandleCondition(instruction);
2697 }
2698 
VisitAbs(HAbs * abs)2699 void LocationsBuilderRISCV64::VisitAbs(HAbs* abs) {
2700   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
2701   switch (abs->GetResultType()) {
2702     case DataType::Type::kInt32:
2703     case DataType::Type::kInt64:
2704       locations->SetInAt(0, Location::RequiresRegister());
2705       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2706       break;
2707     case DataType::Type::kFloat32:
2708     case DataType::Type::kFloat64:
2709       locations->SetInAt(0, Location::RequiresFpuRegister());
2710       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2711       break;
2712     default:
2713       LOG(FATAL) << "Unexpected abs type " << abs->GetResultType();
2714   }
2715 }
2716 
VisitAbs(HAbs * abs)2717 void InstructionCodeGeneratorRISCV64::VisitAbs(HAbs* abs) {
2718   LocationSummary* locations = abs->GetLocations();
2719   switch (abs->GetResultType()) {
2720     case DataType::Type::kInt32: {
2721       XRegister in = locations->InAt(0).AsRegister<XRegister>();
2722       XRegister out = locations->Out().AsRegister<XRegister>();
2723       ScratchRegisterScope srs(GetAssembler());
2724       XRegister tmp = srs.AllocateXRegister();
2725       __ Sraiw(tmp, in, 31);
2726       __ Xor(out, in, tmp);
2727       __ Subw(out, out, tmp);
2728       break;
2729     }
2730     case DataType::Type::kInt64: {
2731       XRegister in = locations->InAt(0).AsRegister<XRegister>();
2732       XRegister out = locations->Out().AsRegister<XRegister>();
2733       ScratchRegisterScope srs(GetAssembler());
2734       XRegister tmp = srs.AllocateXRegister();
2735       __ Srai(tmp, in, 63);
2736       __ Xor(out, in, tmp);
2737       __ Sub(out, out, tmp);
2738       break;
2739     }
2740     case DataType::Type::kFloat32:
2741     case DataType::Type::kFloat64:
2742       FAbs(locations->Out().AsFpuRegister<FRegister>(),
2743            locations->InAt(0).AsFpuRegister<FRegister>(),
2744            abs->GetResultType());
2745       break;
2746     default:
2747       LOG(FATAL) << "Unexpected abs type " << abs->GetResultType();
2748   }
2749 }
2750 
VisitAdd(HAdd * instruction)2751 void LocationsBuilderRISCV64::VisitAdd(HAdd* instruction) {
2752   HandleBinaryOp(instruction);
2753 }
2754 
VisitAdd(HAdd * instruction)2755 void InstructionCodeGeneratorRISCV64::VisitAdd(HAdd* instruction) {
2756   HandleBinaryOp(instruction);
2757 }
2758 
VisitAnd(HAnd * instruction)2759 void LocationsBuilderRISCV64::VisitAnd(HAnd* instruction) {
2760   HandleBinaryOp(instruction);
2761 }
2762 
VisitAnd(HAnd * instruction)2763 void InstructionCodeGeneratorRISCV64::VisitAnd(HAnd* instruction) {
2764   HandleBinaryOp(instruction);
2765 }
2766 
VisitArrayGet(HArrayGet * instruction)2767 void LocationsBuilderRISCV64::VisitArrayGet(HArrayGet* instruction) {
2768   DataType::Type type = instruction->GetType();
2769   bool object_array_get_with_read_barrier =
2770       (type == DataType::Type::kReference) && codegen_->EmitReadBarrier();
2771   LocationSummary* locations = new (GetGraph()->GetAllocator())
2772       LocationSummary(instruction,
2773                       object_array_get_with_read_barrier ? LocationSummary::kCallOnSlowPath :
2774                                                            LocationSummary::kNoCall);
2775   locations->SetInAt(0, Location::RequiresRegister());
2776   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2777   if (DataType::IsFloatingPointType(type)) {
2778     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2779   } else {
2780     // The output overlaps in the case of an object array get with
2781     // read barriers enabled: we do not want the move to overwrite the
2782     // array's location, as we need it to emit the read barrier.
2783     locations->SetOut(
2784         Location::RequiresRegister(),
2785         object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2786   }
2787   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
2788     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
2789     // We need a temporary register for the read barrier marking slow
2790     // path in CodeGeneratorRISCV64::GenerateArrayLoadWithBakerReadBarrier.
2791     locations->AddTemp(Location::RequiresRegister());
2792   }
2793 }
2794 
VisitArrayGet(HArrayGet * instruction)2795 void InstructionCodeGeneratorRISCV64::VisitArrayGet(HArrayGet* instruction) {
2796   LocationSummary* locations = instruction->GetLocations();
2797   Location obj_loc = locations->InAt(0);
2798   XRegister obj = obj_loc.AsRegister<XRegister>();
2799   Location out_loc = locations->Out();
2800   Location index = locations->InAt(1);
2801   uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
2802   DataType::Type type = instruction->GetType();
2803   const bool maybe_compressed_char_at =
2804       mirror::kUseStringCompression && instruction->IsStringCharAt();
2805 
2806   Riscv64Label string_char_at_done;
2807   if (maybe_compressed_char_at) {
2808     DCHECK_EQ(type, DataType::Type::kUint16);
2809     uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2810     Riscv64Label uncompressed_load;
2811     {
2812       ScratchRegisterScope srs(GetAssembler());
2813       XRegister tmp = srs.AllocateXRegister();
2814       __ Loadw(tmp, obj, count_offset);
2815       codegen_->MaybeRecordImplicitNullCheck(instruction);
2816       __ Andi(tmp, tmp, 0x1);
2817       static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2818                     "Expecting 0=compressed, 1=uncompressed");
2819       __ Bnez(tmp, &uncompressed_load);
2820     }
2821     XRegister out = out_loc.AsRegister<XRegister>();
2822     if (index.IsConstant()) {
2823         int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
2824       __ Loadbu(out, obj, data_offset + const_index);
2825     } else {
2826       __ Add(out, obj, index.AsRegister<XRegister>());
2827       __ Loadbu(out, out, data_offset);
2828     }
2829     __ J(&string_char_at_done);
2830     __ Bind(&uncompressed_load);
2831   }
2832 
2833   if (type == DataType::Type::kReference && codegen_->EmitBakerReadBarrier()) {
2834     static_assert(
2835         sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
2836         "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
2837     // /* HeapReference<Object> */ out =
2838     //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
2839     // Note that a potential implicit null check could be handled in these
2840     // `CodeGeneratorRISCV64::Generate{Array,Field}LoadWithBakerReadBarrier()` calls
2841     // but we currently do not support implicit null checks on `HArrayGet`.
2842     DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
2843     Location temp = locations->GetTemp(0);
2844     if (index.IsConstant()) {
2845       // Array load with a constant index can be treated as a field load.
2846       static constexpr size_t shift = DataType::SizeShift(DataType::Type::kReference);
2847       size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << shift) + data_offset;
2848       codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
2849                                                       out_loc,
2850                                                       obj,
2851                                                       offset,
2852                                                       temp,
2853                                                       /* needs_null_check= */ false);
2854     } else {
2855       codegen_->GenerateArrayLoadWithBakerReadBarrier(instruction,
2856                                                       out_loc,
2857                                                       obj,
2858                                                       data_offset,
2859                                                       index,
2860                                                       temp,
2861                                                       /* needs_null_check= */ false);
2862     }
2863   } else if (index.IsConstant()) {
2864     int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
2865     int32_t offset = data_offset + (const_index << DataType::SizeShift(type));
2866     Load(out_loc, obj, offset, type);
2867     if (!maybe_compressed_char_at) {
2868       codegen_->MaybeRecordImplicitNullCheck(instruction);
2869     }
2870     if (type == DataType::Type::kReference) {
2871       DCHECK(!codegen_->EmitBakerReadBarrier());
2872       // If read barriers are enabled, emit read barriers other than Baker's using
2873       // a slow path (and also unpoison the loaded reference, if heap poisoning is enabled).
2874       codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
2875     }
2876   } else {
2877     ScratchRegisterScope srs(GetAssembler());
2878     XRegister tmp = srs.AllocateXRegister();
2879     ShNAdd(tmp, index.AsRegister<XRegister>(), obj, type);
2880     Load(out_loc, tmp, data_offset, type);
2881     if (!maybe_compressed_char_at) {
2882       codegen_->MaybeRecordImplicitNullCheck(instruction);
2883     }
2884     if (type == DataType::Type::kReference) {
2885       DCHECK(!codegen_->EmitBakerReadBarrier());
2886       // If read barriers are enabled, emit read barriers other than Baker's using
2887       // a slow path (and also unpoison the loaded reference, if heap poisoning is enabled).
2888       codegen_->MaybeGenerateReadBarrierSlow(
2889           instruction, out_loc, out_loc, obj_loc, data_offset, index);
2890     }
2891   }
2892 
2893   if (maybe_compressed_char_at) {
2894     __ Bind(&string_char_at_done);
2895   }
2896 }
2897 
VisitArrayLength(HArrayLength * instruction)2898 void LocationsBuilderRISCV64::VisitArrayLength(HArrayLength* instruction) {
2899   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2900   locations->SetInAt(0, Location::RequiresRegister());
2901   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2902 }
2903 
VisitArrayLength(HArrayLength * instruction)2904 void InstructionCodeGeneratorRISCV64::VisitArrayLength(HArrayLength* instruction) {
2905   LocationSummary* locations = instruction->GetLocations();
2906   uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
2907   XRegister obj = locations->InAt(0).AsRegister<XRegister>();
2908   XRegister out = locations->Out().AsRegister<XRegister>();
2909   __ Loadwu(out, obj, offset);  // Unsigned for string length; does not matter for other arrays.
2910   codegen_->MaybeRecordImplicitNullCheck(instruction);
2911   // Mask out compression flag from String's array length.
2912   if (mirror::kUseStringCompression && instruction->IsStringLength()) {
2913     __ Srli(out, out, 1u);
2914   }
2915 }
2916 
VisitArraySet(HArraySet * instruction)2917 void LocationsBuilderRISCV64::VisitArraySet(HArraySet* instruction) {
2918   bool needs_type_check = instruction->NeedsTypeCheck();
2919   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
2920       instruction,
2921       needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
2922   locations->SetInAt(0, Location::RequiresRegister());
2923   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2924   locations->SetInAt(2, ValueLocationForStore(instruction->GetValue()));
2925   if (kPoisonHeapReferences &&
2926       instruction->GetComponentType() == DataType::Type::kReference &&
2927       !locations->InAt(1).IsConstant() &&
2928       !locations->InAt(2).IsConstant()) {
2929     locations->AddTemp(Location::RequiresRegister());
2930   }
2931 }
2932 
VisitArraySet(HArraySet * instruction)2933 void InstructionCodeGeneratorRISCV64::VisitArraySet(HArraySet* instruction) {
2934   LocationSummary* locations = instruction->GetLocations();
2935   XRegister array = locations->InAt(0).AsRegister<XRegister>();
2936   Location index = locations->InAt(1);
2937   Location value = locations->InAt(2);
2938   DataType::Type value_type = instruction->GetComponentType();
2939   bool needs_type_check = instruction->NeedsTypeCheck();
2940   const WriteBarrierKind write_barrier_kind = instruction->GetWriteBarrierKind();
2941   bool needs_write_barrier =
2942       codegen_->StoreNeedsWriteBarrier(value_type, instruction->GetValue(), write_barrier_kind);
2943   size_t data_offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
2944   SlowPathCodeRISCV64* slow_path = nullptr;
2945 
2946   if (needs_write_barrier) {
2947     DCHECK_EQ(value_type, DataType::Type::kReference);
2948     DCHECK_IMPLIES(value.IsConstant(), value.GetConstant()->IsArithmeticZero());
2949     const bool storing_constant_zero = value.IsConstant();
2950     // The WriteBarrierKind::kEmitNotBeingReliedOn case is able to skip the write barrier when its
2951     // value is null (without an extra CompareAndBranchIfZero since we already checked if the
2952     // value is null for the type check).
2953     bool skip_marking_gc_card = false;
2954     Riscv64Label skip_writing_card;
2955     if (!storing_constant_zero) {
2956       Riscv64Label do_store;
2957 
2958       bool can_value_be_null = instruction->GetValueCanBeNull();
2959       skip_marking_gc_card =
2960           can_value_be_null && write_barrier_kind == WriteBarrierKind::kEmitNotBeingReliedOn;
2961       if (can_value_be_null) {
2962         if (skip_marking_gc_card) {
2963           __ Beqz(value.AsRegister<XRegister>(), &skip_writing_card);
2964         } else {
2965           __ Beqz(value.AsRegister<XRegister>(), &do_store);
2966         }
2967       }
2968 
2969       if (needs_type_check) {
2970         slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathRISCV64(instruction);
2971         codegen_->AddSlowPath(slow_path);
2972 
2973         uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2974         uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
2975         uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
2976 
2977         ScratchRegisterScope srs(GetAssembler());
2978         XRegister temp1 = srs.AllocateXRegister();
2979         XRegister temp2 = srs.AllocateXRegister();
2980 
2981         // Note that when read barriers are enabled, the type checks are performed
2982         // without read barriers.  This is fine, even in the case where a class object
2983         // is in the from-space after the flip, as a comparison involving such a type
2984         // would not produce a false positive; it may of course produce a false
2985         // negative, in which case we would take the ArraySet slow path.
2986 
2987         // /* HeapReference<Class> */ temp1 = array->klass_
2988         __ Loadwu(temp1, array, class_offset);
2989         codegen_->MaybeRecordImplicitNullCheck(instruction);
2990         codegen_->MaybeUnpoisonHeapReference(temp1);
2991 
2992         // /* HeapReference<Class> */ temp2 = temp1->component_type_
2993         __ Loadwu(temp2, temp1, component_offset);
2994         // /* HeapReference<Class> */ temp1 = value->klass_
2995         __ Loadwu(temp1, value.AsRegister<XRegister>(), class_offset);
2996         // If heap poisoning is enabled, no need to unpoison `temp1`
2997         // nor `temp2`, as we are comparing two poisoned references.
2998         if (instruction->StaticTypeOfArrayIsObjectArray()) {
2999           Riscv64Label do_put;
3000           __ Beq(temp1, temp2, &do_put);
3001           // If heap poisoning is enabled, the `temp2` reference has
3002           // not been unpoisoned yet; unpoison it now.
3003           codegen_->MaybeUnpoisonHeapReference(temp2);
3004 
3005           // /* HeapReference<Class> */ temp1 = temp2->super_class_
3006           __ Loadwu(temp1, temp2, super_offset);
3007           // If heap poisoning is enabled, no need to unpoison
3008           // `temp1`, as we are comparing against null below.
3009           __ Bnez(temp1, slow_path->GetEntryLabel());
3010           __ Bind(&do_put);
3011         } else {
3012           __ Bne(temp1, temp2, slow_path->GetEntryLabel());
3013         }
3014       }
3015 
3016       if (can_value_be_null && !skip_marking_gc_card) {
3017         DCHECK(do_store.IsLinked());
3018         __ Bind(&do_store);
3019       }
3020     }
3021 
3022     DCHECK_NE(write_barrier_kind, WriteBarrierKind::kDontEmit);
3023     DCHECK_IMPLIES(storing_constant_zero,
3024                    write_barrier_kind == WriteBarrierKind::kEmitBeingReliedOn);
3025     codegen_->MarkGCCard(array);
3026 
3027     if (skip_marking_gc_card) {
3028       // Note that we don't check that the GC card is valid as it can be correctly clean.
3029       DCHECK(skip_writing_card.IsLinked());
3030       __ Bind(&skip_writing_card);
3031     }
3032   } else if (codegen_->ShouldCheckGCCard(value_type, instruction->GetValue(), write_barrier_kind)) {
3033     codegen_->CheckGCCardIsValid(array);
3034   }
3035 
3036   if (index.IsConstant()) {
3037     int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
3038     int32_t offset = data_offset + (const_index << DataType::SizeShift(value_type));
3039     Store(value, array, offset, value_type);
3040   } else {
3041     ScratchRegisterScope srs(GetAssembler());
3042     // Heap poisoning needs two scratch registers in `Store()`, except for null constants.
3043     XRegister tmp =
3044         (kPoisonHeapReferences && value_type == DataType::Type::kReference && !value.IsConstant())
3045             ? locations->GetTemp(0).AsRegister<XRegister>()
3046             : srs.AllocateXRegister();
3047     ShNAdd(tmp, index.AsRegister<XRegister>(), array, value_type);
3048     Store(value, tmp, data_offset, value_type);
3049   }
3050   // There must be no instructions between the `Store()` and the `MaybeRecordImplicitNullCheck()`.
3051   // We can avoid this if the type check makes the null check unconditionally.
3052   DCHECK_IMPLIES(needs_type_check, needs_write_barrier);
3053   if (!(needs_type_check && !instruction->GetValueCanBeNull())) {
3054     codegen_->MaybeRecordImplicitNullCheck(instruction);
3055   }
3056 
3057   if (slow_path != nullptr) {
3058     __ Bind(slow_path->GetExitLabel());
3059   }
3060 }
3061 
VisitBelow(HBelow * instruction)3062 void LocationsBuilderRISCV64::VisitBelow(HBelow* instruction) {
3063   HandleCondition(instruction);
3064 }
3065 
VisitBelow(HBelow * instruction)3066 void InstructionCodeGeneratorRISCV64::VisitBelow(HBelow* instruction) {
3067   HandleCondition(instruction);
3068 }
3069 
VisitBelowOrEqual(HBelowOrEqual * instruction)3070 void LocationsBuilderRISCV64::VisitBelowOrEqual(HBelowOrEqual* instruction) {
3071   HandleCondition(instruction);
3072 }
3073 
VisitBelowOrEqual(HBelowOrEqual * instruction)3074 void InstructionCodeGeneratorRISCV64::VisitBelowOrEqual(HBelowOrEqual* instruction) {
3075   HandleCondition(instruction);
3076 }
3077 
VisitBooleanNot(HBooleanNot * instruction)3078 void LocationsBuilderRISCV64::VisitBooleanNot(HBooleanNot* instruction) {
3079   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
3080   locations->SetInAt(0, Location::RequiresRegister());
3081   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3082 }
3083 
VisitBooleanNot(HBooleanNot * instruction)3084 void InstructionCodeGeneratorRISCV64::VisitBooleanNot(HBooleanNot* instruction) {
3085   LocationSummary* locations = instruction->GetLocations();
3086   __ Xori(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>(), 1);
3087 }
3088 
VisitBoundsCheck(HBoundsCheck * instruction)3089 void LocationsBuilderRISCV64::VisitBoundsCheck(HBoundsCheck* instruction) {
3090   RegisterSet caller_saves = RegisterSet::Empty();
3091   InvokeRuntimeCallingConvention calling_convention;
3092   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3093   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3094   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
3095 
3096   HInstruction* index = instruction->InputAt(0);
3097   HInstruction* length = instruction->InputAt(1);
3098 
3099   bool const_index = false;
3100   bool const_length = false;
3101 
3102   if (length->IsConstant()) {
3103     if (index->IsConstant()) {
3104       const_index = true;
3105       const_length = true;
3106     } else {
3107       int32_t length_value = length->AsIntConstant()->GetValue();
3108       if (length_value == 0 || length_value == 1) {
3109         const_length = true;
3110       }
3111     }
3112   } else if (index->IsConstant()) {
3113     int32_t index_value = index->AsIntConstant()->GetValue();
3114     if (index_value <= 0) {
3115       const_index = true;
3116     }
3117   }
3118 
3119   locations->SetInAt(
3120       0,
3121       const_index ? Location::ConstantLocation(index) : Location::RequiresRegister());
3122   locations->SetInAt(
3123       1,
3124       const_length ? Location::ConstantLocation(length) : Location::RequiresRegister());
3125 }
3126 
VisitBoundsCheck(HBoundsCheck * instruction)3127 void InstructionCodeGeneratorRISCV64::VisitBoundsCheck(HBoundsCheck* instruction) {
3128   LocationSummary* locations = instruction->GetLocations();
3129   Location index_loc = locations->InAt(0);
3130   Location length_loc = locations->InAt(1);
3131 
3132   if (length_loc.IsConstant()) {
3133     int32_t length = length_loc.GetConstant()->AsIntConstant()->GetValue();
3134     if (index_loc.IsConstant()) {
3135       int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue();
3136       if (index < 0 || index >= length) {
3137         BoundsCheckSlowPathRISCV64* slow_path =
3138             new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathRISCV64(instruction);
3139         codegen_->AddSlowPath(slow_path);
3140         __ J(slow_path->GetEntryLabel());
3141       } else {
3142         // Nothing to be done.
3143       }
3144       return;
3145     }
3146 
3147     BoundsCheckSlowPathRISCV64* slow_path =
3148         new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathRISCV64(instruction);
3149     codegen_->AddSlowPath(slow_path);
3150     XRegister index = index_loc.AsRegister<XRegister>();
3151     if (length == 0) {
3152       __ J(slow_path->GetEntryLabel());
3153     } else {
3154       DCHECK_EQ(length, 1);
3155       __ Bnez(index, slow_path->GetEntryLabel());
3156     }
3157   } else {
3158     XRegister length = length_loc.AsRegister<XRegister>();
3159     BoundsCheckSlowPathRISCV64* slow_path =
3160         new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathRISCV64(instruction);
3161     codegen_->AddSlowPath(slow_path);
3162     if (index_loc.IsConstant()) {
3163       int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue();
3164       if (index < 0) {
3165         __ J(slow_path->GetEntryLabel());
3166       } else {
3167         DCHECK_EQ(index, 0);
3168         __ Blez(length, slow_path->GetEntryLabel());
3169       }
3170     } else {
3171       XRegister index = index_loc.AsRegister<XRegister>();
3172       __ Bgeu(index, length, slow_path->GetEntryLabel());
3173     }
3174   }
3175 }
3176 
VisitBoundType(HBoundType * instruction)3177 void LocationsBuilderRISCV64::VisitBoundType([[maybe_unused]] HBoundType* instruction) {
3178   // Nothing to do, this should be removed during prepare for register allocator.
3179   LOG(FATAL) << "Unreachable";
3180 }
3181 
VisitBoundType(HBoundType * instruction)3182 void InstructionCodeGeneratorRISCV64::VisitBoundType([[maybe_unused]] HBoundType* instruction) {
3183   // Nothing to do, this should be removed during prepare for register allocator.
3184   LOG(FATAL) << "Unreachable";
3185 }
3186 
3187 // Temp is used for read barrier.
NumberOfInstanceOfTemps(bool emit_read_barrier,TypeCheckKind type_check_kind)3188 static size_t NumberOfInstanceOfTemps(bool emit_read_barrier, TypeCheckKind type_check_kind) {
3189   if (emit_read_barrier &&
3190       (kUseBakerReadBarrier ||
3191        type_check_kind == TypeCheckKind::kAbstractClassCheck ||
3192        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
3193        type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
3194     return 1;
3195   }
3196   return 0;
3197 }
3198 
3199 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
3200 // interface pointer, one for loading the current interface.
3201 // The other checks have one temp for loading the object's class and maybe a temp for read barrier.
NumberOfCheckCastTemps(bool emit_read_barrier,TypeCheckKind type_check_kind)3202 static size_t NumberOfCheckCastTemps(bool emit_read_barrier, TypeCheckKind type_check_kind) {
3203   if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
3204     return 3;
3205   }
3206   return 1 + NumberOfInstanceOfTemps(emit_read_barrier, type_check_kind);
3207 }
3208 
VisitCheckCast(HCheckCast * instruction)3209 void LocationsBuilderRISCV64::VisitCheckCast(HCheckCast* instruction) {
3210   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3211   LocationSummary::CallKind call_kind = codegen_->GetCheckCastCallKind(instruction);
3212   LocationSummary* locations =
3213       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
3214   locations->SetInAt(0, Location::RequiresRegister());
3215   if (type_check_kind == TypeCheckKind::kBitstringCheck) {
3216     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
3217     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
3218     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
3219   } else {
3220     locations->SetInAt(1, Location::RequiresRegister());
3221   }
3222   locations->AddRegisterTemps(NumberOfCheckCastTemps(codegen_->EmitReadBarrier(), type_check_kind));
3223 }
3224 
VisitCheckCast(HCheckCast * instruction)3225 void InstructionCodeGeneratorRISCV64::VisitCheckCast(HCheckCast* instruction) {
3226 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3227   LocationSummary* locations = instruction->GetLocations();
3228   Location obj_loc = locations->InAt(0);
3229   XRegister obj = obj_loc.AsRegister<XRegister>();
3230   Location cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
3231       ? Location::NoLocation()
3232       : locations->InAt(1);
3233   Location temp_loc = locations->GetTemp(0);
3234   XRegister temp = temp_loc.AsRegister<XRegister>();
3235   const size_t num_temps = NumberOfCheckCastTemps(codegen_->EmitReadBarrier(), type_check_kind);
3236   DCHECK_GE(num_temps, 1u);
3237   DCHECK_LE(num_temps, 3u);
3238   Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
3239   Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
3240   const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3241   const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3242   const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3243   const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3244   const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
3245   const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
3246   const uint32_t object_array_data_offset =
3247       mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
3248   Riscv64Label done;
3249 
3250   bool is_type_check_slow_path_fatal = codegen_->IsTypeCheckSlowPathFatal(instruction);
3251   SlowPathCodeRISCV64* slow_path =
3252       new (codegen_->GetScopedAllocator()) TypeCheckSlowPathRISCV64(
3253           instruction, is_type_check_slow_path_fatal);
3254   codegen_->AddSlowPath(slow_path);
3255 
3256   // Avoid this check if we know `obj` is not null.
3257   if (instruction->MustDoNullCheck()) {
3258     __ Beqz(obj, &done);
3259   }
3260 
3261   switch (type_check_kind) {
3262     case TypeCheckKind::kExactCheck:
3263     case TypeCheckKind::kArrayCheck: {
3264       // /* HeapReference<Class> */ temp = obj->klass_
3265       GenerateReferenceLoadTwoRegisters(instruction,
3266                                         temp_loc,
3267                                         obj_loc,
3268                                         class_offset,
3269                                         maybe_temp2_loc,
3270                                         kWithoutReadBarrier);
3271       // Jump to slow path for throwing the exception or doing a
3272       // more involved array check.
3273       __ Bne(temp, cls.AsRegister<XRegister>(), slow_path->GetEntryLabel());
3274       break;
3275     }
3276 
3277     case TypeCheckKind::kAbstractClassCheck: {
3278       // /* HeapReference<Class> */ temp = obj->klass_
3279       GenerateReferenceLoadTwoRegisters(instruction,
3280                                         temp_loc,
3281                                         obj_loc,
3282                                         class_offset,
3283                                         maybe_temp2_loc,
3284                                         kWithoutReadBarrier);
3285       // If the class is abstract, we eagerly fetch the super class of the
3286       // object to avoid doing a comparison we know will fail.
3287       Riscv64Label loop;
3288       __ Bind(&loop);
3289       // /* HeapReference<Class> */ temp = temp->super_class_
3290       GenerateReferenceLoadOneRegister(instruction,
3291                                        temp_loc,
3292                                        super_offset,
3293                                        maybe_temp2_loc,
3294                                        kWithoutReadBarrier);
3295       // If the class reference currently in `temp` is null, jump to the slow path to throw the
3296       // exception.
3297       __ Beqz(temp, slow_path->GetEntryLabel());
3298       // Otherwise, compare the classes.
3299       __ Bne(temp, cls.AsRegister<XRegister>(), &loop);
3300       break;
3301     }
3302 
3303     case TypeCheckKind::kClassHierarchyCheck: {
3304       // /* HeapReference<Class> */ temp = obj->klass_
3305       GenerateReferenceLoadTwoRegisters(instruction,
3306                                         temp_loc,
3307                                         obj_loc,
3308                                         class_offset,
3309                                         maybe_temp2_loc,
3310                                         kWithoutReadBarrier);
3311       // Walk over the class hierarchy to find a match.
3312       Riscv64Label loop;
3313       __ Bind(&loop);
3314       __ Beq(temp, cls.AsRegister<XRegister>(), &done);
3315       // /* HeapReference<Class> */ temp = temp->super_class_
3316       GenerateReferenceLoadOneRegister(instruction,
3317                                        temp_loc,
3318                                        super_offset,
3319                                        maybe_temp2_loc,
3320                                        kWithoutReadBarrier);
3321       // If the class reference currently in `temp` is null, jump to the slow path to throw the
3322       // exception. Otherwise, jump to the beginning of the loop.
3323       __ Bnez(temp, &loop);
3324       __ J(slow_path->GetEntryLabel());
3325       break;
3326     }
3327 
3328     case TypeCheckKind::kArrayObjectCheck: {
3329       // /* HeapReference<Class> */ temp = obj->klass_
3330       GenerateReferenceLoadTwoRegisters(instruction,
3331                                         temp_loc,
3332                                         obj_loc,
3333                                         class_offset,
3334                                         maybe_temp2_loc,
3335                                         kWithoutReadBarrier);
3336       // Do an exact check.
3337       __ Beq(temp, cls.AsRegister<XRegister>(), &done);
3338       // Otherwise, we need to check that the object's class is a non-primitive array.
3339       // /* HeapReference<Class> */ temp = temp->component_type_
3340       GenerateReferenceLoadOneRegister(instruction,
3341                                        temp_loc,
3342                                        component_offset,
3343                                        maybe_temp2_loc,
3344                                        kWithoutReadBarrier);
3345       // If the component type is null, jump to the slow path to throw the exception.
3346       __ Beqz(temp, slow_path->GetEntryLabel());
3347       // Otherwise, the object is indeed an array, further check that this component
3348       // type is not a primitive type.
3349       __ Loadhu(temp, temp, primitive_offset);
3350       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3351       __ Bnez(temp, slow_path->GetEntryLabel());
3352       break;
3353     }
3354 
3355     case TypeCheckKind::kUnresolvedCheck:
3356       // We always go into the type check slow path for the unresolved check case.
3357       // We cannot directly call the CheckCast runtime entry point
3358       // without resorting to a type checking slow path here (i.e. by
3359       // calling InvokeRuntime directly), as it would require to
3360       // assign fixed registers for the inputs of this HInstanceOf
3361       // instruction (following the runtime calling convention), which
3362       // might be cluttered by the potential first read barrier
3363       // emission at the beginning of this method.
3364       __ J(slow_path->GetEntryLabel());
3365       break;
3366 
3367     case TypeCheckKind::kInterfaceCheck: {
3368       // Avoid read barriers to improve performance of the fast path. We can not get false
3369       // positives by doing this. False negatives are handled by the slow path.
3370       // /* HeapReference<Class> */ temp = obj->klass_
3371       GenerateReferenceLoadTwoRegisters(instruction,
3372                                         temp_loc,
3373                                         obj_loc,
3374                                         class_offset,
3375                                         maybe_temp2_loc,
3376                                         kWithoutReadBarrier);
3377       // /* HeapReference<Class> */ temp = temp->iftable_
3378       GenerateReferenceLoadOneRegister(instruction,
3379                                        temp_loc,
3380                                        iftable_offset,
3381                                        maybe_temp2_loc,
3382                                        kWithoutReadBarrier);
3383       XRegister temp2 = maybe_temp2_loc.AsRegister<XRegister>();
3384       XRegister temp3 = maybe_temp3_loc.AsRegister<XRegister>();
3385       // Load the size of the `IfTable`. The `Class::iftable_` is never null.
3386       __ Loadw(temp2, temp, array_length_offset);
3387       // Loop through the iftable and check if any class matches.
3388       Riscv64Label loop;
3389       __ Bind(&loop);
3390       __ Beqz(temp2, slow_path->GetEntryLabel());
3391       __ Lwu(temp3, temp, object_array_data_offset);
3392       codegen_->MaybeUnpoisonHeapReference(temp3);
3393       // Go to next interface.
3394       __ Addi(temp, temp, 2 * kHeapReferenceSize);
3395       __ Addi(temp2, temp2, -2);
3396       // Compare the classes and continue the loop if they do not match.
3397       __ Bne(temp3, cls.AsRegister<XRegister>(), &loop);
3398       break;
3399     }
3400 
3401     case TypeCheckKind::kBitstringCheck: {
3402       // /* HeapReference<Class> */ temp = obj->klass_
3403       GenerateReferenceLoadTwoRegisters(instruction,
3404                                         temp_loc,
3405                                         obj_loc,
3406                                         class_offset,
3407                                         maybe_temp2_loc,
3408                                         kWithoutReadBarrier);
3409 
3410       GenerateBitstringTypeCheckCompare(instruction, temp);
3411       __ Bnez(temp, slow_path->GetEntryLabel());
3412       break;
3413     }
3414   }
3415 
3416   __ Bind(&done);
3417   __ Bind(slow_path->GetExitLabel());
3418 }
3419 
VisitClassTableGet(HClassTableGet * instruction)3420 void LocationsBuilderRISCV64::VisitClassTableGet(HClassTableGet* instruction) {
3421   LocationSummary* locations =
3422       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
3423   locations->SetInAt(0, Location::RequiresRegister());
3424   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3425 }
3426 
VisitClassTableGet(HClassTableGet * instruction)3427 void InstructionCodeGeneratorRISCV64::VisitClassTableGet(HClassTableGet* instruction) {
3428   LocationSummary* locations = instruction->GetLocations();
3429   XRegister in = locations->InAt(0).AsRegister<XRegister>();
3430   XRegister out = locations->Out().AsRegister<XRegister>();
3431   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
3432     MemberOffset method_offset =
3433         mirror::Class::EmbeddedVTableEntryOffset(instruction->GetIndex(), kRiscv64PointerSize);
3434     __ Loadd(out, in, method_offset.SizeValue());
3435   } else {
3436     uint32_t method_offset = dchecked_integral_cast<uint32_t>(
3437         ImTable::OffsetOfElement(instruction->GetIndex(), kRiscv64PointerSize));
3438     __ Loadd(out, in, mirror::Class::ImtPtrOffset(kRiscv64PointerSize).Uint32Value());
3439     __ Loadd(out, out, method_offset);
3440   }
3441 }
3442 
GetExceptionTlsOffset()3443 static int32_t GetExceptionTlsOffset() {
3444   return Thread::ExceptionOffset<kRiscv64PointerSize>().Int32Value();
3445 }
3446 
VisitClearException(HClearException * instruction)3447 void LocationsBuilderRISCV64::VisitClearException(HClearException* instruction) {
3448   new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
3449 }
3450 
VisitClearException(HClearException * instruction)3451 void InstructionCodeGeneratorRISCV64::VisitClearException(
3452     [[maybe_unused]] HClearException* instruction) {
3453   __ Stored(Zero, TR, GetExceptionTlsOffset());
3454 }
3455 
VisitClinitCheck(HClinitCheck * instruction)3456 void LocationsBuilderRISCV64::VisitClinitCheck(HClinitCheck* instruction) {
3457   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
3458       instruction, LocationSummary::kCallOnSlowPath);
3459   locations->SetInAt(0, Location::RequiresRegister());
3460   if (instruction->HasUses()) {
3461     locations->SetOut(Location::SameAsFirstInput());
3462   }
3463   // Rely on the type initialization to save everything we need.
3464   locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
3465 }
3466 
VisitClinitCheck(HClinitCheck * instruction)3467 void InstructionCodeGeneratorRISCV64::VisitClinitCheck(HClinitCheck* instruction) {
3468   // We assume the class is not null.
3469   SlowPathCodeRISCV64* slow_path = new (codegen_->GetScopedAllocator()) LoadClassSlowPathRISCV64(
3470       instruction->GetLoadClass(), instruction);
3471   codegen_->AddSlowPath(slow_path);
3472   GenerateClassInitializationCheck(slow_path,
3473                                    instruction->GetLocations()->InAt(0).AsRegister<XRegister>());
3474 }
3475 
VisitCompare(HCompare * instruction)3476 void LocationsBuilderRISCV64::VisitCompare(HCompare* instruction) {
3477   DataType::Type in_type = instruction->InputAt(0)->GetType();
3478 
3479   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
3480 
3481   switch (in_type) {
3482     case DataType::Type::kBool:
3483     case DataType::Type::kUint8:
3484     case DataType::Type::kInt8:
3485     case DataType::Type::kUint16:
3486     case DataType::Type::kInt16:
3487     case DataType::Type::kInt32:
3488     case DataType::Type::kInt64:
3489       locations->SetInAt(0, Location::RequiresRegister());
3490       locations->SetInAt(1, RegisterOrZeroBitPatternLocation(instruction->InputAt(1)));
3491       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3492       break;
3493 
3494     case DataType::Type::kFloat32:
3495     case DataType::Type::kFloat64:
3496       locations->SetInAt(0, Location::RequiresFpuRegister());
3497       locations->SetInAt(1, Location::RequiresFpuRegister());
3498       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3499       break;
3500 
3501     default:
3502       LOG(FATAL) << "Unexpected type for compare operation " << in_type;
3503       UNREACHABLE();
3504   }
3505 }
3506 
VisitCompare(HCompare * instruction)3507 void InstructionCodeGeneratorRISCV64::VisitCompare(HCompare* instruction) {
3508   LocationSummary* locations = instruction->GetLocations();
3509   XRegister result = locations->Out().AsRegister<XRegister>();
3510   DataType::Type in_type = instruction->InputAt(0)->GetType();
3511 
3512   //  0 if: left == right
3513   //  1 if: left  > right
3514   // -1 if: left  < right
3515   switch (in_type) {
3516     case DataType::Type::kBool:
3517     case DataType::Type::kUint8:
3518     case DataType::Type::kInt8:
3519     case DataType::Type::kUint16:
3520     case DataType::Type::kInt16:
3521     case DataType::Type::kInt32:
3522     case DataType::Type::kInt64: {
3523       XRegister left = locations->InAt(0).AsRegister<XRegister>();
3524       XRegister right = InputXRegisterOrZero(locations->InAt(1));
3525       ScratchRegisterScope srs(GetAssembler());
3526       XRegister tmp = srs.AllocateXRegister();
3527       __ Slt(tmp, left, right);
3528       __ Slt(result, right, left);
3529       __ Sub(result, result, tmp);
3530       break;
3531     }
3532 
3533     case DataType::Type::kFloat32:
3534     case DataType::Type::kFloat64: {
3535       FRegister left = locations->InAt(0).AsFpuRegister<FRegister>();
3536       FRegister right = locations->InAt(1).AsFpuRegister<FRegister>();
3537       ScratchRegisterScope srs(GetAssembler());
3538       XRegister tmp = srs.AllocateXRegister();
3539       if (instruction->IsGtBias()) {
3540         // ((FLE l,r) ^ 1) - (FLT l,r); see `GenerateFpCondition()`.
3541         FLe(tmp, left, right, in_type);
3542         FLt(result, left, right, in_type);
3543         __ Xori(tmp, tmp, 1);
3544         __ Sub(result, tmp, result);
3545       } else {
3546         // ((FLE r,l) - 1) + (FLT r,l); see `GenerateFpCondition()`.
3547         FLe(tmp, right, left, in_type);
3548         FLt(result, right, left, in_type);
3549         __ Addi(tmp, tmp, -1);
3550         __ Add(result, result, tmp);
3551       }
3552       break;
3553     }
3554 
3555     default:
3556       LOG(FATAL) << "Unimplemented compare type " << in_type;
3557   }
3558 }
3559 
VisitConstructorFence(HConstructorFence * instruction)3560 void LocationsBuilderRISCV64::VisitConstructorFence(HConstructorFence* instruction) {
3561   instruction->SetLocations(nullptr);
3562 }
3563 
VisitConstructorFence(HConstructorFence * instruction)3564 void InstructionCodeGeneratorRISCV64::VisitConstructorFence(
3565     [[maybe_unused]] HConstructorFence* instruction) {
3566   codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
3567 }
3568 
VisitCurrentMethod(HCurrentMethod * instruction)3569 void LocationsBuilderRISCV64::VisitCurrentMethod(HCurrentMethod* instruction) {
3570   LocationSummary* locations =
3571       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
3572   locations->SetOut(Location::RegisterLocation(kArtMethodRegister));
3573 }
3574 
VisitCurrentMethod(HCurrentMethod * instruction)3575 void InstructionCodeGeneratorRISCV64::VisitCurrentMethod(
3576     [[maybe_unused]] HCurrentMethod* instruction) {
3577   // Nothing to do, the method is already at its location.
3578 }
3579 
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * instruction)3580 void LocationsBuilderRISCV64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* instruction) {
3581   LocationSummary* locations =
3582       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
3583   locations->SetOut(Location::RequiresRegister());
3584 }
3585 
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * instruction)3586 void InstructionCodeGeneratorRISCV64::VisitShouldDeoptimizeFlag(
3587     HShouldDeoptimizeFlag* instruction) {
3588   __ Loadw(instruction->GetLocations()->Out().AsRegister<XRegister>(),
3589            SP,
3590            codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
3591 }
3592 
VisitDeoptimize(HDeoptimize * instruction)3593 void LocationsBuilderRISCV64::VisitDeoptimize(HDeoptimize* instruction) {
3594   LocationSummary* locations = new (GetGraph()->GetAllocator())
3595       LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
3596   InvokeRuntimeCallingConvention calling_convention;
3597   RegisterSet caller_saves = RegisterSet::Empty();
3598   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3599   locations->SetCustomSlowPathCallerSaves(caller_saves);
3600   if (IsBooleanValueOrMaterializedCondition(instruction->InputAt(0))) {
3601     locations->SetInAt(0, Location::RequiresRegister());
3602   }
3603 }
3604 
VisitDeoptimize(HDeoptimize * instruction)3605 void InstructionCodeGeneratorRISCV64::VisitDeoptimize(HDeoptimize* instruction) {
3606   SlowPathCodeRISCV64* slow_path =
3607       deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathRISCV64>(instruction);
3608   GenerateTestAndBranch(instruction,
3609                         /* condition_input_index= */ 0,
3610                         slow_path->GetEntryLabel(),
3611                         /* false_target= */ nullptr);
3612 }
3613 
VisitDiv(HDiv * instruction)3614 void LocationsBuilderRISCV64::VisitDiv(HDiv* instruction) {
3615   LocationSummary* locations =
3616       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
3617   switch (instruction->GetResultType()) {
3618     case DataType::Type::kInt32:
3619     case DataType::Type::kInt64:
3620       locations->SetInAt(0, Location::RequiresRegister());
3621       locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
3622       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3623       break;
3624 
3625     case DataType::Type::kFloat32:
3626     case DataType::Type::kFloat64:
3627       locations->SetInAt(0, Location::RequiresFpuRegister());
3628       locations->SetInAt(1, Location::RequiresFpuRegister());
3629       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3630       break;
3631 
3632     default:
3633       LOG(FATAL) << "Unexpected div type " << instruction->GetResultType();
3634       UNREACHABLE();
3635   }
3636 }
3637 
VisitDiv(HDiv * instruction)3638 void InstructionCodeGeneratorRISCV64::VisitDiv(HDiv* instruction) {
3639   DataType::Type type = instruction->GetType();
3640   LocationSummary* locations = instruction->GetLocations();
3641 
3642   switch (type) {
3643     case DataType::Type::kInt32:
3644     case DataType::Type::kInt64:
3645       GenerateDivRemIntegral(instruction);
3646       break;
3647     case DataType::Type::kFloat32:
3648     case DataType::Type::kFloat64: {
3649       FRegister dst = locations->Out().AsFpuRegister<FRegister>();
3650       FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
3651       FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
3652       FDiv(dst, lhs, rhs, type);
3653       break;
3654     }
3655     default:
3656       LOG(FATAL) << "Unexpected div type " << type;
3657       UNREACHABLE();
3658   }
3659 }
3660 
VisitDivZeroCheck(HDivZeroCheck * instruction)3661 void LocationsBuilderRISCV64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3662   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
3663   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3664 }
3665 
VisitDivZeroCheck(HDivZeroCheck * instruction)3666 void InstructionCodeGeneratorRISCV64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3667   SlowPathCodeRISCV64* slow_path =
3668       new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathRISCV64(instruction);
3669   codegen_->AddSlowPath(slow_path);
3670   Location value = instruction->GetLocations()->InAt(0);
3671 
3672   DataType::Type type = instruction->GetType();
3673 
3674   if (!DataType::IsIntegralType(type)) {
3675     LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
3676     UNREACHABLE();
3677   }
3678 
3679   if (value.IsConstant()) {
3680     int64_t divisor = codegen_->GetInt64ValueOf(value.GetConstant()->AsConstant());
3681     if (divisor == 0) {
3682       __ J(slow_path->GetEntryLabel());
3683     } else {
3684       // A division by a non-null constant is valid. We don't need to perform
3685       // any check, so simply fall through.
3686     }
3687   } else {
3688     __ Beqz(value.AsRegister<XRegister>(), slow_path->GetEntryLabel());
3689   }
3690 }
3691 
VisitDoubleConstant(HDoubleConstant * instruction)3692 void LocationsBuilderRISCV64::VisitDoubleConstant(HDoubleConstant* instruction) {
3693   LocationSummary* locations =
3694       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
3695   locations->SetOut(Location::ConstantLocation(instruction));
3696 }
3697 
VisitDoubleConstant(HDoubleConstant * instruction)3698 void InstructionCodeGeneratorRISCV64::VisitDoubleConstant(
3699     [[maybe_unused]] HDoubleConstant* instruction) {
3700   // Will be generated at use site.
3701 }
3702 
VisitEqual(HEqual * instruction)3703 void LocationsBuilderRISCV64::VisitEqual(HEqual* instruction) {
3704   HandleCondition(instruction);
3705 }
3706 
VisitEqual(HEqual * instruction)3707 void InstructionCodeGeneratorRISCV64::VisitEqual(HEqual* instruction) {
3708   HandleCondition(instruction);
3709 }
3710 
VisitExit(HExit * instruction)3711 void LocationsBuilderRISCV64::VisitExit(HExit* instruction) {
3712   instruction->SetLocations(nullptr);
3713 }
3714 
VisitExit(HExit * instruction)3715 void InstructionCodeGeneratorRISCV64::VisitExit([[maybe_unused]] HExit* instruction) {}
3716 
VisitFloatConstant(HFloatConstant * instruction)3717 void LocationsBuilderRISCV64::VisitFloatConstant(HFloatConstant* instruction) {
3718   LocationSummary* locations =
3719       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
3720   locations->SetOut(Location::ConstantLocation(instruction));
3721 }
3722 
VisitFloatConstant(HFloatConstant * instruction)3723 void InstructionCodeGeneratorRISCV64::VisitFloatConstant(
3724     [[maybe_unused]] HFloatConstant* instruction) {
3725   // Will be generated at use site.
3726 }
3727 
VisitGoto(HGoto * instruction)3728 void LocationsBuilderRISCV64::VisitGoto(HGoto* instruction) {
3729   instruction->SetLocations(nullptr);
3730 }
3731 
VisitGoto(HGoto * instruction)3732 void InstructionCodeGeneratorRISCV64::VisitGoto(HGoto* instruction) {
3733   HandleGoto(instruction, instruction->GetSuccessor());
3734 }
3735 
VisitGreaterThan(HGreaterThan * instruction)3736 void LocationsBuilderRISCV64::VisitGreaterThan(HGreaterThan* instruction) {
3737   HandleCondition(instruction);
3738 }
3739 
VisitGreaterThan(HGreaterThan * instruction)3740 void InstructionCodeGeneratorRISCV64::VisitGreaterThan(HGreaterThan* instruction) {
3741   HandleCondition(instruction);
3742 }
3743 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * instruction)3744 void LocationsBuilderRISCV64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* instruction) {
3745   HandleCondition(instruction);
3746 }
3747 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * instruction)3748 void InstructionCodeGeneratorRISCV64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* instruction) {
3749   HandleCondition(instruction);
3750 }
3751 
VisitIf(HIf * instruction)3752 void LocationsBuilderRISCV64::VisitIf(HIf* instruction) {
3753   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
3754   if (IsBooleanValueOrMaterializedCondition(instruction->InputAt(0))) {
3755     locations->SetInAt(0, Location::RequiresRegister());
3756     if (GetGraph()->IsCompilingBaseline() &&
3757         codegen_->GetCompilerOptions().ProfileBranches() &&
3758         !Runtime::Current()->IsAotCompiler()) {
3759       DCHECK(instruction->InputAt(0)->IsCondition());
3760       ProfilingInfo* info = GetGraph()->GetProfilingInfo();
3761       DCHECK(info != nullptr);
3762       BranchCache* cache = info->GetBranchCache(instruction->GetDexPc());
3763       if (cache != nullptr) {
3764         locations->AddTemp(Location::RequiresRegister());
3765       }
3766     }
3767   }
3768 }
3769 
VisitIf(HIf * instruction)3770 void InstructionCodeGeneratorRISCV64::VisitIf(HIf* instruction) {
3771   HBasicBlock* true_successor = instruction->IfTrueSuccessor();
3772   HBasicBlock* false_successor = instruction->IfFalseSuccessor();
3773   Riscv64Label* true_target = codegen_->GoesToNextBlock(instruction->GetBlock(), true_successor)
3774       ? nullptr
3775       : codegen_->GetLabelOf(true_successor);
3776   Riscv64Label* false_target = codegen_->GoesToNextBlock(instruction->GetBlock(), false_successor)
3777       ? nullptr
3778       : codegen_->GetLabelOf(false_successor);
3779   if (IsBooleanValueOrMaterializedCondition(instruction->InputAt(0))) {
3780     if (GetGraph()->IsCompilingBaseline() &&
3781         codegen_->GetCompilerOptions().ProfileBranches() &&
3782         !Runtime::Current()->IsAotCompiler()) {
3783       DCHECK(instruction->InputAt(0)->IsCondition());
3784       ProfilingInfo* info = GetGraph()->GetProfilingInfo();
3785       DCHECK(info != nullptr);
3786       BranchCache* cache = info->GetBranchCache(instruction->GetDexPc());
3787       // Currently, not all If branches are profiled.
3788       if (cache != nullptr) {
3789         uint64_t address =
3790             reinterpret_cast64<uint64_t>(cache) + BranchCache::FalseOffset().Int32Value();
3791         static_assert(
3792             BranchCache::TrueOffset().Int32Value() - BranchCache::FalseOffset().Int32Value() == 2,
3793             "Unexpected offsets for BranchCache");
3794         Riscv64Label done;
3795         XRegister condition = instruction->GetLocations()->InAt(0).AsRegister<XRegister>();
3796         XRegister temp = instruction->GetLocations()->GetTemp(0).AsRegister<XRegister>();
3797         __ LoadConst64(temp, address);
3798         __ Sh1Add(temp, condition, temp);
3799         ScratchRegisterScope srs(GetAssembler());
3800         XRegister counter = srs.AllocateXRegister();
3801         __ Loadhu(counter, temp, 0);
3802         __ Addi(counter, counter, 1);
3803         {
3804           ScratchRegisterScope srs2(GetAssembler());
3805           XRegister overflow = srs2.AllocateXRegister();
3806           __ Srli(overflow, counter, 16);
3807           __ Bnez(overflow, &done);
3808         }
3809         __ Storeh(counter, temp, 0);
3810         __ Bind(&done);
3811       }
3812     }
3813   }
3814   GenerateTestAndBranch(instruction, /* condition_input_index= */ 0, true_target, false_target);
3815 }
3816 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3817 void LocationsBuilderRISCV64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3818   HandleFieldGet(instruction);
3819 }
3820 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3821 void InstructionCodeGeneratorRISCV64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3822   HandleFieldGet(instruction, instruction->GetFieldInfo());
3823 }
3824 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)3825 void LocationsBuilderRISCV64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3826   HandleFieldSet(instruction);
3827 }
3828 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)3829 void InstructionCodeGeneratorRISCV64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3830   HandleFieldSet(instruction,
3831                  instruction->GetFieldInfo(),
3832                  instruction->GetValueCanBeNull(),
3833                  instruction->GetWriteBarrierKind());
3834 }
3835 
VisitInstanceOf(HInstanceOf * instruction)3836 void LocationsBuilderRISCV64::VisitInstanceOf(HInstanceOf* instruction) {
3837   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
3838   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3839   bool baker_read_barrier_slow_path = false;
3840   switch (type_check_kind) {
3841     case TypeCheckKind::kExactCheck:
3842     case TypeCheckKind::kAbstractClassCheck:
3843     case TypeCheckKind::kClassHierarchyCheck:
3844     case TypeCheckKind::kArrayObjectCheck:
3845     case TypeCheckKind::kInterfaceCheck: {
3846       bool needs_read_barrier = codegen_->InstanceOfNeedsReadBarrier(instruction);
3847       call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
3848       baker_read_barrier_slow_path = (kUseBakerReadBarrier && needs_read_barrier) &&
3849                                      (type_check_kind != TypeCheckKind::kInterfaceCheck);
3850       break;
3851     }
3852     case TypeCheckKind::kArrayCheck:
3853     case TypeCheckKind::kUnresolvedCheck:
3854       call_kind = LocationSummary::kCallOnSlowPath;
3855       break;
3856     case TypeCheckKind::kBitstringCheck:
3857       break;
3858   }
3859 
3860   LocationSummary* locations =
3861       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
3862   if (baker_read_barrier_slow_path) {
3863     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
3864   }
3865   locations->SetInAt(0, Location::RequiresRegister());
3866   if (type_check_kind == TypeCheckKind::kBitstringCheck) {
3867     locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
3868     locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
3869     locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
3870   } else {
3871     locations->SetInAt(1, Location::RequiresRegister());
3872   }
3873   // The output does overlap inputs.
3874   // Note that TypeCheckSlowPathRISCV64 uses this register too.
3875   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3876   locations->AddRegisterTemps(
3877       NumberOfInstanceOfTemps(codegen_->EmitReadBarrier(), type_check_kind));
3878 }
3879 
VisitInstanceOf(HInstanceOf * instruction)3880 void InstructionCodeGeneratorRISCV64::VisitInstanceOf(HInstanceOf* instruction) {
3881   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3882   LocationSummary* locations = instruction->GetLocations();
3883   Location obj_loc = locations->InAt(0);
3884   XRegister obj = obj_loc.AsRegister<XRegister>();
3885   Location cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
3886       ? Location::NoLocation()
3887       : locations->InAt(1);
3888   Location out_loc = locations->Out();
3889   XRegister out = out_loc.AsRegister<XRegister>();
3890   const size_t num_temps = NumberOfInstanceOfTemps(codegen_->EmitReadBarrier(), type_check_kind);
3891   DCHECK_LE(num_temps, 1u);
3892   Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
3893   const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3894   const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3895   const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3896   const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3897   const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
3898   const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
3899   const uint32_t object_array_data_offset =
3900       mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
3901   Riscv64Label done;
3902   SlowPathCodeRISCV64* slow_path = nullptr;
3903 
3904   // Return 0 if `obj` is null.
3905   // Avoid this check if we know `obj` is not null.
3906   if (instruction->MustDoNullCheck()) {
3907     __ Mv(out, Zero);
3908     __ Beqz(obj, &done);
3909   }
3910 
3911   switch (type_check_kind) {
3912     case TypeCheckKind::kExactCheck: {
3913       ReadBarrierOption read_barrier_option =
3914           codegen_->ReadBarrierOptionForInstanceOf(instruction);
3915       // /* HeapReference<Class> */ out = obj->klass_
3916       GenerateReferenceLoadTwoRegisters(
3917           instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option);
3918       // Classes must be equal for the instanceof to succeed.
3919       __ Xor(out, out, cls.AsRegister<XRegister>());
3920       __ Seqz(out, out);
3921       break;
3922     }
3923 
3924     case TypeCheckKind::kAbstractClassCheck: {
3925       ReadBarrierOption read_barrier_option =
3926           codegen_->ReadBarrierOptionForInstanceOf(instruction);
3927       // /* HeapReference<Class> */ out = obj->klass_
3928       GenerateReferenceLoadTwoRegisters(
3929           instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option);
3930       // If the class is abstract, we eagerly fetch the super class of the
3931       // object to avoid doing a comparison we know will fail.
3932       Riscv64Label loop;
3933       __ Bind(&loop);
3934       // /* HeapReference<Class> */ out = out->super_class_
3935       GenerateReferenceLoadOneRegister(
3936           instruction, out_loc, super_offset, maybe_temp_loc, read_barrier_option);
3937       // If `out` is null, we use it for the result, and jump to `done`.
3938       __ Beqz(out, &done);
3939       __ Bne(out, cls.AsRegister<XRegister>(), &loop);
3940       __ LoadConst32(out, 1);
3941       break;
3942     }
3943 
3944     case TypeCheckKind::kClassHierarchyCheck: {
3945       ReadBarrierOption read_barrier_option =
3946           codegen_->ReadBarrierOptionForInstanceOf(instruction);
3947       // /* HeapReference<Class> */ out = obj->klass_
3948       GenerateReferenceLoadTwoRegisters(
3949           instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, read_barrier_option);
3950       // Walk over the class hierarchy to find a match.
3951       Riscv64Label loop, success;
3952       __ Bind(&loop);
3953       __ Beq(out, cls.AsRegister<XRegister>(), &success);
3954       // /* HeapReference<Class> */ out = out->super_class_
3955       GenerateReferenceLoadOneRegister(
3956           instruction, out_loc, super_offset, maybe_temp_loc, read_barrier_option);
3957       __ Bnez(out, &loop);
3958       // If `out` is null, we use it for the result, and jump to `done`.
3959       __ J(&done);
3960       __ Bind(&success);
3961       __ LoadConst32(out, 1);
3962       break;
3963     }
3964 
3965     case TypeCheckKind::kArrayObjectCheck: {
3966       ReadBarrierOption read_barrier_option =
3967           codegen_->ReadBarrierOptionForInstanceOf(instruction);
3968       // FIXME(riscv64): We currently have marking entrypoints for 29 registers.
3969       // We need to either store entrypoint for register `N` in entry `N-A` where
3970       // `A` can be up to 5 (Zero, RA, SP, GP, TP are not valid registers for
3971       // marking), or define two more entrypoints, or request an additional temp
3972       // from the register allocator instead of using a scratch register.
3973       ScratchRegisterScope srs(GetAssembler());
3974       Location tmp = Location::RegisterLocation(srs.AllocateXRegister());
3975       // /* HeapReference<Class> */ tmp = obj->klass_
3976       GenerateReferenceLoadTwoRegisters(
3977           instruction, tmp, obj_loc, class_offset, maybe_temp_loc, read_barrier_option);
3978       // Do an exact check.
3979       __ LoadConst32(out, 1);
3980       __ Beq(tmp.AsRegister<XRegister>(), cls.AsRegister<XRegister>(), &done);
3981       // Otherwise, we need to check that the object's class is a non-primitive array.
3982       // /* HeapReference<Class> */ out = out->component_type_
3983       GenerateReferenceLoadTwoRegisters(
3984           instruction, out_loc, tmp, component_offset, maybe_temp_loc, read_barrier_option);
3985       // If `out` is null, we use it for the result, and jump to `done`.
3986       __ Beqz(out, &done);
3987       __ Loadhu(out, out, primitive_offset);
3988       static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3989       __ Seqz(out, out);
3990       break;
3991     }
3992 
3993     case TypeCheckKind::kArrayCheck: {
3994       // No read barrier since the slow path will retry upon failure.
3995       // /* HeapReference<Class> */ out = obj->klass_
3996       GenerateReferenceLoadTwoRegisters(
3997           instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kWithoutReadBarrier);
3998       DCHECK(locations->OnlyCallsOnSlowPath());
3999       slow_path = new (codegen_->GetScopedAllocator())
4000           TypeCheckSlowPathRISCV64(instruction, /* is_fatal= */ false);
4001       codegen_->AddSlowPath(slow_path);
4002       __ Bne(out, cls.AsRegister<XRegister>(), slow_path->GetEntryLabel());
4003       __ LoadConst32(out, 1);
4004       break;
4005     }
4006 
4007     case TypeCheckKind::kInterfaceCheck: {
4008       if (codegen_->InstanceOfNeedsReadBarrier(instruction)) {
4009         DCHECK(locations->OnlyCallsOnSlowPath());
4010         slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathRISCV64(
4011             instruction, /* is_fatal= */ false);
4012         codegen_->AddSlowPath(slow_path);
4013         if (codegen_->EmitNonBakerReadBarrier()) {
4014           __ J(slow_path->GetEntryLabel());
4015           break;
4016         }
4017         // For Baker read barrier, take the slow path while marking.
4018         __ Loadw(out, TR, Thread::IsGcMarkingOffset<kRiscv64PointerSize>().Int32Value());
4019         __ Bnez(out, slow_path->GetEntryLabel());
4020       }
4021 
4022       // Fast-path without read barriers.
4023       ScratchRegisterScope srs(GetAssembler());
4024       XRegister temp = srs.AllocateXRegister();
4025       // /* HeapReference<Class> */ temp = obj->klass_
4026       __ Loadwu(temp, obj, class_offset);
4027       codegen_->MaybeUnpoisonHeapReference(temp);
4028       // /* HeapReference<Class> */ temp = temp->iftable_
4029       __ Loadwu(temp, temp, iftable_offset);
4030       codegen_->MaybeUnpoisonHeapReference(temp);
4031       // Load the size of the `IfTable`. The `Class::iftable_` is never null.
4032       __ Loadw(out, temp, array_length_offset);
4033       // Loop through the `IfTable` and check if any class matches.
4034       Riscv64Label loop;
4035       XRegister temp2 = srs.AllocateXRegister();
4036       __ Bind(&loop);
4037       __ Beqz(out, &done);  // If taken, the result in `out` is already 0 (false).
4038       __ Loadwu(temp2, temp, object_array_data_offset);
4039       codegen_->MaybeUnpoisonHeapReference(temp2);
4040       // Go to next interface.
4041       __ Addi(temp, temp, 2 * kHeapReferenceSize);
4042       __ Addi(out, out, -2);
4043       // Compare the classes and continue the loop if they do not match.
4044       __ Bne(cls.AsRegister<XRegister>(), temp2, &loop);
4045       __ LoadConst32(out, 1);
4046       break;
4047     }
4048 
4049     case TypeCheckKind::kUnresolvedCheck: {
4050       // Note that we indeed only call on slow path, but we always go
4051       // into the slow path for the unresolved check case.
4052       //
4053       // We cannot directly call the InstanceofNonTrivial runtime
4054       // entry point without resorting to a type checking slow path
4055       // here (i.e. by calling InvokeRuntime directly), as it would
4056       // require to assign fixed registers for the inputs of this
4057       // HInstanceOf instruction (following the runtime calling
4058       // convention), which might be cluttered by the potential first
4059       // read barrier emission at the beginning of this method.
4060       //
4061       // TODO: Introduce a new runtime entry point taking the object
4062       // to test (instead of its class) as argument, and let it deal
4063       // with the read barrier issues. This will let us refactor this
4064       // case of the `switch` code as it was previously (with a direct
4065       // call to the runtime not using a type checking slow path).
4066       // This should also be beneficial for the other cases above.
4067       DCHECK(locations->OnlyCallsOnSlowPath());
4068       slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathRISCV64(
4069           instruction, /* is_fatal= */ false);
4070       codegen_->AddSlowPath(slow_path);
4071       __ J(slow_path->GetEntryLabel());
4072       break;
4073     }
4074 
4075     case TypeCheckKind::kBitstringCheck: {
4076       // /* HeapReference<Class> */ temp = obj->klass_
4077       GenerateReferenceLoadTwoRegisters(
4078           instruction, out_loc, obj_loc, class_offset, maybe_temp_loc, kWithoutReadBarrier);
4079 
4080       GenerateBitstringTypeCheckCompare(instruction, out);
4081       __ Beqz(out, out);
4082       break;
4083     }
4084   }
4085 
4086   __ Bind(&done);
4087 
4088   if (slow_path != nullptr) {
4089     __ Bind(slow_path->GetExitLabel());
4090   }
4091 }
4092 
VisitIntConstant(HIntConstant * instruction)4093 void LocationsBuilderRISCV64::VisitIntConstant(HIntConstant* instruction) {
4094   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
4095   locations->SetOut(Location::ConstantLocation(instruction));
4096 }
4097 
VisitIntConstant(HIntConstant * instruction)4098 void InstructionCodeGeneratorRISCV64::VisitIntConstant([[maybe_unused]] HIntConstant* instruction) {
4099   // Will be generated at use site.
4100 }
4101 
VisitIntermediateAddress(HIntermediateAddress * instruction)4102 void LocationsBuilderRISCV64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
4103   UNUSED(instruction);
4104   LOG(FATAL) << "Unimplemented";
4105 }
4106 
VisitIntermediateAddress(HIntermediateAddress * instruction)4107 void InstructionCodeGeneratorRISCV64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
4108   UNUSED(instruction);
4109   LOG(FATAL) << "Unimplemented";
4110 }
4111 
VisitInvokeUnresolved(HInvokeUnresolved * instruction)4112 void LocationsBuilderRISCV64::VisitInvokeUnresolved(HInvokeUnresolved* instruction) {
4113   // The trampoline uses the same calling convention as dex calling conventions, except
4114   // instead of loading arg0/A0 with the target Method*, arg0/A0 will contain the method_idx.
4115   HandleInvoke(instruction);
4116 }
4117 
VisitInvokeUnresolved(HInvokeUnresolved * instruction)4118 void InstructionCodeGeneratorRISCV64::VisitInvokeUnresolved(HInvokeUnresolved* instruction) {
4119   codegen_->GenerateInvokeUnresolvedRuntimeCall(instruction);
4120 }
4121 
VisitInvokeInterface(HInvokeInterface * instruction)4122 void LocationsBuilderRISCV64::VisitInvokeInterface(HInvokeInterface* instruction) {
4123   HandleInvoke(instruction);
4124   // Use T0 as the hidden argument for `art_quick_imt_conflict_trampoline`.
4125   if (instruction->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
4126     instruction->GetLocations()->SetInAt(instruction->GetNumberOfArguments() - 1,
4127                                          Location::RegisterLocation(T0));
4128   } else {
4129     instruction->GetLocations()->AddTemp(Location::RegisterLocation(T0));
4130   }
4131 }
4132 
VisitInvokeInterface(HInvokeInterface * instruction)4133 void InstructionCodeGeneratorRISCV64::VisitInvokeInterface(HInvokeInterface* instruction) {
4134   LocationSummary* locations = instruction->GetLocations();
4135   XRegister temp = locations->GetTemp(0).AsRegister<XRegister>();
4136   XRegister receiver = locations->InAt(0).AsRegister<XRegister>();
4137   int32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4138   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kRiscv64PointerSize);
4139 
4140   // /* HeapReference<Class> */ temp = receiver->klass_
4141   __ Loadwu(temp, receiver, class_offset);
4142   codegen_->MaybeRecordImplicitNullCheck(instruction);
4143   // Instead of simply (possibly) unpoisoning `temp` here, we should
4144   // emit a read barrier for the previous class reference load.
4145   // However this is not required in practice, as this is an
4146   // intermediate/temporary reference and because the current
4147   // concurrent copying collector keeps the from-space memory
4148   // intact/accessible until the end of the marking phase (the
4149   // concurrent copying collector may not in the future).
4150   codegen_->MaybeUnpoisonHeapReference(temp);
4151 
4152   // If we're compiling baseline, update the inline cache.
4153   codegen_->MaybeGenerateInlineCacheCheck(instruction, temp);
4154 
4155   // The register T0 is required to be used for the hidden argument in
4156   // `art_quick_imt_conflict_trampoline`.
4157   if (instruction->GetHiddenArgumentLoadKind() != MethodLoadKind::kRecursive &&
4158       instruction->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) {
4159     Location hidden_reg = instruction->GetLocations()->GetTemp(1);
4160     // Load the resolved interface method in the hidden argument register T0.
4161     DCHECK_EQ(T0, hidden_reg.AsRegister<XRegister>());
4162     codegen_->LoadMethod(instruction->GetHiddenArgumentLoadKind(), hidden_reg, instruction);
4163   }
4164 
4165   __ Loadd(temp, temp, mirror::Class::ImtPtrOffset(kRiscv64PointerSize).Uint32Value());
4166   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
4167       instruction->GetImtIndex(), kRiscv64PointerSize));
4168   // temp = temp->GetImtEntryAt(method_offset);
4169   __ Loadd(temp, temp, method_offset);
4170   if (instruction->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) {
4171     // We pass the method from the IMT in case of a conflict. This will ensure
4172     // we go into the runtime to resolve the actual method.
4173     Location hidden_reg = instruction->GetLocations()->GetTemp(1);
4174     DCHECK_EQ(T0, hidden_reg.AsRegister<XRegister>());
4175     __ Mv(hidden_reg.AsRegister<XRegister>(), temp);
4176   }
4177   // RA = temp->GetEntryPoint();
4178   __ Loadd(RA, temp, entry_point.Int32Value());
4179 
4180   // RA();
4181   __ Jalr(RA);
4182   DCHECK(!codegen_->IsLeafMethod());
4183   codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
4184 }
4185 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * instruction)4186 void LocationsBuilderRISCV64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* instruction) {
4187   // Explicit clinit checks triggered by static invokes must have been pruned by
4188   // art::PrepareForRegisterAllocation.
4189   DCHECK(!instruction->IsStaticWithExplicitClinitCheck());
4190 
4191   IntrinsicLocationsBuilderRISCV64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4192   if (intrinsic.TryDispatch(instruction)) {
4193     return;
4194   }
4195 
4196   if (instruction->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
4197     CriticalNativeCallingConventionVisitorRiscv64 calling_convention_visitor(
4198         /*for_register_allocation=*/ true);
4199     CodeGenerator::CreateCommonInvokeLocationSummary(instruction, &calling_convention_visitor);
4200   } else {
4201     HandleInvoke(instruction);
4202   }
4203 }
4204 
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorRISCV64 * codegen)4205 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorRISCV64* codegen) {
4206   if (invoke->GetLocations()->Intrinsified()) {
4207     IntrinsicCodeGeneratorRISCV64 intrinsic(codegen);
4208     intrinsic.Dispatch(invoke);
4209     return true;
4210   }
4211   return false;
4212 }
4213 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * instruction)4214 void InstructionCodeGeneratorRISCV64::VisitInvokeStaticOrDirect(
4215     HInvokeStaticOrDirect* instruction) {
4216   // Explicit clinit checks triggered by static invokes must have been pruned by
4217   // art::PrepareForRegisterAllocation.
4218   DCHECK(!instruction->IsStaticWithExplicitClinitCheck());
4219 
4220   if (TryGenerateIntrinsicCode(instruction, codegen_)) {
4221     return;
4222   }
4223 
4224   LocationSummary* locations = instruction->GetLocations();
4225   codegen_->GenerateStaticOrDirectCall(
4226       instruction, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
4227 }
4228 
VisitInvokeVirtual(HInvokeVirtual * instruction)4229 void LocationsBuilderRISCV64::VisitInvokeVirtual(HInvokeVirtual* instruction) {
4230   IntrinsicLocationsBuilderRISCV64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4231   if (intrinsic.TryDispatch(instruction)) {
4232     return;
4233   }
4234 
4235   HandleInvoke(instruction);
4236 }
4237 
VisitInvokeVirtual(HInvokeVirtual * instruction)4238 void InstructionCodeGeneratorRISCV64::VisitInvokeVirtual(HInvokeVirtual* instruction) {
4239   if (TryGenerateIntrinsicCode(instruction, codegen_)) {
4240     return;
4241   }
4242 
4243   codegen_->GenerateVirtualCall(instruction, instruction->GetLocations()->GetTemp(0));
4244   DCHECK(!codegen_->IsLeafMethod());
4245 }
4246 
VisitInvokePolymorphic(HInvokePolymorphic * instruction)4247 void LocationsBuilderRISCV64::VisitInvokePolymorphic(HInvokePolymorphic* instruction) {
4248   IntrinsicLocationsBuilderRISCV64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4249   if (intrinsic.TryDispatch(instruction)) {
4250     return;
4251   }
4252   HandleInvoke(instruction);
4253 }
4254 
VisitInvokePolymorphic(HInvokePolymorphic * instruction)4255 void InstructionCodeGeneratorRISCV64::VisitInvokePolymorphic(HInvokePolymorphic* instruction) {
4256   if (TryGenerateIntrinsicCode(instruction, codegen_)) {
4257     return;
4258   }
4259   codegen_->GenerateInvokePolymorphicCall(instruction);
4260 }
4261 
VisitInvokeCustom(HInvokeCustom * instruction)4262 void LocationsBuilderRISCV64::VisitInvokeCustom(HInvokeCustom* instruction) {
4263   HandleInvoke(instruction);
4264 }
4265 
VisitInvokeCustom(HInvokeCustom * instruction)4266 void InstructionCodeGeneratorRISCV64::VisitInvokeCustom(HInvokeCustom* instruction) {
4267   codegen_->GenerateInvokeCustomCall(instruction);
4268 }
4269 
VisitLessThan(HLessThan * instruction)4270 void LocationsBuilderRISCV64::VisitLessThan(HLessThan* instruction) {
4271   HandleCondition(instruction);
4272 }
4273 
VisitLessThan(HLessThan * instruction)4274 void InstructionCodeGeneratorRISCV64::VisitLessThan(HLessThan* instruction) {
4275   HandleCondition(instruction);
4276 }
4277 
VisitLessThanOrEqual(HLessThanOrEqual * instruction)4278 void LocationsBuilderRISCV64::VisitLessThanOrEqual(HLessThanOrEqual* instruction) {
4279   HandleCondition(instruction);
4280 }
4281 
VisitLessThanOrEqual(HLessThanOrEqual * instruction)4282 void InstructionCodeGeneratorRISCV64::VisitLessThanOrEqual(HLessThanOrEqual* instruction) {
4283   HandleCondition(instruction);
4284 }
4285 
VisitLoadClass(HLoadClass * instruction)4286 void LocationsBuilderRISCV64::VisitLoadClass(HLoadClass* instruction) {
4287   HLoadClass::LoadKind load_kind = instruction->GetLoadKind();
4288   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
4289     InvokeRuntimeCallingConvention calling_convention;
4290     Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
4291     DCHECK_EQ(DataType::Type::kReference, instruction->GetType());
4292     DCHECK(loc.Equals(calling_convention.GetReturnLocation(DataType::Type::kReference)));
4293     CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(instruction, loc, loc);
4294     return;
4295   }
4296   DCHECK_EQ(instruction->NeedsAccessCheck(),
4297             load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
4298                 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
4299 
4300   const bool requires_read_barrier = !instruction->IsInImage() && codegen_->EmitReadBarrier();
4301   LocationSummary::CallKind call_kind = (instruction->NeedsEnvironment() || requires_read_barrier)
4302       ? LocationSummary::kCallOnSlowPath
4303       : LocationSummary::kNoCall;
4304   LocationSummary* locations =
4305       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
4306   if (kUseBakerReadBarrier && requires_read_barrier && !instruction->NeedsEnvironment()) {
4307     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
4308   }
4309   if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
4310     locations->SetInAt(0, Location::RequiresRegister());
4311   }
4312   locations->SetOut(Location::RequiresRegister());
4313   if (load_kind == HLoadClass::LoadKind::kBssEntry ||
4314       load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
4315       load_kind == HLoadClass::LoadKind::kBssEntryPackage) {
4316     if (codegen_->EmitNonBakerReadBarrier()) {
4317       // For non-Baker read barriers we have a temp-clobbering call.
4318     } else {
4319       // Rely on the type resolution or initialization and marking to save everything we need.
4320       locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
4321     }
4322   }
4323 }
4324 
4325 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
4326 // move.
VisitLoadClass(HLoadClass * instruction)4327 void InstructionCodeGeneratorRISCV64::VisitLoadClass(HLoadClass* instruction)
4328     NO_THREAD_SAFETY_ANALYSIS {
4329   HLoadClass::LoadKind load_kind = instruction->GetLoadKind();
4330   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
4331     codegen_->GenerateLoadClassRuntimeCall(instruction);
4332     return;
4333   }
4334   DCHECK_EQ(instruction->NeedsAccessCheck(),
4335             load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
4336                 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
4337 
4338   LocationSummary* locations = instruction->GetLocations();
4339   Location out_loc = locations->Out();
4340   XRegister out = out_loc.AsRegister<XRegister>();
4341   const ReadBarrierOption read_barrier_option =
4342       instruction->IsInImage() ? kWithoutReadBarrier : codegen_->GetCompilerReadBarrierOption();
4343   bool generate_null_check = false;
4344   switch (load_kind) {
4345     case HLoadClass::LoadKind::kReferrersClass: {
4346       DCHECK(!instruction->CanCallRuntime());
4347       DCHECK(!instruction->MustGenerateClinitCheck());
4348       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
4349       XRegister current_method = locations->InAt(0).AsRegister<XRegister>();
4350       codegen_->GenerateGcRootFieldLoad(instruction,
4351                                         out_loc,
4352                                         current_method,
4353                                         ArtMethod::DeclaringClassOffset().Int32Value(),
4354                                         read_barrier_option);
4355       break;
4356     }
4357     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
4358       DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
4359              codegen_->GetCompilerOptions().IsBootImageExtension());
4360       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
4361       CodeGeneratorRISCV64::PcRelativePatchInfo* info_high =
4362           codegen_->NewBootImageTypePatch(instruction->GetDexFile(), instruction->GetTypeIndex());
4363       codegen_->EmitPcRelativeAuipcPlaceholder(info_high, out);
4364       CodeGeneratorRISCV64::PcRelativePatchInfo* info_low =
4365           codegen_->NewBootImageTypePatch(
4366               instruction->GetDexFile(), instruction->GetTypeIndex(), info_high);
4367       codegen_->EmitPcRelativeAddiPlaceholder(info_low, out, out);
4368       break;
4369     }
4370     case HLoadClass::LoadKind::kBootImageRelRo: {
4371       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
4372       uint32_t boot_image_offset = codegen_->GetBootImageOffset(instruction);
4373       codegen_->LoadBootImageRelRoEntry(out, boot_image_offset);
4374       break;
4375     }
4376     case HLoadClass::LoadKind::kAppImageRelRo: {
4377       DCHECK(codegen_->GetCompilerOptions().IsAppImage());
4378       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
4379       CodeGeneratorRISCV64::PcRelativePatchInfo* info_high =
4380           codegen_->NewAppImageTypePatch(instruction->GetDexFile(), instruction->GetTypeIndex());
4381       codegen_->EmitPcRelativeAuipcPlaceholder(info_high, out);
4382       CodeGeneratorRISCV64::PcRelativePatchInfo* info_low =
4383           codegen_->NewAppImageTypePatch(
4384               instruction->GetDexFile(), instruction->GetTypeIndex(), info_high);
4385       codegen_->EmitPcRelativeLwuPlaceholder(info_low, out, out);
4386       break;
4387     }
4388     case HLoadClass::LoadKind::kBssEntry:
4389     case HLoadClass::LoadKind::kBssEntryPublic:
4390     case HLoadClass::LoadKind::kBssEntryPackage: {
4391       CodeGeneratorRISCV64::PcRelativePatchInfo* bss_info_high =
4392           codegen_->NewTypeBssEntryPatch(instruction);
4393       codegen_->EmitPcRelativeAuipcPlaceholder(bss_info_high, out);
4394       CodeGeneratorRISCV64::PcRelativePatchInfo* info_low = codegen_->NewTypeBssEntryPatch(
4395           instruction, bss_info_high);
4396       codegen_->GenerateGcRootFieldLoad(instruction,
4397                                         out_loc,
4398                                         out,
4399                                         /* offset= */ kLinkTimeOffsetPlaceholderLow,
4400                                         read_barrier_option,
4401                                         &info_low->label);
4402       generate_null_check = true;
4403       break;
4404     }
4405     case HLoadClass::LoadKind::kJitBootImageAddress: {
4406       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
4407       uint32_t address = reinterpret_cast32<uint32_t>(instruction->GetClass().Get());
4408       DCHECK_NE(address, 0u);
4409       __ Loadwu(out, codegen_->DeduplicateBootImageAddressLiteral(address));
4410       break;
4411     }
4412     case HLoadClass::LoadKind::kJitTableAddress:
4413       __ Loadwu(out, codegen_->DeduplicateJitClassLiteral(instruction->GetDexFile(),
4414                                                           instruction->GetTypeIndex(),
4415                                                           instruction->GetClass()));
4416       codegen_->GenerateGcRootFieldLoad(
4417           instruction, out_loc, out, /* offset= */ 0, read_barrier_option);
4418       break;
4419     case HLoadClass::LoadKind::kRuntimeCall:
4420     case HLoadClass::LoadKind::kInvalid:
4421       LOG(FATAL) << "UNREACHABLE";
4422       UNREACHABLE();
4423   }
4424 
4425   if (generate_null_check || instruction->MustGenerateClinitCheck()) {
4426     DCHECK(instruction->CanCallRuntime());
4427     SlowPathCodeRISCV64* slow_path =
4428         new (codegen_->GetScopedAllocator()) LoadClassSlowPathRISCV64(instruction, instruction);
4429     codegen_->AddSlowPath(slow_path);
4430     if (generate_null_check) {
4431       __ Beqz(out, slow_path->GetEntryLabel());
4432     }
4433     if (instruction->MustGenerateClinitCheck()) {
4434       GenerateClassInitializationCheck(slow_path, out);
4435     } else {
4436       __ Bind(slow_path->GetExitLabel());
4437     }
4438   }
4439 }
4440 
VisitLoadException(HLoadException * instruction)4441 void LocationsBuilderRISCV64::VisitLoadException(HLoadException* instruction) {
4442   LocationSummary* locations =
4443       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
4444   locations->SetOut(Location::RequiresRegister());
4445 }
4446 
VisitLoadException(HLoadException * instruction)4447 void InstructionCodeGeneratorRISCV64::VisitLoadException(HLoadException* instruction) {
4448   XRegister out = instruction->GetLocations()->Out().AsRegister<XRegister>();
4449   __ Loadwu(out, TR, GetExceptionTlsOffset());
4450 }
4451 
VisitLoadMethodHandle(HLoadMethodHandle * instruction)4452 void LocationsBuilderRISCV64::VisitLoadMethodHandle(HLoadMethodHandle* instruction) {
4453   InvokeRuntimeCallingConvention calling_convention;
4454   Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
4455   CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(instruction, loc, loc);
4456 }
4457 
VisitLoadMethodHandle(HLoadMethodHandle * instruction)4458 void InstructionCodeGeneratorRISCV64::VisitLoadMethodHandle(HLoadMethodHandle* instruction) {
4459   codegen_->GenerateLoadMethodHandleRuntimeCall(instruction);
4460 }
4461 
VisitLoadMethodType(HLoadMethodType * instruction)4462 void LocationsBuilderRISCV64::VisitLoadMethodType(HLoadMethodType* instruction) {
4463   InvokeRuntimeCallingConvention calling_convention;
4464   Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
4465   CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(instruction, loc, loc);
4466 }
4467 
VisitLoadMethodType(HLoadMethodType * instruction)4468 void InstructionCodeGeneratorRISCV64::VisitLoadMethodType(HLoadMethodType* instruction) {
4469   codegen_->GenerateLoadMethodTypeRuntimeCall(instruction);
4470 }
4471 
VisitLoadString(HLoadString * instruction)4472 void LocationsBuilderRISCV64::VisitLoadString(HLoadString* instruction) {
4473   HLoadString::LoadKind load_kind = instruction->GetLoadKind();
4474   LocationSummary::CallKind call_kind = codegen_->GetLoadStringCallKind(instruction);
4475   LocationSummary* locations =
4476       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
4477   if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
4478     InvokeRuntimeCallingConvention calling_convention;
4479     DCHECK_EQ(DataType::Type::kReference, instruction->GetType());
4480     locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
4481   } else {
4482     locations->SetOut(Location::RequiresRegister());
4483     if (load_kind == HLoadString::LoadKind::kBssEntry) {
4484       if (codegen_->EmitNonBakerReadBarrier()) {
4485         // For non-Baker read barriers we have a temp-clobbering call.
4486       } else {
4487         // Rely on the pResolveString and marking to save everything we need.
4488         locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
4489       }
4490     }
4491   }
4492 }
4493 
4494 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
4495 // move.
VisitLoadString(HLoadString * instruction)4496 void InstructionCodeGeneratorRISCV64::VisitLoadString(HLoadString* instruction)
4497     NO_THREAD_SAFETY_ANALYSIS {
4498   HLoadString::LoadKind load_kind = instruction->GetLoadKind();
4499   LocationSummary* locations = instruction->GetLocations();
4500   Location out_loc = locations->Out();
4501   XRegister out = out_loc.AsRegister<XRegister>();
4502 
4503   switch (load_kind) {
4504     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
4505       DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
4506              codegen_->GetCompilerOptions().IsBootImageExtension());
4507       CodeGeneratorRISCV64::PcRelativePatchInfo* info_high = codegen_->NewBootImageStringPatch(
4508           instruction->GetDexFile(), instruction->GetStringIndex());
4509       codegen_->EmitPcRelativeAuipcPlaceholder(info_high, out);
4510       CodeGeneratorRISCV64::PcRelativePatchInfo* info_low = codegen_->NewBootImageStringPatch(
4511           instruction->GetDexFile(), instruction->GetStringIndex(), info_high);
4512       codegen_->EmitPcRelativeAddiPlaceholder(info_low, out, out);
4513       return;
4514     }
4515     case HLoadString::LoadKind::kBootImageRelRo: {
4516       DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
4517       uint32_t boot_image_offset = codegen_->GetBootImageOffset(instruction);
4518       codegen_->LoadBootImageRelRoEntry(out, boot_image_offset);
4519       return;
4520     }
4521     case HLoadString::LoadKind::kBssEntry: {
4522       CodeGeneratorRISCV64::PcRelativePatchInfo* info_high = codegen_->NewStringBssEntryPatch(
4523           instruction->GetDexFile(), instruction->GetStringIndex());
4524       codegen_->EmitPcRelativeAuipcPlaceholder(info_high, out);
4525       CodeGeneratorRISCV64::PcRelativePatchInfo* info_low = codegen_->NewStringBssEntryPatch(
4526           instruction->GetDexFile(), instruction->GetStringIndex(), info_high);
4527       codegen_->GenerateGcRootFieldLoad(instruction,
4528                                         out_loc,
4529                                         out,
4530                                         /* offset= */ kLinkTimeOffsetPlaceholderLow,
4531                                         codegen_->GetCompilerReadBarrierOption(),
4532                                         &info_low->label);
4533       SlowPathCodeRISCV64* slow_path =
4534           new (codegen_->GetScopedAllocator()) LoadStringSlowPathRISCV64(instruction);
4535       codegen_->AddSlowPath(slow_path);
4536       __ Beqz(out, slow_path->GetEntryLabel());
4537       __ Bind(slow_path->GetExitLabel());
4538       return;
4539     }
4540     case HLoadString::LoadKind::kJitBootImageAddress: {
4541       uint32_t address = reinterpret_cast32<uint32_t>(instruction->GetString().Get());
4542       DCHECK_NE(address, 0u);
4543       __ Loadwu(out, codegen_->DeduplicateBootImageAddressLiteral(address));
4544       return;
4545     }
4546     case HLoadString::LoadKind::kJitTableAddress:
4547       __ Loadwu(
4548           out,
4549           codegen_->DeduplicateJitStringLiteral(
4550               instruction->GetDexFile(), instruction->GetStringIndex(), instruction->GetString()));
4551       codegen_->GenerateGcRootFieldLoad(
4552           instruction, out_loc, out, 0, codegen_->GetCompilerReadBarrierOption());
4553       return;
4554     default:
4555       break;
4556   }
4557 
4558   DCHECK(load_kind == HLoadString::LoadKind::kRuntimeCall);
4559   InvokeRuntimeCallingConvention calling_convention;
4560   DCHECK(calling_convention.GetReturnLocation(DataType::Type::kReference).Equals(out_loc));
4561   __ LoadConst32(calling_convention.GetRegisterAt(0), instruction->GetStringIndex().index_);
4562   codegen_->InvokeRuntime(kQuickResolveString, instruction, instruction->GetDexPc());
4563   CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
4564 }
4565 
VisitLongConstant(HLongConstant * instruction)4566 void LocationsBuilderRISCV64::VisitLongConstant(HLongConstant* instruction) {
4567   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
4568   locations->SetOut(Location::ConstantLocation(instruction));
4569 }
4570 
VisitLongConstant(HLongConstant * instruction)4571 void InstructionCodeGeneratorRISCV64::VisitLongConstant(
4572     [[maybe_unused]] HLongConstant* instruction) {
4573   // Will be generated at use site.
4574 }
4575 
VisitMax(HMax * instruction)4576 void LocationsBuilderRISCV64::VisitMax(HMax* instruction) {
4577   HandleBinaryOp(instruction);
4578 }
4579 
VisitMax(HMax * instruction)4580 void InstructionCodeGeneratorRISCV64::VisitMax(HMax* instruction) {
4581   HandleBinaryOp(instruction);
4582 }
4583 
VisitMemoryBarrier(HMemoryBarrier * instruction)4584 void LocationsBuilderRISCV64::VisitMemoryBarrier(HMemoryBarrier* instruction) {
4585   instruction->SetLocations(nullptr);
4586 }
4587 
VisitMemoryBarrier(HMemoryBarrier * instruction)4588 void InstructionCodeGeneratorRISCV64::VisitMemoryBarrier(HMemoryBarrier* instruction) {
4589   codegen_->GenerateMemoryBarrier(instruction->GetBarrierKind());
4590 }
4591 
VisitMethodEntryHook(HMethodEntryHook * instruction)4592 void LocationsBuilderRISCV64::VisitMethodEntryHook(HMethodEntryHook* instruction) {
4593   new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
4594 }
4595 
VisitMethodEntryHook(HMethodEntryHook * instruction)4596 void InstructionCodeGeneratorRISCV64::VisitMethodEntryHook(HMethodEntryHook* instruction) {
4597   DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
4598   DCHECK(codegen_->RequiresCurrentMethod());
4599   GenerateMethodEntryExitHook(instruction);
4600 }
4601 
VisitMethodExitHook(HMethodExitHook * instruction)4602 void LocationsBuilderRISCV64::VisitMethodExitHook(HMethodExitHook* instruction) {
4603   LocationSummary* locations = new (GetGraph()->GetAllocator())
4604       LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
4605   DataType::Type return_type = instruction->InputAt(0)->GetType();
4606   locations->SetInAt(0, Riscv64ReturnLocation(return_type));
4607 }
4608 
VisitMethodExitHook(HMethodExitHook * instruction)4609 void InstructionCodeGeneratorRISCV64::VisitMethodExitHook(HMethodExitHook* instruction) {
4610   DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
4611   DCHECK(codegen_->RequiresCurrentMethod());
4612   GenerateMethodEntryExitHook(instruction);
4613 }
4614 
VisitMin(HMin * instruction)4615 void LocationsBuilderRISCV64::VisitMin(HMin* instruction) {
4616   HandleBinaryOp(instruction);
4617 }
4618 
VisitMin(HMin * instruction)4619 void InstructionCodeGeneratorRISCV64::VisitMin(HMin* instruction) {
4620   HandleBinaryOp(instruction);
4621 }
4622 
VisitMonitorOperation(HMonitorOperation * instruction)4623 void LocationsBuilderRISCV64::VisitMonitorOperation(HMonitorOperation* instruction) {
4624   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
4625       instruction, LocationSummary::kCallOnMainOnly);
4626   InvokeRuntimeCallingConvention calling_convention;
4627   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
4628 }
4629 
VisitMonitorOperation(HMonitorOperation * instruction)4630 void InstructionCodeGeneratorRISCV64::VisitMonitorOperation(HMonitorOperation* instruction) {
4631   codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
4632                           instruction,
4633                           instruction->GetDexPc());
4634   if (instruction->IsEnter()) {
4635     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
4636   } else {
4637     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
4638   }
4639 }
4640 
VisitMul(HMul * instruction)4641 void LocationsBuilderRISCV64::VisitMul(HMul* instruction) {
4642   LocationSummary* locations =
4643       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
4644   switch (instruction->GetResultType()) {
4645     case DataType::Type::kInt32:
4646     case DataType::Type::kInt64:
4647       locations->SetInAt(0, Location::RequiresRegister());
4648       locations->SetInAt(1, Location::RequiresRegister());
4649       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4650       break;
4651 
4652     case DataType::Type::kFloat32:
4653     case DataType::Type::kFloat64:
4654       locations->SetInAt(0, Location::RequiresFpuRegister());
4655       locations->SetInAt(1, Location::RequiresFpuRegister());
4656       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4657       break;
4658 
4659     default:
4660       LOG(FATAL) << "Unexpected mul type " << instruction->GetResultType();
4661   }
4662 }
4663 
VisitMul(HMul * instruction)4664 void InstructionCodeGeneratorRISCV64::VisitMul(HMul* instruction) {
4665   LocationSummary* locations = instruction->GetLocations();
4666   switch (instruction->GetResultType()) {
4667     case DataType::Type::kInt32:
4668       __ Mulw(locations->Out().AsRegister<XRegister>(),
4669               locations->InAt(0).AsRegister<XRegister>(),
4670               locations->InAt(1).AsRegister<XRegister>());
4671       break;
4672 
4673     case DataType::Type::kInt64:
4674       __ Mul(locations->Out().AsRegister<XRegister>(),
4675              locations->InAt(0).AsRegister<XRegister>(),
4676              locations->InAt(1).AsRegister<XRegister>());
4677       break;
4678 
4679     case DataType::Type::kFloat32:
4680     case DataType::Type::kFloat64:
4681       FMul(locations->Out().AsFpuRegister<FRegister>(),
4682            locations->InAt(0).AsFpuRegister<FRegister>(),
4683            locations->InAt(1).AsFpuRegister<FRegister>(),
4684            instruction->GetResultType());
4685       break;
4686 
4687     default:
4688       LOG(FATAL) << "Unexpected mul type " << instruction->GetResultType();
4689   }
4690 }
4691 
VisitNeg(HNeg * instruction)4692 void LocationsBuilderRISCV64::VisitNeg(HNeg* instruction) {
4693   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
4694   switch (instruction->GetResultType()) {
4695     case DataType::Type::kInt32:
4696     case DataType::Type::kInt64:
4697       locations->SetInAt(0, Location::RequiresRegister());
4698       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4699       break;
4700 
4701     case DataType::Type::kFloat32:
4702     case DataType::Type::kFloat64:
4703       locations->SetInAt(0, Location::RequiresFpuRegister());
4704       locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4705       break;
4706 
4707     default:
4708       LOG(FATAL) << "Unexpected neg type " << instruction->GetResultType();
4709       UNREACHABLE();
4710   }
4711 }
4712 
VisitNeg(HNeg * instruction)4713 void InstructionCodeGeneratorRISCV64::VisitNeg(HNeg* instruction) {
4714   LocationSummary* locations = instruction->GetLocations();
4715   switch (instruction->GetResultType()) {
4716     case DataType::Type::kInt32:
4717       __ NegW(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>());
4718       break;
4719 
4720     case DataType::Type::kInt64:
4721       __ Neg(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>());
4722       break;
4723 
4724     case DataType::Type::kFloat32:
4725     case DataType::Type::kFloat64:
4726       FNeg(locations->Out().AsFpuRegister<FRegister>(),
4727            locations->InAt(0).AsFpuRegister<FRegister>(),
4728            instruction->GetResultType());
4729       break;
4730 
4731     default:
4732       LOG(FATAL) << "Unexpected neg type " << instruction->GetResultType();
4733       UNREACHABLE();
4734   }
4735 }
4736 
VisitNewArray(HNewArray * instruction)4737 void LocationsBuilderRISCV64::VisitNewArray(HNewArray* instruction) {
4738   LocationSummary* locations = new (GetGraph()->GetAllocator())
4739       LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
4740   InvokeRuntimeCallingConvention calling_convention;
4741   locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
4742   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
4743   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
4744 }
4745 
VisitNewArray(HNewArray * instruction)4746 void InstructionCodeGeneratorRISCV64::VisitNewArray(HNewArray* instruction) {
4747   QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
4748   codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
4749   CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
4750   DCHECK(!codegen_->IsLeafMethod());
4751 }
4752 
VisitNewInstance(HNewInstance * instruction)4753 void LocationsBuilderRISCV64::VisitNewInstance(HNewInstance* instruction) {
4754   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
4755       instruction, LocationSummary::kCallOnMainOnly);
4756   InvokeRuntimeCallingConvention calling_convention;
4757   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
4758   locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
4759 }
4760 
VisitNewInstance(HNewInstance * instruction)4761 void InstructionCodeGeneratorRISCV64::VisitNewInstance(HNewInstance* instruction) {
4762   codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
4763   CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
4764 }
4765 
VisitNop(HNop * instruction)4766 void LocationsBuilderRISCV64::VisitNop(HNop* instruction) {
4767   new (GetGraph()->GetAllocator()) LocationSummary(instruction);
4768 }
4769 
VisitNop(HNop * instruction)4770 void InstructionCodeGeneratorRISCV64::VisitNop([[maybe_unused]] HNop* instruction) {
4771   // The environment recording already happened in CodeGenerator::Compile.
4772 }
4773 
VisitNot(HNot * instruction)4774 void LocationsBuilderRISCV64::VisitNot(HNot* instruction) {
4775   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
4776   locations->SetInAt(0, Location::RequiresRegister());
4777   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4778 }
4779 
VisitNot(HNot * instruction)4780 void InstructionCodeGeneratorRISCV64::VisitNot(HNot* instruction) {
4781   LocationSummary* locations = instruction->GetLocations();
4782   switch (instruction->GetResultType()) {
4783     case DataType::Type::kInt32:
4784     case DataType::Type::kInt64:
4785       __ Not(locations->Out().AsRegister<XRegister>(), locations->InAt(0).AsRegister<XRegister>());
4786       break;
4787 
4788     default:
4789       LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
4790       UNREACHABLE();
4791   }
4792 }
4793 
VisitNotEqual(HNotEqual * instruction)4794 void LocationsBuilderRISCV64::VisitNotEqual(HNotEqual* instruction) {
4795   HandleCondition(instruction);
4796 }
4797 
VisitNotEqual(HNotEqual * instruction)4798 void InstructionCodeGeneratorRISCV64::VisitNotEqual(HNotEqual* instruction) {
4799   HandleCondition(instruction);
4800 }
4801 
VisitNullConstant(HNullConstant * instruction)4802 void LocationsBuilderRISCV64::VisitNullConstant(HNullConstant* instruction) {
4803   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
4804   locations->SetOut(Location::ConstantLocation(instruction));
4805 }
4806 
VisitNullConstant(HNullConstant * instruction)4807 void InstructionCodeGeneratorRISCV64::VisitNullConstant(
4808     [[maybe_unused]] HNullConstant* instruction) {
4809   // Will be generated at use site.
4810 }
4811 
VisitNullCheck(HNullCheck * instruction)4812 void LocationsBuilderRISCV64::VisitNullCheck(HNullCheck* instruction) {
4813   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
4814   locations->SetInAt(0, Location::RequiresRegister());
4815 }
4816 
VisitNullCheck(HNullCheck * instruction)4817 void InstructionCodeGeneratorRISCV64::VisitNullCheck(HNullCheck* instruction) {
4818   codegen_->GenerateNullCheck(instruction);
4819 }
4820 
VisitOr(HOr * instruction)4821 void LocationsBuilderRISCV64::VisitOr(HOr* instruction) {
4822   HandleBinaryOp(instruction);
4823 }
4824 
VisitOr(HOr * instruction)4825 void InstructionCodeGeneratorRISCV64::VisitOr(HOr* instruction) {
4826   HandleBinaryOp(instruction);
4827 }
4828 
VisitPackedSwitch(HPackedSwitch * instruction)4829 void LocationsBuilderRISCV64::VisitPackedSwitch(HPackedSwitch* instruction) {
4830   LocationSummary* locations =
4831       new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
4832   locations->SetInAt(0, Location::RequiresRegister());
4833 }
4834 
VisitPackedSwitch(HPackedSwitch * instruction)4835 void InstructionCodeGeneratorRISCV64::VisitPackedSwitch(HPackedSwitch* instruction) {
4836   int32_t lower_bound = instruction->GetStartValue();
4837   uint32_t num_entries = instruction->GetNumEntries();
4838   LocationSummary* locations = instruction->GetLocations();
4839   XRegister value = locations->InAt(0).AsRegister<XRegister>();
4840   HBasicBlock* switch_block = instruction->GetBlock();
4841   HBasicBlock* default_block = instruction->GetDefaultBlock();
4842 
4843   // Prepare a temporary register and an adjusted zero-based value.
4844   ScratchRegisterScope srs(GetAssembler());
4845   XRegister temp = srs.AllocateXRegister();
4846   XRegister adjusted = value;
4847   if (lower_bound != 0) {
4848     adjusted = temp;
4849     __ AddConst32(temp, value, -lower_bound);
4850   }
4851 
4852   // Jump to the default block if the index is out of the packed switch value range.
4853   // Note: We could save one instruction for `num_entries == 1` with BNEZ but the
4854   // `HInstructionBuilder` transforms that case to an `HIf`, so let's keep the code simple.
4855   CHECK_NE(num_entries, 0u);  // `HInstructionBuilder` creates a `HGoto` for empty packed-switch.
4856   {
4857     ScratchRegisterScope srs2(GetAssembler());
4858     XRegister temp2 = srs2.AllocateXRegister();
4859     __ LoadConst32(temp2, num_entries);
4860     __ Bgeu(adjusted, temp2, codegen_->GetLabelOf(default_block));  // Can clobber `TMP` if taken.
4861   }
4862 
4863   if (num_entries >= kPackedSwitchCompareJumpThreshold) {
4864     GenTableBasedPackedSwitch(adjusted, temp, num_entries, switch_block);
4865   } else {
4866     GenPackedSwitchWithCompares(adjusted, temp, num_entries, switch_block);
4867   }
4868 }
4869 
VisitParallelMove(HParallelMove * instruction)4870 void LocationsBuilderRISCV64::VisitParallelMove([[maybe_unused]] HParallelMove* instruction) {
4871   LOG(FATAL) << "Unreachable";
4872 }
4873 
VisitParallelMove(HParallelMove * instruction)4874 void InstructionCodeGeneratorRISCV64::VisitParallelMove(HParallelMove* instruction) {
4875   if (instruction->GetNext()->IsSuspendCheck() &&
4876       instruction->GetBlock()->GetLoopInformation() != nullptr) {
4877     HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
4878     // The back edge will generate the suspend check.
4879     codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
4880   }
4881 
4882   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
4883 }
4884 
VisitParameterValue(HParameterValue * instruction)4885 void LocationsBuilderRISCV64::VisitParameterValue(HParameterValue* instruction) {
4886   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
4887   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
4888   if (location.IsStackSlot()) {
4889     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4890   } else if (location.IsDoubleStackSlot()) {
4891     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4892   }
4893   locations->SetOut(location);
4894 }
4895 
VisitParameterValue(HParameterValue * instruction)4896 void InstructionCodeGeneratorRISCV64::VisitParameterValue(
4897     [[maybe_unused]] HParameterValue* instruction) {
4898   // Nothing to do, the parameter is already at its location.
4899 }
4900 
VisitPhi(HPhi * instruction)4901 void LocationsBuilderRISCV64::VisitPhi(HPhi* instruction) {
4902   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
4903   for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
4904     locations->SetInAt(i, Location::Any());
4905   }
4906   locations->SetOut(Location::Any());
4907 }
4908 
VisitPhi(HPhi * instruction)4909 void InstructionCodeGeneratorRISCV64::VisitPhi([[maybe_unused]] HPhi* instruction) {
4910   LOG(FATAL) << "Unreachable";
4911 }
4912 
VisitRem(HRem * instruction)4913 void LocationsBuilderRISCV64::VisitRem(HRem* instruction) {
4914   DataType::Type type = instruction->GetResultType();
4915   LocationSummary::CallKind call_kind =
4916       DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly
4917                                           : LocationSummary::kNoCall;
4918   LocationSummary* locations =
4919       new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
4920 
4921   switch (type) {
4922     case DataType::Type::kInt32:
4923     case DataType::Type::kInt64:
4924       locations->SetInAt(0, Location::RequiresRegister());
4925       locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
4926       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4927       break;
4928 
4929     case DataType::Type::kFloat32:
4930     case DataType::Type::kFloat64: {
4931       InvokeRuntimeCallingConvention calling_convention;
4932       locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
4933       locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
4934       locations->SetOut(calling_convention.GetReturnLocation(type));
4935       break;
4936     }
4937 
4938     default:
4939       LOG(FATAL) << "Unexpected rem type " << type;
4940       UNREACHABLE();
4941   }
4942 }
4943 
VisitRem(HRem * instruction)4944 void InstructionCodeGeneratorRISCV64::VisitRem(HRem* instruction) {
4945   DataType::Type type = instruction->GetType();
4946 
4947   switch (type) {
4948     case DataType::Type::kInt32:
4949     case DataType::Type::kInt64:
4950       GenerateDivRemIntegral(instruction);
4951       break;
4952 
4953     case DataType::Type::kFloat32:
4954     case DataType::Type::kFloat64: {
4955       QuickEntrypointEnum entrypoint =
4956           (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod;
4957       codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
4958       if (type == DataType::Type::kFloat32) {
4959         CheckEntrypointTypes<kQuickFmodf, float, float, float>();
4960       } else {
4961         CheckEntrypointTypes<kQuickFmod, double, double, double>();
4962       }
4963       break;
4964     }
4965     default:
4966       LOG(FATAL) << "Unexpected rem type " << type;
4967       UNREACHABLE();
4968   }
4969 }
4970 
VisitReturn(HReturn * instruction)4971 void LocationsBuilderRISCV64::VisitReturn(HReturn* instruction) {
4972   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
4973   DataType::Type return_type = instruction->InputAt(0)->GetType();
4974   DCHECK_NE(return_type, DataType::Type::kVoid);
4975   locations->SetInAt(0, Riscv64ReturnLocation(return_type));
4976 }
4977 
VisitReturn(HReturn * instruction)4978 void InstructionCodeGeneratorRISCV64::VisitReturn(HReturn* instruction) {
4979   if (GetGraph()->IsCompilingOsr()) {
4980     // To simplify callers of an OSR method, we put a floating point return value
4981     // in both floating point and core return registers.
4982     DataType::Type type = instruction->InputAt(0)->GetType();
4983     if (DataType::IsFloatingPointType(type)) {
4984       FMvX(A0, FA0, type);
4985     }
4986   }
4987   codegen_->GenerateFrameExit();
4988 }
4989 
VisitReturnVoid(HReturnVoid * instruction)4990 void LocationsBuilderRISCV64::VisitReturnVoid(HReturnVoid* instruction) {
4991   instruction->SetLocations(nullptr);
4992 }
4993 
VisitReturnVoid(HReturnVoid * instruction)4994 void InstructionCodeGeneratorRISCV64::VisitReturnVoid([[maybe_unused]] HReturnVoid* instruction) {
4995   codegen_->GenerateFrameExit();
4996 }
4997 
VisitRor(HRor * instruction)4998 void LocationsBuilderRISCV64::VisitRor(HRor* instruction) {
4999   HandleShift(instruction);
5000 }
5001 
VisitRor(HRor * instruction)5002 void InstructionCodeGeneratorRISCV64::VisitRor(HRor* instruction) {
5003   HandleShift(instruction);
5004 }
5005 
VisitShl(HShl * instruction)5006 void LocationsBuilderRISCV64::VisitShl(HShl* instruction) {
5007   HandleShift(instruction);
5008 }
5009 
VisitShl(HShl * instruction)5010 void InstructionCodeGeneratorRISCV64::VisitShl(HShl* instruction) {
5011   HandleShift(instruction);
5012 }
5013 
VisitShr(HShr * instruction)5014 void LocationsBuilderRISCV64::VisitShr(HShr* instruction) {
5015   HandleShift(instruction);
5016 }
5017 
VisitShr(HShr * instruction)5018 void InstructionCodeGeneratorRISCV64::VisitShr(HShr* instruction) {
5019   HandleShift(instruction);
5020 }
5021 
VisitStaticFieldGet(HStaticFieldGet * instruction)5022 void LocationsBuilderRISCV64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5023   HandleFieldGet(instruction);
5024 }
5025 
VisitStaticFieldGet(HStaticFieldGet * instruction)5026 void InstructionCodeGeneratorRISCV64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5027   HandleFieldGet(instruction, instruction->GetFieldInfo());
5028 }
5029 
VisitStaticFieldSet(HStaticFieldSet * instruction)5030 void LocationsBuilderRISCV64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5031   HandleFieldSet(instruction);
5032 }
5033 
VisitStaticFieldSet(HStaticFieldSet * instruction)5034 void InstructionCodeGeneratorRISCV64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5035   HandleFieldSet(instruction,
5036                  instruction->GetFieldInfo(),
5037                  instruction->GetValueCanBeNull(),
5038                  instruction->GetWriteBarrierKind());
5039 }
5040 
VisitStringBuilderAppend(HStringBuilderAppend * instruction)5041 void LocationsBuilderRISCV64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
5042   codegen_->CreateStringBuilderAppendLocations(instruction, Location::RegisterLocation(A0));
5043 }
5044 
VisitStringBuilderAppend(HStringBuilderAppend * instruction)5045 void InstructionCodeGeneratorRISCV64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
5046   __ LoadConst32(A0, instruction->GetFormat()->GetValue());
5047   codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
5048 }
5049 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5050 void LocationsBuilderRISCV64::VisitUnresolvedInstanceFieldGet(
5051     HUnresolvedInstanceFieldGet* instruction) {
5052   FieldAccessCallingConventionRISCV64 calling_convention;
5053   codegen_->CreateUnresolvedFieldLocationSummary(
5054       instruction, instruction->GetFieldType(), calling_convention);
5055 }
5056 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5057 void InstructionCodeGeneratorRISCV64::VisitUnresolvedInstanceFieldGet(
5058     HUnresolvedInstanceFieldGet* instruction) {
5059   FieldAccessCallingConventionRISCV64 calling_convention;
5060   codegen_->GenerateUnresolvedFieldAccess(instruction,
5061                                           instruction->GetFieldType(),
5062                                           instruction->GetFieldIndex(),
5063                                           instruction->GetDexPc(),
5064                                           calling_convention);
5065 }
5066 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5067 void LocationsBuilderRISCV64::VisitUnresolvedInstanceFieldSet(
5068     HUnresolvedInstanceFieldSet* instruction) {
5069   FieldAccessCallingConventionRISCV64 calling_convention;
5070   codegen_->CreateUnresolvedFieldLocationSummary(
5071       instruction, instruction->GetFieldType(), calling_convention);
5072 }
5073 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5074 void InstructionCodeGeneratorRISCV64::VisitUnresolvedInstanceFieldSet(
5075     HUnresolvedInstanceFieldSet* instruction) {
5076   FieldAccessCallingConventionRISCV64 calling_convention;
5077   codegen_->GenerateUnresolvedFieldAccess(instruction,
5078                                           instruction->GetFieldType(),
5079                                           instruction->GetFieldIndex(),
5080                                           instruction->GetDexPc(),
5081                                           calling_convention);
5082 }
5083 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5084 void LocationsBuilderRISCV64::VisitUnresolvedStaticFieldGet(
5085     HUnresolvedStaticFieldGet* instruction) {
5086   FieldAccessCallingConventionRISCV64 calling_convention;
5087   codegen_->CreateUnresolvedFieldLocationSummary(
5088       instruction, instruction->GetFieldType(), calling_convention);
5089 }
5090 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5091 void InstructionCodeGeneratorRISCV64::VisitUnresolvedStaticFieldGet(
5092     HUnresolvedStaticFieldGet* instruction) {
5093   FieldAccessCallingConventionRISCV64 calling_convention;
5094   codegen_->GenerateUnresolvedFieldAccess(instruction,
5095                                           instruction->GetFieldType(),
5096                                           instruction->GetFieldIndex(),
5097                                           instruction->GetDexPc(),
5098                                           calling_convention);
5099 }
5100 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5101 void LocationsBuilderRISCV64::VisitUnresolvedStaticFieldSet(
5102     HUnresolvedStaticFieldSet* instruction) {
5103   FieldAccessCallingConventionRISCV64 calling_convention;
5104   codegen_->CreateUnresolvedFieldLocationSummary(
5105       instruction, instruction->GetFieldType(), calling_convention);
5106 }
5107 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5108 void InstructionCodeGeneratorRISCV64::VisitUnresolvedStaticFieldSet(
5109     HUnresolvedStaticFieldSet* instruction) {
5110   FieldAccessCallingConventionRISCV64 calling_convention;
5111   codegen_->GenerateUnresolvedFieldAccess(instruction,
5112                                           instruction->GetFieldType(),
5113                                           instruction->GetFieldIndex(),
5114                                           instruction->GetDexPc(),
5115                                           calling_convention);
5116 }
5117 
VisitSelect(HSelect * instruction)5118 void LocationsBuilderRISCV64::VisitSelect(HSelect* instruction) {
5119   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5120   if (DataType::IsFloatingPointType(instruction->GetType())) {
5121     locations->SetInAt(0, FpuRegisterOrZeroBitPatternLocation(instruction->GetFalseValue()));
5122     locations->SetInAt(1, FpuRegisterOrZeroBitPatternLocation(instruction->GetTrueValue()));
5123     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5124     if (!locations->InAt(0).IsConstant() && !locations->InAt(1).IsConstant()) {
5125       locations->AddTemp(Location::RequiresRegister());
5126     }
5127   }  else {
5128     locations->SetInAt(0, RegisterOrZeroBitPatternLocation(instruction->GetFalseValue()));
5129     locations->SetInAt(1, RegisterOrZeroBitPatternLocation(instruction->GetTrueValue()));
5130     locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
5131   }
5132 
5133   if (IsBooleanValueOrMaterializedCondition(instruction->GetCondition())) {
5134     locations->SetInAt(2, Location::RequiresRegister());
5135   }
5136 }
5137 
VisitSelect(HSelect * instruction)5138 void InstructionCodeGeneratorRISCV64::VisitSelect(HSelect* instruction) {
5139   LocationSummary* locations = instruction->GetLocations();
5140   HInstruction* cond = instruction->GetCondition();
5141   ScratchRegisterScope srs(GetAssembler());
5142   XRegister tmp = srs.AllocateXRegister();
5143   if (!IsBooleanValueOrMaterializedCondition(cond)) {
5144     DataType::Type cond_type = cond->InputAt(0)->GetType();
5145     IfCondition if_cond = cond->AsCondition()->GetCondition();
5146     if (DataType::IsFloatingPointType(cond_type)) {
5147       GenerateFpCondition(if_cond,
5148                           cond->AsCondition()->IsGtBias(),
5149                           cond_type,
5150                           cond->GetLocations(),
5151                           /*label=*/ nullptr,
5152                           tmp,
5153                           /*to_all_bits=*/ true);
5154     } else {
5155       GenerateIntLongCondition(if_cond, cond->GetLocations(), tmp, /*to_all_bits=*/ true);
5156     }
5157   } else {
5158     // TODO(riscv64): Remove the normalizing SNEZ when we can ensure that booleans
5159     // have only values 0 and 1. b/279302742
5160     __ Snez(tmp, locations->InAt(2).AsRegister<XRegister>());
5161     __ Neg(tmp, tmp);
5162   }
5163 
5164   XRegister true_reg, false_reg, xor_reg, out_reg;
5165   DataType::Type type = instruction->GetType();
5166   if (DataType::IsFloatingPointType(type)) {
5167     if (locations->InAt(0).IsConstant()) {
5168       DCHECK(locations->InAt(0).GetConstant()->IsZeroBitPattern());
5169       false_reg = Zero;
5170     } else {
5171       false_reg = srs.AllocateXRegister();
5172       FMvX(false_reg, locations->InAt(0).AsFpuRegister<FRegister>(), type);
5173     }
5174     if (locations->InAt(1).IsConstant()) {
5175       DCHECK(locations->InAt(1).GetConstant()->IsZeroBitPattern());
5176       true_reg = Zero;
5177     } else {
5178       true_reg = (false_reg == Zero) ? srs.AllocateXRegister()
5179                                      : locations->GetTemp(0).AsRegister<XRegister>();
5180       FMvX(true_reg, locations->InAt(1).AsFpuRegister<FRegister>(), type);
5181     }
5182     // We can clobber the "true value" with the XOR result.
5183     // Note: The XOR is not emitted if `true_reg == Zero`, see below.
5184     xor_reg = true_reg;
5185     out_reg = tmp;
5186   } else {
5187     false_reg = InputXRegisterOrZero(locations->InAt(0));
5188     true_reg = InputXRegisterOrZero(locations->InAt(1));
5189     xor_reg = srs.AllocateXRegister();
5190     out_reg = locations->Out().AsRegister<XRegister>();
5191   }
5192 
5193   // We use a branch-free implementation of `HSelect`.
5194   // With `tmp` initialized to 0 for `false` and -1 for `true`:
5195   //     xor xor_reg, false_reg, true_reg
5196   //     and tmp, tmp, xor_reg
5197   //     xor out_reg, tmp, false_reg
5198   if (false_reg == Zero) {
5199     xor_reg = true_reg;
5200   } else if (true_reg == Zero) {
5201     xor_reg = false_reg;
5202   } else {
5203     DCHECK_NE(xor_reg, Zero);
5204     __ Xor(xor_reg, false_reg, true_reg);
5205   }
5206   __ And(tmp, tmp, xor_reg);
5207   __ Xor(out_reg, tmp, false_reg);
5208 
5209   if (type == DataType::Type::kFloat64) {
5210     __ FMvDX(locations->Out().AsFpuRegister<FRegister>(), out_reg);
5211   } else if (type == DataType::Type::kFloat32) {
5212     __ FMvWX(locations->Out().AsFpuRegister<FRegister>(), out_reg);
5213   }
5214 }
5215 
VisitSub(HSub * instruction)5216 void LocationsBuilderRISCV64::VisitSub(HSub* instruction) {
5217   HandleBinaryOp(instruction);
5218 }
5219 
VisitSub(HSub * instruction)5220 void InstructionCodeGeneratorRISCV64::VisitSub(HSub* instruction) {
5221   HandleBinaryOp(instruction);
5222 }
5223 
VisitSuspendCheck(HSuspendCheck * instruction)5224 void LocationsBuilderRISCV64::VisitSuspendCheck(HSuspendCheck* instruction) {
5225   LocationSummary* locations = new (GetGraph()->GetAllocator())
5226       LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
5227   // In suspend check slow path, usually there are no caller-save registers at all.
5228   // If SIMD instructions are present, however, we force spilling all live SIMD
5229   // registers in full width (since the runtime only saves/restores lower part).
5230   locations->SetCustomSlowPathCallerSaves(GetGraph()->HasSIMD() ? RegisterSet::AllFpu() :
5231                                                                   RegisterSet::Empty());
5232 }
5233 
VisitSuspendCheck(HSuspendCheck * instruction)5234 void InstructionCodeGeneratorRISCV64::VisitSuspendCheck(HSuspendCheck* instruction) {
5235   HBasicBlock* block = instruction->GetBlock();
5236   if (block->GetLoopInformation() != nullptr) {
5237     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
5238     // The back edge will generate the suspend check.
5239     return;
5240   }
5241   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
5242     // The goto will generate the suspend check.
5243     return;
5244   }
5245   GenerateSuspendCheck(instruction, nullptr);
5246 }
5247 
VisitThrow(HThrow * instruction)5248 void LocationsBuilderRISCV64::VisitThrow(HThrow* instruction) {
5249   LocationSummary* locations = new (GetGraph()->GetAllocator())
5250       LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
5251   InvokeRuntimeCallingConvention calling_convention;
5252   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
5253 }
5254 
VisitThrow(HThrow * instruction)5255 void InstructionCodeGeneratorRISCV64::VisitThrow(HThrow* instruction) {
5256   codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
5257   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
5258 }
5259 
VisitTryBoundary(HTryBoundary * instruction)5260 void LocationsBuilderRISCV64::VisitTryBoundary(HTryBoundary* instruction) {
5261   instruction->SetLocations(nullptr);
5262 }
5263 
VisitTryBoundary(HTryBoundary * instruction)5264 void InstructionCodeGeneratorRISCV64::VisitTryBoundary(HTryBoundary* instruction) {
5265   HBasicBlock* successor = instruction->GetNormalFlowSuccessor();
5266   if (!successor->IsExitBlock()) {
5267     HandleGoto(instruction, successor);
5268   }
5269 }
5270 
VisitTypeConversion(HTypeConversion * instruction)5271 void LocationsBuilderRISCV64::VisitTypeConversion(HTypeConversion* instruction) {
5272   DataType::Type input_type = instruction->GetInputType();
5273   DataType::Type result_type = instruction->GetResultType();
5274   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
5275       << input_type << " -> " << result_type;
5276 
5277   if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) ||
5278       (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) {
5279     LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
5280   }
5281 
5282   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5283 
5284   if (DataType::IsFloatingPointType(input_type)) {
5285     locations->SetInAt(0, Location::RequiresFpuRegister());
5286   } else {
5287     locations->SetInAt(0, Location::RequiresRegister());
5288   }
5289 
5290   if (DataType::IsFloatingPointType(result_type)) {
5291     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5292   } else {
5293     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5294   }
5295 }
5296 
VisitTypeConversion(HTypeConversion * instruction)5297 void InstructionCodeGeneratorRISCV64::VisitTypeConversion(HTypeConversion* instruction) {
5298   LocationSummary* locations = instruction->GetLocations();
5299   DataType::Type result_type = instruction->GetResultType();
5300   DataType::Type input_type = instruction->GetInputType();
5301 
5302   DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
5303       << input_type << " -> " << result_type;
5304 
5305   if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) {
5306     XRegister dst = locations->Out().AsRegister<XRegister>();
5307     XRegister src = locations->InAt(0).AsRegister<XRegister>();
5308     switch (result_type) {
5309       case DataType::Type::kUint8:
5310         __ ZextB(dst, src);
5311         break;
5312       case DataType::Type::kInt8:
5313         __ SextB(dst, src);
5314         break;
5315       case DataType::Type::kUint16:
5316         __ ZextH(dst, src);
5317         break;
5318       case DataType::Type::kInt16:
5319         __ SextH(dst, src);
5320         break;
5321       case DataType::Type::kInt32:
5322       case DataType::Type::kInt64:
5323         // Sign-extend 32-bit int into bits 32 through 63 for int-to-long and long-to-int
5324         // conversions, except when the input and output registers are the same and we are not
5325         // converting longs to shorter types. In these cases, do nothing.
5326         if ((input_type == DataType::Type::kInt64) || (dst != src)) {
5327           __ Addiw(dst, src, 0);
5328         }
5329         break;
5330 
5331       default:
5332         LOG(FATAL) << "Unexpected type conversion from " << input_type
5333                    << " to " << result_type;
5334         UNREACHABLE();
5335     }
5336   } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) {
5337     FRegister dst = locations->Out().AsFpuRegister<FRegister>();
5338     XRegister src = locations->InAt(0).AsRegister<XRegister>();
5339     if (input_type == DataType::Type::kInt64) {
5340       if (result_type == DataType::Type::kFloat32) {
5341         __ FCvtSL(dst, src, FPRoundingMode::kRNE);
5342       } else {
5343         __ FCvtDL(dst, src, FPRoundingMode::kRNE);
5344       }
5345     } else {
5346       if (result_type == DataType::Type::kFloat32) {
5347         __ FCvtSW(dst, src, FPRoundingMode::kRNE);
5348       } else {
5349         __ FCvtDW(dst, src);  // No rounding.
5350       }
5351     }
5352   } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) {
5353     CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64);
5354     XRegister dst = locations->Out().AsRegister<XRegister>();
5355     FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
5356     if (result_type == DataType::Type::kInt64) {
5357       if (input_type == DataType::Type::kFloat32) {
5358         __ FCvtLS(dst, src, FPRoundingMode::kRTZ);
5359       } else {
5360         __ FCvtLD(dst, src, FPRoundingMode::kRTZ);
5361       }
5362     } else {
5363       if (input_type == DataType::Type::kFloat32) {
5364         __ FCvtWS(dst, src, FPRoundingMode::kRTZ);
5365       } else {
5366         __ FCvtWD(dst, src, FPRoundingMode::kRTZ);
5367       }
5368     }
5369     // For NaN inputs we need to return 0.
5370     ScratchRegisterScope srs(GetAssembler());
5371     XRegister tmp = srs.AllocateXRegister();
5372     FClass(tmp, src, input_type);
5373     __ Sltiu(tmp, tmp, kFClassNaNMinValue);  // 0 for NaN, 1 otherwise.
5374     __ Neg(tmp, tmp);  // 0 for NaN, -1 otherwise.
5375     __ And(dst, dst, tmp);  // Cleared for NaN.
5376   } else if (DataType::IsFloatingPointType(result_type) &&
5377              DataType::IsFloatingPointType(input_type)) {
5378     FRegister dst = locations->Out().AsFpuRegister<FRegister>();
5379     FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
5380     if (result_type == DataType::Type::kFloat32) {
5381       __ FCvtSD(dst, src);
5382     } else {
5383       __ FCvtDS(dst, src);
5384     }
5385   } else {
5386     LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
5387                 << " to " << result_type;
5388     UNREACHABLE();
5389   }
5390 }
5391 
VisitUShr(HUShr * instruction)5392 void LocationsBuilderRISCV64::VisitUShr(HUShr* instruction) {
5393   HandleShift(instruction);
5394 }
5395 
VisitUShr(HUShr * instruction)5396 void InstructionCodeGeneratorRISCV64::VisitUShr(HUShr* instruction) {
5397   HandleShift(instruction);
5398 }
5399 
VisitXor(HXor * instruction)5400 void LocationsBuilderRISCV64::VisitXor(HXor* instruction) {
5401   HandleBinaryOp(instruction);
5402 }
5403 
VisitXor(HXor * instruction)5404 void InstructionCodeGeneratorRISCV64::VisitXor(HXor* instruction) {
5405   HandleBinaryOp(instruction);
5406 }
5407 
VisitRiscv64ShiftAdd(HRiscv64ShiftAdd * instruction)5408 void LocationsBuilderRISCV64::VisitRiscv64ShiftAdd(HRiscv64ShiftAdd* instruction) {
5409   DCHECK(codegen_->GetInstructionSetFeatures().HasZba());
5410   DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64)
5411       << "Unexpected ShiftAdd type: " << instruction->GetType();
5412 
5413   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5414   locations->SetInAt(0, Location::RequiresRegister());
5415   locations->SetInAt(1, Location::RequiresRegister());
5416   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5417 }
5418 
VisitRiscv64ShiftAdd(HRiscv64ShiftAdd * instruction)5419 void InstructionCodeGeneratorRISCV64::VisitRiscv64ShiftAdd(HRiscv64ShiftAdd* instruction) {
5420   DCHECK_EQ(instruction->GetType(), DataType::Type::kInt64)
5421       << "Unexpected ShiftAdd type: " << instruction->GetType();
5422   LocationSummary* locations = instruction->GetLocations();
5423   XRegister first = locations->InAt(0).AsRegister<XRegister>();
5424   XRegister second = locations->InAt(1).AsRegister<XRegister>();
5425   XRegister dest = locations->Out().AsRegister<XRegister>();
5426 
5427   switch (instruction->GetDistance()) {
5428     case 1:
5429       __ Sh1Add(dest, first, second);
5430       break;
5431     case 2:
5432       __ Sh2Add(dest, first, second);
5433       break;
5434     case 3:
5435       __ Sh3Add(dest, first, second);
5436       break;
5437     default:
5438       LOG(FATAL) << "Unexpected distance of ShiftAdd: " << instruction->GetDistance();
5439       UNREACHABLE();
5440   }
5441 }
5442 
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)5443 void LocationsBuilderRISCV64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
5444   DCHECK(codegen_->GetInstructionSetFeatures().HasZbb());
5445   DCHECK(DataType::IsIntegralType(instruction->GetType())) << instruction->GetType();
5446 
5447   LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5448   locations->SetInAt(0, Location::RequiresRegister());
5449   locations->SetInAt(1, Location::RequiresRegister());
5450   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5451 }
5452 
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instruction)5453 void InstructionCodeGeneratorRISCV64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
5454   LocationSummary* locations = instruction->GetLocations();
5455   XRegister lhs = locations->InAt(0).AsRegister<XRegister>();
5456   XRegister rhs = locations->InAt(1).AsRegister<XRegister>();
5457   XRegister dst = locations->Out().AsRegister<XRegister>();
5458 
5459   switch (instruction->GetOpKind()) {
5460     case HInstruction::kAnd:
5461       __ Andn(dst, lhs, rhs);
5462       break;
5463     case HInstruction::kOr:
5464       __ Orn(dst, lhs, rhs);
5465       break;
5466     case HInstruction::kXor:
5467       __ Xnor(dst, lhs, rhs);
5468       break;
5469     default:
5470       LOG(FATAL) << "Unreachable";
5471   }
5472 }
5473 
VisitVecReplicateScalar(HVecReplicateScalar * instruction)5474 void LocationsBuilderRISCV64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
5475   UNUSED(instruction);
5476   LOG(FATAL) << "Unimplemented";
5477 }
5478 
VisitVecReplicateScalar(HVecReplicateScalar * instruction)5479 void InstructionCodeGeneratorRISCV64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
5480   UNUSED(instruction);
5481   LOG(FATAL) << "Unimplemented";
5482 }
5483 
VisitVecExtractScalar(HVecExtractScalar * instruction)5484 void LocationsBuilderRISCV64::VisitVecExtractScalar(HVecExtractScalar* instruction) {
5485   UNUSED(instruction);
5486   LOG(FATAL) << "Unimplemented";
5487 }
5488 
VisitVecExtractScalar(HVecExtractScalar * instruction)5489 void InstructionCodeGeneratorRISCV64::VisitVecExtractScalar(HVecExtractScalar* instruction) {
5490   UNUSED(instruction);
5491   LOG(FATAL) << "Unimplemented";
5492 }
5493 
VisitVecReduce(HVecReduce * instruction)5494 void LocationsBuilderRISCV64::VisitVecReduce(HVecReduce* instruction) {
5495   UNUSED(instruction);
5496   LOG(FATAL) << "Unimplemented";
5497 }
5498 
VisitVecReduce(HVecReduce * instruction)5499 void InstructionCodeGeneratorRISCV64::VisitVecReduce(HVecReduce* instruction) {
5500   UNUSED(instruction);
5501   LOG(FATAL) << "Unimplemented";
5502 }
5503 
VisitVecCnv(HVecCnv * instruction)5504 void LocationsBuilderRISCV64::VisitVecCnv(HVecCnv* instruction) {
5505   UNUSED(instruction);
5506   LOG(FATAL) << "Unimplemented";
5507 }
5508 
VisitVecCnv(HVecCnv * instruction)5509 void InstructionCodeGeneratorRISCV64::VisitVecCnv(HVecCnv* instruction) {
5510   UNUSED(instruction);
5511   LOG(FATAL) << "Unimplemented";
5512 }
5513 
VisitVecNeg(HVecNeg * instruction)5514 void LocationsBuilderRISCV64::VisitVecNeg(HVecNeg* instruction) {
5515   UNUSED(instruction);
5516   LOG(FATAL) << "Unimplemented";
5517 }
5518 
VisitVecNeg(HVecNeg * instruction)5519 void InstructionCodeGeneratorRISCV64::VisitVecNeg(HVecNeg* instruction) {
5520   UNUSED(instruction);
5521   LOG(FATAL) << "Unimplemented";
5522 }
5523 
VisitVecAbs(HVecAbs * instruction)5524 void LocationsBuilderRISCV64::VisitVecAbs(HVecAbs* instruction) {
5525   UNUSED(instruction);
5526   LOG(FATAL) << "Unimplemented";
5527 }
5528 
VisitVecAbs(HVecAbs * instruction)5529 void InstructionCodeGeneratorRISCV64::VisitVecAbs(HVecAbs* instruction) {
5530   UNUSED(instruction);
5531   LOG(FATAL) << "Unimplemented";
5532 }
5533 
VisitVecNot(HVecNot * instruction)5534 void LocationsBuilderRISCV64::VisitVecNot(HVecNot* instruction) {
5535   UNUSED(instruction);
5536   LOG(FATAL) << "Unimplemented";
5537 }
5538 
VisitVecNot(HVecNot * instruction)5539 void InstructionCodeGeneratorRISCV64::VisitVecNot(HVecNot* instruction) {
5540   UNUSED(instruction);
5541   LOG(FATAL) << "Unimplemented";
5542 }
5543 
VisitVecAdd(HVecAdd * instruction)5544 void LocationsBuilderRISCV64::VisitVecAdd(HVecAdd* instruction) {
5545   UNUSED(instruction);
5546   LOG(FATAL) << "Unimplemented";
5547 }
5548 
VisitVecAdd(HVecAdd * instruction)5549 void InstructionCodeGeneratorRISCV64::VisitVecAdd(HVecAdd* instruction) {
5550   UNUSED(instruction);
5551   LOG(FATAL) << "Unimplemented";
5552 }
5553 
VisitVecHalvingAdd(HVecHalvingAdd * instruction)5554 void LocationsBuilderRISCV64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
5555   UNUSED(instruction);
5556   LOG(FATAL) << "Unimplemented";
5557 }
5558 
VisitVecHalvingAdd(HVecHalvingAdd * instruction)5559 void InstructionCodeGeneratorRISCV64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
5560   UNUSED(instruction);
5561   LOG(FATAL) << "Unimplemented";
5562 }
5563 
VisitVecSub(HVecSub * instruction)5564 void LocationsBuilderRISCV64::VisitVecSub(HVecSub* instruction) {
5565   UNUSED(instruction);
5566   LOG(FATAL) << "Unimplemented";
5567 }
5568 
VisitVecSub(HVecSub * instruction)5569 void InstructionCodeGeneratorRISCV64::VisitVecSub(HVecSub* instruction) {
5570   UNUSED(instruction);
5571   LOG(FATAL) << "Unimplemented";
5572 }
5573 
VisitVecMul(HVecMul * instruction)5574 void LocationsBuilderRISCV64::VisitVecMul(HVecMul* instruction) {
5575   UNUSED(instruction);
5576   LOG(FATAL) << "Unimplemented";
5577 }
5578 
VisitVecMul(HVecMul * instruction)5579 void InstructionCodeGeneratorRISCV64::VisitVecMul(HVecMul* instruction) {
5580   UNUSED(instruction);
5581   LOG(FATAL) << "Unimplemented";
5582 }
5583 
VisitVecDiv(HVecDiv * instruction)5584 void LocationsBuilderRISCV64::VisitVecDiv(HVecDiv* instruction) {
5585   UNUSED(instruction);
5586   LOG(FATAL) << "Unimplemented";
5587 }
5588 
VisitVecDiv(HVecDiv * instruction)5589 void InstructionCodeGeneratorRISCV64::VisitVecDiv(HVecDiv* instruction) {
5590   UNUSED(instruction);
5591   LOG(FATAL) << "Unimplemented";
5592 }
5593 
VisitVecMin(HVecMin * instruction)5594 void LocationsBuilderRISCV64::VisitVecMin(HVecMin* instruction) {
5595   UNUSED(instruction);
5596   LOG(FATAL) << "Unimplemented";
5597 }
5598 
VisitVecMin(HVecMin * instruction)5599 void InstructionCodeGeneratorRISCV64::VisitVecMin(HVecMin* instruction) {
5600   UNUSED(instruction);
5601   LOG(FATAL) << "Unimplemented";
5602 }
5603 
VisitVecMax(HVecMax * instruction)5604 void LocationsBuilderRISCV64::VisitVecMax(HVecMax* instruction) {
5605   UNUSED(instruction);
5606   LOG(FATAL) << "Unimplemented";
5607 }
5608 
VisitVecMax(HVecMax * instruction)5609 void InstructionCodeGeneratorRISCV64::VisitVecMax(HVecMax* instruction) {
5610   UNUSED(instruction);
5611   LOG(FATAL) << "Unimplemented";
5612 }
5613 
VisitVecAnd(HVecAnd * instruction)5614 void LocationsBuilderRISCV64::VisitVecAnd(HVecAnd* instruction) {
5615   UNUSED(instruction);
5616   LOG(FATAL) << "Unimplemented";
5617 }
5618 
VisitVecAnd(HVecAnd * instruction)5619 void InstructionCodeGeneratorRISCV64::VisitVecAnd(HVecAnd* instruction) {
5620   UNUSED(instruction);
5621   LOG(FATAL) << "Unimplemented";
5622 }
5623 
VisitVecAndNot(HVecAndNot * instruction)5624 void LocationsBuilderRISCV64::VisitVecAndNot(HVecAndNot* instruction) {
5625   UNUSED(instruction);
5626   LOG(FATAL) << "Unimplemented";
5627 }
5628 
VisitVecAndNot(HVecAndNot * instruction)5629 void InstructionCodeGeneratorRISCV64::VisitVecAndNot(HVecAndNot* instruction) {
5630   UNUSED(instruction);
5631   LOG(FATAL) << "Unimplemented";
5632 }
5633 
VisitVecOr(HVecOr * instruction)5634 void LocationsBuilderRISCV64::VisitVecOr(HVecOr* instruction) {
5635   UNUSED(instruction);
5636   LOG(FATAL) << "Unimplemented";
5637 }
5638 
VisitVecOr(HVecOr * instruction)5639 void InstructionCodeGeneratorRISCV64::VisitVecOr(HVecOr* instruction) {
5640   UNUSED(instruction);
5641   LOG(FATAL) << "Unimplemented";
5642 }
5643 
VisitVecXor(HVecXor * instruction)5644 void LocationsBuilderRISCV64::VisitVecXor(HVecXor* instruction) {
5645   UNUSED(instruction);
5646   LOG(FATAL) << "Unimplemented";
5647 }
5648 
VisitVecXor(HVecXor * instruction)5649 void InstructionCodeGeneratorRISCV64::VisitVecXor(HVecXor* instruction) {
5650   UNUSED(instruction);
5651   LOG(FATAL) << "Unimplemented";
5652 }
5653 
VisitVecSaturationAdd(HVecSaturationAdd * instruction)5654 void LocationsBuilderRISCV64::VisitVecSaturationAdd(HVecSaturationAdd* instruction) {
5655   UNUSED(instruction);
5656   LOG(FATAL) << "Unimplemented";
5657 }
5658 
VisitVecSaturationAdd(HVecSaturationAdd * instruction)5659 void InstructionCodeGeneratorRISCV64::VisitVecSaturationAdd(HVecSaturationAdd* instruction) {
5660   UNUSED(instruction);
5661   LOG(FATAL) << "Unimplemented";
5662 }
5663 
VisitVecSaturationSub(HVecSaturationSub * instruction)5664 void LocationsBuilderRISCV64::VisitVecSaturationSub(HVecSaturationSub* instruction) {
5665   UNUSED(instruction);
5666   LOG(FATAL) << "Unimplemented";
5667 }
5668 
VisitVecSaturationSub(HVecSaturationSub * instruction)5669 void InstructionCodeGeneratorRISCV64::VisitVecSaturationSub(HVecSaturationSub* instruction) {
5670   UNUSED(instruction);
5671   LOG(FATAL) << "Unimplemented";
5672 }
5673 
VisitVecShl(HVecShl * instruction)5674 void LocationsBuilderRISCV64::VisitVecShl(HVecShl* instruction) {
5675   UNUSED(instruction);
5676   LOG(FATAL) << "Unimplemented";
5677 }
5678 
VisitVecShl(HVecShl * instruction)5679 void InstructionCodeGeneratorRISCV64::VisitVecShl(HVecShl* instruction) {
5680   UNUSED(instruction);
5681   LOG(FATAL) << "Unimplemented";
5682 }
5683 
VisitVecShr(HVecShr * instruction)5684 void LocationsBuilderRISCV64::VisitVecShr(HVecShr* instruction) {
5685   UNUSED(instruction);
5686   LOG(FATAL) << "Unimplemented";
5687 }
5688 
VisitVecShr(HVecShr * instruction)5689 void InstructionCodeGeneratorRISCV64::VisitVecShr(HVecShr* instruction) {
5690   UNUSED(instruction);
5691   LOG(FATAL) << "Unimplemented";
5692 }
5693 
VisitVecUShr(HVecUShr * instruction)5694 void LocationsBuilderRISCV64::VisitVecUShr(HVecUShr* instruction) {
5695   UNUSED(instruction);
5696   LOG(FATAL) << "Unimplemented";
5697 }
5698 
VisitVecUShr(HVecUShr * instruction)5699 void InstructionCodeGeneratorRISCV64::VisitVecUShr(HVecUShr* instruction) {
5700   UNUSED(instruction);
5701   LOG(FATAL) << "Unimplemented";
5702 }
5703 
VisitVecSetScalars(HVecSetScalars * instruction)5704 void LocationsBuilderRISCV64::VisitVecSetScalars(HVecSetScalars* instruction) {
5705   UNUSED(instruction);
5706   LOG(FATAL) << "Unimplemented";
5707 }
5708 
VisitVecSetScalars(HVecSetScalars * instruction)5709 void InstructionCodeGeneratorRISCV64::VisitVecSetScalars(HVecSetScalars* instruction) {
5710   UNUSED(instruction);
5711   LOG(FATAL) << "Unimplemented";
5712 }
5713 
VisitVecMultiplyAccumulate(HVecMultiplyAccumulate * instruction)5714 void LocationsBuilderRISCV64::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) {
5715   UNUSED(instruction);
5716   LOG(FATAL) << "Unimplemented";
5717 }
5718 
VisitVecMultiplyAccumulate(HVecMultiplyAccumulate * instruction)5719 void InstructionCodeGeneratorRISCV64::VisitVecMultiplyAccumulate(
5720     HVecMultiplyAccumulate* instruction) {
5721   UNUSED(instruction);
5722   LOG(FATAL) << "Unimplemented";
5723 }
5724 
VisitVecSADAccumulate(HVecSADAccumulate * instruction)5725 void LocationsBuilderRISCV64::VisitVecSADAccumulate(HVecSADAccumulate* instruction) {
5726   UNUSED(instruction);
5727   LOG(FATAL) << "Unimplemented";
5728 }
5729 
VisitVecSADAccumulate(HVecSADAccumulate * instruction)5730 void InstructionCodeGeneratorRISCV64::VisitVecSADAccumulate(HVecSADAccumulate* instruction) {
5731   UNUSED(instruction);
5732   LOG(FATAL) << "Unimplemented";
5733 }
5734 
VisitVecDotProd(HVecDotProd * instruction)5735 void LocationsBuilderRISCV64::VisitVecDotProd(HVecDotProd* instruction) {
5736   UNUSED(instruction);
5737   LOG(FATAL) << "Unimplemented";
5738 }
5739 
VisitVecDotProd(HVecDotProd * instruction)5740 void InstructionCodeGeneratorRISCV64::VisitVecDotProd(HVecDotProd* instruction) {
5741   UNUSED(instruction);
5742   LOG(FATAL) << "Unimplemented";
5743 }
5744 
VisitVecLoad(HVecLoad * instruction)5745 void LocationsBuilderRISCV64::VisitVecLoad(HVecLoad* instruction) {
5746   UNUSED(instruction);
5747   LOG(FATAL) << "Unimplemented";
5748 }
5749 
VisitVecLoad(HVecLoad * instruction)5750 void InstructionCodeGeneratorRISCV64::VisitVecLoad(HVecLoad* instruction) {
5751   UNUSED(instruction);
5752   LOG(FATAL) << "Unimplemented";
5753 }
5754 
VisitVecStore(HVecStore * instruction)5755 void LocationsBuilderRISCV64::VisitVecStore(HVecStore* instruction) {
5756   UNUSED(instruction);
5757   LOG(FATAL) << "Unimplemented";
5758 }
5759 
VisitVecStore(HVecStore * instruction)5760 void InstructionCodeGeneratorRISCV64::VisitVecStore(HVecStore* instruction) {
5761   UNUSED(instruction);
5762   LOG(FATAL) << "Unimplemented";
5763 }
5764 
VisitVecPredSetAll(HVecPredSetAll * instruction)5765 void LocationsBuilderRISCV64::VisitVecPredSetAll(HVecPredSetAll* instruction) {
5766   UNUSED(instruction);
5767   LOG(FATAL) << "Unimplemented";
5768 }
5769 
VisitVecPredSetAll(HVecPredSetAll * instruction)5770 void InstructionCodeGeneratorRISCV64::VisitVecPredSetAll(HVecPredSetAll* instruction) {
5771   UNUSED(instruction);
5772   LOG(FATAL) << "Unimplemented";
5773 }
5774 
VisitVecPredWhile(HVecPredWhile * instruction)5775 void LocationsBuilderRISCV64::VisitVecPredWhile(HVecPredWhile* instruction) {
5776   UNUSED(instruction);
5777   LOG(FATAL) << "Unimplemented";
5778 }
5779 
VisitVecPredWhile(HVecPredWhile * instruction)5780 void InstructionCodeGeneratorRISCV64::VisitVecPredWhile(HVecPredWhile* instruction) {
5781   UNUSED(instruction);
5782   LOG(FATAL) << "Unimplemented";
5783 }
5784 
VisitVecPredToBoolean(HVecPredToBoolean * instruction)5785 void LocationsBuilderRISCV64::VisitVecPredToBoolean(HVecPredToBoolean* instruction) {
5786   UNUSED(instruction);
5787   LOG(FATAL) << "Unimplemented";
5788 }
5789 
VisitVecPredToBoolean(HVecPredToBoolean * instruction)5790 void InstructionCodeGeneratorRISCV64::VisitVecPredToBoolean(HVecPredToBoolean* instruction) {
5791   UNUSED(instruction);
5792   LOG(FATAL) << "Unimplemented";
5793 }
5794 
VisitVecCondition(HVecCondition * instruction)5795 void LocationsBuilderRISCV64::VisitVecCondition(HVecCondition* instruction) {
5796   UNUSED(instruction);
5797   LOG(FATAL) << "Unimplemented";
5798 }
5799 
VisitVecCondition(HVecCondition * instruction)5800 void InstructionCodeGeneratorRISCV64::VisitVecCondition(HVecCondition* instruction) {
5801   UNUSED(instruction);
5802   LOG(FATAL) << "Unimplemented";
5803 }
5804 
VisitVecPredNot(HVecPredNot * instruction)5805 void LocationsBuilderRISCV64::VisitVecPredNot(HVecPredNot* instruction) {
5806   UNUSED(instruction);
5807   LOG(FATAL) << "Unimplemented";
5808 }
5809 
VisitVecPredNot(HVecPredNot * instruction)5810 void InstructionCodeGeneratorRISCV64::VisitVecPredNot(HVecPredNot* instruction) {
5811   UNUSED(instruction);
5812   LOG(FATAL) << "Unimplemented";
5813 }
5814 
5815 namespace detail {
5816 
5817 // Mark which intrinsics we don't have handcrafted code for.
5818 template <Intrinsics T>
5819 struct IsUnimplemented {
5820   bool is_unimplemented = false;
5821 };
5822 
5823 #define TRUE_OVERRIDE(Name)                     \
5824   template <>                                   \
5825   struct IsUnimplemented<Intrinsics::k##Name> { \
5826     bool is_unimplemented = true;               \
5827   };
5828 UNIMPLEMENTED_INTRINSIC_LIST_RISCV64(TRUE_OVERRIDE)
5829 #undef TRUE_OVERRIDE
5830 
5831 static constexpr bool kIsIntrinsicUnimplemented[] = {
5832     false,  // kNone
5833 #define IS_UNIMPLEMENTED(Intrinsic, ...) \
5834     IsUnimplemented<Intrinsics::k##Intrinsic>().is_unimplemented,
5835     ART_INTRINSICS_LIST(IS_UNIMPLEMENTED)
5836 #undef IS_UNIMPLEMENTED
5837 };
5838 
5839 }  // namespace detail
5840 
CodeGeneratorRISCV64(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)5841 CodeGeneratorRISCV64::CodeGeneratorRISCV64(HGraph* graph,
5842                                            const CompilerOptions& compiler_options,
5843                                            OptimizingCompilerStats* stats)
5844     : CodeGenerator(graph,
5845                     kNumberOfXRegisters,
5846                     kNumberOfFRegisters,
5847                     /*number_of_register_pairs=*/ 0u,
5848                     ComputeRegisterMask(kCoreCalleeSaves, arraysize(kCoreCalleeSaves)),
5849                     ComputeRegisterMask(kFpuCalleeSaves, arraysize(kFpuCalleeSaves)),
5850                     compiler_options,
5851                     stats,
5852                     ArrayRef<const bool>(detail::kIsIntrinsicUnimplemented)),
5853       assembler_(graph->GetAllocator(),
5854                  compiler_options.GetInstructionSetFeatures()->AsRiscv64InstructionSetFeatures()),
5855       location_builder_(graph, this),
5856       instruction_visitor_(graph, this),
5857       block_labels_(nullptr),
5858       move_resolver_(graph->GetAllocator(), this),
5859       uint32_literals_(std::less<uint32_t>(),
5860                        graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5861       uint64_literals_(std::less<uint64_t>(),
5862                        graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5863       boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5864       method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5865       boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5866       app_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5867       type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5868       public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5869       package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5870       boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5871       string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5872       boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5873       boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5874       jit_string_patches_(StringReferenceValueComparator(),
5875                           graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
5876       jit_class_patches_(TypeReferenceValueComparator(),
5877                          graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
5878   // Always mark the RA register to be saved.
5879   AddAllocatedRegister(Location::RegisterLocation(RA));
5880 }
5881 
MaybeIncrementHotness(HSuspendCheck * suspend_check,bool is_frame_entry)5882 void CodeGeneratorRISCV64::MaybeIncrementHotness(HSuspendCheck* suspend_check,
5883                                                  bool is_frame_entry) {
5884   if (GetCompilerOptions().CountHotnessInCompiledCode()) {
5885     ScratchRegisterScope srs(GetAssembler());
5886     XRegister method = is_frame_entry ? kArtMethodRegister : srs.AllocateXRegister();
5887     if (!is_frame_entry) {
5888       __ Loadd(method, SP, 0);
5889     }
5890     XRegister counter = srs.AllocateXRegister();
5891     __ Loadhu(counter, method, ArtMethod::HotnessCountOffset().Int32Value());
5892     Riscv64Label done;
5893     DCHECK_EQ(0u, interpreter::kNterpHotnessValue);
5894     __ Beqz(counter, &done);  // Can clobber `TMP` if taken.
5895     __ Addi(counter, counter, -1);
5896     // We may not have another scratch register available for `Storeh`()`,
5897     // so we must use the `Sh()` function directly.
5898     static_assert(IsInt<12>(ArtMethod::HotnessCountOffset().Int32Value()));
5899     __ Sh(counter, method, ArtMethod::HotnessCountOffset().Int32Value());
5900     __ Bind(&done);
5901   }
5902 
5903   if (GetGraph()->IsCompilingBaseline() &&
5904       GetGraph()->IsUsefulOptimizing() &&
5905       !Runtime::Current()->IsAotCompiler()) {
5906     ProfilingInfo* info = GetGraph()->GetProfilingInfo();
5907     DCHECK(info != nullptr);
5908     DCHECK(!HasEmptyFrame());
5909     uint64_t address = reinterpret_cast64<uint64_t>(info) +
5910                        ProfilingInfo::BaselineHotnessCountOffset().SizeValue();
5911     auto [base_address, imm12] = SplitJitAddress(address);
5912     ScratchRegisterScope srs(GetAssembler());
5913     XRegister counter = srs.AllocateXRegister();
5914     XRegister tmp = RA;
5915     __ LoadConst64(tmp, base_address);
5916     SlowPathCodeRISCV64* slow_path =
5917         new (GetScopedAllocator()) CompileOptimizedSlowPathRISCV64(suspend_check, tmp, imm12);
5918     AddSlowPath(slow_path);
5919     __ Lhu(counter, tmp, imm12);
5920     __ Beqz(counter, slow_path->GetEntryLabel());  // Can clobber `TMP` if taken.
5921     __ Addi(counter, counter, -1);
5922     __ Sh(counter, tmp, imm12);
5923     __ Bind(slow_path->GetExitLabel());
5924   }
5925 }
5926 
CanUseImplicitSuspendCheck() const5927 bool CodeGeneratorRISCV64::CanUseImplicitSuspendCheck() const {
5928   // TODO(riscv64): Implement implicit suspend checks to reduce code size.
5929   return false;
5930 }
5931 
GenerateMemoryBarrier(MemBarrierKind kind)5932 void CodeGeneratorRISCV64::GenerateMemoryBarrier(MemBarrierKind kind) {
5933   switch (kind) {
5934     case MemBarrierKind::kAnyAny:
5935       __ Fence(/*pred=*/ kFenceRead | kFenceWrite, /*succ=*/ kFenceRead | kFenceWrite);
5936       break;
5937     case MemBarrierKind::kAnyStore:
5938       __ Fence(/*pred=*/ kFenceRead | kFenceWrite, /*succ=*/ kFenceWrite);
5939       break;
5940     case MemBarrierKind::kLoadAny:
5941       __ Fence(/*pred=*/ kFenceRead, /*succ=*/ kFenceRead | kFenceWrite);
5942       break;
5943     case MemBarrierKind::kStoreStore:
5944       __ Fence(/*pred=*/ kFenceWrite, /*succ=*/ kFenceWrite);
5945       break;
5946 
5947     default:
5948       LOG(FATAL) << "Unexpected memory barrier " << kind;
5949       UNREACHABLE();
5950   }
5951 }
5952 
GenerateFrameEntry()5953 void CodeGeneratorRISCV64::GenerateFrameEntry() {
5954   // Check if we need to generate the clinit check. We will jump to the
5955   // resolution stub if the class is not initialized and the executing thread is
5956   // not the thread initializing it.
5957   // We do this before constructing the frame to get the correct stack trace if
5958   // an exception is thrown.
5959   if (GetCompilerOptions().ShouldCompileWithClinitCheck(GetGraph()->GetArtMethod())) {
5960     Riscv64Label resolution;
5961     Riscv64Label memory_barrier;
5962 
5963     ScratchRegisterScope srs(GetAssembler());
5964     XRegister tmp = srs.AllocateXRegister();
5965     XRegister tmp2 = srs.AllocateXRegister();
5966 
5967     // We don't emit a read barrier here to save on code size. We rely on the
5968     // resolution trampoline to do a clinit check before re-entering this code.
5969     __ Loadwu(tmp2, kArtMethodRegister, ArtMethod::DeclaringClassOffset().Int32Value());
5970 
5971     // We shall load the full 32-bit status word with sign-extension and compare as unsigned
5972     // to sign-extended shifted status values. This yields the same comparison as loading and
5973     // materializing unsigned but the constant is materialized with a single LUI instruction.
5974     __ Loadw(tmp, tmp2, mirror::Class::StatusOffset().SizeValue());  // Sign-extended.
5975 
5976     // Check if we're visibly initialized.
5977     __ Li(tmp2, ShiftedSignExtendedClassStatusValue<ClassStatus::kVisiblyInitialized>());
5978     __ Bgeu(tmp, tmp2, &frame_entry_label_);  // Can clobber `TMP` if taken.
5979 
5980     // Check if we're initialized and jump to code that does a memory barrier if so.
5981     __ Li(tmp2, ShiftedSignExtendedClassStatusValue<ClassStatus::kInitialized>());
5982     __ Bgeu(tmp, tmp2, &memory_barrier);  // Can clobber `TMP` if taken.
5983 
5984     // Check if we're initializing and the thread initializing is the one
5985     // executing the code.
5986     __ Li(tmp2, ShiftedSignExtendedClassStatusValue<ClassStatus::kInitializing>());
5987     __ Bltu(tmp, tmp2, &resolution);  // Can clobber `TMP` if taken.
5988 
5989     __ Loadwu(tmp2, kArtMethodRegister, ArtMethod::DeclaringClassOffset().Int32Value());
5990     __ Loadw(tmp, tmp2, mirror::Class::ClinitThreadIdOffset().Int32Value());
5991     __ Loadw(tmp2, TR, Thread::TidOffset<kRiscv64PointerSize>().Int32Value());
5992     __ Beq(tmp, tmp2, &frame_entry_label_);
5993     __ Bind(&resolution);
5994 
5995     // Jump to the resolution stub.
5996     ThreadOffset64 entrypoint_offset =
5997         GetThreadOffset<kRiscv64PointerSize>(kQuickQuickResolutionTrampoline);
5998     __ Loadd(tmp, TR, entrypoint_offset.Int32Value());
5999     __ Jr(tmp);
6000 
6001     __ Bind(&memory_barrier);
6002     GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
6003   }
6004   __ Bind(&frame_entry_label_);
6005 
6006   bool do_overflow_check =
6007       FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kRiscv64) || !IsLeafMethod();
6008 
6009   if (do_overflow_check) {
6010     DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
6011     __ Loadw(
6012         Zero, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kRiscv64)));
6013     RecordPcInfo(nullptr, 0);
6014   }
6015 
6016   if (!HasEmptyFrame()) {
6017     // Make sure the frame size isn't unreasonably large.
6018     DCHECK_LE(GetFrameSize(), GetMaximumFrameSize());
6019 
6020     // Spill callee-saved registers.
6021 
6022     uint32_t frame_size = GetFrameSize();
6023 
6024     IncreaseFrame(frame_size);
6025 
6026     uint32_t offset = frame_size;
6027     for (size_t i = arraysize(kCoreCalleeSaves); i != 0; ) {
6028       --i;
6029       XRegister reg = kCoreCalleeSaves[i];
6030       if (allocated_registers_.ContainsCoreRegister(reg)) {
6031         offset -= kRiscv64DoublewordSize;
6032         __ Stored(reg, SP, offset);
6033         __ cfi().RelOffset(dwarf::Reg::Riscv64Core(reg), offset);
6034       }
6035     }
6036 
6037     for (size_t i = arraysize(kFpuCalleeSaves); i != 0; ) {
6038       --i;
6039       FRegister reg = kFpuCalleeSaves[i];
6040       if (allocated_registers_.ContainsFloatingPointRegister(reg)) {
6041         offset -= kRiscv64DoublewordSize;
6042         __ FStored(reg, SP, offset);
6043         __ cfi().RelOffset(dwarf::Reg::Riscv64Fp(reg), offset);
6044       }
6045     }
6046 
6047     // Save the current method if we need it. Note that we do not
6048     // do this in HCurrentMethod, as the instruction might have been removed
6049     // in the SSA graph.
6050     if (RequiresCurrentMethod()) {
6051       __ Stored(kArtMethodRegister, SP, 0);
6052     }
6053 
6054     if (GetGraph()->HasShouldDeoptimizeFlag()) {
6055       // Initialize should_deoptimize flag to 0.
6056       __ Storew(Zero, SP, GetStackOffsetOfShouldDeoptimizeFlag());
6057     }
6058   }
6059   MaybeIncrementHotness(/* suspend_check= */ nullptr, /*is_frame_entry=*/ true);
6060 }
6061 
GenerateFrameExit()6062 void CodeGeneratorRISCV64::GenerateFrameExit() {
6063   __ cfi().RememberState();
6064 
6065   if (!HasEmptyFrame()) {
6066     // Restore callee-saved registers.
6067 
6068     // For better instruction scheduling restore RA before other registers.
6069     uint32_t offset = GetFrameSize();
6070     for (size_t i = arraysize(kCoreCalleeSaves); i != 0; ) {
6071       --i;
6072       XRegister reg = kCoreCalleeSaves[i];
6073       if (allocated_registers_.ContainsCoreRegister(reg)) {
6074         offset -= kRiscv64DoublewordSize;
6075         __ Loadd(reg, SP, offset);
6076         __ cfi().Restore(dwarf::Reg::Riscv64Core(reg));
6077       }
6078     }
6079 
6080     for (size_t i = arraysize(kFpuCalleeSaves); i != 0; ) {
6081       --i;
6082       FRegister reg = kFpuCalleeSaves[i];
6083       if (allocated_registers_.ContainsFloatingPointRegister(reg)) {
6084         offset -= kRiscv64DoublewordSize;
6085         __ FLoadd(reg, SP, offset);
6086         __ cfi().Restore(dwarf::Reg::Riscv64Fp(reg));
6087       }
6088     }
6089 
6090     DecreaseFrame(GetFrameSize());
6091   }
6092 
6093   __ Jr(RA);
6094 
6095   __ cfi().RestoreState();
6096   __ cfi().DefCFAOffset(GetFrameSize());
6097 }
6098 
Bind(HBasicBlock * block)6099 void CodeGeneratorRISCV64::Bind(HBasicBlock* block) { __ Bind(GetLabelOf(block)); }
6100 
MoveConstant(Location destination,int32_t value)6101 void CodeGeneratorRISCV64::MoveConstant(Location destination, int32_t value) {
6102   DCHECK(destination.IsRegister());
6103   __ LoadConst32(destination.AsRegister<XRegister>(), value);
6104 }
6105 
MoveLocation(Location destination,Location source,DataType::Type dst_type)6106 void CodeGeneratorRISCV64::MoveLocation(Location destination,
6107                                         Location source,
6108                                         DataType::Type dst_type) {
6109   if (source.Equals(destination)) {
6110     return;
6111   }
6112 
6113   // A valid move type can always be inferred from the destination and source locations.
6114   // When moving from and to a register, the `dst_type` can be used to generate 32-bit instead
6115   // of 64-bit moves but it's generally OK to use 64-bit moves for 32-bit values in registers.
6116   bool unspecified_type = (dst_type == DataType::Type::kVoid);
6117   // TODO(riscv64): Is the destination type known in all cases?
6118   // TODO(riscv64): Can unspecified `dst_type` move 32-bit GPR to FPR without NaN-boxing?
6119   CHECK(!unspecified_type);
6120 
6121   if (destination.IsRegister() || destination.IsFpuRegister()) {
6122     if (unspecified_type) {
6123       HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
6124       if (source.IsStackSlot() ||
6125           (src_cst != nullptr &&
6126            (src_cst->IsIntConstant() || src_cst->IsFloatConstant() || src_cst->IsNullConstant()))) {
6127         // For stack slots and 32-bit constants, a 32-bit type is appropriate.
6128         dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32;
6129       } else {
6130         // If the source is a double stack slot or a 64-bit constant, a 64-bit type
6131         // is appropriate. Else the source is a register, and since the type has not
6132         // been specified, we chose a 64-bit type to force a 64-bit move.
6133         dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64;
6134       }
6135     }
6136     DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) ||
6137            (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type)));
6138 
6139     if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
6140       // Move to GPR/FPR from stack
6141       if (DataType::IsFloatingPointType(dst_type)) {
6142         if (DataType::Is64BitType(dst_type)) {
6143           __ FLoadd(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
6144         } else {
6145           __ FLoadw(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
6146         }
6147       } else {
6148         if (DataType::Is64BitType(dst_type)) {
6149           __ Loadd(destination.AsRegister<XRegister>(), SP, source.GetStackIndex());
6150         } else if (dst_type == DataType::Type::kReference) {
6151           __ Loadwu(destination.AsRegister<XRegister>(), SP, source.GetStackIndex());
6152         } else {
6153           __ Loadw(destination.AsRegister<XRegister>(), SP, source.GetStackIndex());
6154         }
6155       }
6156     } else if (source.IsConstant()) {
6157       // Move to GPR/FPR from constant
6158       // TODO(riscv64): Consider using literals for difficult-to-materialize 64-bit constants.
6159       int64_t value = GetInt64ValueOf(source.GetConstant()->AsConstant());
6160       ScratchRegisterScope srs(GetAssembler());
6161       XRegister gpr = DataType::IsFloatingPointType(dst_type)
6162           ? srs.AllocateXRegister()
6163           : destination.AsRegister<XRegister>();
6164       if (DataType::IsFloatingPointType(dst_type) && value == 0) {
6165         gpr = Zero;  // Note: The scratch register allocated above shall not be used.
6166       } else {
6167         // Note: For `float` we load the sign-extended value here as it can sometimes yield
6168         // a shorter instruction sequence. The higher 32 bits shall be ignored during the
6169         // transfer to FP reg and the result shall be correctly NaN-boxed.
6170         __ LoadConst64(gpr, value);
6171       }
6172       if (dst_type == DataType::Type::kFloat32) {
6173         __ FMvWX(destination.AsFpuRegister<FRegister>(), gpr);
6174       } else if (dst_type == DataType::Type::kFloat64) {
6175         __ FMvDX(destination.AsFpuRegister<FRegister>(), gpr);
6176       }
6177     } else if (source.IsRegister()) {
6178       if (destination.IsRegister()) {
6179         // Move to GPR from GPR
6180         __ Mv(destination.AsRegister<XRegister>(), source.AsRegister<XRegister>());
6181       } else {
6182         DCHECK(destination.IsFpuRegister());
6183         if (DataType::Is64BitType(dst_type)) {
6184           __ FMvDX(destination.AsFpuRegister<FRegister>(), source.AsRegister<XRegister>());
6185         } else {
6186           __ FMvWX(destination.AsFpuRegister<FRegister>(), source.AsRegister<XRegister>());
6187         }
6188       }
6189     } else if (source.IsFpuRegister()) {
6190       if (destination.IsFpuRegister()) {
6191         if (GetGraph()->HasSIMD()) {
6192           LOG(FATAL) << "Vector extension is unsupported";
6193           UNREACHABLE();
6194         } else {
6195           // Move to FPR from FPR
6196           if (dst_type == DataType::Type::kFloat32) {
6197             __ FMvS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
6198           } else {
6199             DCHECK_EQ(dst_type, DataType::Type::kFloat64);
6200             __ FMvD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
6201           }
6202         }
6203       } else {
6204         DCHECK(destination.IsRegister());
6205         if (DataType::Is64BitType(dst_type)) {
6206           __ FMvXD(destination.AsRegister<XRegister>(), source.AsFpuRegister<FRegister>());
6207         } else {
6208           __ FMvXW(destination.AsRegister<XRegister>(), source.AsFpuRegister<FRegister>());
6209         }
6210       }
6211     }
6212   } else if (destination.IsSIMDStackSlot()) {
6213     LOG(FATAL) << "SIMD is unsupported";
6214     UNREACHABLE();
6215   } else {  // The destination is not a register. It must be a stack slot.
6216     DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
6217     if (source.IsRegister() || source.IsFpuRegister()) {
6218       if (unspecified_type) {
6219         if (source.IsRegister()) {
6220           dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64;
6221         } else {
6222           dst_type =
6223               destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64;
6224         }
6225       }
6226       DCHECK_EQ(source.IsFpuRegister(), DataType::IsFloatingPointType(dst_type));
6227       // For direct @CriticalNative calls, we need to sign-extend narrow integral args
6228       // to 64 bits, so widening integral values is allowed. Narrowing is forbidden.
6229       DCHECK_IMPLIES(DataType::IsFloatingPointType(dst_type) || destination.IsStackSlot(),
6230                      destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type));
6231       // Move to stack from GPR/FPR
6232       if (destination.IsDoubleStackSlot()) {
6233         if (source.IsRegister()) {
6234           __ Stored(source.AsRegister<XRegister>(), SP, destination.GetStackIndex());
6235         } else {
6236           __ FStored(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex());
6237         }
6238       } else {
6239         if (source.IsRegister()) {
6240           __ Storew(source.AsRegister<XRegister>(), SP, destination.GetStackIndex());
6241         } else {
6242           __ FStorew(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex());
6243         }
6244       }
6245     } else if (source.IsConstant()) {
6246       // Move to stack from constant
6247       int64_t value = GetInt64ValueOf(source.GetConstant());
6248       ScratchRegisterScope srs(GetAssembler());
6249       XRegister gpr = (value != 0) ? srs.AllocateXRegister() : Zero;
6250       if (value != 0) {
6251         __ LoadConst64(gpr, value);
6252       }
6253       if (destination.IsStackSlot()) {
6254         __ Storew(gpr, SP, destination.GetStackIndex());
6255       } else {
6256         DCHECK(destination.IsDoubleStackSlot());
6257         __ Stored(gpr, SP, destination.GetStackIndex());
6258       }
6259     } else {
6260       DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
6261       // For direct @CriticalNative calls, we need to sign-extend narrow integral args
6262       // to 64 bits, so widening move is allowed. Narrowing move is forbidden.
6263       DCHECK_IMPLIES(destination.IsStackSlot(), source.IsStackSlot());
6264       // Move to stack from stack
6265       ScratchRegisterScope srs(GetAssembler());
6266       XRegister tmp = srs.AllocateXRegister();
6267       if (source.IsStackSlot()) {
6268         __ Loadw(tmp, SP, source.GetStackIndex());
6269       } else {
6270         __ Loadd(tmp, SP, source.GetStackIndex());
6271       }
6272       if (destination.IsStackSlot()) {
6273         __ Storew(tmp, SP, destination.GetStackIndex());
6274       } else {
6275         __ Stored(tmp, SP, destination.GetStackIndex());
6276       }
6277     }
6278   }
6279 }
6280 
AddLocationAsTemp(Location location,LocationSummary * locations)6281 void CodeGeneratorRISCV64::AddLocationAsTemp(Location location, LocationSummary* locations) {
6282   if (location.IsRegister()) {
6283     locations->AddTemp(location);
6284   } else {
6285     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
6286   }
6287 }
6288 
SetupBlockedRegisters() const6289 void CodeGeneratorRISCV64::SetupBlockedRegisters() const {
6290   // ZERO, GP, SP, RA, TP and TR(S1) are reserved and can't be allocated.
6291   blocked_core_registers_[Zero] = true;
6292   blocked_core_registers_[GP] = true;
6293   blocked_core_registers_[SP] = true;
6294   blocked_core_registers_[RA] = true;
6295   blocked_core_registers_[TP] = true;
6296   blocked_core_registers_[TR] = true;  // ART Thread register.
6297 
6298   // TMP(T6), TMP2(T5) and FTMP(FT11) are used as temporary/scratch registers.
6299   blocked_core_registers_[TMP] = true;
6300   blocked_core_registers_[TMP2] = true;
6301   blocked_fpu_registers_[FTMP] = true;
6302 
6303   if (GetGraph()->IsDebuggable()) {
6304     // Stubs do not save callee-save floating point registers. If the graph
6305     // is debuggable, we need to deal with these registers differently. For
6306     // now, just block them.
6307     for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
6308       blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
6309     }
6310   }
6311 }
6312 
SaveCoreRegister(size_t stack_index,uint32_t reg_id)6313 size_t CodeGeneratorRISCV64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
6314   __ Stored(XRegister(reg_id), SP, stack_index);
6315   return kRiscv64DoublewordSize;
6316 }
6317 
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)6318 size_t CodeGeneratorRISCV64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
6319   __ Loadd(XRegister(reg_id), SP, stack_index);
6320   return kRiscv64DoublewordSize;
6321 }
6322 
SaveFloatingPointRegister(size_t stack_index,uint32_t reg_id)6323 size_t CodeGeneratorRISCV64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
6324   if (GetGraph()->HasSIMD()) {
6325     // TODO(riscv64): RISC-V vector extension.
6326     UNIMPLEMENTED(FATAL) << "Vector extension is unsupported";
6327     UNREACHABLE();
6328   }
6329   __ FStored(FRegister(reg_id), SP, stack_index);
6330   return kRiscv64FloatRegSizeInBytes;
6331 }
6332 
RestoreFloatingPointRegister(size_t stack_index,uint32_t reg_id)6333 size_t CodeGeneratorRISCV64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
6334   if (GetGraph()->HasSIMD()) {
6335     // TODO(riscv64): RISC-V vector extension.
6336     UNIMPLEMENTED(FATAL) << "Vector extension is unsupported";
6337     UNREACHABLE();
6338   }
6339   __ FLoadd(FRegister(reg_id), SP, stack_index);
6340   return kRiscv64FloatRegSizeInBytes;
6341 }
6342 
DumpCoreRegister(std::ostream & stream,int reg) const6343 void CodeGeneratorRISCV64::DumpCoreRegister(std::ostream& stream, int reg) const {
6344   stream << XRegister(reg);
6345 }
6346 
DumpFloatingPointRegister(std::ostream & stream,int reg) const6347 void CodeGeneratorRISCV64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
6348   stream << FRegister(reg);
6349 }
6350 
GetInstructionSetFeatures() const6351 const Riscv64InstructionSetFeatures& CodeGeneratorRISCV64::GetInstructionSetFeatures() const {
6352   return *GetCompilerOptions().GetInstructionSetFeatures()->AsRiscv64InstructionSetFeatures();
6353 }
6354 
Finalize()6355 void CodeGeneratorRISCV64::Finalize() {
6356   // Ensure that we fix up branches and literal loads and emit the literal pool.
6357   __ FinalizeCode();
6358 
6359   // Adjust native pc offsets in stack maps.
6360   StackMapStream* stack_map_stream = GetStackMapStream();
6361   for (size_t i = 0, num = stack_map_stream->GetNumberOfStackMaps(); i != num; ++i) {
6362     uint32_t old_position = stack_map_stream->GetStackMapNativePcOffset(i);
6363     uint32_t new_position = __ GetAdjustedPosition(old_position);
6364     DCHECK_GE(new_position, old_position);
6365     stack_map_stream->SetStackMapNativePcOffset(i, new_position);
6366   }
6367 
6368   // Adjust pc offsets for the disassembly information.
6369   if (disasm_info_ != nullptr) {
6370     GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
6371     frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
6372     frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
6373     for (auto& entry : *disasm_info_->GetInstructionIntervals()) {
6374       entry.second.start = __ GetAdjustedPosition(entry.second.start);
6375       entry.second.end = __ GetAdjustedPosition(entry.second.end);
6376     }
6377     for (auto& entry : *disasm_info_->GetSlowPathIntervals()) {
6378       entry.code_interval.start = __ GetAdjustedPosition(entry.code_interval.start);
6379       entry.code_interval.end = __ GetAdjustedPosition(entry.code_interval.end);
6380     }
6381   }
6382 }
6383 
6384 // Generate code to invoke a runtime entry point.
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)6385 void CodeGeneratorRISCV64::InvokeRuntime(QuickEntrypointEnum entrypoint,
6386                                          HInstruction* instruction,
6387                                          uint32_t dex_pc,
6388                                          SlowPathCode* slow_path) {
6389   ValidateInvokeRuntime(entrypoint, instruction, slow_path);
6390 
6391   ThreadOffset64 entrypoint_offset = GetThreadOffset<kRiscv64PointerSize>(entrypoint);
6392 
6393   // TODO(riscv64): Reduce code size for AOT by using shared trampolines for slow path
6394   // runtime calls across the entire oat file.
6395   __ Loadd(RA, TR, entrypoint_offset.Int32Value());
6396   __ Jalr(RA);
6397   if (EntrypointRequiresStackMap(entrypoint)) {
6398     RecordPcInfo(instruction, dex_pc, slow_path);
6399   }
6400 }
6401 
6402 // Generate code to invoke a runtime entry point, but do not record
6403 // PC-related information in a stack map.
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)6404 void CodeGeneratorRISCV64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
6405                                                                HInstruction* instruction,
6406                                                                SlowPathCode* slow_path) {
6407   ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
6408   __ Loadd(RA, TR, entry_point_offset);
6409   __ Jalr(RA);
6410 }
6411 
IncreaseFrame(size_t adjustment)6412 void CodeGeneratorRISCV64::IncreaseFrame(size_t adjustment) {
6413   int32_t adjustment32 = dchecked_integral_cast<int32_t>(adjustment);
6414   __ AddConst64(SP, SP, -adjustment32);
6415   GetAssembler()->cfi().AdjustCFAOffset(adjustment32);
6416 }
6417 
DecreaseFrame(size_t adjustment)6418 void CodeGeneratorRISCV64::DecreaseFrame(size_t adjustment) {
6419   int32_t adjustment32 = dchecked_integral_cast<int32_t>(adjustment);
6420   __ AddConst64(SP, SP, adjustment32);
6421   GetAssembler()->cfi().AdjustCFAOffset(-adjustment32);
6422 }
6423 
GenerateNop()6424 void CodeGeneratorRISCV64::GenerateNop() {
6425   __ Nop();
6426 }
6427 
GenerateImplicitNullCheck(HNullCheck * instruction)6428 void CodeGeneratorRISCV64::GenerateImplicitNullCheck(HNullCheck* instruction) {
6429   if (CanMoveNullCheckToUser(instruction)) {
6430     return;
6431   }
6432   Location obj = instruction->GetLocations()->InAt(0);
6433 
6434   __ Lw(Zero, obj.AsRegister<XRegister>(), 0);
6435   RecordPcInfo(instruction, instruction->GetDexPc());
6436 }
6437 
GenerateExplicitNullCheck(HNullCheck * instruction)6438 void CodeGeneratorRISCV64::GenerateExplicitNullCheck(HNullCheck* instruction) {
6439   SlowPathCodeRISCV64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathRISCV64(instruction);
6440   AddSlowPath(slow_path);
6441 
6442   Location obj = instruction->GetLocations()->InAt(0);
6443 
6444   __ Beqz(obj.AsRegister<XRegister>(), slow_path->GetEntryLabel());
6445 }
6446 
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)6447 HLoadString::LoadKind CodeGeneratorRISCV64::GetSupportedLoadStringKind(
6448     HLoadString::LoadKind desired_string_load_kind) {
6449   switch (desired_string_load_kind) {
6450     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
6451     case HLoadString::LoadKind::kBootImageRelRo:
6452     case HLoadString::LoadKind::kBssEntry:
6453       DCHECK(!Runtime::Current()->UseJitCompilation());
6454       break;
6455     case HLoadString::LoadKind::kJitBootImageAddress:
6456     case HLoadString::LoadKind::kJitTableAddress:
6457       DCHECK(Runtime::Current()->UseJitCompilation());
6458       break;
6459     case HLoadString::LoadKind::kRuntimeCall:
6460       break;
6461   }
6462   return desired_string_load_kind;
6463 }
6464 
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)6465 HLoadClass::LoadKind CodeGeneratorRISCV64::GetSupportedLoadClassKind(
6466     HLoadClass::LoadKind desired_class_load_kind) {
6467   switch (desired_class_load_kind) {
6468     case HLoadClass::LoadKind::kInvalid:
6469       LOG(FATAL) << "UNREACHABLE";
6470       UNREACHABLE();
6471     case HLoadClass::LoadKind::kReferrersClass:
6472       break;
6473     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
6474     case HLoadClass::LoadKind::kBootImageRelRo:
6475     case HLoadClass::LoadKind::kAppImageRelRo:
6476     case HLoadClass::LoadKind::kBssEntry:
6477     case HLoadClass::LoadKind::kBssEntryPublic:
6478     case HLoadClass::LoadKind::kBssEntryPackage:
6479       DCHECK(!Runtime::Current()->UseJitCompilation());
6480       break;
6481     case HLoadClass::LoadKind::kJitBootImageAddress:
6482     case HLoadClass::LoadKind::kJitTableAddress:
6483       DCHECK(Runtime::Current()->UseJitCompilation());
6484       break;
6485     case HLoadClass::LoadKind::kRuntimeCall:
6486       break;
6487   }
6488   return desired_class_load_kind;
6489 }
6490 
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method)6491 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorRISCV64::GetSupportedInvokeStaticOrDirectDispatch(
6492     const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, ArtMethod* method) {
6493   UNUSED(method);
6494   // On RISCV64 we support all dispatch types.
6495   return desired_dispatch_info;
6496 }
6497 
NewBootImageIntrinsicPatch(uint32_t intrinsic_data,const PcRelativePatchInfo * info_high)6498 CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageIntrinsicPatch(
6499     uint32_t intrinsic_data, const PcRelativePatchInfo* info_high) {
6500   return NewPcRelativePatch(
6501       /* dex_file= */ nullptr, intrinsic_data, info_high, &boot_image_other_patches_);
6502 }
6503 
NewBootImageRelRoPatch(uint32_t boot_image_offset,const PcRelativePatchInfo * info_high)6504 CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageRelRoPatch(
6505     uint32_t boot_image_offset, const PcRelativePatchInfo* info_high) {
6506   return NewPcRelativePatch(
6507       /* dex_file= */ nullptr, boot_image_offset, info_high, &boot_image_other_patches_);
6508 }
6509 
NewBootImageMethodPatch(MethodReference target_method,const PcRelativePatchInfo * info_high)6510 CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageMethodPatch(
6511     MethodReference target_method, const PcRelativePatchInfo* info_high) {
6512   return NewPcRelativePatch(
6513       target_method.dex_file, target_method.index, info_high, &boot_image_method_patches_);
6514 }
6515 
NewMethodBssEntryPatch(MethodReference target_method,const PcRelativePatchInfo * info_high)6516 CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewMethodBssEntryPatch(
6517     MethodReference target_method, const PcRelativePatchInfo* info_high) {
6518   return NewPcRelativePatch(
6519       target_method.dex_file, target_method.index, info_high, &method_bss_entry_patches_);
6520 }
6521 
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,const PcRelativePatchInfo * info_high)6522 CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageTypePatch(
6523     const DexFile& dex_file, dex::TypeIndex type_index, const PcRelativePatchInfo* info_high) {
6524   return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &boot_image_type_patches_);
6525 }
6526 
NewAppImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,const PcRelativePatchInfo * info_high)6527 CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewAppImageTypePatch(
6528     const DexFile& dex_file, dex::TypeIndex type_index, const PcRelativePatchInfo* info_high) {
6529   return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &app_image_type_patches_);
6530 }
6531 
NewBootImageJniEntrypointPatch(MethodReference target_method,const PcRelativePatchInfo * info_high)6532 CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageJniEntrypointPatch(
6533     MethodReference target_method, const PcRelativePatchInfo* info_high) {
6534   return NewPcRelativePatch(
6535       target_method.dex_file, target_method.index, info_high, &boot_image_jni_entrypoint_patches_);
6536 }
6537 
NewTypeBssEntryPatch(HLoadClass * load_class,const PcRelativePatchInfo * info_high)6538 CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewTypeBssEntryPatch(
6539     HLoadClass* load_class,
6540     const PcRelativePatchInfo* info_high) {
6541   const DexFile& dex_file = load_class->GetDexFile();
6542   dex::TypeIndex type_index = load_class->GetTypeIndex();
6543   ArenaDeque<PcRelativePatchInfo>* patches = nullptr;
6544   switch (load_class->GetLoadKind()) {
6545     case HLoadClass::LoadKind::kBssEntry:
6546       patches = &type_bss_entry_patches_;
6547       break;
6548     case HLoadClass::LoadKind::kBssEntryPublic:
6549       patches = &public_type_bss_entry_patches_;
6550       break;
6551     case HLoadClass::LoadKind::kBssEntryPackage:
6552       patches = &package_type_bss_entry_patches_;
6553       break;
6554     default:
6555       LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind();
6556       UNREACHABLE();
6557   }
6558   return NewPcRelativePatch(&dex_file, type_index.index_, info_high, patches);
6559 }
6560 
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index,const PcRelativePatchInfo * info_high)6561 CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewBootImageStringPatch(
6562     const DexFile& dex_file, dex::StringIndex string_index, const PcRelativePatchInfo* info_high) {
6563   return NewPcRelativePatch(&dex_file, string_index.index_, info_high, &boot_image_string_patches_);
6564 }
6565 
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index,const PcRelativePatchInfo * info_high)6566 CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewStringBssEntryPatch(
6567     const DexFile& dex_file, dex::StringIndex string_index, const PcRelativePatchInfo* info_high) {
6568   return NewPcRelativePatch(&dex_file, string_index.index_, info_high, &string_bss_entry_patches_);
6569 }
6570 
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,const PcRelativePatchInfo * info_high,ArenaDeque<PcRelativePatchInfo> * patches)6571 CodeGeneratorRISCV64::PcRelativePatchInfo* CodeGeneratorRISCV64::NewPcRelativePatch(
6572     const DexFile* dex_file,
6573     uint32_t offset_or_index,
6574     const PcRelativePatchInfo* info_high,
6575     ArenaDeque<PcRelativePatchInfo>* patches) {
6576   patches->emplace_back(dex_file, offset_or_index, info_high);
6577   return &patches->back();
6578 }
6579 
DeduplicateUint32Literal(uint32_t value)6580 Literal* CodeGeneratorRISCV64::DeduplicateUint32Literal(uint32_t value) {
6581   return uint32_literals_.GetOrCreate(value,
6582                                       [this, value]() { return __ NewLiteral<uint32_t>(value); });
6583 }
6584 
DeduplicateUint64Literal(uint64_t value)6585 Literal* CodeGeneratorRISCV64::DeduplicateUint64Literal(uint64_t value) {
6586   return uint64_literals_.GetOrCreate(value,
6587                                       [this, value]() { return __ NewLiteral<uint64_t>(value); });
6588 }
6589 
DeduplicateBootImageAddressLiteral(uint64_t address)6590 Literal* CodeGeneratorRISCV64::DeduplicateBootImageAddressLiteral(uint64_t address) {
6591   return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address));
6592 }
6593 
DeduplicateJitStringLiteral(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)6594 Literal* CodeGeneratorRISCV64::DeduplicateJitStringLiteral(const DexFile& dex_file,
6595                                                            dex::StringIndex string_index,
6596                                                            Handle<mirror::String> handle) {
6597   ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
6598   return jit_string_patches_.GetOrCreate(
6599       StringReference(&dex_file, string_index),
6600       [this]() { return __ NewLiteral<uint32_t>(/* value= */ 0u); });
6601 }
6602 
DeduplicateJitClassLiteral(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)6603 Literal* CodeGeneratorRISCV64::DeduplicateJitClassLiteral(const DexFile& dex_file,
6604                                                           dex::TypeIndex type_index,
6605                                                           Handle<mirror::Class> handle) {
6606   ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
6607   return jit_class_patches_.GetOrCreate(
6608       TypeReference(&dex_file, type_index),
6609       [this]() { return __ NewLiteral<uint32_t>(/* value= */ 0u); });
6610 }
6611 
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,const Literal * literal,uint64_t index_in_table) const6612 void CodeGeneratorRISCV64::PatchJitRootUse(uint8_t* code,
6613                                           const uint8_t* roots_data,
6614                                           const Literal* literal,
6615                                           uint64_t index_in_table) const {
6616   uint32_t literal_offset = GetAssembler().GetLabelLocation(literal->GetLabel());
6617   uintptr_t address =
6618       reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
6619   reinterpret_cast<uint32_t*>(code + literal_offset)[0] = dchecked_integral_cast<uint32_t>(address);
6620 }
6621 
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)6622 void CodeGeneratorRISCV64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
6623   for (const auto& entry : jit_string_patches_) {
6624     const StringReference& string_reference = entry.first;
6625     Literal* table_entry_literal = entry.second;
6626     uint64_t index_in_table = GetJitStringRootIndex(string_reference);
6627     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
6628   }
6629   for (const auto& entry : jit_class_patches_) {
6630     const TypeReference& type_reference = entry.first;
6631     Literal* table_entry_literal = entry.second;
6632     uint64_t index_in_table = GetJitClassRootIndex(type_reference);
6633     PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
6634   }
6635 }
6636 
EmitPcRelativeAuipcPlaceholder(PcRelativePatchInfo * info_high,XRegister out)6637 void CodeGeneratorRISCV64::EmitPcRelativeAuipcPlaceholder(PcRelativePatchInfo* info_high,
6638                                                           XRegister out) {
6639   DCHECK(info_high->pc_insn_label == &info_high->label);
6640   __ Bind(&info_high->label);
6641   __ Auipc(out, /*imm20=*/ kLinkTimeOffsetPlaceholderHigh);
6642 }
6643 
EmitPcRelativeAddiPlaceholder(PcRelativePatchInfo * info_low,XRegister rd,XRegister rs1)6644 void CodeGeneratorRISCV64::EmitPcRelativeAddiPlaceholder(PcRelativePatchInfo* info_low,
6645                                                          XRegister rd,
6646                                                          XRegister rs1) {
6647   DCHECK(info_low->pc_insn_label != &info_low->label);
6648   __ Bind(&info_low->label);
6649   __ Addi(rd, rs1, /*imm12=*/ kLinkTimeOffsetPlaceholderLow);
6650 }
6651 
EmitPcRelativeLwuPlaceholder(PcRelativePatchInfo * info_low,XRegister rd,XRegister rs1)6652 void CodeGeneratorRISCV64::EmitPcRelativeLwuPlaceholder(PcRelativePatchInfo* info_low,
6653                                                         XRegister rd,
6654                                                         XRegister rs1) {
6655   DCHECK(info_low->pc_insn_label != &info_low->label);
6656   __ Bind(&info_low->label);
6657   __ Lwu(rd, rs1, /*offset=*/ kLinkTimeOffsetPlaceholderLow);
6658 }
6659 
EmitPcRelativeLdPlaceholder(PcRelativePatchInfo * info_low,XRegister rd,XRegister rs1)6660 void CodeGeneratorRISCV64::EmitPcRelativeLdPlaceholder(PcRelativePatchInfo* info_low,
6661                                                        XRegister rd,
6662                                                        XRegister rs1) {
6663   DCHECK(info_low->pc_insn_label != &info_low->label);
6664   __ Bind(&info_low->label);
6665   __ Ld(rd, rs1, /*offset=*/ kLinkTimeOffsetPlaceholderLow);
6666 }
6667 
6668 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)6669 inline void CodeGeneratorRISCV64::EmitPcRelativeLinkerPatches(
6670     const ArenaDeque<PcRelativePatchInfo>& infos,
6671     ArenaVector<linker::LinkerPatch>* linker_patches) {
6672   for (const PcRelativePatchInfo& info : infos) {
6673     linker_patches->push_back(Factory(__ GetLabelLocation(&info.label),
6674                                       info.target_dex_file,
6675                                       __ GetLabelLocation(info.pc_insn_label),
6676                                       info.offset_or_index));
6677   }
6678 }
6679 
6680 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)6681 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
6682                                      const DexFile* target_dex_file,
6683                                      uint32_t pc_insn_offset,
6684                                      uint32_t boot_image_offset) {
6685   DCHECK(target_dex_file == nullptr);  // Unused for these patches, should be null.
6686   return Factory(literal_offset, pc_insn_offset, boot_image_offset);
6687 }
6688 
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)6689 void CodeGeneratorRISCV64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
6690   DCHECK(linker_patches->empty());
6691   size_t size =
6692       boot_image_method_patches_.size() +
6693       method_bss_entry_patches_.size() +
6694       boot_image_type_patches_.size() +
6695       app_image_type_patches_.size() +
6696       type_bss_entry_patches_.size() +
6697       public_type_bss_entry_patches_.size() +
6698       package_type_bss_entry_patches_.size() +
6699       boot_image_string_patches_.size() +
6700       string_bss_entry_patches_.size() +
6701       boot_image_jni_entrypoint_patches_.size() +
6702       boot_image_other_patches_.size();
6703   linker_patches->reserve(size);
6704   if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
6705     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
6706         boot_image_method_patches_, linker_patches);
6707     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
6708         boot_image_type_patches_, linker_patches);
6709     EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
6710         boot_image_string_patches_, linker_patches);
6711   } else {
6712     DCHECK(boot_image_method_patches_.empty());
6713     DCHECK(boot_image_type_patches_.empty());
6714     DCHECK(boot_image_string_patches_.empty());
6715   }
6716   DCHECK_IMPLIES(!GetCompilerOptions().IsAppImage(), app_image_type_patches_.empty());
6717   if (GetCompilerOptions().IsBootImage()) {
6718     EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
6719         boot_image_other_patches_, linker_patches);
6720   } else {
6721     EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::BootImageRelRoPatch>>(
6722         boot_image_other_patches_, linker_patches);
6723     EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeAppImageRelRoPatch>(
6724         app_image_type_patches_, linker_patches);
6725   }
6726   EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
6727       method_bss_entry_patches_, linker_patches);
6728   EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
6729       type_bss_entry_patches_, linker_patches);
6730   EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>(
6731       public_type_bss_entry_patches_, linker_patches);
6732   EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>(
6733       package_type_bss_entry_patches_, linker_patches);
6734   EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
6735       string_bss_entry_patches_, linker_patches);
6736   EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeJniEntrypointPatch>(
6737       boot_image_jni_entrypoint_patches_, linker_patches);
6738   DCHECK_EQ(size, linker_patches->size());
6739 }
6740 
LoadTypeForBootImageIntrinsic(XRegister dest,TypeReference target_type)6741 void CodeGeneratorRISCV64::LoadTypeForBootImageIntrinsic(XRegister dest,
6742                                                          TypeReference target_type) {
6743   // Load the type the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
6744   DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
6745   PcRelativePatchInfo* info_high =
6746       NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex());
6747   EmitPcRelativeAuipcPlaceholder(info_high, dest);
6748   PcRelativePatchInfo* info_low =
6749       NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex(), info_high);
6750   EmitPcRelativeAddiPlaceholder(info_low, dest, dest);
6751 }
6752 
LoadBootImageRelRoEntry(XRegister dest,uint32_t boot_image_offset)6753 void CodeGeneratorRISCV64::LoadBootImageRelRoEntry(XRegister dest, uint32_t boot_image_offset) {
6754   PcRelativePatchInfo* info_high = NewBootImageRelRoPatch(boot_image_offset);
6755   EmitPcRelativeAuipcPlaceholder(info_high, dest);
6756   PcRelativePatchInfo* info_low = NewBootImageRelRoPatch(boot_image_offset, info_high);
6757   // Note: Boot image is in the low 4GiB and the entry is always 32-bit, so emit a 32-bit load.
6758   EmitPcRelativeLwuPlaceholder(info_low, dest, dest);
6759 }
6760 
LoadBootImageAddress(XRegister dest,uint32_t boot_image_reference)6761 void CodeGeneratorRISCV64::LoadBootImageAddress(XRegister dest, uint32_t boot_image_reference) {
6762   if (GetCompilerOptions().IsBootImage()) {
6763     PcRelativePatchInfo* info_high = NewBootImageIntrinsicPatch(boot_image_reference);
6764     EmitPcRelativeAuipcPlaceholder(info_high, dest);
6765     PcRelativePatchInfo* info_low = NewBootImageIntrinsicPatch(boot_image_reference, info_high);
6766     EmitPcRelativeAddiPlaceholder(info_low, dest, dest);
6767   } else if (GetCompilerOptions().GetCompilePic()) {
6768     LoadBootImageRelRoEntry(dest, boot_image_reference);
6769   } else {
6770     DCHECK(GetCompilerOptions().IsJitCompiler());
6771     gc::Heap* heap = Runtime::Current()->GetHeap();
6772     DCHECK(!heap->GetBootImageSpaces().empty());
6773     const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference;
6774     // Note: Boot image is in the low 4GiB (usually the low 2GiB, requiring just LUI+ADDI).
6775     // We may not have an available scratch register for `LoadConst64()` but it never
6776     // emits better code than `Li()` for 32-bit unsigned constants anyway.
6777     __ Li(dest, reinterpret_cast32<uint32_t>(address));
6778   }
6779 }
6780 
LoadIntrinsicDeclaringClass(XRegister dest,HInvoke * invoke)6781 void CodeGeneratorRISCV64::LoadIntrinsicDeclaringClass(XRegister dest, HInvoke* invoke) {
6782   DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
6783   if (GetCompilerOptions().IsBootImage()) {
6784     MethodReference target_method = invoke->GetResolvedMethodReference();
6785     dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
6786     LoadTypeForBootImageIntrinsic(dest, TypeReference(target_method.dex_file, type_idx));
6787   } else {
6788     uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke);
6789     LoadBootImageAddress(dest, boot_image_offset);
6790   }
6791 }
6792 
LoadClassRootForIntrinsic(XRegister dest,ClassRoot class_root)6793 void CodeGeneratorRISCV64::LoadClassRootForIntrinsic(XRegister dest, ClassRoot class_root) {
6794   if (GetCompilerOptions().IsBootImage()) {
6795     ScopedObjectAccess soa(Thread::Current());
6796     ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
6797     TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex());
6798     LoadTypeForBootImageIntrinsic(dest, target_type);
6799   } else {
6800     uint32_t boot_image_offset = GetBootImageOffset(class_root);
6801     LoadBootImageAddress(dest, boot_image_offset);
6802   }
6803 }
6804 
LoadMethod(MethodLoadKind load_kind,Location temp,HInvoke * invoke)6805 void CodeGeneratorRISCV64::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) {
6806   switch (load_kind) {
6807     case MethodLoadKind::kBootImageLinkTimePcRelative: {
6808       DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
6809       CodeGeneratorRISCV64::PcRelativePatchInfo* info_high =
6810           NewBootImageMethodPatch(invoke->GetResolvedMethodReference());
6811       EmitPcRelativeAuipcPlaceholder(info_high, temp.AsRegister<XRegister>());
6812       CodeGeneratorRISCV64::PcRelativePatchInfo* info_low =
6813           NewBootImageMethodPatch(invoke->GetResolvedMethodReference(), info_high);
6814       EmitPcRelativeAddiPlaceholder(
6815           info_low, temp.AsRegister<XRegister>(), temp.AsRegister<XRegister>());
6816       break;
6817     }
6818     case MethodLoadKind::kBootImageRelRo: {
6819       uint32_t boot_image_offset = GetBootImageOffset(invoke);
6820       LoadBootImageRelRoEntry(temp.AsRegister<XRegister>(), boot_image_offset);
6821       break;
6822     }
6823     case MethodLoadKind::kBssEntry: {
6824       PcRelativePatchInfo* info_high = NewMethodBssEntryPatch(invoke->GetMethodReference());
6825       EmitPcRelativeAuipcPlaceholder(info_high, temp.AsRegister<XRegister>());
6826       PcRelativePatchInfo* info_low =
6827           NewMethodBssEntryPatch(invoke->GetMethodReference(), info_high);
6828       EmitPcRelativeLdPlaceholder(
6829           info_low, temp.AsRegister<XRegister>(), temp.AsRegister<XRegister>());
6830       break;
6831     }
6832     case MethodLoadKind::kJitDirectAddress: {
6833       __ LoadConst64(temp.AsRegister<XRegister>(),
6834                      reinterpret_cast<uint64_t>(invoke->GetResolvedMethod()));
6835       break;
6836     }
6837     case MethodLoadKind::kRuntimeCall: {
6838       // Test situation, don't do anything.
6839       break;
6840     }
6841     default: {
6842       LOG(FATAL) << "Load kind should have already been handled " << load_kind;
6843       UNREACHABLE();
6844     }
6845   }
6846 }
6847 
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)6848 void CodeGeneratorRISCV64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke,
6849                                                       Location temp,
6850                                                       SlowPathCode* slow_path) {
6851   // All registers are assumed to be correctly set up per the calling convention.
6852   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
6853 
6854   switch (invoke->GetMethodLoadKind()) {
6855     case MethodLoadKind::kStringInit: {
6856       // temp = thread->string_init_entrypoint
6857       uint32_t offset =
6858           GetThreadOffset<kRiscv64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
6859       __ Loadd(temp.AsRegister<XRegister>(), TR, offset);
6860       break;
6861     }
6862     case MethodLoadKind::kRecursive:
6863       callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex());
6864       break;
6865     case MethodLoadKind::kRuntimeCall:
6866       GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
6867       return;  // No code pointer retrieval; the runtime performs the call directly.
6868     case MethodLoadKind::kBootImageLinkTimePcRelative:
6869       DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
6870       if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
6871         // Do not materialize the method pointer, load directly the entrypoint.
6872         CodeGeneratorRISCV64::PcRelativePatchInfo* info_high =
6873             NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference());
6874         EmitPcRelativeAuipcPlaceholder(info_high, RA);
6875         CodeGeneratorRISCV64::PcRelativePatchInfo* info_low =
6876             NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference(), info_high);
6877         EmitPcRelativeLdPlaceholder(info_low, RA, RA);
6878         break;
6879       }
6880       FALLTHROUGH_INTENDED;
6881     default:
6882       LoadMethod(invoke->GetMethodLoadKind(), temp, invoke);
6883       break;
6884   }
6885 
6886   switch (invoke->GetCodePtrLocation()) {
6887     case CodePtrLocation::kCallSelf:
6888       DCHECK(!GetGraph()->HasShouldDeoptimizeFlag());
6889       __ Jal(&frame_entry_label_);
6890       RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
6891       break;
6892     case CodePtrLocation::kCallArtMethod:
6893       // RA = callee_method->entry_point_from_quick_compiled_code_;
6894       __ Loadd(RA,
6895                callee_method.AsRegister<XRegister>(),
6896                ArtMethod::EntryPointFromQuickCompiledCodeOffset(kRiscv64PointerSize).Int32Value());
6897       // RA()
6898       __ Jalr(RA);
6899       RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
6900       break;
6901     case CodePtrLocation::kCallCriticalNative: {
6902       size_t out_frame_size =
6903           PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorRiscv64,
6904                                     kNativeStackAlignment,
6905                                     GetCriticalNativeDirectCallFrameSize>(invoke);
6906       if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) {
6907         // Entrypoint is already loaded in RA.
6908       } else {
6909         // RA = callee_method->ptr_sized_fields_.data_;  // EntryPointFromJni
6910         MemberOffset offset = ArtMethod::EntryPointFromJniOffset(kRiscv64PointerSize);
6911         __ Loadd(RA, callee_method.AsRegister<XRegister>(), offset.Int32Value());
6912       }
6913       __ Jalr(RA);
6914       RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
6915       // The result is returned the same way in native ABI and managed ABI. No result conversion is
6916       // needed, see comments in `Riscv64JniCallingConvention::RequiresSmallResultTypeExtension()`.
6917       if (out_frame_size != 0u) {
6918         DecreaseFrame(out_frame_size);
6919       }
6920       break;
6921     }
6922   }
6923 
6924   DCHECK(!IsLeafMethod());
6925 }
6926 
MaybeGenerateInlineCacheCheck(HInstruction * instruction,XRegister klass)6927 void CodeGeneratorRISCV64::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
6928                                                          XRegister klass) {
6929   if (ProfilingInfoBuilder::IsInlineCacheUseful(instruction->AsInvoke(), this)) {
6930     ProfilingInfo* info = GetGraph()->GetProfilingInfo();
6931     DCHECK(info != nullptr);
6932     InlineCache* cache = ProfilingInfoBuilder::GetInlineCache(
6933         info, GetCompilerOptions(), instruction->AsInvoke());
6934     if (cache != nullptr) {
6935       uint64_t address = reinterpret_cast64<uint64_t>(cache);
6936       Riscv64Label done;
6937       // The `art_quick_update_inline_cache` expects the inline cache in T5.
6938       XRegister ic_reg = T5;
6939       ScratchRegisterScope srs(GetAssembler());
6940       DCHECK_EQ(srs.AvailableXRegisters(), 2u);
6941       srs.ExcludeXRegister(ic_reg);
6942       DCHECK_EQ(srs.AvailableXRegisters(), 1u);
6943       __ LoadConst64(ic_reg, address);
6944       {
6945         ScratchRegisterScope srs2(GetAssembler());
6946         XRegister tmp = srs2.AllocateXRegister();
6947         __ Loadd(tmp, ic_reg, InlineCache::ClassesOffset().Int32Value());
6948         // Fast path for a monomorphic cache.
6949         __ Beq(klass, tmp, &done);
6950       }
6951       InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
6952       __ Bind(&done);
6953     } else {
6954       // This is unexpected, but we don't guarantee stable compilation across
6955       // JIT runs so just warn about it.
6956       ScopedObjectAccess soa(Thread::Current());
6957       LOG(WARNING) << "Missing inline cache for " << GetGraph()->GetArtMethod()->PrettyMethod();
6958     }
6959   }
6960 }
6961 
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_location,SlowPathCode * slow_path)6962 void CodeGeneratorRISCV64::GenerateVirtualCall(HInvokeVirtual* invoke,
6963                                                Location temp_location,
6964                                                SlowPathCode* slow_path) {
6965   // Use the calling convention instead of the location of the receiver, as
6966   // intrinsics may have put the receiver in a different register. In the intrinsics
6967   // slow path, the arguments have been moved to the right place, so here we are
6968   // guaranteed that the receiver is the first register of the calling convention.
6969   InvokeDexCallingConvention calling_convention;
6970   XRegister receiver = calling_convention.GetRegisterAt(0);
6971   XRegister temp = temp_location.AsRegister<XRegister>();
6972   MemberOffset method_offset =
6973       mirror::Class::EmbeddedVTableEntryOffset(invoke->GetVTableIndex(), kRiscv64PointerSize);
6974   MemberOffset class_offset = mirror::Object::ClassOffset();
6975   Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kRiscv64PointerSize);
6976 
6977   // temp = object->GetClass();
6978   __ Loadwu(temp, receiver, class_offset.Int32Value());
6979   MaybeRecordImplicitNullCheck(invoke);
6980   // Instead of simply (possibly) unpoisoning `temp` here, we should
6981   // emit a read barrier for the previous class reference load.
6982   // However this is not required in practice, as this is an
6983   // intermediate/temporary reference and because the current
6984   // concurrent copying collector keeps the from-space memory
6985   // intact/accessible until the end of the marking phase (the
6986   // concurrent copying collector may not in the future).
6987   MaybeUnpoisonHeapReference(temp);
6988 
6989   // If we're compiling baseline, update the inline cache.
6990   MaybeGenerateInlineCacheCheck(invoke, temp);
6991 
6992   // temp = temp->GetMethodAt(method_offset);
6993   __ Loadd(temp, temp, method_offset.Int32Value());
6994   // RA = temp->GetEntryPoint();
6995   __ Loadd(RA, temp, entry_point.Int32Value());
6996   // RA();
6997   __ Jalr(RA);
6998   RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
6999 }
7000 
MoveFromReturnRegister(Location trg,DataType::Type type)7001 void CodeGeneratorRISCV64::MoveFromReturnRegister(Location trg, DataType::Type type) {
7002   if (!trg.IsValid()) {
7003     DCHECK_EQ(type, DataType::Type::kVoid);
7004     return;
7005   }
7006 
7007   DCHECK_NE(type, DataType::Type::kVoid);
7008 
7009   if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
7010     XRegister trg_reg = trg.AsRegister<XRegister>();
7011     XRegister res_reg = Riscv64ReturnLocation(type).AsRegister<XRegister>();
7012     if (trg_reg != res_reg) {
7013       __ Mv(trg_reg, res_reg);
7014     }
7015   } else {
7016     FRegister trg_reg = trg.AsFpuRegister<FRegister>();
7017     FRegister res_reg = Riscv64ReturnLocation(type).AsFpuRegister<FRegister>();
7018     if (trg_reg != res_reg) {
7019       __ FMvD(trg_reg, res_reg);  // 64-bit move is OK also for `float`.
7020     }
7021   }
7022 }
7023 
PoisonHeapReference(XRegister reg)7024 void CodeGeneratorRISCV64::PoisonHeapReference(XRegister reg) {
7025   __ Sub(reg, Zero, reg);  // Negate the ref.
7026   __ ZextW(reg, reg);      // Zero-extend the 32-bit ref.
7027 }
7028 
UnpoisonHeapReference(XRegister reg)7029 void CodeGeneratorRISCV64::UnpoisonHeapReference(XRegister reg) {
7030   __ Sub(reg, Zero, reg);  // Negate the ref.
7031   __ ZextW(reg, reg);      // Zero-extend the 32-bit ref.
7032 }
7033 
MaybePoisonHeapReference(XRegister reg)7034 void CodeGeneratorRISCV64::MaybePoisonHeapReference(XRegister reg) {
7035   if (kPoisonHeapReferences) {
7036     PoisonHeapReference(reg);
7037   }
7038 }
7039 
MaybeUnpoisonHeapReference(XRegister reg)7040 void CodeGeneratorRISCV64::MaybeUnpoisonHeapReference(XRegister reg) {
7041   if (kPoisonHeapReferences) {
7042     UnpoisonHeapReference(reg);
7043   }
7044 }
7045 
SwapLocations(Location loc1,Location loc2,DataType::Type type)7046 void CodeGeneratorRISCV64::SwapLocations(Location loc1, Location loc2, DataType::Type type) {
7047   DCHECK(!loc1.IsConstant());
7048   DCHECK(!loc2.IsConstant());
7049 
7050   if (loc1.Equals(loc2)) {
7051     return;
7052   }
7053 
7054   bool is_slot1 = loc1.IsStackSlot() || loc1.IsDoubleStackSlot();
7055   bool is_slot2 = loc2.IsStackSlot() || loc2.IsDoubleStackSlot();
7056   bool is_simd1 = loc1.IsSIMDStackSlot();
7057   bool is_simd2 = loc2.IsSIMDStackSlot();
7058   bool is_fp_reg1 = loc1.IsFpuRegister();
7059   bool is_fp_reg2 = loc2.IsFpuRegister();
7060 
7061   if ((is_slot1 != is_slot2) ||
7062       (loc2.IsRegister() && loc1.IsRegister()) ||
7063       (is_fp_reg2 && is_fp_reg1)) {
7064     if ((is_fp_reg2 && is_fp_reg1) && GetGraph()->HasSIMD()) {
7065       LOG(FATAL) << "Unsupported";
7066       UNREACHABLE();
7067     }
7068     ScratchRegisterScope srs(GetAssembler());
7069     Location tmp = (is_fp_reg2 || is_fp_reg1)
7070         ? Location::FpuRegisterLocation(srs.AllocateFRegister())
7071         : Location::RegisterLocation(srs.AllocateXRegister());
7072     MoveLocation(tmp, loc1, type);
7073     MoveLocation(loc1, loc2, type);
7074     MoveLocation(loc2, tmp, type);
7075   } else if (is_slot1 && is_slot2) {
7076     move_resolver_.Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), loc1.IsDoubleStackSlot());
7077   } else if (is_simd1 && is_simd2) {
7078     // TODO(riscv64): Add VECTOR/SIMD later.
7079     UNIMPLEMENTED(FATAL) << "Vector extension is unsupported";
7080   } else if ((is_fp_reg1 && is_simd2) || (is_fp_reg2 && is_simd1)) {
7081     // TODO(riscv64): Add VECTOR/SIMD later.
7082     UNIMPLEMENTED(FATAL) << "Vector extension is unsupported";
7083   } else {
7084     LOG(FATAL) << "Unimplemented swap between locations " << loc1 << " and " << loc2;
7085   }
7086 }
7087 
7088 }  // namespace riscv64
7089 }  // namespace art
7090