1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "nodes.h"
17 
18 #include <algorithm>
19 #include <cfloat>
20 #include <functional>
21 #include <optional>
22 
23 #include "art_method-inl.h"
24 #include "base/arena_allocator.h"
25 #include "base/arena_bit_vector.h"
26 #include "base/bit_utils.h"
27 #include "base/bit_vector-inl.h"
28 #include "base/bit_vector.h"
29 #include "base/iteration_range.h"
30 #include "base/logging.h"
31 #include "base/malloc_arena_pool.h"
32 #include "base/scoped_arena_allocator.h"
33 #include "base/scoped_arena_containers.h"
34 #include "base/stl_util.h"
35 #include "class_linker-inl.h"
36 #include "class_root-inl.h"
37 #include "code_generator.h"
38 #include "common_dominator.h"
39 #include "intrinsic_objects.h"
40 #include "intrinsics.h"
41 #include "intrinsics_list.h"
42 #include "mirror/class-inl.h"
43 #include "scoped_thread_state_change-inl.h"
44 #include "ssa_builder.h"
45 
46 namespace art HIDDEN {
47 
48 // Enable floating-point static evaluation during constant folding
49 // only if all floating-point operations and constants evaluate in the
50 // range and precision of the type used (i.e., 32-bit float, 64-bit
51 // double).
52 static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
53 
CreateRootHandle(VariableSizedHandleScope * handles,ClassRoot class_root)54 ReferenceTypeInfo::TypeHandle HandleCache::CreateRootHandle(VariableSizedHandleScope* handles,
55                                                             ClassRoot class_root) {
56   // Mutator lock is required for NewHandle and GetClassRoot().
57   ScopedObjectAccess soa(Thread::Current());
58   return handles->NewHandle(GetClassRoot(class_root));
59 }
60 
AddBlock(HBasicBlock * block)61 void HGraph::AddBlock(HBasicBlock* block) {
62   block->SetBlockId(blocks_.size());
63   blocks_.push_back(block);
64 }
65 
FindBackEdges(ArenaBitVector * visited)66 void HGraph::FindBackEdges(ArenaBitVector* visited) {
67   // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
68   DCHECK_EQ(visited->GetHighestBitSet(), -1);
69 
70   // Allocate memory from local ScopedArenaAllocator.
71   ScopedArenaAllocator allocator(GetArenaStack());
72   // Nodes that we're currently visiting, indexed by block id.
73   ArenaBitVector visiting(
74       &allocator, blocks_.size(), /* expandable= */ false, kArenaAllocGraphBuilder);
75   // Number of successors visited from a given node, indexed by block id.
76   ScopedArenaVector<size_t> successors_visited(blocks_.size(),
77                                                0u,
78                                                allocator.Adapter(kArenaAllocGraphBuilder));
79   // Stack of nodes that we're currently visiting (same as marked in "visiting" above).
80   ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
81   constexpr size_t kDefaultWorklistSize = 8;
82   worklist.reserve(kDefaultWorklistSize);
83   visited->SetBit(entry_block_->GetBlockId());
84   visiting.SetBit(entry_block_->GetBlockId());
85   worklist.push_back(entry_block_);
86 
87   while (!worklist.empty()) {
88     HBasicBlock* current = worklist.back();
89     uint32_t current_id = current->GetBlockId();
90     if (successors_visited[current_id] == current->GetSuccessors().size()) {
91       visiting.ClearBit(current_id);
92       worklist.pop_back();
93     } else {
94       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
95       uint32_t successor_id = successor->GetBlockId();
96       if (visiting.IsBitSet(successor_id)) {
97         DCHECK(ContainsElement(worklist, successor));
98         successor->AddBackEdge(current);
99       } else if (!visited->IsBitSet(successor_id)) {
100         visited->SetBit(successor_id);
101         visiting.SetBit(successor_id);
102         worklist.push_back(successor);
103       }
104     }
105   }
106 }
107 
108 // Remove the environment use records of the instruction for users.
RemoveEnvironmentUses(HInstruction * instruction)109 void RemoveEnvironmentUses(HInstruction* instruction) {
110   for (HEnvironment* environment = instruction->GetEnvironment();
111        environment != nullptr;
112        environment = environment->GetParent()) {
113     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
114       if (environment->GetInstructionAt(i) != nullptr) {
115         environment->RemoveAsUserOfInput(i);
116       }
117     }
118   }
119 }
120 
121 // Return whether the instruction has an environment and it's used by others.
HasEnvironmentUsedByOthers(HInstruction * instruction)122 bool HasEnvironmentUsedByOthers(HInstruction* instruction) {
123   for (HEnvironment* environment = instruction->GetEnvironment();
124        environment != nullptr;
125        environment = environment->GetParent()) {
126     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
127       HInstruction* user = environment->GetInstructionAt(i);
128       if (user != nullptr) {
129         return true;
130       }
131     }
132   }
133   return false;
134 }
135 
136 // Reset environment records of the instruction itself.
ResetEnvironmentInputRecords(HInstruction * instruction)137 void ResetEnvironmentInputRecords(HInstruction* instruction) {
138   for (HEnvironment* environment = instruction->GetEnvironment();
139        environment != nullptr;
140        environment = environment->GetParent()) {
141     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
142       DCHECK(environment->GetHolder() == instruction);
143       if (environment->GetInstructionAt(i) != nullptr) {
144         environment->SetRawEnvAt(i, nullptr);
145       }
146     }
147   }
148 }
149 
RemoveAsUser(HInstruction * instruction)150 static void RemoveAsUser(HInstruction* instruction) {
151   instruction->RemoveAsUserOfAllInputs();
152   RemoveEnvironmentUses(instruction);
153 }
154 
RemoveDeadBlocksInstructionsAsUsersAndDisconnect(const ArenaBitVector & visited) const155 void HGraph::RemoveDeadBlocksInstructionsAsUsersAndDisconnect(const ArenaBitVector& visited) const {
156   for (size_t i = 0; i < blocks_.size(); ++i) {
157     if (!visited.IsBitSet(i)) {
158       HBasicBlock* block = blocks_[i];
159       if (block == nullptr) continue;
160 
161       // Remove as user.
162       for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
163         RemoveAsUser(it.Current());
164       }
165       for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
166         RemoveAsUser(it.Current());
167       }
168 
169       // Remove non-catch phi uses, and disconnect the block.
170       block->DisconnectFromSuccessors(&visited);
171     }
172   }
173 }
174 
175 // This method assumes `insn` has been removed from all users with the exception of catch
176 // phis because of missing exceptional edges in the graph. It removes the
177 // instruction from catch phi uses, together with inputs of other catch phis in
178 // the catch block at the same index, as these must be dead too.
RemoveCatchPhiUsesOfDeadInstruction(HInstruction * insn)179 static void RemoveCatchPhiUsesOfDeadInstruction(HInstruction* insn) {
180   DCHECK(!insn->HasEnvironmentUses());
181   while (insn->HasNonEnvironmentUses()) {
182     const HUseListNode<HInstruction*>& use = insn->GetUses().front();
183     size_t use_index = use.GetIndex();
184     HBasicBlock* user_block = use.GetUser()->GetBlock();
185     DCHECK(use.GetUser()->IsPhi());
186     DCHECK(user_block->IsCatchBlock());
187     for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
188       phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
189     }
190   }
191 }
192 
RemoveDeadBlocks(const ArenaBitVector & visited)193 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
194   DCHECK(reverse_post_order_.empty()) << "We shouldn't have dominance information.";
195   for (size_t i = 0; i < blocks_.size(); ++i) {
196     if (!visited.IsBitSet(i)) {
197       HBasicBlock* block = blocks_[i];
198       if (block == nullptr) continue;
199 
200       // Remove all remaining uses (which should be only catch phi uses), and the instructions.
201       block->RemoveCatchPhiUsesAndInstruction(/* building_dominator_tree = */ true);
202 
203       // Remove the block from the list of blocks, so that further analyses
204       // never see it.
205       blocks_[i] = nullptr;
206       if (block->IsExitBlock()) {
207         SetExitBlock(nullptr);
208       }
209       // Mark the block as removed. This is used by the HGraphBuilder to discard
210       // the block as a branch target.
211       block->SetGraph(nullptr);
212     }
213   }
214 }
215 
BuildDominatorTree()216 GraphAnalysisResult HGraph::BuildDominatorTree() {
217   // Allocate memory from local ScopedArenaAllocator.
218   ScopedArenaAllocator allocator(GetArenaStack());
219 
220   ArenaBitVector visited(&allocator, blocks_.size(), false, kArenaAllocGraphBuilder);
221 
222   // (1) Find the back edges in the graph doing a DFS traversal.
223   FindBackEdges(&visited);
224 
225   // (2) Remove instructions and phis from blocks not visited during
226   //     the initial DFS as users from other instructions, so that
227   //     users can be safely removed before uses later.
228   //     Also disconnect the block from its successors, updating the successor's phis if needed.
229   RemoveDeadBlocksInstructionsAsUsersAndDisconnect(visited);
230 
231   // (3) Remove blocks not visited during the initial DFS.
232   //     Step (5) requires dead blocks to be removed from the
233   //     predecessors list of live blocks.
234   RemoveDeadBlocks(visited);
235 
236   // (4) Simplify the CFG now, so that we don't need to recompute
237   //     dominators and the reverse post order.
238   SimplifyCFG();
239 
240   // (5) Compute the dominance information and the reverse post order.
241   ComputeDominanceInformation();
242 
243   // (6) Analyze loops discovered through back edge analysis, and
244   //     set the loop information on each block.
245   GraphAnalysisResult result = AnalyzeLoops();
246   if (result != kAnalysisSuccess) {
247     return result;
248   }
249 
250   // (7) Precompute per-block try membership before entering the SSA builder,
251   //     which needs the information to build catch block phis from values of
252   //     locals at throwing instructions inside try blocks.
253   ComputeTryBlockInformation();
254 
255   return kAnalysisSuccess;
256 }
257 
RecomputeDominatorTree()258 GraphAnalysisResult HGraph::RecomputeDominatorTree() {
259   DCHECK(!HasIrreducibleLoops()) << "Recomputing loop information in graphs with irreducible loops "
260                                  << "is unsupported, as it could lead to loop header changes";
261   ClearLoopInformation();
262   ClearDominanceInformation();
263   return BuildDominatorTree();
264 }
265 
ClearDominanceInformation()266 void HGraph::ClearDominanceInformation() {
267   for (HBasicBlock* block : GetActiveBlocks()) {
268     block->ClearDominanceInformation();
269   }
270   reverse_post_order_.clear();
271 }
272 
ClearLoopInformation()273 void HGraph::ClearLoopInformation() {
274   SetHasLoops(false);
275   SetHasIrreducibleLoops(false);
276   for (HBasicBlock* block : GetActiveBlocks()) {
277     block->SetLoopInformation(nullptr);
278   }
279 }
280 
ClearDominanceInformation()281 void HBasicBlock::ClearDominanceInformation() {
282   dominated_blocks_.clear();
283   dominator_ = nullptr;
284 }
285 
GetFirstInstructionDisregardMoves() const286 HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
287   HInstruction* instruction = GetFirstInstruction();
288   while (instruction->IsParallelMove()) {
289     instruction = instruction->GetNext();
290   }
291   return instruction;
292 }
293 
UpdateDominatorOfSuccessor(HBasicBlock * block,HBasicBlock * successor)294 static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
295   DCHECK(ContainsElement(block->GetSuccessors(), successor));
296 
297   HBasicBlock* old_dominator = successor->GetDominator();
298   HBasicBlock* new_dominator =
299       (old_dominator == nullptr) ? block
300                                  : CommonDominator::ForPair(old_dominator, block);
301 
302   if (old_dominator == new_dominator) {
303     return false;
304   } else {
305     successor->SetDominator(new_dominator);
306     return true;
307   }
308 }
309 
ComputeDominanceInformation()310 void HGraph::ComputeDominanceInformation() {
311   DCHECK(reverse_post_order_.empty());
312   reverse_post_order_.reserve(blocks_.size());
313   reverse_post_order_.push_back(entry_block_);
314 
315   // Allocate memory from local ScopedArenaAllocator.
316   ScopedArenaAllocator allocator(GetArenaStack());
317   // Number of visits of a given node, indexed by block id.
318   ScopedArenaVector<size_t> visits(blocks_.size(), 0u, allocator.Adapter(kArenaAllocGraphBuilder));
319   // Number of successors visited from a given node, indexed by block id.
320   ScopedArenaVector<size_t> successors_visited(blocks_.size(),
321                                                0u,
322                                                allocator.Adapter(kArenaAllocGraphBuilder));
323   // Nodes for which we need to visit successors.
324   ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
325   constexpr size_t kDefaultWorklistSize = 8;
326   worklist.reserve(kDefaultWorklistSize);
327   worklist.push_back(entry_block_);
328 
329   while (!worklist.empty()) {
330     HBasicBlock* current = worklist.back();
331     uint32_t current_id = current->GetBlockId();
332     if (successors_visited[current_id] == current->GetSuccessors().size()) {
333       worklist.pop_back();
334     } else {
335       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
336       UpdateDominatorOfSuccessor(current, successor);
337 
338       // Once all the forward edges have been visited, we know the immediate
339       // dominator of the block. We can then start visiting its successors.
340       if (++visits[successor->GetBlockId()] ==
341           successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
342         reverse_post_order_.push_back(successor);
343         worklist.push_back(successor);
344       }
345     }
346   }
347 
348   // Check if the graph has back edges not dominated by their respective headers.
349   // If so, we need to update the dominators of those headers and recursively of
350   // their successors. We do that with a fix-point iteration over all blocks.
351   // The algorithm is guaranteed to terminate because it loops only if the sum
352   // of all dominator chains has decreased in the current iteration.
353   bool must_run_fix_point = false;
354   for (HBasicBlock* block : blocks_) {
355     if (block != nullptr &&
356         block->IsLoopHeader() &&
357         block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
358       must_run_fix_point = true;
359       break;
360     }
361   }
362   if (must_run_fix_point) {
363     bool update_occurred = true;
364     while (update_occurred) {
365       update_occurred = false;
366       for (HBasicBlock* block : GetReversePostOrder()) {
367         for (HBasicBlock* successor : block->GetSuccessors()) {
368           update_occurred |= UpdateDominatorOfSuccessor(block, successor);
369         }
370       }
371     }
372   }
373 
374   // Make sure that there are no remaining blocks whose dominator information
375   // needs to be updated.
376   if (kIsDebugBuild) {
377     for (HBasicBlock* block : GetReversePostOrder()) {
378       for (HBasicBlock* successor : block->GetSuccessors()) {
379         DCHECK(!UpdateDominatorOfSuccessor(block, successor));
380       }
381     }
382   }
383 
384   // Populate `dominated_blocks_` information after computing all dominators.
385   // The potential presence of irreducible loops requires to do it after.
386   for (HBasicBlock* block : GetReversePostOrder()) {
387     if (!block->IsEntryBlock()) {
388       block->GetDominator()->AddDominatedBlock(block);
389     }
390   }
391 }
392 
SplitEdge(HBasicBlock * block,HBasicBlock * successor)393 HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
394   HBasicBlock* new_block = new (allocator_) HBasicBlock(this, successor->GetDexPc());
395   AddBlock(new_block);
396   // Use `InsertBetween` to ensure the predecessor index and successor index of
397   // `block` and `successor` are preserved.
398   new_block->InsertBetween(block, successor);
399   return new_block;
400 }
401 
SplitCriticalEdge(HBasicBlock * block,HBasicBlock * successor)402 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
403   // Insert a new node between `block` and `successor` to split the
404   // critical edge.
405   HBasicBlock* new_block = SplitEdge(block, successor);
406   new_block->AddInstruction(new (allocator_) HGoto(successor->GetDexPc()));
407   if (successor->IsLoopHeader()) {
408     // If we split at a back edge boundary, make the new block the back edge.
409     HLoopInformation* info = successor->GetLoopInformation();
410     if (info->IsBackEdge(*block)) {
411       info->RemoveBackEdge(block);
412       info->AddBackEdge(new_block);
413     }
414   }
415 }
416 
SplitEdgeAndUpdateRPO(HBasicBlock * block,HBasicBlock * successor)417 HBasicBlock* HGraph::SplitEdgeAndUpdateRPO(HBasicBlock* block, HBasicBlock* successor) {
418   HBasicBlock* new_block = SplitEdge(block, successor);
419   // In the RPO we have {... , block, ... , successor}. We want to insert `new_block` right after
420   // `block` to have a consistent RPO without recomputing the whole graph's RPO.
421   reverse_post_order_.insert(
422       reverse_post_order_.begin() + IndexOfElement(reverse_post_order_, block) + 1, new_block);
423   return new_block;
424 }
425 
426 // Reorder phi inputs to match reordering of the block's predecessors.
FixPhisAfterPredecessorsReodering(HBasicBlock * block,size_t first,size_t second)427 static void FixPhisAfterPredecessorsReodering(HBasicBlock* block, size_t first, size_t second) {
428   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
429     HPhi* phi = it.Current()->AsPhi();
430     HInstruction* first_instr = phi->InputAt(first);
431     HInstruction* second_instr = phi->InputAt(second);
432     phi->ReplaceInput(first_instr, second);
433     phi->ReplaceInput(second_instr, first);
434   }
435 }
436 
437 // Make sure that the first predecessor of a loop header is the incoming block.
OrderLoopHeaderPredecessors(HBasicBlock * header)438 void HGraph::OrderLoopHeaderPredecessors(HBasicBlock* header) {
439   DCHECK(header->IsLoopHeader());
440   HLoopInformation* info = header->GetLoopInformation();
441   if (info->IsBackEdge(*header->GetPredecessors()[0])) {
442     HBasicBlock* to_swap = header->GetPredecessors()[0];
443     for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
444       HBasicBlock* predecessor = header->GetPredecessors()[pred];
445       if (!info->IsBackEdge(*predecessor)) {
446         header->predecessors_[pred] = to_swap;
447         header->predecessors_[0] = predecessor;
448         FixPhisAfterPredecessorsReodering(header, 0, pred);
449         break;
450       }
451     }
452   }
453 }
454 
455 // Transform control flow of the loop to a single preheader format (don't touch the data flow).
456 // New_preheader can be already among the header predecessors - this situation will be correctly
457 // processed.
FixControlForNewSinglePreheader(HBasicBlock * header,HBasicBlock * new_preheader)458 static void FixControlForNewSinglePreheader(HBasicBlock* header, HBasicBlock* new_preheader) {
459   HLoopInformation* loop_info = header->GetLoopInformation();
460   for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
461     HBasicBlock* predecessor = header->GetPredecessors()[pred];
462     if (!loop_info->IsBackEdge(*predecessor) && predecessor != new_preheader) {
463       predecessor->ReplaceSuccessor(header, new_preheader);
464       pred--;
465     }
466   }
467 }
468 
469 //             == Before ==                                               == After ==
470 //      _________         _________                               _________         _________
471 //     | B0      |       | B1      |      (old preheaders)       | B0      |       | B1      |
472 //     |=========|       |=========|                             |=========|       |=========|
473 //     | i0 = .. |       | i1 = .. |                             | i0 = .. |       | i1 = .. |
474 //     |_________|       |_________|                             |_________|       |_________|
475 //           \               /                                         \              /
476 //            \             /                                        ___v____________v___
477 //             \           /               (new preheader)          | B20 <- B0, B1      |
478 //              |         |                                         |====================|
479 //              |         |                                         | i20 = phi(i0, i1)  |
480 //              |         |                                         |____________________|
481 //              |         |                                                   |
482 //    /\        |         |        /\                           /\            |              /\
483 //   /  v_______v_________v_______v  \                         /  v___________v_____________v  \
484 //  |  | B10 <- B0, B1, B2, B3     |  |                       |  | B10 <- B20, B2, B3        |  |
485 //  |  |===========================|  |       (header)        |  |===========================|  |
486 //  |  | i10 = phi(i0, i1, i2, i3) |  |                       |  | i10 = phi(i20, i2, i3)    |  |
487 //  |  |___________________________|  |                       |  |___________________________|  |
488 //  |        /               \        |                       |        /               \        |
489 //  |      ...              ...       |                       |      ...              ...       |
490 //  |   _________         _________   |                       |   _________         _________   |
491 //  |  | B2      |       | B3      |  |                       |  | B2      |       | B3      |  |
492 //  |  |=========|       |=========|  |     (back edges)      |  |=========|       |=========|  |
493 //  |  | i2 = .. |       | i3 = .. |  |                       |  | i2 = .. |       | i3 = .. |  |
494 //  |  |_________|       |_________|  |                       |  |_________|       |_________|  |
495 //   \     /                   \     /                         \     /                   \     /
496 //    \___/                     \___/                           \___/                     \___/
497 //
TransformLoopToSinglePreheaderFormat(HBasicBlock * header)498 void HGraph::TransformLoopToSinglePreheaderFormat(HBasicBlock* header) {
499   HLoopInformation* loop_info = header->GetLoopInformation();
500 
501   HBasicBlock* preheader = new (allocator_) HBasicBlock(this, header->GetDexPc());
502   AddBlock(preheader);
503   preheader->AddInstruction(new (allocator_) HGoto(header->GetDexPc()));
504 
505   // If the old header has no Phis then we only need to fix the control flow.
506   if (header->GetPhis().IsEmpty()) {
507     FixControlForNewSinglePreheader(header, preheader);
508     preheader->AddSuccessor(header);
509     return;
510   }
511 
512   // Find the first non-back edge block in the header's predecessors list.
513   size_t first_nonbackedge_pred_pos = 0;
514   bool found = false;
515   for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
516     HBasicBlock* predecessor = header->GetPredecessors()[pred];
517     if (!loop_info->IsBackEdge(*predecessor)) {
518       first_nonbackedge_pred_pos = pred;
519       found = true;
520       break;
521     }
522   }
523 
524   DCHECK(found);
525 
526   // Fix the data-flow.
527   for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
528     HPhi* header_phi = it.Current()->AsPhi();
529 
530     HPhi* preheader_phi = new (GetAllocator()) HPhi(GetAllocator(),
531                                                     header_phi->GetRegNumber(),
532                                                     0,
533                                                     header_phi->GetType());
534     if (header_phi->GetType() == DataType::Type::kReference) {
535       preheader_phi->SetReferenceTypeInfoIfValid(header_phi->GetReferenceTypeInfo());
536     }
537     preheader->AddPhi(preheader_phi);
538 
539     HInstruction* orig_input = header_phi->InputAt(first_nonbackedge_pred_pos);
540     header_phi->ReplaceInput(preheader_phi, first_nonbackedge_pred_pos);
541     preheader_phi->AddInput(orig_input);
542 
543     for (size_t input_pos = first_nonbackedge_pred_pos + 1;
544          input_pos < header_phi->InputCount();
545          input_pos++) {
546       HInstruction* input = header_phi->InputAt(input_pos);
547       HBasicBlock* pred_block = header->GetPredecessors()[input_pos];
548 
549       if (loop_info->Contains(*pred_block)) {
550         DCHECK(loop_info->IsBackEdge(*pred_block));
551       } else {
552         preheader_phi->AddInput(input);
553         header_phi->RemoveInputAt(input_pos);
554         input_pos--;
555       }
556     }
557   }
558 
559   // Fix the control-flow.
560   HBasicBlock* first_pred = header->GetPredecessors()[first_nonbackedge_pred_pos];
561   preheader->InsertBetween(first_pred, header);
562 
563   FixControlForNewSinglePreheader(header, preheader);
564 }
565 
SimplifyLoop(HBasicBlock * header)566 void HGraph::SimplifyLoop(HBasicBlock* header) {
567   HLoopInformation* info = header->GetLoopInformation();
568 
569   // Make sure the loop has only one pre header. This simplifies SSA building by having
570   // to just look at the pre header to know which locals are initialized at entry of the
571   // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
572   // this graph.
573   size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
574   if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
575     TransformLoopToSinglePreheaderFormat(header);
576   }
577 
578   OrderLoopHeaderPredecessors(header);
579 
580   HInstruction* first_instruction = header->GetFirstInstruction();
581   if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
582     // Called from DeadBlockElimination. Update SuspendCheck pointer.
583     info->SetSuspendCheck(first_instruction->AsSuspendCheck());
584   }
585 }
586 
ComputeTryBlockInformation()587 void HGraph::ComputeTryBlockInformation() {
588   // Iterate in reverse post order to propagate try membership information from
589   // predecessors to their successors.
590   bool graph_has_try_catch = false;
591 
592   for (HBasicBlock* block : GetReversePostOrder()) {
593     if (block->IsEntryBlock() || block->IsCatchBlock()) {
594       // Catch blocks after simplification have only exceptional predecessors
595       // and hence are never in tries.
596       continue;
597     }
598 
599     // Infer try membership from the first predecessor. Having simplified loops,
600     // the first predecessor can never be a back edge and therefore it must have
601     // been visited already and had its try membership set.
602     HBasicBlock* first_predecessor = block->GetPredecessors()[0];
603     DCHECK_IMPLIES(block->IsLoopHeader(),
604                    !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
605     const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
606     graph_has_try_catch |= try_entry != nullptr;
607     if (try_entry != nullptr &&
608         (block->GetTryCatchInformation() == nullptr ||
609          try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
610       // We are either setting try block membership for the first time or it
611       // has changed.
612       block->SetTryCatchInformation(new (allocator_) TryCatchInformation(*try_entry));
613     }
614   }
615 
616   SetHasTryCatch(graph_has_try_catch);
617 }
618 
SimplifyCFG()619 void HGraph::SimplifyCFG() {
620 // Simplify the CFG for future analysis, and code generation:
621   // (1): Split critical edges.
622   // (2): Simplify loops by having only one preheader.
623   // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
624   // can be invalidated. We remember the initial size to avoid iterating over the new blocks.
625   for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
626     HBasicBlock* block = blocks_[block_id];
627     if (block == nullptr) continue;
628     if (block->GetSuccessors().size() > 1) {
629       // Only split normal-flow edges. We cannot split exceptional edges as they
630       // are synthesized (approximate real control flow), and we do not need to
631       // anyway. Moves that would be inserted there are performed by the runtime.
632       ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
633       for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
634         HBasicBlock* successor = normal_successors[j];
635         DCHECK(!successor->IsCatchBlock());
636         if (successor == exit_block_) {
637           // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
638           // do not want to split because Goto->Exit is not allowed.
639           DCHECK(block->IsSingleTryBoundary());
640         } else if (successor->GetPredecessors().size() > 1) {
641           SplitCriticalEdge(block, successor);
642           // SplitCriticalEdge could have invalidated the `normal_successors`
643           // ArrayRef. We must re-acquire it.
644           normal_successors = block->GetNormalSuccessors();
645           DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
646           DCHECK_EQ(e, normal_successors.size());
647         }
648       }
649     }
650     if (block->IsLoopHeader()) {
651       SimplifyLoop(block);
652     } else if (!block->IsEntryBlock() &&
653                block->GetFirstInstruction() != nullptr &&
654                block->GetFirstInstruction()->IsSuspendCheck()) {
655       // We are being called by the dead code elimiation pass, and what used to be
656       // a loop got dismantled. Just remove the suspend check.
657       block->RemoveInstruction(block->GetFirstInstruction());
658     }
659   }
660 }
661 
AnalyzeLoops() const662 GraphAnalysisResult HGraph::AnalyzeLoops() const {
663   // We iterate post order to ensure we visit inner loops before outer loops.
664   // `PopulateRecursive` needs this guarantee to know whether a natural loop
665   // contains an irreducible loop.
666   for (HBasicBlock* block : GetPostOrder()) {
667     if (block->IsLoopHeader()) {
668       if (block->IsCatchBlock()) {
669         // TODO: Dealing with exceptional back edges could be tricky because
670         //       they only approximate the real control flow. Bail out for now.
671         VLOG(compiler) << "Not compiled: Exceptional back edges";
672         return kAnalysisFailThrowCatchLoop;
673       }
674       block->GetLoopInformation()->Populate();
675     }
676   }
677   return kAnalysisSuccess;
678 }
679 
Dump(std::ostream & os)680 void HLoopInformation::Dump(std::ostream& os) {
681   os << "header: " << header_->GetBlockId() << std::endl;
682   os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
683   for (HBasicBlock* block : back_edges_) {
684     os << "back edge: " << block->GetBlockId() << std::endl;
685   }
686   for (HBasicBlock* block : header_->GetPredecessors()) {
687     os << "predecessor: " << block->GetBlockId() << std::endl;
688   }
689   for (uint32_t idx : blocks_.Indexes()) {
690     os << "  in loop: " << idx << std::endl;
691   }
692 }
693 
InsertConstant(HConstant * constant)694 void HGraph::InsertConstant(HConstant* constant) {
695   // New constants are inserted before the SuspendCheck at the bottom of the
696   // entry block. Note that this method can be called from the graph builder and
697   // the entry block therefore may not end with SuspendCheck->Goto yet.
698   HInstruction* insert_before = nullptr;
699 
700   HInstruction* gota = entry_block_->GetLastInstruction();
701   if (gota != nullptr && gota->IsGoto()) {
702     HInstruction* suspend_check = gota->GetPrevious();
703     if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
704       insert_before = suspend_check;
705     } else {
706       insert_before = gota;
707     }
708   }
709 
710   if (insert_before == nullptr) {
711     entry_block_->AddInstruction(constant);
712   } else {
713     entry_block_->InsertInstructionBefore(constant, insert_before);
714   }
715 }
716 
GetNullConstant(uint32_t dex_pc)717 HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) {
718   // For simplicity, don't bother reviving the cached null constant if it is
719   // not null and not in a block. Otherwise, we need to clear the instruction
720   // id and/or any invariants the graph is assuming when adding new instructions.
721   if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
722     cached_null_constant_ = new (allocator_) HNullConstant(dex_pc);
723     cached_null_constant_->SetReferenceTypeInfo(GetInexactObjectRti());
724     InsertConstant(cached_null_constant_);
725   }
726   if (kIsDebugBuild) {
727     ScopedObjectAccess soa(Thread::Current());
728     DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
729   }
730   return cached_null_constant_;
731 }
732 
GetCurrentMethod()733 HCurrentMethod* HGraph::GetCurrentMethod() {
734   // For simplicity, don't bother reviving the cached current method if it is
735   // not null and not in a block. Otherwise, we need to clear the instruction
736   // id and/or any invariants the graph is assuming when adding new instructions.
737   if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
738     cached_current_method_ = new (allocator_) HCurrentMethod(
739         Is64BitInstructionSet(instruction_set_) ? DataType::Type::kInt64 : DataType::Type::kInt32,
740         entry_block_->GetDexPc());
741     if (entry_block_->GetFirstInstruction() == nullptr) {
742       entry_block_->AddInstruction(cached_current_method_);
743     } else {
744       entry_block_->InsertInstructionBefore(
745           cached_current_method_, entry_block_->GetFirstInstruction());
746     }
747   }
748   return cached_current_method_;
749 }
750 
GetMethodName() const751 const char* HGraph::GetMethodName() const {
752   const dex::MethodId& method_id = dex_file_.GetMethodId(method_idx_);
753   return dex_file_.GetMethodName(method_id);
754 }
755 
PrettyMethod(bool with_signature) const756 std::string HGraph::PrettyMethod(bool with_signature) const {
757   return dex_file_.PrettyMethod(method_idx_, with_signature);
758 }
759 
GetConstant(DataType::Type type,int64_t value,uint32_t dex_pc)760 HConstant* HGraph::GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc) {
761   switch (type) {
762     case DataType::Type::kBool:
763       DCHECK(IsUint<1>(value));
764       FALLTHROUGH_INTENDED;
765     case DataType::Type::kUint8:
766     case DataType::Type::kInt8:
767     case DataType::Type::kUint16:
768     case DataType::Type::kInt16:
769     case DataType::Type::kInt32:
770       DCHECK(IsInt(DataType::Size(type) * kBitsPerByte, value));
771       return GetIntConstant(static_cast<int32_t>(value), dex_pc);
772 
773     case DataType::Type::kInt64:
774       return GetLongConstant(value, dex_pc);
775 
776     default:
777       LOG(FATAL) << "Unsupported constant type";
778       UNREACHABLE();
779   }
780 }
781 
CacheFloatConstant(HFloatConstant * constant)782 void HGraph::CacheFloatConstant(HFloatConstant* constant) {
783   int32_t value = bit_cast<int32_t, float>(constant->GetValue());
784   DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
785   cached_float_constants_.Overwrite(value, constant);
786 }
787 
CacheDoubleConstant(HDoubleConstant * constant)788 void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
789   int64_t value = bit_cast<int64_t, double>(constant->GetValue());
790   DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
791   cached_double_constants_.Overwrite(value, constant);
792 }
793 
Add(HBasicBlock * block)794 void HLoopInformation::Add(HBasicBlock* block) {
795   blocks_.SetBit(block->GetBlockId());
796 }
797 
Remove(HBasicBlock * block)798 void HLoopInformation::Remove(HBasicBlock* block) {
799   blocks_.ClearBit(block->GetBlockId());
800 }
801 
PopulateRecursive(HBasicBlock * block)802 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
803   if (blocks_.IsBitSet(block->GetBlockId())) {
804     return;
805   }
806 
807   blocks_.SetBit(block->GetBlockId());
808   block->SetInLoop(this);
809   if (block->IsLoopHeader()) {
810     // We're visiting loops in post-order, so inner loops must have been
811     // populated already.
812     DCHECK(block->GetLoopInformation()->IsPopulated());
813     if (block->GetLoopInformation()->IsIrreducible()) {
814       contains_irreducible_loop_ = true;
815     }
816   }
817   for (HBasicBlock* predecessor : block->GetPredecessors()) {
818     PopulateRecursive(predecessor);
819   }
820 }
821 
PopulateIrreducibleRecursive(HBasicBlock * block,ArenaBitVector * finalized)822 void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
823   size_t block_id = block->GetBlockId();
824 
825   // If `block` is in `finalized`, we know its membership in the loop has been
826   // decided and it does not need to be revisited.
827   if (finalized->IsBitSet(block_id)) {
828     return;
829   }
830 
831   bool is_finalized = false;
832   if (block->IsLoopHeader()) {
833     // If we hit a loop header in an irreducible loop, we first check if the
834     // pre header of that loop belongs to the currently analyzed loop. If it does,
835     // then we visit the back edges.
836     // Note that we cannot use GetPreHeader, as the loop may have not been populated
837     // yet.
838     HBasicBlock* pre_header = block->GetPredecessors()[0];
839     PopulateIrreducibleRecursive(pre_header, finalized);
840     if (blocks_.IsBitSet(pre_header->GetBlockId())) {
841       block->SetInLoop(this);
842       blocks_.SetBit(block_id);
843       finalized->SetBit(block_id);
844       is_finalized = true;
845 
846       HLoopInformation* info = block->GetLoopInformation();
847       for (HBasicBlock* back_edge : info->GetBackEdges()) {
848         PopulateIrreducibleRecursive(back_edge, finalized);
849       }
850     }
851   } else {
852     // Visit all predecessors. If one predecessor is part of the loop, this
853     // block is also part of this loop.
854     for (HBasicBlock* predecessor : block->GetPredecessors()) {
855       PopulateIrreducibleRecursive(predecessor, finalized);
856       if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
857         block->SetInLoop(this);
858         blocks_.SetBit(block_id);
859         finalized->SetBit(block_id);
860         is_finalized = true;
861       }
862     }
863   }
864 
865   // All predecessors have been recursively visited. Mark finalized if not marked yet.
866   if (!is_finalized) {
867     finalized->SetBit(block_id);
868   }
869 }
870 
Populate()871 void HLoopInformation::Populate() {
872   DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
873   // Populate this loop: starting with the back edge, recursively add predecessors
874   // that are not already part of that loop. Set the header as part of the loop
875   // to end the recursion.
876   // This is a recursive implementation of the algorithm described in
877   // "Advanced Compiler Design & Implementation" (Muchnick) p192.
878   HGraph* graph = header_->GetGraph();
879   blocks_.SetBit(header_->GetBlockId());
880   header_->SetInLoop(this);
881 
882   bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
883 
884   if (is_irreducible_loop) {
885     // Allocate memory from local ScopedArenaAllocator.
886     ScopedArenaAllocator allocator(graph->GetArenaStack());
887     ArenaBitVector visited(&allocator,
888                            graph->GetBlocks().size(),
889                            /* expandable= */ false,
890                            kArenaAllocGraphBuilder);
891     // Stop marking blocks at the loop header.
892     visited.SetBit(header_->GetBlockId());
893 
894     for (HBasicBlock* back_edge : GetBackEdges()) {
895       PopulateIrreducibleRecursive(back_edge, &visited);
896     }
897   } else {
898     for (HBasicBlock* back_edge : GetBackEdges()) {
899       PopulateRecursive(back_edge);
900     }
901   }
902 
903   if (!is_irreducible_loop && graph->IsCompilingOsr()) {
904     // When compiling in OSR mode, all loops in the compiled method may be entered
905     // from the interpreter. We treat this OSR entry point just like an extra entry
906     // to an irreducible loop, so we need to mark the method's loops as irreducible.
907     // This does not apply to inlined loops which do not act as OSR entry points.
908     if (suspend_check_ == nullptr) {
909       // Just building the graph in OSR mode, this loop is not inlined. We never build an
910       // inner graph in OSR mode as we can do OSR transition only from the outer method.
911       is_irreducible_loop = true;
912     } else {
913       // Look at the suspend check's environment to determine if the loop was inlined.
914       DCHECK(suspend_check_->HasEnvironment());
915       if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
916         is_irreducible_loop = true;
917       }
918     }
919   }
920   if (is_irreducible_loop) {
921     irreducible_ = true;
922     contains_irreducible_loop_ = true;
923     graph->SetHasIrreducibleLoops(true);
924   }
925   graph->SetHasLoops(true);
926 }
927 
PopulateInnerLoopUpwards(HLoopInformation * inner_loop)928 void HLoopInformation::PopulateInnerLoopUpwards(HLoopInformation* inner_loop) {
929   DCHECK(inner_loop->GetPreHeader()->GetLoopInformation() == this);
930   blocks_.Union(&inner_loop->blocks_);
931   HLoopInformation* outer_loop = GetPreHeader()->GetLoopInformation();
932   if (outer_loop != nullptr) {
933     outer_loop->PopulateInnerLoopUpwards(this);
934   }
935 }
936 
GetPreHeader() const937 HBasicBlock* HLoopInformation::GetPreHeader() const {
938   HBasicBlock* block = header_->GetPredecessors()[0];
939   DCHECK(irreducible_ || (block == header_->GetDominator()));
940   return block;
941 }
942 
Contains(const HBasicBlock & block) const943 bool HLoopInformation::Contains(const HBasicBlock& block) const {
944   return blocks_.IsBitSet(block.GetBlockId());
945 }
946 
IsIn(const HLoopInformation & other) const947 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
948   return other.blocks_.IsBitSet(header_->GetBlockId());
949 }
950 
IsDefinedOutOfTheLoop(HInstruction * instruction) const951 bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
952   return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
953 }
954 
GetLifetimeEnd() const955 size_t HLoopInformation::GetLifetimeEnd() const {
956   size_t last_position = 0;
957   for (HBasicBlock* back_edge : GetBackEdges()) {
958     last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
959   }
960   return last_position;
961 }
962 
HasBackEdgeNotDominatedByHeader() const963 bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
964   for (HBasicBlock* back_edge : GetBackEdges()) {
965     DCHECK(back_edge->GetDominator() != nullptr);
966     if (!header_->Dominates(back_edge)) {
967       return true;
968     }
969   }
970   return false;
971 }
972 
DominatesAllBackEdges(HBasicBlock * block)973 bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
974   for (HBasicBlock* back_edge : GetBackEdges()) {
975     if (!block->Dominates(back_edge)) {
976       return false;
977     }
978   }
979   return true;
980 }
981 
982 
HasExitEdge() const983 bool HLoopInformation::HasExitEdge() const {
984   // Determine if this loop has at least one exit edge.
985   HBlocksInLoopReversePostOrderIterator it_loop(*this);
986   for (; !it_loop.Done(); it_loop.Advance()) {
987     for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
988       if (!Contains(*successor)) {
989         return true;
990       }
991     }
992   }
993   return false;
994 }
995 
Dominates(const HBasicBlock * other) const996 bool HBasicBlock::Dominates(const HBasicBlock* other) const {
997   // Walk up the dominator tree from `other`, to find out if `this`
998   // is an ancestor.
999   const HBasicBlock* current = other;
1000   while (current != nullptr) {
1001     if (current == this) {
1002       return true;
1003     }
1004     current = current->GetDominator();
1005   }
1006   return false;
1007 }
1008 
UpdateInputsUsers(HInstruction * instruction)1009 static void UpdateInputsUsers(HInstruction* instruction) {
1010   HInputsRef inputs = instruction->GetInputs();
1011   for (size_t i = 0; i < inputs.size(); ++i) {
1012     inputs[i]->AddUseAt(instruction, i);
1013   }
1014   // Environment should be created later.
1015   DCHECK(!instruction->HasEnvironment());
1016 }
1017 
ReplaceAndRemovePhiWith(HPhi * initial,HPhi * replacement)1018 void HBasicBlock::ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement) {
1019   DCHECK(initial->GetBlock() == this);
1020   InsertPhiAfter(replacement, initial);
1021   initial->ReplaceWith(replacement);
1022   RemovePhi(initial);
1023 }
1024 
ReplaceAndRemoveInstructionWith(HInstruction * initial,HInstruction * replacement)1025 void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
1026                                                   HInstruction* replacement) {
1027   DCHECK(initial->GetBlock() == this);
1028   if (initial->IsControlFlow()) {
1029     // We can only replace a control flow instruction with another control flow instruction.
1030     DCHECK(replacement->IsControlFlow());
1031     DCHECK_EQ(replacement->GetId(), -1);
1032     DCHECK_EQ(replacement->GetType(), DataType::Type::kVoid);
1033     DCHECK_EQ(initial->GetBlock(), this);
1034     DCHECK_EQ(initial->GetType(), DataType::Type::kVoid);
1035     DCHECK(initial->GetUses().empty());
1036     DCHECK(initial->GetEnvUses().empty());
1037     replacement->SetBlock(this);
1038     replacement->SetId(GetGraph()->GetNextInstructionId());
1039     instructions_.InsertInstructionBefore(replacement, initial);
1040     UpdateInputsUsers(replacement);
1041   } else {
1042     InsertInstructionBefore(replacement, initial);
1043     initial->ReplaceWith(replacement);
1044   }
1045   RemoveInstruction(initial);
1046 }
1047 
Add(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)1048 static void Add(HInstructionList* instruction_list,
1049                 HBasicBlock* block,
1050                 HInstruction* instruction) {
1051   DCHECK(instruction->GetBlock() == nullptr);
1052   DCHECK_EQ(instruction->GetId(), -1);
1053   instruction->SetBlock(block);
1054   instruction->SetId(block->GetGraph()->GetNextInstructionId());
1055   UpdateInputsUsers(instruction);
1056   instruction_list->AddInstruction(instruction);
1057 }
1058 
AddInstruction(HInstruction * instruction)1059 void HBasicBlock::AddInstruction(HInstruction* instruction) {
1060   Add(&instructions_, this, instruction);
1061 }
1062 
AddPhi(HPhi * phi)1063 void HBasicBlock::AddPhi(HPhi* phi) {
1064   Add(&phis_, this, phi);
1065 }
1066 
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)1067 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
1068   DCHECK(!cursor->IsPhi());
1069   DCHECK(!instruction->IsPhi());
1070   DCHECK_EQ(instruction->GetId(), -1);
1071   DCHECK_NE(cursor->GetId(), -1);
1072   DCHECK_EQ(cursor->GetBlock(), this);
1073   DCHECK(!instruction->IsControlFlow());
1074   instruction->SetBlock(this);
1075   instruction->SetId(GetGraph()->GetNextInstructionId());
1076   UpdateInputsUsers(instruction);
1077   instructions_.InsertInstructionBefore(instruction, cursor);
1078 }
1079 
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)1080 void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
1081   DCHECK(!cursor->IsPhi());
1082   DCHECK(!instruction->IsPhi());
1083   DCHECK_EQ(instruction->GetId(), -1);
1084   DCHECK_NE(cursor->GetId(), -1);
1085   DCHECK_EQ(cursor->GetBlock(), this);
1086   DCHECK(!instruction->IsControlFlow());
1087   DCHECK(!cursor->IsControlFlow());
1088   instruction->SetBlock(this);
1089   instruction->SetId(GetGraph()->GetNextInstructionId());
1090   UpdateInputsUsers(instruction);
1091   instructions_.InsertInstructionAfter(instruction, cursor);
1092 }
1093 
InsertPhiAfter(HPhi * phi,HPhi * cursor)1094 void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
1095   DCHECK_EQ(phi->GetId(), -1);
1096   DCHECK_NE(cursor->GetId(), -1);
1097   DCHECK_EQ(cursor->GetBlock(), this);
1098   phi->SetBlock(this);
1099   phi->SetId(GetGraph()->GetNextInstructionId());
1100   UpdateInputsUsers(phi);
1101   phis_.InsertInstructionAfter(phi, cursor);
1102 }
1103 
Remove(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction,bool ensure_safety)1104 static void Remove(HInstructionList* instruction_list,
1105                    HBasicBlock* block,
1106                    HInstruction* instruction,
1107                    bool ensure_safety) {
1108   DCHECK_EQ(block, instruction->GetBlock());
1109   instruction->SetBlock(nullptr);
1110   instruction_list->RemoveInstruction(instruction);
1111   if (ensure_safety) {
1112     DCHECK(instruction->GetUses().empty());
1113     DCHECK(instruction->GetEnvUses().empty());
1114     RemoveAsUser(instruction);
1115   }
1116 }
1117 
RemoveInstruction(HInstruction * instruction,bool ensure_safety)1118 void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
1119   DCHECK(!instruction->IsPhi());
1120   Remove(&instructions_, this, instruction, ensure_safety);
1121 }
1122 
RemovePhi(HPhi * phi,bool ensure_safety)1123 void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
1124   Remove(&phis_, this, phi, ensure_safety);
1125 }
1126 
RemoveInstructionOrPhi(HInstruction * instruction,bool ensure_safety)1127 void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
1128   if (instruction->IsPhi()) {
1129     RemovePhi(instruction->AsPhi(), ensure_safety);
1130   } else {
1131     RemoveInstruction(instruction, ensure_safety);
1132   }
1133 }
1134 
CopyFrom(ArrayRef<HInstruction * const> locals)1135 void HEnvironment::CopyFrom(ArrayRef<HInstruction* const> locals) {
1136   for (size_t i = 0; i < locals.size(); i++) {
1137     HInstruction* instruction = locals[i];
1138     SetRawEnvAt(i, instruction);
1139     if (instruction != nullptr) {
1140       instruction->AddEnvUseAt(this, i);
1141     }
1142   }
1143 }
1144 
CopyFrom(HEnvironment * env)1145 void HEnvironment::CopyFrom(HEnvironment* env) {
1146   for (size_t i = 0; i < env->Size(); i++) {
1147     HInstruction* instruction = env->GetInstructionAt(i);
1148     SetRawEnvAt(i, instruction);
1149     if (instruction != nullptr) {
1150       instruction->AddEnvUseAt(this, i);
1151     }
1152   }
1153 }
1154 
CopyFromWithLoopPhiAdjustment(HEnvironment * env,HBasicBlock * loop_header)1155 void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
1156                                                  HBasicBlock* loop_header) {
1157   DCHECK(loop_header->IsLoopHeader());
1158   for (size_t i = 0; i < env->Size(); i++) {
1159     HInstruction* instruction = env->GetInstructionAt(i);
1160     SetRawEnvAt(i, instruction);
1161     if (instruction == nullptr) {
1162       continue;
1163     }
1164     if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
1165       // At the end of the loop pre-header, the corresponding value for instruction
1166       // is the first input of the phi.
1167       HInstruction* initial = instruction->AsPhi()->InputAt(0);
1168       SetRawEnvAt(i, initial);
1169       initial->AddEnvUseAt(this, i);
1170     } else {
1171       instruction->AddEnvUseAt(this, i);
1172     }
1173   }
1174 }
1175 
RemoveAsUserOfInput(size_t index) const1176 void HEnvironment::RemoveAsUserOfInput(size_t index) const {
1177   const HUserRecord<HEnvironment*>& env_use = vregs_[index];
1178   HInstruction* user = env_use.GetInstruction();
1179   auto before_env_use_node = env_use.GetBeforeUseNode();
1180   user->env_uses_.erase_after(before_env_use_node);
1181   user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
1182 }
1183 
ReplaceInput(HInstruction * replacement,size_t index)1184 void HEnvironment::ReplaceInput(HInstruction* replacement, size_t index) {
1185   const HUserRecord<HEnvironment*>& env_use_record = vregs_[index];
1186   HInstruction* orig_instr = env_use_record.GetInstruction();
1187 
1188   DCHECK(orig_instr != replacement);
1189 
1190   HUseList<HEnvironment*>::iterator before_use_node = env_use_record.GetBeforeUseNode();
1191   // Note: fixup_end remains valid across splice_after().
1192   auto fixup_end = replacement->env_uses_.empty() ? replacement->env_uses_.begin()
1193                                                   : ++replacement->env_uses_.begin();
1194   replacement->env_uses_.splice_after(replacement->env_uses_.before_begin(),
1195                                       env_use_record.GetInstruction()->env_uses_,
1196                                       before_use_node);
1197   replacement->FixUpUserRecordsAfterEnvUseInsertion(fixup_end);
1198   orig_instr->FixUpUserRecordsAfterEnvUseRemoval(before_use_node);
1199 }
1200 
Dump(std::ostream & os,bool dump_args)1201 std::ostream& HInstruction::Dump(std::ostream& os, bool dump_args) {
1202   // Note: Handle the case where the instruction has been removed from
1203   // the graph to support debugging output for failed gtests.
1204   HGraph* graph = (GetBlock() != nullptr) ? GetBlock()->GetGraph() : nullptr;
1205   HGraphVisualizer::DumpInstruction(&os, graph, this);
1206   if (dump_args) {
1207     // Allocate memory from local ScopedArenaAllocator.
1208     std::optional<MallocArenaPool> local_arena_pool;
1209     std::optional<ArenaStack> local_arena_stack;
1210     if (UNLIKELY(graph == nullptr)) {
1211       local_arena_pool.emplace();
1212       local_arena_stack.emplace(&local_arena_pool.value());
1213     }
1214     ScopedArenaAllocator allocator(
1215         graph != nullptr ? graph->GetArenaStack() : &local_arena_stack.value());
1216     // Instructions that we already visited. We print each instruction only once.
1217     ArenaBitVector visited(&allocator,
1218                            (graph != nullptr) ? graph->GetCurrentInstructionId() : 0u,
1219                            /* expandable= */ (graph == nullptr),
1220                            kArenaAllocMisc);
1221     visited.SetBit(GetId());
1222     // Keep a queue of instructions with their indentations.
1223     ScopedArenaDeque<std::pair<HInstruction*, size_t>> queue(allocator.Adapter(kArenaAllocMisc));
1224     auto add_args = [&queue](HInstruction* instruction, size_t indentation) {
1225       for (HInstruction* arg : ReverseRange(instruction->GetInputs())) {
1226         queue.emplace_front(arg, indentation);
1227       }
1228     };
1229     add_args(this, /*indentation=*/ 1u);
1230     while (!queue.empty()) {
1231       HInstruction* instruction;
1232       size_t indentation;
1233       std::tie(instruction, indentation) = queue.front();
1234       queue.pop_front();
1235       if (!visited.IsBitSet(instruction->GetId())) {
1236         visited.SetBit(instruction->GetId());
1237         os << '\n';
1238         for (size_t i = 0; i != indentation; ++i) {
1239           os << "  ";
1240         }
1241         HGraphVisualizer::DumpInstruction(&os, graph, instruction);
1242         add_args(instruction, indentation + 1u);
1243       }
1244     }
1245   }
1246   return os;
1247 }
1248 
GetNextDisregardingMoves() const1249 HInstruction* HInstruction::GetNextDisregardingMoves() const {
1250   HInstruction* next = GetNext();
1251   while (next != nullptr && next->IsParallelMove()) {
1252     next = next->GetNext();
1253   }
1254   return next;
1255 }
1256 
GetPreviousDisregardingMoves() const1257 HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
1258   HInstruction* previous = GetPrevious();
1259   while (previous != nullptr && previous->IsParallelMove()) {
1260     previous = previous->GetPrevious();
1261   }
1262   return previous;
1263 }
1264 
AddInstruction(HInstruction * instruction)1265 void HInstructionList::AddInstruction(HInstruction* instruction) {
1266   if (first_instruction_ == nullptr) {
1267     DCHECK(last_instruction_ == nullptr);
1268     first_instruction_ = last_instruction_ = instruction;
1269   } else {
1270     DCHECK(last_instruction_ != nullptr);
1271     last_instruction_->next_ = instruction;
1272     instruction->previous_ = last_instruction_;
1273     last_instruction_ = instruction;
1274   }
1275 }
1276 
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)1277 void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
1278   DCHECK(Contains(cursor));
1279   if (cursor == first_instruction_) {
1280     cursor->previous_ = instruction;
1281     instruction->next_ = cursor;
1282     first_instruction_ = instruction;
1283   } else {
1284     instruction->previous_ = cursor->previous_;
1285     instruction->next_ = cursor;
1286     cursor->previous_ = instruction;
1287     instruction->previous_->next_ = instruction;
1288   }
1289 }
1290 
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)1291 void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
1292   DCHECK(Contains(cursor));
1293   if (cursor == last_instruction_) {
1294     cursor->next_ = instruction;
1295     instruction->previous_ = cursor;
1296     last_instruction_ = instruction;
1297   } else {
1298     instruction->next_ = cursor->next_;
1299     instruction->previous_ = cursor;
1300     cursor->next_ = instruction;
1301     instruction->next_->previous_ = instruction;
1302   }
1303 }
1304 
RemoveInstruction(HInstruction * instruction)1305 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
1306   if (instruction->previous_ != nullptr) {
1307     instruction->previous_->next_ = instruction->next_;
1308   }
1309   if (instruction->next_ != nullptr) {
1310     instruction->next_->previous_ = instruction->previous_;
1311   }
1312   if (instruction == first_instruction_) {
1313     first_instruction_ = instruction->next_;
1314   }
1315   if (instruction == last_instruction_) {
1316     last_instruction_ = instruction->previous_;
1317   }
1318 }
1319 
Contains(HInstruction * instruction) const1320 bool HInstructionList::Contains(HInstruction* instruction) const {
1321   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1322     if (it.Current() == instruction) {
1323       return true;
1324     }
1325   }
1326   return false;
1327 }
1328 
FoundBefore(const HInstruction * instruction1,const HInstruction * instruction2) const1329 bool HInstructionList::FoundBefore(const HInstruction* instruction1,
1330                                    const HInstruction* instruction2) const {
1331   DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
1332   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1333     if (it.Current() == instruction2) {
1334       return false;
1335     }
1336     if (it.Current() == instruction1) {
1337       return true;
1338     }
1339   }
1340   LOG(FATAL) << "Did not find an order between two instructions of the same block.";
1341   UNREACHABLE();
1342 }
1343 
Dominates(HInstruction * other_instruction) const1344 bool HInstruction::Dominates(HInstruction* other_instruction) const {
1345   return other_instruction == this || StrictlyDominates(other_instruction);
1346 }
1347 
StrictlyDominates(HInstruction * other_instruction) const1348 bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
1349   if (other_instruction == this) {
1350     // An instruction does not strictly dominate itself.
1351     return false;
1352   }
1353   HBasicBlock* block = GetBlock();
1354   HBasicBlock* other_block = other_instruction->GetBlock();
1355   if (block != other_block) {
1356     return GetBlock()->Dominates(other_instruction->GetBlock());
1357   } else {
1358     // If both instructions are in the same block, ensure this
1359     // instruction comes before `other_instruction`.
1360     if (IsPhi()) {
1361       if (!other_instruction->IsPhi()) {
1362         // Phis appear before non phi-instructions so this instruction
1363         // dominates `other_instruction`.
1364         return true;
1365       } else {
1366         // There is no order among phis.
1367         LOG(FATAL) << "There is no dominance between phis of a same block.";
1368         UNREACHABLE();
1369       }
1370     } else {
1371       // `this` is not a phi.
1372       if (other_instruction->IsPhi()) {
1373         // Phis appear before non phi-instructions so this instruction
1374         // does not dominate `other_instruction`.
1375         return false;
1376       } else {
1377         // Check whether this instruction comes before
1378         // `other_instruction` in the instruction list.
1379         return block->GetInstructions().FoundBefore(this, other_instruction);
1380       }
1381     }
1382   }
1383 }
1384 
RemoveEnvironment()1385 void HInstruction::RemoveEnvironment() {
1386   RemoveEnvironmentUses(this);
1387   environment_ = nullptr;
1388 }
1389 
ReplaceWith(HInstruction * other)1390 void HInstruction::ReplaceWith(HInstruction* other) {
1391   DCHECK(other != nullptr);
1392   // Note: fixup_end remains valid across splice_after().
1393   auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
1394   other->uses_.splice_after(other->uses_.before_begin(), uses_);
1395   other->FixUpUserRecordsAfterUseInsertion(fixup_end);
1396 
1397   // Note: env_fixup_end remains valid across splice_after().
1398   auto env_fixup_end =
1399       other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
1400   other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
1401   other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1402 
1403   DCHECK(uses_.empty());
1404   DCHECK(env_uses_.empty());
1405 }
1406 
ReplaceUsesDominatedBy(HInstruction * dominator,HInstruction * replacement,bool strictly_dominated)1407 void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator,
1408                                           HInstruction* replacement,
1409                                           bool strictly_dominated) {
1410   HBasicBlock* dominator_block = dominator->GetBlock();
1411   std::optional<ArenaBitVector> visited_blocks;
1412 
1413   // Lazily compute the dominated blocks to faster calculation of domination afterwards.
1414   auto maybe_generate_visited_blocks = [&visited_blocks, this, dominator_block]() {
1415     if (visited_blocks.has_value()) {
1416       return;
1417     }
1418     HGraph* graph = GetBlock()->GetGraph();
1419     visited_blocks.emplace(graph->GetAllocator(),
1420                            graph->GetBlocks().size(),
1421                            /* expandable= */ false,
1422                            kArenaAllocMisc);
1423     ScopedArenaAllocator allocator(graph->GetArenaStack());
1424     ScopedArenaQueue<const HBasicBlock*> worklist(allocator.Adapter(kArenaAllocMisc));
1425     worklist.push(dominator_block);
1426 
1427     while (!worklist.empty()) {
1428       const HBasicBlock* current = worklist.front();
1429       worklist.pop();
1430       visited_blocks->SetBit(current->GetBlockId());
1431       for (HBasicBlock* dominated : current->GetDominatedBlocks()) {
1432         if (visited_blocks->IsBitSet(dominated->GetBlockId())) {
1433           continue;
1434         }
1435         worklist.push(dominated);
1436       }
1437     }
1438   };
1439 
1440   const HUseList<HInstruction*>& uses = GetUses();
1441   for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1442     HInstruction* user = it->GetUser();
1443     HBasicBlock* block = user->GetBlock();
1444     size_t index = it->GetIndex();
1445     // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1446     ++it;
1447     bool dominated = false;
1448     if (dominator_block == block) {
1449       // Trickier case, call the other methods.
1450       dominated =
1451           strictly_dominated ? dominator->StrictlyDominates(user) : dominator->Dominates(user);
1452     } else {
1453       // Block domination.
1454       maybe_generate_visited_blocks();
1455       dominated = visited_blocks->IsBitSet(block->GetBlockId());
1456     }
1457 
1458     if (dominated) {
1459       user->ReplaceInput(replacement, index);
1460     } else if (user->IsPhi() && !user->AsPhi()->IsCatchPhi()) {
1461       // If the input flows from a block dominated by `dominator`, we can replace it.
1462       // We do not perform this for catch phis as we don't have control flow support
1463       // for their inputs.
1464       HBasicBlock* predecessor = block->GetPredecessors()[index];
1465       maybe_generate_visited_blocks();
1466       if (visited_blocks->IsBitSet(predecessor->GetBlockId())) {
1467         user->ReplaceInput(replacement, index);
1468       }
1469     }
1470   }
1471 }
1472 
ReplaceEnvUsesDominatedBy(HInstruction * dominator,HInstruction * replacement)1473 void HInstruction::ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
1474   const HUseList<HEnvironment*>& uses = GetEnvUses();
1475   for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1476     HEnvironment* user = it->GetUser();
1477     size_t index = it->GetIndex();
1478     // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1479     ++it;
1480     if (dominator->StrictlyDominates(user->GetHolder())) {
1481       user->ReplaceInput(replacement, index);
1482     }
1483   }
1484 }
1485 
ReplaceInput(HInstruction * replacement,size_t index)1486 void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
1487   HUserRecord<HInstruction*> input_use = InputRecordAt(index);
1488   if (input_use.GetInstruction() == replacement) {
1489     // Nothing to do.
1490     return;
1491   }
1492   HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1493   // Note: fixup_end remains valid across splice_after().
1494   auto fixup_end =
1495       replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
1496   replacement->uses_.splice_after(replacement->uses_.before_begin(),
1497                                   input_use.GetInstruction()->uses_,
1498                                   before_use_node);
1499   replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
1500   input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1501 }
1502 
EnvironmentSize() const1503 size_t HInstruction::EnvironmentSize() const {
1504   return HasEnvironment() ? environment_->Size() : 0;
1505 }
1506 
AddInput(HInstruction * input)1507 void HVariableInputSizeInstruction::AddInput(HInstruction* input) {
1508   DCHECK(input->GetBlock() != nullptr);
1509   inputs_.push_back(HUserRecord<HInstruction*>(input));
1510   input->AddUseAt(this, inputs_.size() - 1);
1511 }
1512 
InsertInputAt(size_t index,HInstruction * input)1513 void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) {
1514   inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
1515   input->AddUseAt(this, index);
1516   // Update indexes in use nodes of inputs that have been pushed further back by the insert().
1517   for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) {
1518     DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u);
1519     inputs_[i].GetUseNode()->SetIndex(i);
1520   }
1521 }
1522 
RemoveInputAt(size_t index)1523 void HVariableInputSizeInstruction::RemoveInputAt(size_t index) {
1524   RemoveAsUserOfInput(index);
1525   inputs_.erase(inputs_.begin() + index);
1526   // Update indexes in use nodes of inputs that have been pulled forward by the erase().
1527   for (size_t i = index, e = inputs_.size(); i < e; ++i) {
1528     DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u);
1529     inputs_[i].GetUseNode()->SetIndex(i);
1530   }
1531 }
1532 
RemoveAllInputs()1533 void HVariableInputSizeInstruction::RemoveAllInputs() {
1534   RemoveAsUserOfAllInputs();
1535   DCHECK(!HasNonEnvironmentUses());
1536 
1537   inputs_.clear();
1538   DCHECK_EQ(0u, InputCount());
1539 }
1540 
RemoveConstructorFences(HInstruction * instruction)1541 size_t HConstructorFence::RemoveConstructorFences(HInstruction* instruction) {
1542   DCHECK(instruction->GetBlock() != nullptr);
1543   // Removing constructor fences only makes sense for instructions with an object return type.
1544   DCHECK_EQ(DataType::Type::kReference, instruction->GetType());
1545 
1546   // Return how many instructions were removed for statistic purposes.
1547   size_t remove_count = 0;
1548 
1549   // Efficient implementation that simultaneously (in one pass):
1550   // * Scans the uses list for all constructor fences.
1551   // * Deletes that constructor fence from the uses list of `instruction`.
1552   // * Deletes `instruction` from the constructor fence's inputs.
1553   // * Deletes the constructor fence if it now has 0 inputs.
1554 
1555   const HUseList<HInstruction*>& uses = instruction->GetUses();
1556   // Warning: Although this is "const", we might mutate the list when calling RemoveInputAt.
1557   for (auto it = uses.begin(), end = uses.end(); it != end; ) {
1558     const HUseListNode<HInstruction*>& use_node = *it;
1559     HInstruction* const use_instruction = use_node.GetUser();
1560 
1561     // Advance the iterator immediately once we fetch the use_node.
1562     // Warning: If the input is removed, the current iterator becomes invalid.
1563     ++it;
1564 
1565     if (use_instruction->IsConstructorFence()) {
1566       HConstructorFence* ctor_fence = use_instruction->AsConstructorFence();
1567       size_t input_index = use_node.GetIndex();
1568 
1569       // Process the candidate instruction for removal
1570       // from the graph.
1571 
1572       // Constructor fence instructions are never
1573       // used by other instructions.
1574       //
1575       // If we wanted to make this more generic, it
1576       // could be a runtime if statement.
1577       DCHECK(!ctor_fence->HasUses());
1578 
1579       // A constructor fence's return type is "kPrimVoid"
1580       // and therefore it can't have any environment uses.
1581       DCHECK(!ctor_fence->HasEnvironmentUses());
1582 
1583       // Remove the inputs first, otherwise removing the instruction
1584       // will try to remove its uses while we are already removing uses
1585       // and this operation will fail.
1586       DCHECK_EQ(instruction, ctor_fence->InputAt(input_index));
1587 
1588       // Removing the input will also remove the `use_node`.
1589       // (Do not look at `use_node` after this, it will be a dangling reference).
1590       ctor_fence->RemoveInputAt(input_index);
1591 
1592       // Once all inputs are removed, the fence is considered dead and
1593       // is removed.
1594       if (ctor_fence->InputCount() == 0u) {
1595         ctor_fence->GetBlock()->RemoveInstruction(ctor_fence);
1596         ++remove_count;
1597       }
1598     }
1599   }
1600 
1601   if (kIsDebugBuild) {
1602     // Post-condition checks:
1603     // * None of the uses of `instruction` are a constructor fence.
1604     // * The `instruction` itself did not get removed from a block.
1605     for (const HUseListNode<HInstruction*>& use_node : instruction->GetUses()) {
1606       CHECK(!use_node.GetUser()->IsConstructorFence());
1607     }
1608     CHECK(instruction->GetBlock() != nullptr);
1609   }
1610 
1611   return remove_count;
1612 }
1613 
Merge(HConstructorFence * other)1614 void HConstructorFence::Merge(HConstructorFence* other) {
1615   // Do not delete yourself from the graph.
1616   DCHECK(this != other);
1617   // Don't try to merge with an instruction not associated with a block.
1618   DCHECK(other->GetBlock() != nullptr);
1619   // A constructor fence's return type is "kPrimVoid"
1620   // and therefore it cannot have any environment uses.
1621   DCHECK(!other->HasEnvironmentUses());
1622 
1623   auto has_input = [](HInstruction* haystack, HInstruction* needle) {
1624     // Check if `haystack` has `needle` as any of its inputs.
1625     for (size_t input_count = 0; input_count < haystack->InputCount(); ++input_count) {
1626       if (haystack->InputAt(input_count) == needle) {
1627         return true;
1628       }
1629     }
1630     return false;
1631   };
1632 
1633   // Add any inputs from `other` into `this` if it wasn't already an input.
1634   for (size_t input_count = 0; input_count < other->InputCount(); ++input_count) {
1635     HInstruction* other_input = other->InputAt(input_count);
1636     if (!has_input(this, other_input)) {
1637       AddInput(other_input);
1638     }
1639   }
1640 
1641   other->GetBlock()->RemoveInstruction(other);
1642 }
1643 
GetAssociatedAllocation(bool ignore_inputs)1644 HInstruction* HConstructorFence::GetAssociatedAllocation(bool ignore_inputs) {
1645   HInstruction* new_instance_inst = GetPrevious();
1646   // Check if the immediately preceding instruction is a new-instance/new-array.
1647   // Otherwise this fence is for protecting final fields.
1648   if (new_instance_inst != nullptr &&
1649       (new_instance_inst->IsNewInstance() || new_instance_inst->IsNewArray())) {
1650     if (ignore_inputs) {
1651       // If inputs are ignored, simply check if the predecessor is
1652       // *any* HNewInstance/HNewArray.
1653       //
1654       // Inputs are normally only ignored for prepare_for_register_allocation,
1655       // at which point *any* prior HNewInstance/Array can be considered
1656       // associated.
1657       return new_instance_inst;
1658     } else {
1659       // Normal case: There must be exactly 1 input and the previous instruction
1660       // must be that input.
1661       if (InputCount() == 1u && InputAt(0) == new_instance_inst) {
1662         return new_instance_inst;
1663       }
1664     }
1665   }
1666   return nullptr;
1667 }
1668 
1669 #define DEFINE_ACCEPT(name, super)                                             \
1670 void H##name::Accept(HGraphVisitor* visitor) {                                 \
1671   visitor->Visit##name(this);                                                  \
1672 }
1673 
FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)1674 FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
1675 
1676 #undef DEFINE_ACCEPT
1677 
1678 void HGraphVisitor::VisitInsertionOrder() {
1679   for (HBasicBlock* block : graph_->GetActiveBlocks()) {
1680     VisitBasicBlock(block);
1681   }
1682 }
1683 
VisitReversePostOrder()1684 void HGraphVisitor::VisitReversePostOrder() {
1685   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
1686     VisitBasicBlock(block);
1687   }
1688 }
1689 
VisitBasicBlock(HBasicBlock * block)1690 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
1691   VisitPhis(block);
1692   VisitNonPhiInstructions(block);
1693 }
1694 
VisitPhis(HBasicBlock * block)1695 void HGraphVisitor::VisitPhis(HBasicBlock* block) {
1696   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1697     DCHECK(it.Current()->IsPhi());
1698     VisitPhi(it.Current()->AsPhi());
1699   }
1700 }
1701 
VisitNonPhiInstructions(HBasicBlock * block)1702 void HGraphVisitor::VisitNonPhiInstructions(HBasicBlock* block) {
1703   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1704     DCHECK(!it.Current()->IsPhi());
1705     it.Current()->Accept(this);
1706   }
1707 }
1708 
TryStaticEvaluation() const1709 HConstant* HTypeConversion::TryStaticEvaluation() const { return TryStaticEvaluation(GetInput()); }
1710 
TryStaticEvaluation(HInstruction * input) const1711 HConstant* HTypeConversion::TryStaticEvaluation(HInstruction* input) const {
1712   HGraph* graph = input->GetBlock()->GetGraph();
1713   if (input->IsIntConstant()) {
1714     int32_t value = input->AsIntConstant()->GetValue();
1715     switch (GetResultType()) {
1716       case DataType::Type::kInt8:
1717         return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc());
1718       case DataType::Type::kUint8:
1719         return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc());
1720       case DataType::Type::kInt16:
1721         return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc());
1722       case DataType::Type::kUint16:
1723         return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc());
1724       case DataType::Type::kInt64:
1725         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1726       case DataType::Type::kFloat32:
1727         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1728       case DataType::Type::kFloat64:
1729         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1730       default:
1731         return nullptr;
1732     }
1733   } else if (input->IsLongConstant()) {
1734     int64_t value = input->AsLongConstant()->GetValue();
1735     switch (GetResultType()) {
1736       case DataType::Type::kInt8:
1737         return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc());
1738       case DataType::Type::kUint8:
1739         return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc());
1740       case DataType::Type::kInt16:
1741         return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc());
1742       case DataType::Type::kUint16:
1743         return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc());
1744       case DataType::Type::kInt32:
1745         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1746       case DataType::Type::kFloat32:
1747         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1748       case DataType::Type::kFloat64:
1749         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1750       default:
1751         return nullptr;
1752     }
1753   } else if (input->IsFloatConstant()) {
1754     float value = input->AsFloatConstant()->GetValue();
1755     switch (GetResultType()) {
1756       case DataType::Type::kInt32:
1757         if (std::isnan(value))
1758           return graph->GetIntConstant(0, GetDexPc());
1759         if (value >= static_cast<float>(kPrimIntMax))
1760           return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1761         if (value <= kPrimIntMin)
1762           return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1763         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1764       case DataType::Type::kInt64:
1765         if (std::isnan(value))
1766           return graph->GetLongConstant(0, GetDexPc());
1767         if (value >= static_cast<float>(kPrimLongMax))
1768           return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1769         if (value <= kPrimLongMin)
1770           return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1771         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1772       case DataType::Type::kFloat64:
1773         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1774       default:
1775         return nullptr;
1776     }
1777   } else if (input->IsDoubleConstant()) {
1778     double value = input->AsDoubleConstant()->GetValue();
1779     switch (GetResultType()) {
1780       case DataType::Type::kInt32:
1781         if (std::isnan(value))
1782           return graph->GetIntConstant(0, GetDexPc());
1783         if (value >= kPrimIntMax)
1784           return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1785         if (value <= kPrimLongMin)
1786           return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1787         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1788       case DataType::Type::kInt64:
1789         if (std::isnan(value))
1790           return graph->GetLongConstant(0, GetDexPc());
1791         if (value >= static_cast<double>(kPrimLongMax))
1792           return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1793         if (value <= kPrimLongMin)
1794           return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1795         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1796       case DataType::Type::kFloat32:
1797         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1798       default:
1799         return nullptr;
1800     }
1801   }
1802   return nullptr;
1803 }
1804 
TryStaticEvaluation() const1805 HConstant* HUnaryOperation::TryStaticEvaluation() const { return TryStaticEvaluation(GetInput()); }
1806 
TryStaticEvaluation(HInstruction * input) const1807 HConstant* HUnaryOperation::TryStaticEvaluation(HInstruction* input) const {
1808   if (input->IsIntConstant()) {
1809     return Evaluate(input->AsIntConstant());
1810   } else if (input->IsLongConstant()) {
1811     return Evaluate(input->AsLongConstant());
1812   } else if (kEnableFloatingPointStaticEvaluation) {
1813     if (input->IsFloatConstant()) {
1814       return Evaluate(input->AsFloatConstant());
1815     } else if (input->IsDoubleConstant()) {
1816       return Evaluate(input->AsDoubleConstant());
1817     }
1818   }
1819   return nullptr;
1820 }
1821 
TryStaticEvaluation() const1822 HConstant* HBinaryOperation::TryStaticEvaluation() const {
1823   return TryStaticEvaluation(GetLeft(), GetRight());
1824 }
1825 
TryStaticEvaluation(HInstruction * left,HInstruction * right) const1826 HConstant* HBinaryOperation::TryStaticEvaluation(HInstruction* left, HInstruction* right) const {
1827   if (left->IsIntConstant() && right->IsIntConstant()) {
1828     return Evaluate(left->AsIntConstant(), right->AsIntConstant());
1829   } else if (left->IsLongConstant()) {
1830     if (right->IsIntConstant()) {
1831       // The binop(long, int) case is only valid for shifts and rotations.
1832       DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName();
1833       return Evaluate(left->AsLongConstant(), right->AsIntConstant());
1834     } else if (right->IsLongConstant()) {
1835       return Evaluate(left->AsLongConstant(), right->AsLongConstant());
1836     }
1837   } else if (left->IsNullConstant() && right->IsNullConstant()) {
1838     // The binop(null, null) case is only valid for equal and not-equal conditions.
1839     DCHECK(IsEqual() || IsNotEqual()) << DebugName();
1840     return Evaluate(left->AsNullConstant(), right->AsNullConstant());
1841   } else if (kEnableFloatingPointStaticEvaluation) {
1842     if (left->IsFloatConstant() && right->IsFloatConstant()) {
1843       return Evaluate(left->AsFloatConstant(), right->AsFloatConstant());
1844     } else if (left->IsDoubleConstant() && right->IsDoubleConstant()) {
1845       return Evaluate(left->AsDoubleConstant(), right->AsDoubleConstant());
1846     }
1847   }
1848   return nullptr;
1849 }
1850 
GetConstantRight() const1851 HConstant* HBinaryOperation::GetConstantRight() const {
1852   if (GetRight()->IsConstant()) {
1853     return GetRight()->AsConstant();
1854   } else if (IsCommutative() && GetLeft()->IsConstant()) {
1855     return GetLeft()->AsConstant();
1856   } else {
1857     return nullptr;
1858   }
1859 }
1860 
1861 // If `GetConstantRight()` returns one of the input, this returns the other
1862 // one. Otherwise it returns null.
GetLeastConstantLeft() const1863 HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
1864   HInstruction* most_constant_right = GetConstantRight();
1865   if (most_constant_right == nullptr) {
1866     return nullptr;
1867   } else if (most_constant_right == GetLeft()) {
1868     return GetRight();
1869   } else {
1870     return GetLeft();
1871   }
1872 }
1873 
operator <<(std::ostream & os,ComparisonBias rhs)1874 std::ostream& operator<<(std::ostream& os, ComparisonBias rhs) {
1875   // TODO: Replace with auto-generated operator<<.
1876   switch (rhs) {
1877     case ComparisonBias::kNoBias:
1878       return os << "none";
1879     case ComparisonBias::kGtBias:
1880       return os << "gt";
1881     case ComparisonBias::kLtBias:
1882       return os << "lt";
1883   }
1884 }
1885 
IsBeforeWhenDisregardMoves(HInstruction * instruction) const1886 bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
1887   return this == instruction->GetPreviousDisregardingMoves();
1888 }
1889 
Equals(const HInstruction * other) const1890 bool HInstruction::Equals(const HInstruction* other) const {
1891   if (GetKind() != other->GetKind()) return false;
1892   if (GetType() != other->GetType()) return false;
1893   if (!InstructionDataEquals(other)) return false;
1894   HConstInputsRef inputs = GetInputs();
1895   HConstInputsRef other_inputs = other->GetInputs();
1896   if (inputs.size() != other_inputs.size()) return false;
1897   for (size_t i = 0; i != inputs.size(); ++i) {
1898     if (inputs[i] != other_inputs[i]) return false;
1899   }
1900 
1901   DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
1902   return true;
1903 }
1904 
operator <<(std::ostream & os,HInstruction::InstructionKind rhs)1905 std::ostream& operator<<(std::ostream& os, HInstruction::InstructionKind rhs) {
1906 #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
1907   switch (rhs) {
1908     FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_CASE)
1909     default:
1910       os << "Unknown instruction kind " << static_cast<int>(rhs);
1911       break;
1912   }
1913 #undef DECLARE_CASE
1914   return os;
1915 }
1916 
operator <<(std::ostream & os,const HInstruction::NoArgsDump rhs)1917 std::ostream& operator<<(std::ostream& os, const HInstruction::NoArgsDump rhs) {
1918   // TODO Really this should be const but that would require const-ifying
1919   // graph-visualizer and HGraphVisitor which are tangled up everywhere.
1920   return const_cast<HInstruction*>(rhs.ins)->Dump(os, /* dump_args= */ false);
1921 }
1922 
operator <<(std::ostream & os,const HInstruction::ArgsDump rhs)1923 std::ostream& operator<<(std::ostream& os, const HInstruction::ArgsDump rhs) {
1924   // TODO Really this should be const but that would require const-ifying
1925   // graph-visualizer and HGraphVisitor which are tangled up everywhere.
1926   return const_cast<HInstruction*>(rhs.ins)->Dump(os, /* dump_args= */ true);
1927 }
1928 
operator <<(std::ostream & os,const HInstruction & rhs)1929 std::ostream& operator<<(std::ostream& os, const HInstruction& rhs) {
1930   return os << rhs.DumpWithoutArgs();
1931 }
1932 
operator <<(std::ostream & os,const HUseList<HInstruction * > & lst)1933 std::ostream& operator<<(std::ostream& os, const HUseList<HInstruction*>& lst) {
1934   os << "Instructions[";
1935   bool first = true;
1936   for (const auto& hi : lst) {
1937     if (!first) {
1938       os << ", ";
1939     }
1940     first = false;
1941     os << hi.GetUser()->DebugName() << "[id: " << hi.GetUser()->GetId()
1942        << ", blk: " << hi.GetUser()->GetBlock()->GetBlockId() << "]@" << hi.GetIndex();
1943   }
1944   os << "]";
1945   return os;
1946 }
1947 
operator <<(std::ostream & os,const HUseList<HEnvironment * > & lst)1948 std::ostream& operator<<(std::ostream& os, const HUseList<HEnvironment*>& lst) {
1949   os << "Environments[";
1950   bool first = true;
1951   for (const auto& hi : lst) {
1952     if (!first) {
1953       os << ", ";
1954     }
1955     first = false;
1956     os << *hi.GetUser()->GetHolder() << "@" << hi.GetIndex();
1957   }
1958   os << "]";
1959   return os;
1960 }
1961 
Dump(std::ostream & os,CodeGenerator * codegen,std::optional<std::reference_wrapper<const BlockNamer>> namer)1962 std::ostream& HGraph::Dump(std::ostream& os,
1963                            CodeGenerator* codegen,
1964                            std::optional<std::reference_wrapper<const BlockNamer>> namer) {
1965   HGraphVisualizer vis(&os, this, codegen, namer);
1966   vis.DumpGraphDebug();
1967   return os;
1968 }
1969 
MoveBefore(HInstruction * cursor,bool do_checks)1970 void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) {
1971   if (do_checks) {
1972     DCHECK(!IsPhi());
1973     DCHECK(!IsControlFlow());
1974     DCHECK(CanBeMoved() ||
1975            // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization.
1976            IsShouldDeoptimizeFlag());
1977     DCHECK(!cursor->IsPhi());
1978   }
1979 
1980   next_->previous_ = previous_;
1981   if (previous_ != nullptr) {
1982     previous_->next_ = next_;
1983   }
1984   if (block_->instructions_.first_instruction_ == this) {
1985     block_->instructions_.first_instruction_ = next_;
1986   }
1987   DCHECK_NE(block_->instructions_.last_instruction_, this);
1988 
1989   previous_ = cursor->previous_;
1990   if (previous_ != nullptr) {
1991     previous_->next_ = this;
1992   }
1993   next_ = cursor;
1994   cursor->previous_ = this;
1995   block_ = cursor->block_;
1996 
1997   if (block_->instructions_.first_instruction_ == cursor) {
1998     block_->instructions_.first_instruction_ = this;
1999   }
2000 }
2001 
MoveBeforeFirstUserAndOutOfLoops()2002 void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
2003   DCHECK(!CanThrow());
2004   DCHECK(!HasSideEffects());
2005   DCHECK(!HasEnvironmentUses());
2006   DCHECK(HasNonEnvironmentUses());
2007   DCHECK(!IsPhi());  // Makes no sense for Phi.
2008   DCHECK_EQ(InputCount(), 0u);
2009 
2010   // Find the target block.
2011   auto uses_it = GetUses().begin();
2012   auto uses_end = GetUses().end();
2013   HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
2014   ++uses_it;
2015   while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
2016     ++uses_it;
2017   }
2018   if (uses_it != uses_end) {
2019     // This instruction has uses in two or more blocks. Find the common dominator.
2020     CommonDominator finder(target_block);
2021     for (; uses_it != uses_end; ++uses_it) {
2022       finder.Update(uses_it->GetUser()->GetBlock());
2023     }
2024     target_block = finder.Get();
2025     DCHECK(target_block != nullptr);
2026   }
2027   // Move to the first dominator not in a loop.
2028   while (target_block->IsInLoop()) {
2029     target_block = target_block->GetDominator();
2030     DCHECK(target_block != nullptr);
2031   }
2032 
2033   // Find insertion position.
2034   HInstruction* insert_pos = nullptr;
2035   for (const HUseListNode<HInstruction*>& use : GetUses()) {
2036     if (use.GetUser()->GetBlock() == target_block &&
2037         (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
2038       insert_pos = use.GetUser();
2039     }
2040   }
2041   if (insert_pos == nullptr) {
2042     // No user in `target_block`, insert before the control flow instruction.
2043     insert_pos = target_block->GetLastInstruction();
2044     DCHECK(insert_pos->IsControlFlow());
2045     // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
2046     if (insert_pos->IsIf()) {
2047       HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
2048       if (if_input == insert_pos->GetPrevious()) {
2049         insert_pos = if_input;
2050       }
2051     }
2052   }
2053   MoveBefore(insert_pos);
2054 }
2055 
SplitBefore(HInstruction * cursor,bool require_graph_not_in_ssa_form)2056 HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor, bool require_graph_not_in_ssa_form) {
2057   DCHECK_IMPLIES(require_graph_not_in_ssa_form, !graph_->IsInSsaForm())
2058       << "Support for SSA form not implemented.";
2059   DCHECK_EQ(cursor->GetBlock(), this);
2060 
2061   HBasicBlock* new_block =
2062       new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
2063   new_block->instructions_.first_instruction_ = cursor;
2064   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
2065   instructions_.last_instruction_ = cursor->previous_;
2066   if (cursor->previous_ == nullptr) {
2067     instructions_.first_instruction_ = nullptr;
2068   } else {
2069     cursor->previous_->next_ = nullptr;
2070     cursor->previous_ = nullptr;
2071   }
2072 
2073   new_block->instructions_.SetBlockOfInstructions(new_block);
2074   AddInstruction(new (GetGraph()->GetAllocator()) HGoto(new_block->GetDexPc()));
2075 
2076   for (HBasicBlock* successor : GetSuccessors()) {
2077     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
2078   }
2079   new_block->successors_.swap(successors_);
2080   DCHECK(successors_.empty());
2081   AddSuccessor(new_block);
2082 
2083   GetGraph()->AddBlock(new_block);
2084   return new_block;
2085 }
2086 
CreateImmediateDominator()2087 HBasicBlock* HBasicBlock::CreateImmediateDominator() {
2088   DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
2089   DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
2090 
2091   HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
2092 
2093   for (HBasicBlock* predecessor : GetPredecessors()) {
2094     predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
2095   }
2096   new_block->predecessors_.swap(predecessors_);
2097   DCHECK(predecessors_.empty());
2098   AddPredecessor(new_block);
2099 
2100   GetGraph()->AddBlock(new_block);
2101   return new_block;
2102 }
2103 
SplitBeforeForInlining(HInstruction * cursor)2104 HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
2105   DCHECK_EQ(cursor->GetBlock(), this);
2106 
2107   HBasicBlock* new_block =
2108       new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
2109   new_block->instructions_.first_instruction_ = cursor;
2110   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
2111   instructions_.last_instruction_ = cursor->previous_;
2112   if (cursor->previous_ == nullptr) {
2113     instructions_.first_instruction_ = nullptr;
2114   } else {
2115     cursor->previous_->next_ = nullptr;
2116     cursor->previous_ = nullptr;
2117   }
2118 
2119   new_block->instructions_.SetBlockOfInstructions(new_block);
2120 
2121   for (HBasicBlock* successor : GetSuccessors()) {
2122     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
2123   }
2124   new_block->successors_.swap(successors_);
2125   DCHECK(successors_.empty());
2126 
2127   for (HBasicBlock* dominated : GetDominatedBlocks()) {
2128     dominated->dominator_ = new_block;
2129   }
2130   new_block->dominated_blocks_.swap(dominated_blocks_);
2131   DCHECK(dominated_blocks_.empty());
2132   return new_block;
2133 }
2134 
SplitAfterForInlining(HInstruction * cursor)2135 HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
2136   DCHECK(!cursor->IsControlFlow());
2137   DCHECK_NE(instructions_.last_instruction_, cursor);
2138   DCHECK_EQ(cursor->GetBlock(), this);
2139 
2140   HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
2141   new_block->instructions_.first_instruction_ = cursor->GetNext();
2142   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
2143   cursor->next_->previous_ = nullptr;
2144   cursor->next_ = nullptr;
2145   instructions_.last_instruction_ = cursor;
2146 
2147   new_block->instructions_.SetBlockOfInstructions(new_block);
2148   for (HBasicBlock* successor : GetSuccessors()) {
2149     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
2150   }
2151   new_block->successors_.swap(successors_);
2152   DCHECK(successors_.empty());
2153 
2154   for (HBasicBlock* dominated : GetDominatedBlocks()) {
2155     dominated->dominator_ = new_block;
2156   }
2157   new_block->dominated_blocks_.swap(dominated_blocks_);
2158   DCHECK(dominated_blocks_.empty());
2159   return new_block;
2160 }
2161 
ComputeTryEntryOfSuccessors() const2162 const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
2163   if (EndsWithTryBoundary()) {
2164     HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
2165     if (try_boundary->IsEntry()) {
2166       DCHECK(!IsTryBlock());
2167       return try_boundary;
2168     } else {
2169       DCHECK(IsTryBlock());
2170       DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
2171       return nullptr;
2172     }
2173   } else if (IsTryBlock()) {
2174     return &try_catch_information_->GetTryEntry();
2175   } else {
2176     return nullptr;
2177   }
2178 }
2179 
HasThrowingInstructions() const2180 bool HBasicBlock::HasThrowingInstructions() const {
2181   for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
2182     if (it.Current()->CanThrow()) {
2183       return true;
2184     }
2185   }
2186   return false;
2187 }
2188 
HasOnlyOneInstruction(const HBasicBlock & block)2189 static bool HasOnlyOneInstruction(const HBasicBlock& block) {
2190   return block.GetPhis().IsEmpty()
2191       && !block.GetInstructions().IsEmpty()
2192       && block.GetFirstInstruction() == block.GetLastInstruction();
2193 }
2194 
IsSingleGoto() const2195 bool HBasicBlock::IsSingleGoto() const {
2196   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
2197 }
2198 
IsSingleReturn() const2199 bool HBasicBlock::IsSingleReturn() const {
2200   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsReturn();
2201 }
2202 
IsSingleReturnOrReturnVoidAllowingPhis() const2203 bool HBasicBlock::IsSingleReturnOrReturnVoidAllowingPhis() const {
2204   return (GetFirstInstruction() == GetLastInstruction()) &&
2205          (GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid());
2206 }
2207 
IsSingleTryBoundary() const2208 bool HBasicBlock::IsSingleTryBoundary() const {
2209   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
2210 }
2211 
EndsWithControlFlowInstruction() const2212 bool HBasicBlock::EndsWithControlFlowInstruction() const {
2213   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
2214 }
2215 
EndsWithReturn() const2216 bool HBasicBlock::EndsWithReturn() const {
2217   return !GetInstructions().IsEmpty() &&
2218       (GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid());
2219 }
2220 
EndsWithIf() const2221 bool HBasicBlock::EndsWithIf() const {
2222   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
2223 }
2224 
EndsWithTryBoundary() const2225 bool HBasicBlock::EndsWithTryBoundary() const {
2226   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
2227 }
2228 
HasSinglePhi() const2229 bool HBasicBlock::HasSinglePhi() const {
2230   return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
2231 }
2232 
GetNormalSuccessors() const2233 ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
2234   if (EndsWithTryBoundary()) {
2235     // The normal-flow successor of HTryBoundary is always stored at index zero.
2236     DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
2237     return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
2238   } else {
2239     // All successors of blocks not ending with TryBoundary are normal.
2240     return ArrayRef<HBasicBlock* const>(successors_);
2241   }
2242 }
2243 
GetExceptionalSuccessors() const2244 ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
2245   if (EndsWithTryBoundary()) {
2246     return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
2247   } else {
2248     // Blocks not ending with TryBoundary do not have exceptional successors.
2249     return ArrayRef<HBasicBlock* const>();
2250   }
2251 }
2252 
HasSameExceptionHandlersAs(const HTryBoundary & other) const2253 bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
2254   ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
2255   ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
2256 
2257   size_t length = handlers1.size();
2258   if (length != handlers2.size()) {
2259     return false;
2260   }
2261 
2262   // Exception handlers need to be stored in the same order.
2263   for (size_t i = 0; i < length; ++i) {
2264     if (handlers1[i] != handlers2[i]) {
2265       return false;
2266     }
2267   }
2268   return true;
2269 }
2270 
CountSize() const2271 size_t HInstructionList::CountSize() const {
2272   size_t size = 0;
2273   HInstruction* current = first_instruction_;
2274   for (; current != nullptr; current = current->GetNext()) {
2275     size++;
2276   }
2277   return size;
2278 }
2279 
SetBlockOfInstructions(HBasicBlock * block) const2280 void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
2281   for (HInstruction* current = first_instruction_;
2282        current != nullptr;
2283        current = current->GetNext()) {
2284     current->SetBlock(block);
2285   }
2286 }
2287 
AddAfter(HInstruction * cursor,const HInstructionList & instruction_list)2288 void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
2289   DCHECK(Contains(cursor));
2290   if (!instruction_list.IsEmpty()) {
2291     if (cursor == last_instruction_) {
2292       last_instruction_ = instruction_list.last_instruction_;
2293     } else {
2294       cursor->next_->previous_ = instruction_list.last_instruction_;
2295     }
2296     instruction_list.last_instruction_->next_ = cursor->next_;
2297     cursor->next_ = instruction_list.first_instruction_;
2298     instruction_list.first_instruction_->previous_ = cursor;
2299   }
2300 }
2301 
AddBefore(HInstruction * cursor,const HInstructionList & instruction_list)2302 void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
2303   DCHECK(Contains(cursor));
2304   if (!instruction_list.IsEmpty()) {
2305     if (cursor == first_instruction_) {
2306       first_instruction_ = instruction_list.first_instruction_;
2307     } else {
2308       cursor->previous_->next_ = instruction_list.first_instruction_;
2309     }
2310     instruction_list.last_instruction_->next_ = cursor;
2311     instruction_list.first_instruction_->previous_ = cursor->previous_;
2312     cursor->previous_ = instruction_list.last_instruction_;
2313   }
2314 }
2315 
Add(const HInstructionList & instruction_list)2316 void HInstructionList::Add(const HInstructionList& instruction_list) {
2317   if (IsEmpty()) {
2318     first_instruction_ = instruction_list.first_instruction_;
2319     last_instruction_ = instruction_list.last_instruction_;
2320   } else {
2321     AddAfter(last_instruction_, instruction_list);
2322   }
2323 }
2324 
DisconnectAndDelete()2325 void HBasicBlock::DisconnectAndDelete() {
2326   // Dominators must be removed after all the blocks they dominate. This way
2327   // a loop header is removed last, a requirement for correct loop information
2328   // iteration.
2329   DCHECK(dominated_blocks_.empty());
2330 
2331   // The following steps gradually remove the block from all its dependants in
2332   // post order (b/27683071).
2333 
2334   // (1) Store a basic block that we'll use in step (5) to find loops to be updated.
2335   //     We need to do this before step (4) which destroys the predecessor list.
2336   HBasicBlock* loop_update_start = this;
2337   if (IsLoopHeader()) {
2338     HLoopInformation* loop_info = GetLoopInformation();
2339     // All other blocks in this loop should have been removed because the header
2340     // was their dominator.
2341     // Note that we do not remove `this` from `loop_info` as it is unreachable.
2342     DCHECK(!loop_info->IsIrreducible());
2343     DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
2344     DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
2345     loop_update_start = loop_info->GetPreHeader();
2346   }
2347 
2348   // (2) Disconnect the block from its successors and update their phis.
2349   DisconnectFromSuccessors();
2350 
2351   // (3) Remove instructions and phis. Instructions should have no remaining uses
2352   //     except in catch phis. If an instruction is used by a catch phi at `index`,
2353   //     remove `index`-th input of all phis in the catch block since they are
2354   //     guaranteed dead. Note that we may miss dead inputs this way but the
2355   //     graph will always remain consistent.
2356   RemoveCatchPhiUsesAndInstruction(/* building_dominator_tree = */ false);
2357 
2358   // (4) Disconnect the block from its predecessors and update their
2359   //     control-flow instructions.
2360   for (HBasicBlock* predecessor : predecessors_) {
2361     // We should not see any back edges as they would have been removed by step (3).
2362     DCHECK_IMPLIES(IsInLoop(), !GetLoopInformation()->IsBackEdge(*predecessor));
2363 
2364     HInstruction* last_instruction = predecessor->GetLastInstruction();
2365     if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
2366       // This block is the only normal-flow successor of the TryBoundary which
2367       // makes `predecessor` dead. Since DCE removes blocks in post order,
2368       // exception handlers of this TryBoundary were already visited and any
2369       // remaining handlers therefore must be live. We remove `predecessor` from
2370       // their list of predecessors.
2371       DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
2372       while (predecessor->GetSuccessors().size() > 1) {
2373         HBasicBlock* handler = predecessor->GetSuccessors()[1];
2374         DCHECK(handler->IsCatchBlock());
2375         predecessor->RemoveSuccessor(handler);
2376         handler->RemovePredecessor(predecessor);
2377       }
2378     }
2379 
2380     predecessor->RemoveSuccessor(this);
2381     uint32_t num_pred_successors = predecessor->GetSuccessors().size();
2382     if (num_pred_successors == 1u) {
2383       // If we have one successor after removing one, then we must have
2384       // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
2385       // successor. Replace those with a HGoto.
2386       DCHECK(last_instruction->IsIf() ||
2387              last_instruction->IsPackedSwitch() ||
2388              (last_instruction->IsTryBoundary() && IsCatchBlock()));
2389       predecessor->RemoveInstruction(last_instruction);
2390       predecessor->AddInstruction(new (graph_->GetAllocator()) HGoto(last_instruction->GetDexPc()));
2391     } else if (num_pred_successors == 0u) {
2392       // The predecessor has no remaining successors and therefore must be dead.
2393       // We deliberately leave it without a control-flow instruction so that the
2394       // GraphChecker fails unless it is not removed during the pass too.
2395       predecessor->RemoveInstruction(last_instruction);
2396     } else {
2397       // There are multiple successors left. The removed block might be a successor
2398       // of a PackedSwitch which will be completely removed (perhaps replaced with
2399       // a Goto), or we are deleting a catch block from a TryBoundary. In either
2400       // case, leave `last_instruction` as is for now.
2401       DCHECK(last_instruction->IsPackedSwitch() ||
2402              (last_instruction->IsTryBoundary() && IsCatchBlock()));
2403     }
2404   }
2405   predecessors_.clear();
2406 
2407   // (5) Remove the block from all loops it is included in. Skip the inner-most
2408   //     loop if this is the loop header (see definition of `loop_update_start`)
2409   //     because the loop header's predecessor list has been destroyed in step (4).
2410   for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
2411     HLoopInformation* loop_info = it.Current();
2412     loop_info->Remove(this);
2413     if (loop_info->IsBackEdge(*this)) {
2414       // If this was the last back edge of the loop, we deliberately leave the
2415       // loop in an inconsistent state and will fail GraphChecker unless the
2416       // entire loop is removed during the pass.
2417       loop_info->RemoveBackEdge(this);
2418     }
2419   }
2420 
2421   // (6) Disconnect from the dominator.
2422   dominator_->RemoveDominatedBlock(this);
2423   SetDominator(nullptr);
2424 
2425   // (7) Delete from the graph, update reverse post order.
2426   graph_->DeleteDeadEmptyBlock(this);
2427   SetGraph(nullptr);
2428 }
2429 
DisconnectFromSuccessors(const ArenaBitVector * visited)2430 void HBasicBlock::DisconnectFromSuccessors(const ArenaBitVector* visited) {
2431   for (HBasicBlock* successor : successors_) {
2432     // Delete this block from the list of predecessors.
2433     size_t this_index = successor->GetPredecessorIndexOf(this);
2434     successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
2435 
2436     if (visited != nullptr && !visited->IsBitSet(successor->GetBlockId())) {
2437       // `successor` itself is dead. Therefore, there is no need to update its phis.
2438       continue;
2439     }
2440 
2441     DCHECK(!successor->predecessors_.empty());
2442 
2443     // Remove this block's entries in the successor's phis. Skips exceptional
2444     // successors because catch phi inputs do not correspond to predecessor
2445     // blocks but throwing instructions. They are removed in `RemoveCatchPhiUses`.
2446     if (!successor->IsCatchBlock()) {
2447       if (successor->predecessors_.size() == 1u) {
2448         // The successor has just one predecessor left. Replace phis with the only
2449         // remaining input.
2450         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2451           HPhi* phi = phi_it.Current()->AsPhi();
2452           phi->ReplaceWith(phi->InputAt(1 - this_index));
2453           successor->RemovePhi(phi);
2454         }
2455       } else {
2456         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2457           phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
2458         }
2459       }
2460     }
2461   }
2462   successors_.clear();
2463 }
2464 
RemoveCatchPhiUsesAndInstruction(bool building_dominator_tree)2465 void HBasicBlock::RemoveCatchPhiUsesAndInstruction(bool building_dominator_tree) {
2466   for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
2467     HInstruction* insn = it.Current();
2468     RemoveCatchPhiUsesOfDeadInstruction(insn);
2469 
2470     // If we are building the dominator tree, we removed all input records previously.
2471     // `RemoveInstruction` will try to remove them again but that's not something we support and we
2472     // will crash. We check here since we won't be checking that in RemoveInstruction.
2473     if (building_dominator_tree) {
2474       DCHECK(insn->GetUses().empty());
2475       DCHECK(insn->GetEnvUses().empty());
2476     }
2477     RemoveInstruction(insn, /* ensure_safety= */ !building_dominator_tree);
2478   }
2479   for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
2480     HPhi* insn = it.Current()->AsPhi();
2481     RemoveCatchPhiUsesOfDeadInstruction(insn);
2482 
2483     // If we are building the dominator tree, we removed all input records previously.
2484     // `RemovePhi` will try to remove them again but that's not something we support and we
2485     // will crash. We check here since we won't be checking that in RemovePhi.
2486     if (building_dominator_tree) {
2487       DCHECK(insn->GetUses().empty());
2488       DCHECK(insn->GetEnvUses().empty());
2489     }
2490     RemovePhi(insn, /* ensure_safety= */ !building_dominator_tree);
2491   }
2492 }
2493 
MergeInstructionsWith(HBasicBlock * other)2494 void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) {
2495   DCHECK(EndsWithControlFlowInstruction());
2496   RemoveInstruction(GetLastInstruction());
2497   instructions_.Add(other->GetInstructions());
2498   other->instructions_.SetBlockOfInstructions(this);
2499   other->instructions_.Clear();
2500 }
2501 
MergeWith(HBasicBlock * other)2502 void HBasicBlock::MergeWith(HBasicBlock* other) {
2503   DCHECK_EQ(GetGraph(), other->GetGraph());
2504   DCHECK(ContainsElement(dominated_blocks_, other));
2505   DCHECK_EQ(GetSingleSuccessor(), other);
2506   DCHECK_EQ(other->GetSinglePredecessor(), this);
2507   DCHECK(other->GetPhis().IsEmpty());
2508 
2509   // Move instructions from `other` to `this`.
2510   MergeInstructionsWith(other);
2511 
2512   // Remove `other` from the loops it is included in.
2513   for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
2514     HLoopInformation* loop_info = it.Current();
2515     loop_info->Remove(other);
2516     if (loop_info->IsBackEdge(*other)) {
2517       loop_info->ReplaceBackEdge(other, this);
2518     }
2519   }
2520 
2521   // Update links to the successors of `other`.
2522   successors_.clear();
2523   for (HBasicBlock* successor : other->GetSuccessors()) {
2524     successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2525   }
2526   successors_.swap(other->successors_);
2527   DCHECK(other->successors_.empty());
2528 
2529   // Update the dominator tree.
2530   RemoveDominatedBlock(other);
2531   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2532     dominated->SetDominator(this);
2533   }
2534   dominated_blocks_.insert(
2535       dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2536   other->dominated_blocks_.clear();
2537   other->dominator_ = nullptr;
2538 
2539   // Clear the list of predecessors of `other` in preparation of deleting it.
2540   other->predecessors_.clear();
2541 
2542   // Delete `other` from the graph. The function updates reverse post order.
2543   graph_->DeleteDeadEmptyBlock(other);
2544   other->SetGraph(nullptr);
2545 }
2546 
MergeWithInlined(HBasicBlock * other)2547 void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
2548   DCHECK_NE(GetGraph(), other->GetGraph());
2549   DCHECK(GetDominatedBlocks().empty());
2550   DCHECK(GetSuccessors().empty());
2551   DCHECK(!EndsWithControlFlowInstruction());
2552   DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
2553   DCHECK(other->GetPhis().IsEmpty());
2554   DCHECK(!other->IsInLoop());
2555 
2556   // Move instructions from `other` to `this`.
2557   instructions_.Add(other->GetInstructions());
2558   other->instructions_.SetBlockOfInstructions(this);
2559 
2560   // Update links to the successors of `other`.
2561   successors_.clear();
2562   for (HBasicBlock* successor : other->GetSuccessors()) {
2563     successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2564   }
2565   successors_.swap(other->successors_);
2566   DCHECK(other->successors_.empty());
2567 
2568   // Update the dominator tree.
2569   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2570     dominated->SetDominator(this);
2571   }
2572   dominated_blocks_.insert(
2573       dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2574   other->dominated_blocks_.clear();
2575   other->dominator_ = nullptr;
2576   other->graph_ = nullptr;
2577 }
2578 
ReplaceWith(HBasicBlock * other)2579 void HBasicBlock::ReplaceWith(HBasicBlock* other) {
2580   while (!GetPredecessors().empty()) {
2581     HBasicBlock* predecessor = GetPredecessors()[0];
2582     predecessor->ReplaceSuccessor(this, other);
2583   }
2584   while (!GetSuccessors().empty()) {
2585     HBasicBlock* successor = GetSuccessors()[0];
2586     successor->ReplacePredecessor(this, other);
2587   }
2588   for (HBasicBlock* dominated : GetDominatedBlocks()) {
2589     other->AddDominatedBlock(dominated);
2590   }
2591   GetDominator()->ReplaceDominatedBlock(this, other);
2592   other->SetDominator(GetDominator());
2593   dominator_ = nullptr;
2594   graph_ = nullptr;
2595 }
2596 
DeleteDeadEmptyBlock(HBasicBlock * block)2597 void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
2598   DCHECK_EQ(block->GetGraph(), this);
2599   DCHECK(block->GetSuccessors().empty());
2600   DCHECK(block->GetPredecessors().empty());
2601   DCHECK(block->GetDominatedBlocks().empty());
2602   DCHECK(block->GetDominator() == nullptr);
2603   DCHECK(block->GetInstructions().IsEmpty());
2604   DCHECK(block->GetPhis().IsEmpty());
2605 
2606   if (block->IsExitBlock()) {
2607     SetExitBlock(nullptr);
2608   }
2609 
2610   RemoveElement(reverse_post_order_, block);
2611   blocks_[block->GetBlockId()] = nullptr;
2612   block->SetGraph(nullptr);
2613 }
2614 
UpdateLoopAndTryInformationOfNewBlock(HBasicBlock * block,HBasicBlock * reference,bool replace_if_back_edge,bool has_more_specific_try_catch_info)2615 void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
2616                                                    HBasicBlock* reference,
2617                                                    bool replace_if_back_edge,
2618                                                    bool has_more_specific_try_catch_info) {
2619   if (block->IsLoopHeader()) {
2620     // Clear the information of which blocks are contained in that loop. Since the
2621     // information is stored as a bit vector based on block ids, we have to update
2622     // it, as those block ids were specific to the callee graph and we are now adding
2623     // these blocks to the caller graph.
2624     block->GetLoopInformation()->ClearAllBlocks();
2625   }
2626 
2627   // If not already in a loop, update the loop information.
2628   if (!block->IsInLoop()) {
2629     block->SetLoopInformation(reference->GetLoopInformation());
2630   }
2631 
2632   // If the block is in a loop, update all its outward loops.
2633   HLoopInformation* loop_info = block->GetLoopInformation();
2634   if (loop_info != nullptr) {
2635     for (HLoopInformationOutwardIterator loop_it(*block);
2636          !loop_it.Done();
2637          loop_it.Advance()) {
2638       loop_it.Current()->Add(block);
2639     }
2640     if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
2641       loop_info->ReplaceBackEdge(reference, block);
2642     }
2643   }
2644 
2645   DCHECK_IMPLIES(has_more_specific_try_catch_info, !reference->IsTryBlock())
2646       << "We don't allow to inline try catches inside of other try blocks.";
2647 
2648   // Update the TryCatchInformation, if we are not inlining a try catch.
2649   if (!has_more_specific_try_catch_info) {
2650     // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
2651     TryCatchInformation* try_catch_info =
2652         reference->IsTryBlock() ? reference->GetTryCatchInformation() : nullptr;
2653     block->SetTryCatchInformation(try_catch_info);
2654   }
2655 }
2656 
InlineInto(HGraph * outer_graph,HInvoke * invoke)2657 HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
2658   DCHECK(HasExitBlock()) << "Unimplemented scenario";
2659   // Update the environments in this graph to have the invoke's environment
2660   // as parent.
2661   {
2662     // Skip the entry block, we do not need to update the entry's suspend check.
2663     for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) {
2664       for (HInstructionIterator instr_it(block->GetInstructions());
2665            !instr_it.Done();
2666            instr_it.Advance()) {
2667         HInstruction* current = instr_it.Current();
2668         if (current->NeedsEnvironment()) {
2669           DCHECK(current->HasEnvironment());
2670           current->GetEnvironment()->SetAndCopyParentChain(
2671               outer_graph->GetAllocator(), invoke->GetEnvironment());
2672         }
2673       }
2674     }
2675   }
2676   outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs());
2677 
2678   if (HasBoundsChecks()) {
2679     outer_graph->SetHasBoundsChecks(true);
2680   }
2681   if (HasLoops()) {
2682     outer_graph->SetHasLoops(true);
2683   }
2684   if (HasIrreducibleLoops()) {
2685     outer_graph->SetHasIrreducibleLoops(true);
2686   }
2687   if (HasDirectCriticalNativeCall()) {
2688     outer_graph->SetHasDirectCriticalNativeCall(true);
2689   }
2690   if (HasTryCatch()) {
2691     outer_graph->SetHasTryCatch(true);
2692   }
2693   if (HasMonitorOperations()) {
2694     outer_graph->SetHasMonitorOperations(true);
2695   }
2696   if (HasTraditionalSIMD()) {
2697     outer_graph->SetHasTraditionalSIMD(true);
2698   }
2699   if (HasPredicatedSIMD()) {
2700     outer_graph->SetHasPredicatedSIMD(true);
2701   }
2702   if (HasAlwaysThrowingInvokes()) {
2703     outer_graph->SetHasAlwaysThrowingInvokes(true);
2704   }
2705 
2706   HInstruction* return_value = nullptr;
2707   if (GetBlocks().size() == 3) {
2708     // Inliner already made sure we don't inline methods that always throw.
2709     DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow());
2710     // Simple case of an entry block, a body block, and an exit block.
2711     // Put the body block's instruction into `invoke`'s block.
2712     HBasicBlock* body = GetBlocks()[1];
2713     DCHECK(GetBlocks()[0]->IsEntryBlock());
2714     DCHECK(GetBlocks()[2]->IsExitBlock());
2715     DCHECK(!body->IsExitBlock());
2716     DCHECK(!body->IsInLoop());
2717     HInstruction* last = body->GetLastInstruction();
2718 
2719     // Note that we add instructions before the invoke only to simplify polymorphic inlining.
2720     invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
2721     body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
2722 
2723     // Replace the invoke with the return value of the inlined graph.
2724     if (last->IsReturn()) {
2725       return_value = last->InputAt(0);
2726     } else {
2727       DCHECK(last->IsReturnVoid());
2728     }
2729 
2730     invoke->GetBlock()->RemoveInstruction(last);
2731   } else {
2732     // Need to inline multiple blocks. We split `invoke`'s block
2733     // into two blocks, merge the first block of the inlined graph into
2734     // the first half, and replace the exit block of the inlined graph
2735     // with the second half.
2736     ArenaAllocator* allocator = outer_graph->GetAllocator();
2737     HBasicBlock* at = invoke->GetBlock();
2738     // Note that we split before the invoke only to simplify polymorphic inlining.
2739     HBasicBlock* to = at->SplitBeforeForInlining(invoke);
2740 
2741     HBasicBlock* first = entry_block_->GetSuccessors()[0];
2742     DCHECK(!first->IsInLoop());
2743     DCHECK(first->GetTryCatchInformation() == nullptr);
2744     at->MergeWithInlined(first);
2745     exit_block_->ReplaceWith(to);
2746 
2747     // Update the meta information surrounding blocks:
2748     // (1) the graph they are now in,
2749     // (2) the reverse post order of that graph,
2750     // (3) their potential loop information, inner and outer,
2751     // (4) try block membership.
2752     // Note that we do not need to update catch phi inputs because they
2753     // correspond to the register file of the outer method which the inlinee
2754     // cannot modify.
2755 
2756     // We don't add the entry block, the exit block, and the first block, which
2757     // has been merged with `at`.
2758     static constexpr int kNumberOfSkippedBlocksInCallee = 3;
2759 
2760     // We add the `to` block.
2761     static constexpr int kNumberOfNewBlocksInCaller = 1;
2762     size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
2763         + kNumberOfNewBlocksInCaller;
2764 
2765     // Find the location of `at` in the outer graph's reverse post order. The new
2766     // blocks will be added after it.
2767     size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
2768     MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
2769 
2770     // Do a reverse post order of the blocks in the callee and do (1), (2), (3)
2771     // and (4) to the blocks that apply.
2772     for (HBasicBlock* current : GetReversePostOrder()) {
2773       if (current != exit_block_ && current != entry_block_ && current != first) {
2774         DCHECK(current->GetGraph() == this);
2775         current->SetGraph(outer_graph);
2776         outer_graph->AddBlock(current);
2777         outer_graph->reverse_post_order_[++index_of_at] = current;
2778         UpdateLoopAndTryInformationOfNewBlock(current,
2779                                               at,
2780                                               /* replace_if_back_edge= */ false,
2781                                               current->GetTryCatchInformation() != nullptr);
2782       }
2783     }
2784 
2785     // Do (1), (2), (3) and (4) to `to`.
2786     to->SetGraph(outer_graph);
2787     outer_graph->AddBlock(to);
2788     outer_graph->reverse_post_order_[++index_of_at] = to;
2789     // Only `to` can become a back edge, as the inlined blocks
2790     // are predecessors of `to`.
2791     UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge= */ true);
2792 
2793     // Update all predecessors of the exit block (now the `to` block)
2794     // to not `HReturn` but `HGoto` instead. Special case throwing blocks
2795     // to now get the outer graph exit block as successor.
2796     HPhi* return_value_phi = nullptr;
2797     bool rerun_dominance = false;
2798     bool rerun_loop_analysis = false;
2799     for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) {
2800       HBasicBlock* predecessor = to->GetPredecessors()[pred];
2801       HInstruction* last = predecessor->GetLastInstruction();
2802 
2803       // At this point we might either have:
2804       // A) Return/ReturnVoid/Throw as the last instruction, or
2805       // B) `Return/ReturnVoid/Throw->TryBoundary` as the last instruction chain
2806 
2807       const bool saw_try_boundary = last->IsTryBoundary();
2808       if (saw_try_boundary) {
2809         DCHECK(predecessor->IsSingleTryBoundary());
2810         DCHECK(!last->AsTryBoundary()->IsEntry());
2811         predecessor = predecessor->GetSinglePredecessor();
2812         last = predecessor->GetLastInstruction();
2813       }
2814 
2815       if (last->IsThrow()) {
2816         if (at->IsTryBlock()) {
2817           DCHECK(!saw_try_boundary) << "We don't support inlining of try blocks into try blocks.";
2818           // Create a TryBoundary of kind:exit and point it to the Exit block.
2819           HBasicBlock* new_block = outer_graph->SplitEdge(predecessor, to);
2820           new_block->AddInstruction(
2821               new (allocator) HTryBoundary(HTryBoundary::BoundaryKind::kExit, last->GetDexPc()));
2822           new_block->ReplaceSuccessor(to, outer_graph->GetExitBlock());
2823 
2824           // Copy information from the predecessor.
2825           new_block->SetLoopInformation(predecessor->GetLoopInformation());
2826           TryCatchInformation* try_catch_info = predecessor->GetTryCatchInformation();
2827           new_block->SetTryCatchInformation(try_catch_info);
2828           for (HBasicBlock* xhandler :
2829                try_catch_info->GetTryEntry().GetBlock()->GetExceptionalSuccessors()) {
2830             new_block->AddSuccessor(xhandler);
2831           }
2832           DCHECK(try_catch_info->GetTryEntry().HasSameExceptionHandlersAs(
2833               *new_block->GetLastInstruction()->AsTryBoundary()));
2834         } else {
2835           // We either have `Throw->TryBoundary` or `Throw`. We want to point the whole chain to the
2836           // exit, so we recompute `predecessor`
2837           predecessor = to->GetPredecessors()[pred];
2838           predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock());
2839         }
2840 
2841         --pred;
2842         // We need to re-run dominance information, as the exit block now has
2843         // a new predecessor and potential new dominator.
2844         // TODO(solanes): See if it's worth it to hand-modify the domination chain instead of
2845         // rerunning the dominance for the whole graph.
2846         rerun_dominance = true;
2847         if (predecessor->GetLoopInformation() != nullptr) {
2848           // The loop information might have changed e.g. `predecessor` might not be in a loop
2849           // anymore. We only do this if `predecessor` has loop information as it is impossible for
2850           // predecessor to end up in a loop if it wasn't in one before.
2851           rerun_loop_analysis = true;
2852         }
2853       } else {
2854         if (last->IsReturnVoid()) {
2855           DCHECK(return_value == nullptr);
2856           DCHECK(return_value_phi == nullptr);
2857         } else {
2858           DCHECK(last->IsReturn());
2859           if (return_value_phi != nullptr) {
2860             return_value_phi->AddInput(last->InputAt(0));
2861           } else if (return_value == nullptr) {
2862             return_value = last->InputAt(0);
2863           } else {
2864             // There will be multiple returns.
2865             return_value_phi = new (allocator) HPhi(
2866                 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
2867             to->AddPhi(return_value_phi);
2868             return_value_phi->AddInput(return_value);
2869             return_value_phi->AddInput(last->InputAt(0));
2870             return_value = return_value_phi;
2871           }
2872         }
2873         predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
2874         predecessor->RemoveInstruction(last);
2875 
2876         if (saw_try_boundary) {
2877           predecessor = to->GetPredecessors()[pred];
2878           DCHECK(predecessor->EndsWithTryBoundary());
2879           DCHECK_EQ(predecessor->GetNormalSuccessors().size(), 1u);
2880           if (predecessor->GetSuccessors()[0]->GetPredecessors().size() > 1) {
2881             outer_graph->SplitCriticalEdge(predecessor, to);
2882             rerun_dominance = true;
2883             if (predecessor->GetLoopInformation() != nullptr) {
2884               rerun_loop_analysis = true;
2885             }
2886           }
2887         }
2888       }
2889     }
2890     if (rerun_loop_analysis) {
2891       outer_graph->RecomputeDominatorTree();
2892     } else if (rerun_dominance) {
2893       outer_graph->ClearDominanceInformation();
2894       outer_graph->ComputeDominanceInformation();
2895     }
2896   }
2897 
2898   // Walk over the entry block and:
2899   // - Move constants from the entry block to the outer_graph's entry block,
2900   // - Replace HParameterValue instructions with their real value.
2901   // - Remove suspend checks, that hold an environment.
2902   // We must do this after the other blocks have been inlined, otherwise ids of
2903   // constants could overlap with the inner graph.
2904   size_t parameter_index = 0;
2905   for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
2906     HInstruction* current = it.Current();
2907     HInstruction* replacement = nullptr;
2908     if (current->IsNullConstant()) {
2909       replacement = outer_graph->GetNullConstant(current->GetDexPc());
2910     } else if (current->IsIntConstant()) {
2911       replacement = outer_graph->GetIntConstant(
2912           current->AsIntConstant()->GetValue(), current->GetDexPc());
2913     } else if (current->IsLongConstant()) {
2914       replacement = outer_graph->GetLongConstant(
2915           current->AsLongConstant()->GetValue(), current->GetDexPc());
2916     } else if (current->IsFloatConstant()) {
2917       replacement = outer_graph->GetFloatConstant(
2918           current->AsFloatConstant()->GetValue(), current->GetDexPc());
2919     } else if (current->IsDoubleConstant()) {
2920       replacement = outer_graph->GetDoubleConstant(
2921           current->AsDoubleConstant()->GetValue(), current->GetDexPc());
2922     } else if (current->IsParameterValue()) {
2923       if (kIsDebugBuild &&
2924           invoke->IsInvokeStaticOrDirect() &&
2925           invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
2926         // Ensure we do not use the last input of `invoke`, as it
2927         // contains a clinit check which is not an actual argument.
2928         size_t last_input_index = invoke->InputCount() - 1;
2929         DCHECK(parameter_index != last_input_index);
2930       }
2931       replacement = invoke->InputAt(parameter_index++);
2932     } else if (current->IsCurrentMethod()) {
2933       replacement = outer_graph->GetCurrentMethod();
2934     } else {
2935       // It is OK to ignore MethodEntryHook for inlined functions.
2936       // In debug mode we don't inline and in release mode method
2937       // tracing is best effort so OK to ignore them.
2938       DCHECK(current->IsGoto() || current->IsSuspendCheck() || current->IsMethodEntryHook());
2939       entry_block_->RemoveInstruction(current);
2940     }
2941     if (replacement != nullptr) {
2942       current->ReplaceWith(replacement);
2943       // If the current is the return value then we need to update the latter.
2944       if (current == return_value) {
2945         DCHECK_EQ(entry_block_, return_value->GetBlock());
2946         return_value = replacement;
2947       }
2948     }
2949   }
2950 
2951   return return_value;
2952 }
2953 
2954 /*
2955  * Loop will be transformed to:
2956  *       old_pre_header
2957  *             |
2958  *          if_block
2959  *           /    \
2960  *  true_block   false_block
2961  *           \    /
2962  *       new_pre_header
2963  *             |
2964  *           header
2965  */
TransformLoopHeaderForBCE(HBasicBlock * header)2966 void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
2967   DCHECK(header->IsLoopHeader());
2968   HBasicBlock* old_pre_header = header->GetDominator();
2969 
2970   // Need extra block to avoid critical edge.
2971   HBasicBlock* if_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2972   HBasicBlock* true_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2973   HBasicBlock* false_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2974   HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
2975   AddBlock(if_block);
2976   AddBlock(true_block);
2977   AddBlock(false_block);
2978   AddBlock(new_pre_header);
2979 
2980   header->ReplacePredecessor(old_pre_header, new_pre_header);
2981   old_pre_header->successors_.clear();
2982   old_pre_header->dominated_blocks_.clear();
2983 
2984   old_pre_header->AddSuccessor(if_block);
2985   if_block->AddSuccessor(true_block);  // True successor
2986   if_block->AddSuccessor(false_block);  // False successor
2987   true_block->AddSuccessor(new_pre_header);
2988   false_block->AddSuccessor(new_pre_header);
2989 
2990   old_pre_header->dominated_blocks_.push_back(if_block);
2991   if_block->SetDominator(old_pre_header);
2992   if_block->dominated_blocks_.push_back(true_block);
2993   true_block->SetDominator(if_block);
2994   if_block->dominated_blocks_.push_back(false_block);
2995   false_block->SetDominator(if_block);
2996   if_block->dominated_blocks_.push_back(new_pre_header);
2997   new_pre_header->SetDominator(if_block);
2998   new_pre_header->dominated_blocks_.push_back(header);
2999   header->SetDominator(new_pre_header);
3000 
3001   // Fix reverse post order.
3002   size_t index_of_header = IndexOfElement(reverse_post_order_, header);
3003   MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
3004   reverse_post_order_[index_of_header++] = if_block;
3005   reverse_post_order_[index_of_header++] = true_block;
3006   reverse_post_order_[index_of_header++] = false_block;
3007   reverse_post_order_[index_of_header++] = new_pre_header;
3008 
3009   // The pre_header can never be a back edge of a loop.
3010   DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
3011          !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
3012   UpdateLoopAndTryInformationOfNewBlock(
3013       if_block, old_pre_header, /* replace_if_back_edge= */ false);
3014   UpdateLoopAndTryInformationOfNewBlock(
3015       true_block, old_pre_header, /* replace_if_back_edge= */ false);
3016   UpdateLoopAndTryInformationOfNewBlock(
3017       false_block, old_pre_header, /* replace_if_back_edge= */ false);
3018   UpdateLoopAndTryInformationOfNewBlock(
3019       new_pre_header, old_pre_header, /* replace_if_back_edge= */ false);
3020 }
3021 
3022 // Creates a new two-basic-block loop and inserts it between original loop header and
3023 // original loop exit; also adjusts dominators, post order and new LoopInformation.
TransformLoopForVectorization(HBasicBlock * header,HBasicBlock * body,HBasicBlock * exit)3024 HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header,
3025                                                    HBasicBlock* body,
3026                                                    HBasicBlock* exit) {
3027   DCHECK(header->IsLoopHeader());
3028   HLoopInformation* loop = header->GetLoopInformation();
3029 
3030   // Add new loop blocks.
3031   HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
3032   HBasicBlock* new_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
3033   HBasicBlock* new_body = new (allocator_) HBasicBlock(this, header->GetDexPc());
3034   AddBlock(new_pre_header);
3035   AddBlock(new_header);
3036   AddBlock(new_body);
3037 
3038   // Set up control flow.
3039   header->ReplaceSuccessor(exit, new_pre_header);
3040   new_pre_header->AddSuccessor(new_header);
3041   new_header->AddSuccessor(exit);
3042   new_header->AddSuccessor(new_body);
3043   new_body->AddSuccessor(new_header);
3044 
3045   // Set up dominators.
3046   header->ReplaceDominatedBlock(exit, new_pre_header);
3047   new_pre_header->SetDominator(header);
3048   new_pre_header->dominated_blocks_.push_back(new_header);
3049   new_header->SetDominator(new_pre_header);
3050   new_header->dominated_blocks_.push_back(new_body);
3051   new_body->SetDominator(new_header);
3052   new_header->dominated_blocks_.push_back(exit);
3053   exit->SetDominator(new_header);
3054 
3055   // Fix reverse post order.
3056   size_t index_of_header = IndexOfElement(reverse_post_order_, header);
3057   MakeRoomFor(&reverse_post_order_, 2, index_of_header);
3058   reverse_post_order_[++index_of_header] = new_pre_header;
3059   reverse_post_order_[++index_of_header] = new_header;
3060   size_t index_of_body = IndexOfElement(reverse_post_order_, body);
3061   MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1);
3062   reverse_post_order_[index_of_body] = new_body;
3063 
3064   // Add gotos and suspend check (client must add conditional in header).
3065   new_pre_header->AddInstruction(new (allocator_) HGoto());
3066   HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(header->GetDexPc());
3067   new_header->AddInstruction(suspend_check);
3068   new_body->AddInstruction(new (allocator_) HGoto());
3069   DCHECK(loop->GetSuspendCheck() != nullptr);
3070   suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment(
3071       loop->GetSuspendCheck()->GetEnvironment(), header);
3072 
3073   // Update loop information.
3074   new_header->AddBackEdge(new_body);
3075   new_header->GetLoopInformation()->SetSuspendCheck(suspend_check);
3076   new_header->GetLoopInformation()->Populate();
3077   new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation());  // outward
3078   HLoopInformationOutwardIterator it(*new_header);
3079   for (it.Advance(); !it.Done(); it.Advance()) {
3080     it.Current()->Add(new_pre_header);
3081     it.Current()->Add(new_header);
3082     it.Current()->Add(new_body);
3083   }
3084   return new_pre_header;
3085 }
3086 
CheckAgainstUpperBound(ReferenceTypeInfo rti,ReferenceTypeInfo upper_bound_rti)3087 static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti)
3088     REQUIRES_SHARED(Locks::mutator_lock_) {
3089   if (rti.IsValid()) {
3090     DCHECK(upper_bound_rti.IsSupertypeOf(rti))
3091         << " upper_bound_rti: " << upper_bound_rti
3092         << " rti: " << rti;
3093     DCHECK_IMPLIES(upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes(), rti.IsExact())
3094         << " upper_bound_rti: " << upper_bound_rti
3095         << " rti: " << rti;
3096   }
3097 }
3098 
SetReferenceTypeInfo(ReferenceTypeInfo rti)3099 void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
3100   if (kIsDebugBuild) {
3101     DCHECK_EQ(GetType(), DataType::Type::kReference);
3102     ScopedObjectAccess soa(Thread::Current());
3103     DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
3104     if (IsBoundType()) {
3105       // Having the test here spares us from making the method virtual just for
3106       // the sake of a DCHECK.
3107       CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
3108     }
3109   }
3110   reference_type_handle_ = rti.GetTypeHandle();
3111   SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
3112 }
3113 
SetReferenceTypeInfoIfValid(ReferenceTypeInfo rti)3114 void HInstruction::SetReferenceTypeInfoIfValid(ReferenceTypeInfo rti) {
3115   if (rti.IsValid()) {
3116     SetReferenceTypeInfo(rti);
3117   }
3118 }
3119 
InstructionDataEquals(const HInstruction * other) const3120 bool HBoundType::InstructionDataEquals(const HInstruction* other) const {
3121   const HBoundType* other_bt = other->AsBoundType();
3122   ScopedObjectAccess soa(Thread::Current());
3123   return GetUpperBound().IsEqual(other_bt->GetUpperBound()) &&
3124          GetUpperCanBeNull() == other_bt->GetUpperCanBeNull() &&
3125          CanBeNull() == other_bt->CanBeNull();
3126 }
3127 
SetUpperBound(const ReferenceTypeInfo & upper_bound,bool can_be_null)3128 void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
3129   if (kIsDebugBuild) {
3130     ScopedObjectAccess soa(Thread::Current());
3131     DCHECK(upper_bound.IsValid());
3132     DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
3133     CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
3134   }
3135   upper_bound_ = upper_bound;
3136   SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
3137 }
3138 
Create(TypeHandle type_handle,bool is_exact)3139 ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) {
3140   if (kIsDebugBuild) {
3141     ScopedObjectAccess soa(Thread::Current());
3142     DCHECK(IsValidHandle(type_handle));
3143     if (!is_exact) {
3144       DCHECK(!type_handle->CannotBeAssignedFromOtherTypes())
3145           << "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed";
3146     }
3147   }
3148   return ReferenceTypeInfo(type_handle, is_exact);
3149 }
3150 
operator <<(std::ostream & os,const ReferenceTypeInfo & rhs)3151 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
3152   ScopedObjectAccess soa(Thread::Current());
3153   os << "["
3154      << " is_valid=" << rhs.IsValid()
3155      << " type=" << (!rhs.IsValid() ? "?" : mirror::Class::PrettyClass(rhs.GetTypeHandle().Get()))
3156      << " is_exact=" << rhs.IsExact()
3157      << " ]";
3158   return os;
3159 }
3160 
HasAnyEnvironmentUseBefore(HInstruction * other)3161 bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
3162   // For now, assume that instructions in different blocks may use the
3163   // environment.
3164   // TODO: Use the control flow to decide if this is true.
3165   if (GetBlock() != other->GetBlock()) {
3166     return true;
3167   }
3168 
3169   // We know that we are in the same block. Walk from 'this' to 'other',
3170   // checking to see if there is any instruction with an environment.
3171   HInstruction* current = this;
3172   for (; current != other && current != nullptr; current = current->GetNext()) {
3173     // This is a conservative check, as the instruction result may not be in
3174     // the referenced environment.
3175     if (current->HasEnvironment()) {
3176       return true;
3177     }
3178   }
3179 
3180   // We should have been called with 'this' before 'other' in the block.
3181   // Just confirm this.
3182   DCHECK(current != nullptr);
3183   return false;
3184 }
3185 
SetIntrinsic(Intrinsics intrinsic,IntrinsicNeedsEnvironment needs_env,IntrinsicSideEffects side_effects,IntrinsicExceptions exceptions)3186 void HInvoke::SetIntrinsic(Intrinsics intrinsic,
3187                            IntrinsicNeedsEnvironment needs_env,
3188                            IntrinsicSideEffects side_effects,
3189                            IntrinsicExceptions exceptions) {
3190   intrinsic_ = intrinsic;
3191   IntrinsicOptimizations opt(this);
3192 
3193   // Adjust method's side effects from intrinsic table.
3194   switch (side_effects) {
3195     case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
3196     case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
3197     case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
3198     case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
3199   }
3200 
3201   if (needs_env == kNoEnvironment) {
3202     opt.SetDoesNotNeedEnvironment();
3203   } else {
3204     // If we need an environment, that means there will be a call, which can trigger GC.
3205     SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
3206   }
3207   // Adjust method's exception status from intrinsic table.
3208   SetCanThrow(exceptions == kCanThrow);
3209 }
3210 
IsStringAlloc() const3211 bool HNewInstance::IsStringAlloc() const {
3212   return GetEntrypoint() == kQuickAllocStringObject;
3213 }
3214 
NeedsEnvironment() const3215 bool HInvoke::NeedsEnvironment() const {
3216   if (!IsIntrinsic()) {
3217     return true;
3218   }
3219   IntrinsicOptimizations opt(*this);
3220   return !opt.GetDoesNotNeedEnvironment();
3221 }
3222 
GetDexFileForPcRelativeDexCache() const3223 const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const {
3224   ArtMethod* caller = GetEnvironment()->GetMethod();
3225   ScopedObjectAccess soa(Thread::Current());
3226   // `caller` is null for a top-level graph representing a method whose declaring
3227   // class was not resolved.
3228   return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile();
3229 }
3230 
operator <<(std::ostream & os,HInvokeStaticOrDirect::ClinitCheckRequirement rhs)3231 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
3232   switch (rhs) {
3233     case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
3234       return os << "explicit";
3235     case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
3236       return os << "implicit";
3237     case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
3238       return os << "none";
3239   }
3240 }
3241 
CanBeNull() const3242 bool HInvokeStaticOrDirect::CanBeNull() const {
3243   if (GetType() != DataType::Type::kReference || IsStringInit()) {
3244     return false;
3245   }
3246   switch (GetIntrinsic()) {
3247 #define DEFINE_BOXED_CASE(name, unused1, unused2, unused3, unused4) \
3248     case Intrinsics::k##name##ValueOf: \
3249       return false;
3250     BOXED_TYPES(DEFINE_BOXED_CASE)
3251 #undef DEFINE_BOXED_CASE
3252     default:
3253       return true;
3254   }
3255 }
3256 
CanDoImplicitNullCheckOn(HInstruction * obj) const3257 bool HInvokeVirtual::CanDoImplicitNullCheckOn(HInstruction* obj) const {
3258   if (obj != InputAt(0)) {
3259     return false;
3260   }
3261   switch (GetIntrinsic()) {
3262     case Intrinsics::kNone:
3263       return true;
3264     case Intrinsics::kReferenceRefersTo:
3265       return true;
3266     default:
3267       // TODO: Add implicit null checks in more intrinsics.
3268       return false;
3269   }
3270 }
3271 
InstructionDataEquals(const HInstruction * other) const3272 bool HLoadClass::InstructionDataEquals(const HInstruction* other) const {
3273   const HLoadClass* other_load_class = other->AsLoadClass();
3274   // TODO: To allow GVN for HLoadClass from different dex files, we should compare the type
3275   // names rather than type indexes. However, we shall also have to re-think the hash code.
3276   if (type_index_ != other_load_class->type_index_ ||
3277       GetPackedFields() != other_load_class->GetPackedFields()) {
3278     return false;
3279   }
3280   switch (GetLoadKind()) {
3281     case LoadKind::kBootImageRelRo:
3282     case LoadKind::kJitBootImageAddress:
3283     case LoadKind::kJitTableAddress: {
3284       ScopedObjectAccess soa(Thread::Current());
3285       return GetClass().Get() == other_load_class->GetClass().Get();
3286     }
3287     default:
3288       DCHECK(HasTypeReference(GetLoadKind()));
3289       return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile());
3290   }
3291 }
3292 
InstructionDataEquals(const HInstruction * other) const3293 bool HLoadString::InstructionDataEquals(const HInstruction* other) const {
3294   const HLoadString* other_load_string = other->AsLoadString();
3295   // TODO: To allow GVN for HLoadString from different dex files, we should compare the strings
3296   // rather than their indexes. However, we shall also have to re-think the hash code.
3297   if (string_index_ != other_load_string->string_index_ ||
3298       GetPackedFields() != other_load_string->GetPackedFields()) {
3299     return false;
3300   }
3301   switch (GetLoadKind()) {
3302     case LoadKind::kBootImageRelRo:
3303     case LoadKind::kJitBootImageAddress:
3304     case LoadKind::kJitTableAddress: {
3305       ScopedObjectAccess soa(Thread::Current());
3306       return GetString().Get() == other_load_string->GetString().Get();
3307     }
3308     default:
3309       return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
3310   }
3311 }
3312 
RemoveEnvironmentUsers()3313 void HInstruction::RemoveEnvironmentUsers() {
3314   for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
3315     HEnvironment* user = use.GetUser();
3316     user->SetRawEnvAt(use.GetIndex(), nullptr);
3317   }
3318   env_uses_.clear();
3319 }
3320 
ReplaceInstrOrPhiByClone(HInstruction * instr)3321 HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr) {
3322   HInstruction* clone = instr->Clone(instr->GetBlock()->GetGraph()->GetAllocator());
3323   HBasicBlock* block = instr->GetBlock();
3324 
3325   if (instr->IsPhi()) {
3326     HPhi* phi = instr->AsPhi();
3327     DCHECK(!phi->HasEnvironment());
3328     HPhi* phi_clone = clone->AsPhi();
3329     block->ReplaceAndRemovePhiWith(phi, phi_clone);
3330   } else {
3331     block->ReplaceAndRemoveInstructionWith(instr, clone);
3332     if (instr->HasEnvironment()) {
3333       clone->CopyEnvironmentFrom(instr->GetEnvironment());
3334       HLoopInformation* loop_info = block->GetLoopInformation();
3335       if (instr->IsSuspendCheck() && loop_info != nullptr) {
3336         loop_info->SetSuspendCheck(clone->AsSuspendCheck());
3337       }
3338     }
3339   }
3340   return clone;
3341 }
3342 
3343 // Returns an instruction with the opposite Boolean value from 'cond'.
InsertOppositeCondition(HInstruction * cond,HInstruction * cursor)3344 HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) {
3345   ArenaAllocator* allocator = GetAllocator();
3346 
3347   if (cond->IsCondition() &&
3348       !DataType::IsFloatingPointType(cond->InputAt(0)->GetType())) {
3349     // Can't reverse floating point conditions.  We have to use HBooleanNot in that case.
3350     HInstruction* lhs = cond->InputAt(0);
3351     HInstruction* rhs = cond->InputAt(1);
3352     HInstruction* replacement = nullptr;
3353     switch (cond->AsCondition()->GetOppositeCondition()) {  // get *opposite*
3354       case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break;
3355       case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break;
3356       case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break;
3357       case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break;
3358       case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break;
3359       case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break;
3360       case kCondB:  replacement = new (allocator) HBelow(lhs, rhs); break;
3361       case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break;
3362       case kCondA:  replacement = new (allocator) HAbove(lhs, rhs); break;
3363       case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break;
3364       default:
3365         LOG(FATAL) << "Unexpected condition";
3366         UNREACHABLE();
3367     }
3368     cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
3369     return replacement;
3370   } else if (cond->IsIntConstant()) {
3371     HIntConstant* int_const = cond->AsIntConstant();
3372     if (int_const->IsFalse()) {
3373       return GetIntConstant(1);
3374     } else {
3375       DCHECK(int_const->IsTrue()) << int_const->GetValue();
3376       return GetIntConstant(0);
3377     }
3378   } else {
3379     HInstruction* replacement = new (allocator) HBooleanNot(cond);
3380     cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
3381     return replacement;
3382   }
3383 }
3384 
operator <<(std::ostream & os,const MoveOperands & rhs)3385 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
3386   os << "["
3387      << " source=" << rhs.GetSource()
3388      << " destination=" << rhs.GetDestination()
3389      << " type=" << rhs.GetType()
3390      << " instruction=";
3391   if (rhs.GetInstruction() != nullptr) {
3392     os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
3393   } else {
3394     os << "null";
3395   }
3396   os << " ]";
3397   return os;
3398 }
3399 
operator <<(std::ostream & os,TypeCheckKind rhs)3400 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
3401   switch (rhs) {
3402     case TypeCheckKind::kUnresolvedCheck:
3403       return os << "unresolved_check";
3404     case TypeCheckKind::kExactCheck:
3405       return os << "exact_check";
3406     case TypeCheckKind::kClassHierarchyCheck:
3407       return os << "class_hierarchy_check";
3408     case TypeCheckKind::kAbstractClassCheck:
3409       return os << "abstract_class_check";
3410     case TypeCheckKind::kInterfaceCheck:
3411       return os << "interface_check";
3412     case TypeCheckKind::kArrayObjectCheck:
3413       return os << "array_object_check";
3414     case TypeCheckKind::kArrayCheck:
3415       return os << "array_check";
3416     case TypeCheckKind::kBitstringCheck:
3417       return os << "bitstring_check";
3418   }
3419 }
3420 
3421 // Check that intrinsic enum values fit within space set aside in ArtMethod modifier flags.
3422 #define CHECK_INTRINSICS_ENUM_VALUES(Name, InvokeType, _, SideEffects, Exceptions, ...) \
3423   static_assert( \
3424     static_cast<uint32_t>(Intrinsics::k ## Name) <= (kAccIntrinsicBits >> CTZ(kAccIntrinsicBits)), \
3425     "Instrinsics enumeration space overflow.");
ART_INTRINSICS_LIST(CHECK_INTRINSICS_ENUM_VALUES)3426   ART_INTRINSICS_LIST(CHECK_INTRINSICS_ENUM_VALUES)
3427 #undef CHECK_INTRINSICS_ENUM_VALUES
3428 
3429 // Function that returns whether an intrinsic needs an environment or not.
3430 static inline IntrinsicNeedsEnvironment NeedsEnvironmentIntrinsic(Intrinsics i) {
3431   switch (i) {
3432     case Intrinsics::kNone:
3433       return kNeedsEnvironment;  // Non-sensical for intrinsic.
3434 #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \
3435     case Intrinsics::k ## Name: \
3436       return NeedsEnv;
3437       ART_INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3438 #undef OPTIMIZING_INTRINSICS
3439   }
3440   return kNeedsEnvironment;
3441 }
3442 
3443 // Function that returns whether an intrinsic has side effects.
GetSideEffectsIntrinsic(Intrinsics i)3444 static inline IntrinsicSideEffects GetSideEffectsIntrinsic(Intrinsics i) {
3445   switch (i) {
3446     case Intrinsics::kNone:
3447       return kAllSideEffects;
3448 #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \
3449     case Intrinsics::k ## Name: \
3450       return SideEffects;
3451       ART_INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3452 #undef OPTIMIZING_INTRINSICS
3453   }
3454   return kAllSideEffects;
3455 }
3456 
3457 // Function that returns whether an intrinsic can throw exceptions.
GetExceptionsIntrinsic(Intrinsics i)3458 static inline IntrinsicExceptions GetExceptionsIntrinsic(Intrinsics i) {
3459   switch (i) {
3460     case Intrinsics::kNone:
3461       return kCanThrow;
3462 #define OPTIMIZING_INTRINSICS(Name, InvokeType, NeedsEnv, SideEffects, Exceptions, ...) \
3463     case Intrinsics::k ## Name: \
3464       return Exceptions;
3465       ART_INTRINSICS_LIST(OPTIMIZING_INTRINSICS)
3466 #undef OPTIMIZING_INTRINSICS
3467   }
3468   return kCanThrow;
3469 }
3470 
SetResolvedMethod(ArtMethod * method,bool enable_intrinsic_opt)3471 void HInvoke::SetResolvedMethod(ArtMethod* method, bool enable_intrinsic_opt) {
3472   if (method != nullptr && method->IsIntrinsic() && enable_intrinsic_opt) {
3473     Intrinsics intrinsic = static_cast<Intrinsics>(method->GetIntrinsic());
3474     SetIntrinsic(intrinsic,
3475                  NeedsEnvironmentIntrinsic(intrinsic),
3476                  GetSideEffectsIntrinsic(intrinsic),
3477                  GetExceptionsIntrinsic(intrinsic));
3478   }
3479   resolved_method_ = method;
3480 }
3481 
IsGEZero(HInstruction * instruction)3482 bool IsGEZero(HInstruction* instruction) {
3483   DCHECK(instruction != nullptr);
3484   if (instruction->IsArrayLength()) {
3485     return true;
3486   } else if (instruction->IsMin()) {
3487     // Instruction MIN(>=0, >=0) is >= 0.
3488     return IsGEZero(instruction->InputAt(0)) &&
3489            IsGEZero(instruction->InputAt(1));
3490   } else if (instruction->IsAbs()) {
3491     // Instruction ABS(>=0) is >= 0.
3492     // NOTE: ABS(minint) = minint prevents assuming
3493     //       >= 0 without looking at the argument.
3494     return IsGEZero(instruction->InputAt(0));
3495   }
3496   int64_t value = -1;
3497   return IsInt64AndGet(instruction, &value) && value >= 0;
3498 }
3499 
3500 }  // namespace art
3501