1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "AudioResamplerDyn"
18 //#define LOG_NDEBUG 0
19 
20 #include <malloc.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <dlfcn.h>
24 #include <math.h>
25 
26 #include <cutils/compiler.h>
27 #include <cutils/properties.h>
28 #include <utils/Log.h>
29 #include <audio_utils/primitives.h>
30 
31 #include "AudioResamplerFirOps.h" // USE_NEON, USE_SSE and USE_INLINE_ASSEMBLY defined here
32 #include "AudioResamplerFirProcess.h"
33 #include "AudioResamplerFirProcessNeon.h"
34 #include "AudioResamplerFirProcessSSE.h"
35 #include "AudioResamplerFirGen.h" // requires math.h
36 #include "AudioResamplerDyn.h"
37 
38 //#define DEBUG_RESAMPLER
39 
40 // use this for our buffer alignment.  Should be at least 32 bytes.
41 constexpr size_t CACHE_LINE_SIZE = 64;
42 
43 namespace android {
44 
45 /*
46  * InBuffer is a type agnostic input buffer.
47  *
48  * Layout of the state buffer for halfNumCoefs=8.
49  *
50  * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
51  *  S            I                                R
52  *
53  * S = mState
54  * I = mImpulse
55  * R = mRingFull
56  * p = past samples, convoluted with the (p)ositive side of sinc()
57  * n = future samples, convoluted with the (n)egative side of sinc()
58  * r = extra space for implementing the ring buffer
59  */
60 
61 template<typename TC, typename TI, typename TO>
InBuffer()62 AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
63     : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
64 {
65 }
66 
67 template<typename TC, typename TI, typename TO>
~InBuffer()68 AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
69 {
70     init();
71 }
72 
73 template<typename TC, typename TI, typename TO>
init()74 void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
75 {
76     free(mState);
77     mState = NULL;
78     mImpulse = NULL;
79     mRingFull = NULL;
80     mStateCount = 0;
81 }
82 
83 // resizes the state buffer to accommodate the appropriate filter length
84 template<typename TC, typename TI, typename TO>
resize(int CHANNELS,int halfNumCoefs)85 void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
86 {
87     // calculate desired state size
88     size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
89 
90     // check if buffer needs resizing
91     if (mState
92             && stateCount == mStateCount
93             && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
94         return;
95     }
96 
97     // create new buffer
98     TI* state = NULL;
99     (void)posix_memalign(
100             reinterpret_cast<void **>(&state),
101             CACHE_LINE_SIZE /* alignment */,
102             stateCount * sizeof(*state));
103     memset(state, 0, stateCount*sizeof(*state));
104 
105     // attempt to preserve state
106     if (mState) {
107         TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
108         TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
109         TI* dst = state;
110 
111         if (srcLo < mState) {
112             dst += mState-srcLo;
113             srcLo = mState;
114         }
115         if (srcHi > mState + mStateCount) {
116             srcHi = mState + mStateCount;
117         }
118         memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
119         free(mState);
120     }
121 
122     // set class member vars
123     mState = state;
124     mStateCount = stateCount;
125     mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
126     mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
127 }
128 
129 // copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
130 template<typename TC, typename TI, typename TO>
131 template<int CHANNELS>
readAgain(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)132 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
133         const TI* const in, const size_t inputIndex)
134 {
135     TI* head = impulse + halfNumCoefs*CHANNELS;
136     for (size_t i=0 ; i<CHANNELS ; i++) {
137         head[i] = in[inputIndex*CHANNELS + i];
138     }
139 }
140 
141 // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
142 template<typename TC, typename TI, typename TO>
143 template<int CHANNELS>
readAdvance(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)144 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
145         const TI* const in, const size_t inputIndex)
146 {
147     impulse += CHANNELS;
148 
149     if (CC_UNLIKELY(impulse >= mRingFull)) {
150         const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
151         memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
152         impulse -= shiftDown;
153     }
154     readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
155 }
156 
157 template<typename TC, typename TI, typename TO>
reset()158 void AudioResamplerDyn<TC, TI, TO>::InBuffer::reset()
159 {
160     // clear resampler state
161     if (mState != nullptr) {
162         memset(mState, 0, mStateCount * sizeof(TI));
163     }
164 }
165 
166 template<typename TC, typename TI, typename TO>
set(int L,int halfNumCoefs,int inSampleRate,int outSampleRate)167 void AudioResamplerDyn<TC, TI, TO>::Constants::set(
168         int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
169 {
170     int bits = 0;
171     int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
172             static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
173     for (int i=lscale; i; ++bits, i>>=1)
174         ;
175     mL = L;
176     mShift = kNumPhaseBits - bits;
177     mHalfNumCoefs = halfNumCoefs;
178 }
179 
180 template<typename TC, typename TI, typename TO>
AudioResamplerDyn(int inChannelCount,int32_t sampleRate,src_quality quality)181 AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
182         int inChannelCount, int32_t sampleRate, src_quality quality)
183     : AudioResampler(inChannelCount, sampleRate, quality),
184       mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
185     mCoefBuffer(NULL)
186 {
187     mVolumeSimd[0] = mVolumeSimd[1] = 0;
188     // The AudioResampler base class assumes we are always ready for 1:1 resampling.
189     // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
190     // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
191     mInSampleRate = 0;
192     mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
193 
194     // fetch property based resampling parameters
195     mPropertyEnableAtSampleRate = property_get_int32(
196             "ro.audio.resampler.psd.enable_at_samplerate", mPropertyEnableAtSampleRate);
197     mPropertyHalfFilterLength = property_get_int32(
198             "ro.audio.resampler.psd.halflength", mPropertyHalfFilterLength);
199     mPropertyStopbandAttenuation = property_get_int32(
200             "ro.audio.resampler.psd.stopband", mPropertyStopbandAttenuation);
201     mPropertyCutoffPercent = property_get_int32(
202             "ro.audio.resampler.psd.cutoff_percent", mPropertyCutoffPercent);
203     mPropertyTransitionBandwidthCheat = property_get_int32(
204             "ro.audio.resampler.psd.tbwcheat", mPropertyTransitionBandwidthCheat);
205 }
206 
207 template<typename TC, typename TI, typename TO>
~AudioResamplerDyn()208 AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
209 {
210     free(mCoefBuffer);
211 }
212 
213 template<typename TC, typename TI, typename TO>
init()214 void AudioResamplerDyn<TC, TI, TO>::init()
215 {
216     mFilterSampleRate = 0; // always trigger new filter generation
217     mInBuffer.init();
218 }
219 
220 template<typename TC, typename TI, typename TO>
setVolume(float left,float right)221 void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
222 {
223     AudioResampler::setVolume(left, right);
224     if (is_same<TO, float>::value || is_same<TO, double>::value) {
225         mVolumeSimd[0] = static_cast<TO>(left);
226         mVolumeSimd[1] = static_cast<TO>(right);
227     } else {  // integer requires scaling to U4_28 (rounding down)
228         // integer volumes are clamped to 0 to UNITY_GAIN so there
229         // are no issues with signed overflow.
230         mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
231         mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
232     }
233 }
234 
235 // TODO: update to C++11
236 
max(T a,T b)237 template<typename T> T max(T a, T b) {return a > b ? a : b;}
238 
absdiff(T a,T b)239 template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
240 
241 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,int inSampleRate,int outSampleRate,double tbwCheat)242 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
243         double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
244 {
245     // compute the normalized transition bandwidth
246     const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
247     const double halfbw = tbw * 0.5;
248 
249     double fcr; // compute fcr, the 3 dB amplitude cut-off.
250     if (inSampleRate < outSampleRate) { // upsample
251         fcr = max(0.5 * tbwCheat - halfbw, halfbw);
252     } else { // downsample
253         fcr = max(0.5 * tbwCheat * outSampleRate / inSampleRate - halfbw, halfbw);
254     }
255     createKaiserFir(c, stopBandAtten, fcr);
256 }
257 
258 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,double fcr)259 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
260         double stopBandAtten, double fcr) {
261     // compute the normalized transition bandwidth
262     const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
263     const int phases = c.mL;
264     const int halfLength = c.mHalfNumCoefs;
265 
266     // create buffer
267     TC *coefs = nullptr;
268     int ret = posix_memalign(
269             reinterpret_cast<void **>(&coefs),
270             CACHE_LINE_SIZE /* alignment */,
271             (phases + 1) * halfLength * sizeof(TC));
272     LOG_ALWAYS_FATAL_IF(ret != 0, "Cannot allocate buffer memory, ret %d", ret);
273     c.mFirCoefs = coefs;
274     free(mCoefBuffer);
275     mCoefBuffer = coefs;
276 
277     // square the computed minimum passband value (extra safety).
278     double attenuation =
279             computeWindowedSincMinimumPassbandValue(stopBandAtten);
280     attenuation *= attenuation;
281 
282     // design filter
283     firKaiserGen(coefs, phases, halfLength, stopBandAtten, fcr, attenuation);
284 
285     // update the design criteria
286     mNormalizedCutoffFrequency = fcr;
287     mNormalizedTransitionBandwidth = tbw;
288     mFilterAttenuation = attenuation;
289     mStopbandAttenuationDb = stopBandAtten;
290     mPassbandRippleDb = computeWindowedSincPassbandRippleDb(stopBandAtten);
291 
292 #if 0
293     // Keep this debug code in case an app causes resampler design issues.
294     const double halfbw = tbw * 0.5;
295     // print basic filter stats
296     ALOGD("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n",
297             c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, attenuation, tbw);
298 
299     // test the filter and report results.
300     // Since this is a polyphase filter, normalized fp and fs must be scaled.
301     const double fp = (fcr - halfbw) / phases;
302     const double fs = (fcr + halfbw) / phases;
303 
304     double passMin, passMax, passRipple;
305     double stopMax, stopRipple;
306 
307     const int32_t passSteps = 1000;
308 
309     testFir(coefs, c.mL, c.mHalfNumCoefs, fp, fs, passSteps, passSteps * c.mL /*stopSteps*/,
310             passMin, passMax, passRipple, stopMax, stopRipple);
311     ALOGD("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
312     ALOGD("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
313 #endif
314 }
315 
316 // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
gcd(int n,int m)317 static int gcd(int n, int m)
318 {
319     if (m == 0) {
320         return n;
321     }
322     return gcd(m, n % m);
323 }
324 
isClose(int32_t newSampleRate,int32_t prevSampleRate,int32_t filterSampleRate,int32_t outSampleRate)325 static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
326         int32_t filterSampleRate, int32_t outSampleRate)
327 {
328 
329     // different upsampling ratios do not need a filter change.
330     if (filterSampleRate != 0
331             && filterSampleRate < outSampleRate
332             && newSampleRate < outSampleRate)
333         return true;
334 
335     // check design criteria again if downsampling is detected.
336     int pdiff = absdiff(newSampleRate, prevSampleRate);
337     int adiff = absdiff(newSampleRate, filterSampleRate);
338 
339     // allow up to 6% relative change increments.
340     // allow up to 12% absolute change increments (from filter design)
341     return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
342 }
343 
344 template<typename TC, typename TI, typename TO>
setSampleRate(int32_t inSampleRate)345 void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
346 {
347     if (mInSampleRate == inSampleRate) {
348         return;
349     }
350     int32_t oldSampleRate = mInSampleRate;
351     uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
352     bool useS32 = false;
353 
354     mInSampleRate = inSampleRate;
355 
356     // TODO: Add precalculated Equiripple filters
357 
358     if (mFilterQuality != getQuality() ||
359             !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
360         mFilterSampleRate = inSampleRate;
361         mFilterQuality = getQuality();
362 
363         double stopBandAtten;
364         double tbwCheat = 1.; // how much we "cheat" into aliasing
365         int halfLength;
366         double fcr = 0.;
367 
368         // Begin Kaiser Filter computation
369         //
370         // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
371         // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
372         //
373         // For s32 we keep the stop band attenuation at the same as 16b resolution, about
374         // 96-98dB
375         //
376 
377         if (mPropertyEnableAtSampleRate >= 0 && mSampleRate >= mPropertyEnableAtSampleRate) {
378             // An alternative method which allows allows a greater fcr
379             // at the expense of potential aliasing.
380             halfLength = mPropertyHalfFilterLength;
381             stopBandAtten = mPropertyStopbandAttenuation;
382             useS32 = true;
383 
384             // Use either the stopband location for design (tbwCheat)
385             // or use the 3dB cutoff location for design (fcr).
386             // This choice is exclusive and based on whether fcr > 0.
387             if (mPropertyTransitionBandwidthCheat != 0) {
388                 tbwCheat = mPropertyTransitionBandwidthCheat / 100.;
389             } else {
390                 fcr = mInSampleRate <= mSampleRate
391                         ? 0.5 : 0.5 * mSampleRate / mInSampleRate;
392                 fcr *= mPropertyCutoffPercent / 100.;
393             }
394         } else {
395             // Voice quality devices have lower sampling rates
396             // (and may be a consequence of downstream AMR-WB / G.722 codecs).
397             // For these devices, we ensure a wider resampler passband
398             // at the expense of aliasing noise (stopband attenuation
399             // and stopband frequency).
400             //
401             constexpr uint32_t kVoiceDeviceSampleRate = 16000;
402 
403             if (mFilterQuality == DYN_HIGH_QUALITY) {
404                 // float or 32b coefficients
405                 useS32 = true;
406                 stopBandAtten = 98.;
407                 if (inSampleRate >= mSampleRate * 4) {
408                     halfLength = 48;
409                 } else if (inSampleRate >= mSampleRate * 2) {
410                     halfLength = 40;
411                 } else {
412                     halfLength = 32;
413                 }
414 
415                 if (mSampleRate <= kVoiceDeviceSampleRate) {
416                     if (inSampleRate >= mSampleRate * 2) {
417                         halfLength += 16;
418                     } else {
419                         halfLength += 8;
420                     }
421                     stopBandAtten = 84.;
422                     tbwCheat = 1.05;
423                 }
424             } else if (mFilterQuality == DYN_LOW_QUALITY) {
425                 // float or 16b coefficients
426                 useS32 = false;
427                 stopBandAtten = 80.;
428                 if (inSampleRate >= mSampleRate * 4) {
429                     halfLength = 24;
430                 } else if (inSampleRate >= mSampleRate * 2) {
431                     halfLength = 16;
432                 } else {
433                     halfLength = 8;
434                 }
435                 if (mSampleRate <= kVoiceDeviceSampleRate) {
436                     if (inSampleRate >= mSampleRate * 2) {
437                         halfLength += 8;
438                     }
439                     tbwCheat = 1.05;
440                 } else if (inSampleRate <= mSampleRate) {
441                     tbwCheat = 1.05;
442                 } else {
443                     tbwCheat = 1.03;
444                 }
445             } else { // DYN_MED_QUALITY
446                 // float or 16b coefficients
447                 // note: > 64 length filters with 16b coefs can have quantization noise problems
448                 useS32 = false;
449                 stopBandAtten = 84.;
450                 if (inSampleRate >= mSampleRate * 4) {
451                     halfLength = 32;
452                 } else if (inSampleRate >= mSampleRate * 2) {
453                     halfLength = 24;
454                 } else {
455                     halfLength = 16;
456                 }
457 
458                 if (mSampleRate <= kVoiceDeviceSampleRate) {
459                     if (inSampleRate >= mSampleRate * 2) {
460                         halfLength += 16;
461                     } else {
462                         halfLength += 8;
463                     }
464                     tbwCheat = 1.05;
465                 } else if (inSampleRate <= mSampleRate) {
466                     tbwCheat = 1.03;
467                 } else {
468                     tbwCheat = 1.01;
469                 }
470             }
471         }
472 
473         if (fcr > 0.) {
474             ALOGV("%s: mFilterQuality:%d inSampleRate:%d mSampleRate:%d halfLength:%d "
475                     "stopBandAtten:%lf fcr:%lf",
476                     __func__, mFilterQuality, inSampleRate, mSampleRate, halfLength,
477                     stopBandAtten, fcr);
478         } else {
479             ALOGV("%s: mFilterQuality:%d inSampleRate:%d mSampleRate:%d halfLength:%d "
480                     "stopBandAtten:%lf tbwCheat:%lf",
481                     __func__, mFilterQuality, inSampleRate, mSampleRate, halfLength,
482                     stopBandAtten, tbwCheat);
483         }
484 
485 
486         // determine the number of polyphases in the filterbank.
487         // for 16b, it is desirable to have 2^(16/2) = 256 phases.
488         // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
489         //
490         // We are a bit more lax on this.
491 
492         int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
493 
494         // TODO: Once dynamic sample rate change is an option, the code below
495         // should be modified to execute only when dynamic sample rate change is enabled.
496         //
497         // as above, #phases less than 63 is too few phases for accurate linear interpolation.
498         // we increase the phases to compensate, but more phases means more memory per
499         // filter and more time to compute the filter.
500         //
501         // if we know that the filter will be used for dynamic sample rate changes,
502         // that would allow us skip this part for fixed sample rate resamplers.
503         //
504         while (phases<63) {
505             phases *= 2; // this code only needed to support dynamic rate changes
506         }
507 
508         if (phases>=256) {  // too many phases, always interpolate
509             phases = 127;
510         }
511 
512         // create the filter
513         mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
514         if (fcr > 0.) {
515             createKaiserFir(mConstants, stopBandAtten, fcr);
516         } else {
517             createKaiserFir(mConstants, stopBandAtten,
518                     inSampleRate, mSampleRate, tbwCheat);
519         }
520     } // End Kaiser filter
521 
522     // update phase and state based on the new filter.
523     const Constants& c(mConstants);
524     mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
525     const uint32_t phaseWrapLimit = c.mL << c.mShift;
526     // try to preserve as much of the phase fraction as possible for on-the-fly changes
527     mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
528             * phaseWrapLimit / oldPhaseWrapLimit;
529     mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
530     mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
531             * inSampleRate / mSampleRate);
532 
533     // determine which resampler to use
534     // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
535     int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
536     if (locked) {
537         mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
538     }
539 
540     // stride is the minimum number of filter coefficients processed per loop iteration.
541     // We currently only allow a stride of 16 to match with SIMD processing.
542     // This means that the filter length must be a multiple of 16,
543     // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
544     //
545     // Note: A stride of 2 is achieved with non-SIMD processing.
546     int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
547     LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
548     LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > FCC_LIMIT,
549             "Resampler channels(%d) must be between 1 to %d", mChannelCount, FCC_LIMIT);
550     // stride 16 (falls back to stride 2 for machines that do not support NEON)
551 
552 
553 // For now use a #define as a compiler generated function table requires renaming.
554 #pragma push_macro("AUDIORESAMPLERDYN_CASE")
555 #undef AUDIORESAMPLERDYN_CASE
556 #define AUDIORESAMPLERDYN_CASE(CHANNEL, LOCKED) \
557     case CHANNEL: if constexpr (CHANNEL <= FCC_LIMIT) {\
558         mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<CHANNEL, LOCKED, 16>; \
559     } break
560 
561     if (locked) {
562         switch (mChannelCount) {
563         AUDIORESAMPLERDYN_CASE(1, true);
564         AUDIORESAMPLERDYN_CASE(2, true);
565         AUDIORESAMPLERDYN_CASE(3, true);
566         AUDIORESAMPLERDYN_CASE(4, true);
567         AUDIORESAMPLERDYN_CASE(5, true);
568         AUDIORESAMPLERDYN_CASE(6, true);
569         AUDIORESAMPLERDYN_CASE(7, true);
570         AUDIORESAMPLERDYN_CASE(8, true);
571         AUDIORESAMPLERDYN_CASE(9, true);
572         AUDIORESAMPLERDYN_CASE(10, true);
573         AUDIORESAMPLERDYN_CASE(11, true);
574         AUDIORESAMPLERDYN_CASE(12, true);
575         AUDIORESAMPLERDYN_CASE(13, true);
576         AUDIORESAMPLERDYN_CASE(14, true);
577         AUDIORESAMPLERDYN_CASE(15, true);
578         AUDIORESAMPLERDYN_CASE(16, true);
579         AUDIORESAMPLERDYN_CASE(17, true);
580         AUDIORESAMPLERDYN_CASE(18, true);
581         AUDIORESAMPLERDYN_CASE(19, true);
582         AUDIORESAMPLERDYN_CASE(20, true);
583         AUDIORESAMPLERDYN_CASE(21, true);
584         AUDIORESAMPLERDYN_CASE(22, true);
585         AUDIORESAMPLERDYN_CASE(23, true);
586         AUDIORESAMPLERDYN_CASE(24, true);
587         }
588     } else {
589         switch (mChannelCount) {
590         AUDIORESAMPLERDYN_CASE(1, false);
591         AUDIORESAMPLERDYN_CASE(2, false);
592         AUDIORESAMPLERDYN_CASE(3, false);
593         AUDIORESAMPLERDYN_CASE(4, false);
594         AUDIORESAMPLERDYN_CASE(5, false);
595         AUDIORESAMPLERDYN_CASE(6, false);
596         AUDIORESAMPLERDYN_CASE(7, false);
597         AUDIORESAMPLERDYN_CASE(8, false);
598         AUDIORESAMPLERDYN_CASE(9, false);
599         AUDIORESAMPLERDYN_CASE(10, false);
600         AUDIORESAMPLERDYN_CASE(11, false);
601         AUDIORESAMPLERDYN_CASE(12, false);
602         AUDIORESAMPLERDYN_CASE(13, false);
603         AUDIORESAMPLERDYN_CASE(14, false);
604         AUDIORESAMPLERDYN_CASE(15, false);
605         AUDIORESAMPLERDYN_CASE(16, false);
606         AUDIORESAMPLERDYN_CASE(17, false);
607         AUDIORESAMPLERDYN_CASE(18, false);
608         AUDIORESAMPLERDYN_CASE(19, false);
609         AUDIORESAMPLERDYN_CASE(20, false);
610         AUDIORESAMPLERDYN_CASE(21, false);
611         AUDIORESAMPLERDYN_CASE(22, false);
612         AUDIORESAMPLERDYN_CASE(23, false);
613         AUDIORESAMPLERDYN_CASE(24, false);
614         }
615     }
616 #pragma pop_macro("AUDIORESAMPLERDYN_CASE")
617 
618 #ifdef DEBUG_RESAMPLER
619     printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n",
620             mChannelCount, locked ? "locked" : "interpolated",
621             stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
622 #endif
623 }
624 
625 template<typename TC, typename TI, typename TO>
resample(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)626 size_t AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
627             AudioBufferProvider* provider)
628 {
629     return (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
630 }
631 
632 template<typename TC, typename TI, typename TO>
633 template<int CHANNELS, bool LOCKED, int STRIDE>
resample(TO * out,size_t outFrameCount,AudioBufferProvider * provider)634 size_t AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
635         AudioBufferProvider* provider)
636 {
637     // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
638     const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
639     const Constants& c(mConstants);
640     const TC* const coefs = mConstants.mFirCoefs;
641     TI* impulse = mInBuffer.getImpulse();
642     size_t inputIndex = 0;
643     uint32_t phaseFraction = mPhaseFraction;
644     const uint32_t phaseIncrement = mPhaseIncrement;
645     size_t outputIndex = 0;
646     size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
647     const uint32_t phaseWrapLimit = c.mL << c.mShift;
648     size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
649             / phaseWrapLimit;
650     // validate that inFrameCount is in signed 32 bit integer range.
651     ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
652 
653     //ALOGV("inFrameCount:%d  outFrameCount:%d"
654     //        "  phaseIncrement:%u  phaseFraction:%u  phaseWrapLimit:%u",
655     //        inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
656 
657     // NOTE: be very careful when modifying the code here. register
658     // pressure is very high and a small change might cause the compiler
659     // to generate far less efficient code.
660     // Always validate the result with objdump or test-resample.
661 
662     // the following logic is a bit convoluted to keep the main processing loop
663     // as tight as possible with register allocation.
664     while (outputIndex < outputSampleCount) {
665         //ALOGV("LOOP: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
666         //        "  phaseFraction:%u  phaseWrapLimit:%u",
667         //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
668 
669         // check inputIndex overflow
670         ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%zu > frameCount%zu",
671                 inputIndex, mBuffer.frameCount);
672         // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
673         // We may not fetch a new buffer if the existing data is sufficient.
674         while (mBuffer.frameCount == 0 && inFrameCount > 0) {
675             mBuffer.frameCount = inFrameCount;
676             provider->getNextBuffer(&mBuffer);
677             if (mBuffer.raw == NULL) {
678                 // We are either at the end of playback or in an underrun situation.
679                 // Reset buffer to prevent pop noise at the next buffer.
680                 mInBuffer.reset();
681                 goto resample_exit;
682             }
683             inFrameCount -= mBuffer.frameCount;
684             if (phaseFraction >= phaseWrapLimit) { // read in data
685                 mInBuffer.template readAdvance<CHANNELS>(
686                         impulse, c.mHalfNumCoefs,
687                         reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
688                 inputIndex++;
689                 phaseFraction -= phaseWrapLimit;
690                 while (phaseFraction >= phaseWrapLimit) {
691                     if (inputIndex >= mBuffer.frameCount) {
692                         inputIndex = 0;
693                         provider->releaseBuffer(&mBuffer);
694                         break;
695                     }
696                     mInBuffer.template readAdvance<CHANNELS>(
697                             impulse, c.mHalfNumCoefs,
698                             reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
699                     inputIndex++;
700                     phaseFraction -= phaseWrapLimit;
701                 }
702             }
703         }
704         const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
705         const size_t frameCount = mBuffer.frameCount;
706         const int coefShift = c.mShift;
707         const int halfNumCoefs = c.mHalfNumCoefs;
708         const TO* const volumeSimd = mVolumeSimd;
709 
710         // main processing loop
711         while (CC_LIKELY(outputIndex < outputSampleCount)) {
712             // caution: fir() is inlined and may be large.
713             // output will be loaded with the appropriate values
714             //
715             // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
716             // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
717             //
718             //ALOGV("LOOP2: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
719             //        "  phaseFraction:%u  phaseWrapLimit:%u",
720             //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
721             ALOG_ASSERT(phaseFraction < phaseWrapLimit);
722             fir<CHANNELS, LOCKED, STRIDE>(
723                     &out[outputIndex],
724                     phaseFraction, phaseWrapLimit,
725                     coefShift, halfNumCoefs, coefs,
726                     impulse, volumeSimd);
727 
728             outputIndex += OUTPUT_CHANNELS;
729 
730             phaseFraction += phaseIncrement;
731             while (phaseFraction >= phaseWrapLimit) {
732                 if (inputIndex >= frameCount) {
733                     goto done;  // need a new buffer
734                 }
735                 mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
736                 inputIndex++;
737                 phaseFraction -= phaseWrapLimit;
738             }
739         }
740 done:
741         // We arrive here when we're finished or when the input buffer runs out.
742         // Regardless we need to release the input buffer if we've acquired it.
743         if (inputIndex > 0) {  // we've acquired a buffer (alternatively could check frameCount)
744             ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%zu) != frameCount(%zu)",
745                     inputIndex, frameCount);  // must have been fully read.
746             inputIndex = 0;
747             provider->releaseBuffer(&mBuffer);
748             ALOG_ASSERT(mBuffer.frameCount == 0);
749         }
750     }
751 
752 resample_exit:
753     // inputIndex must be zero in all three cases:
754     // (1) the buffer never was been acquired; (2) the buffer was
755     // released at "done:"; or (3) getNextBuffer() failed.
756     ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%zu frameCount:%zu  phaseFraction:%u",
757             inputIndex, mBuffer.frameCount, phaseFraction);
758     ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
759     mInBuffer.setImpulse(impulse);
760     mPhaseFraction = phaseFraction;
761     return outputIndex / OUTPUT_CHANNELS;
762 }
763 
764 /* instantiate templates used by AudioResampler::create */
765 template class AudioResamplerDyn<float, float, float>;
766 template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
767 template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
768 
769 // ----------------------------------------------------------------------------
770 } // namespace android
771