1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "concurrent_copying.h"
18
19 #include "art_field-inl.h"
20 #include "barrier.h"
21 #include "base/file_utils.h"
22 #include "base/histogram-inl.h"
23 #include "base/pointer_size.h"
24 #include "base/quasi_atomic.h"
25 #include "base/stl_util.h"
26 #include "base/systrace.h"
27 #include "class_root-inl.h"
28 #include "debugger.h"
29 #include "gc/accounting/atomic_stack.h"
30 #include "gc/accounting/heap_bitmap-inl.h"
31 #include "gc/accounting/mod_union_table-inl.h"
32 #include "gc/accounting/read_barrier_table.h"
33 #include "gc/accounting/space_bitmap-inl.h"
34 #include "gc/gc_pause_listener.h"
35 #include "gc/reference_processor.h"
36 #include "gc/space/image_space.h"
37 #include "gc/space/space-inl.h"
38 #include "gc/verification.h"
39 #include "intern_table.h"
40 #include "mirror/class-inl.h"
41 #include "mirror/object-inl.h"
42 #include "mirror/object-refvisitor-inl.h"
43 #include "mirror/object_reference.h"
44 #include "oat/image-inl.h"
45 #include "scoped_thread_state_change-inl.h"
46 #include "thread-inl.h"
47 #include "thread_list.h"
48 #include "well_known_classes.h"
49
50 namespace art HIDDEN {
51 namespace gc {
52 namespace collector {
53
54 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
55 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
56 // union table. Disabled since it does not seem to help the pause much.
57 static constexpr bool kFilterModUnionCards = kIsDebugBuild;
58 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any read barrier that
59 // occur during ConcurrentCopying::Scan in GC thread. May be used to diagnose possibly unnecessary
60 // read barriers. Only enabled for kIsDebugBuild to avoid performance hit.
61 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
62 // Slow path mark stack size, increase this if the stack is getting full and it is causing
63 // performance problems.
64 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
65 // Size (in the number of objects) of the sweep array free buffer.
66 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
67 // Verify that there are no missing card marks.
68 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
69
ConcurrentCopying(Heap * heap,bool young_gen,bool use_generational_cc,const std::string & name_prefix,bool measure_read_barrier_slow_path)70 ConcurrentCopying::ConcurrentCopying(Heap* heap,
71 bool young_gen,
72 bool use_generational_cc,
73 const std::string& name_prefix,
74 bool measure_read_barrier_slow_path)
75 : GarbageCollector(heap,
76 name_prefix + (name_prefix.empty() ? "" : " ") +
77 "concurrent copying"),
78 region_space_(nullptr),
79 gc_barrier_(new Barrier(0)),
80 gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
81 kDefaultGcMarkStackSize,
82 kDefaultGcMarkStackSize)),
83 use_generational_cc_(use_generational_cc),
84 young_gen_(young_gen),
85 rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
86 kReadBarrierMarkStackSize,
87 kReadBarrierMarkStackSize)),
88 rb_mark_bit_stack_full_(false),
89 mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
90 thread_running_gc_(nullptr),
91 is_marking_(false),
92 is_using_read_barrier_entrypoints_(false),
93 is_active_(false),
94 is_asserting_to_space_invariant_(false),
95 region_space_bitmap_(nullptr),
96 heap_mark_bitmap_(nullptr),
97 live_stack_freeze_size_(0),
98 from_space_num_bytes_at_first_pause_(0),
99 mark_stack_mode_(kMarkStackModeOff),
100 weak_ref_access_enabled_(true),
101 copied_live_bytes_ratio_sum_(0.f),
102 gc_count_(0),
103 reclaimed_bytes_ratio_sum_(0.f),
104 cumulative_bytes_moved_(0),
105 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
106 measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
107 mark_from_read_barrier_measurements_(false),
108 rb_slow_path_ns_(0),
109 rb_slow_path_count_(0),
110 rb_slow_path_count_gc_(0),
111 rb_slow_path_histogram_lock_("Read barrier histogram lock"),
112 rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
113 rb_slow_path_count_total_(0),
114 rb_slow_path_count_gc_total_(0),
115 rb_table_(heap_->GetReadBarrierTable()),
116 force_evacuate_all_(false),
117 gc_grays_immune_objects_(false),
118 immune_gray_stack_lock_("concurrent copying immune gray stack lock",
119 kMarkSweepMarkStackLock),
120 num_bytes_allocated_before_gc_(0) {
121 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
122 "The region space size and the read barrier table region size must match");
123 CHECK(use_generational_cc_ || !young_gen_);
124 Thread* self = Thread::Current();
125 {
126 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
127 // Cache this so that we won't have to lock heap_bitmap_lock_ in
128 // Mark() which could cause a nested lock on heap_bitmap_lock_
129 // when GC causes a RB while doing GC or a lock order violation
130 // (class_linker_lock_ and heap_bitmap_lock_).
131 heap_mark_bitmap_ = heap->GetMarkBitmap();
132 }
133 {
134 MutexLock mu(self, mark_stack_lock_);
135 for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
136 accounting::AtomicStack<mirror::Object>* mark_stack =
137 accounting::AtomicStack<mirror::Object>::Create(
138 "thread local mark stack", GetMarkStackSize(), GetMarkStackSize());
139 pooled_mark_stacks_.push_back(mark_stack);
140 }
141 }
142 if (use_generational_cc_) {
143 // Allocate sweep array free buffer.
144 std::string error_msg;
145 sweep_array_free_buffer_mem_map_ = MemMap::MapAnonymous(
146 "concurrent copying sweep array free buffer",
147 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), gPageSize),
148 PROT_READ | PROT_WRITE,
149 /*low_4gb=*/ false,
150 &error_msg);
151 CHECK(sweep_array_free_buffer_mem_map_.IsValid())
152 << "Couldn't allocate sweep array free buffer: " << error_msg;
153 }
154 // Return type of these functions are different. And even though the base class
155 // is same, using ternary operator complains.
156 metrics::ArtMetrics* metrics = GetMetrics();
157 are_metrics_initialized_ = true;
158 if (young_gen_) {
159 gc_time_histogram_ = metrics->YoungGcCollectionTime();
160 metrics_gc_count_ = metrics->YoungGcCount();
161 metrics_gc_count_delta_ = metrics->YoungGcCountDelta();
162 gc_throughput_histogram_ = metrics->YoungGcThroughput();
163 gc_tracing_throughput_hist_ = metrics->YoungGcTracingThroughput();
164 gc_throughput_avg_ = metrics->YoungGcThroughputAvg();
165 gc_tracing_throughput_avg_ = metrics->YoungGcTracingThroughputAvg();
166 gc_scanned_bytes_ = metrics->YoungGcScannedBytes();
167 gc_scanned_bytes_delta_ = metrics->YoungGcScannedBytesDelta();
168 gc_freed_bytes_ = metrics->YoungGcFreedBytes();
169 gc_freed_bytes_delta_ = metrics->YoungGcFreedBytesDelta();
170 gc_duration_ = metrics->YoungGcDuration();
171 gc_duration_delta_ = metrics->YoungGcDurationDelta();
172 } else {
173 gc_time_histogram_ = metrics->FullGcCollectionTime();
174 metrics_gc_count_ = metrics->FullGcCount();
175 metrics_gc_count_delta_ = metrics->FullGcCountDelta();
176 gc_throughput_histogram_ = metrics->FullGcThroughput();
177 gc_tracing_throughput_hist_ = metrics->FullGcTracingThroughput();
178 gc_throughput_avg_ = metrics->FullGcThroughputAvg();
179 gc_tracing_throughput_avg_ = metrics->FullGcTracingThroughputAvg();
180 gc_scanned_bytes_ = metrics->FullGcScannedBytes();
181 gc_scanned_bytes_delta_ = metrics->FullGcScannedBytesDelta();
182 gc_freed_bytes_ = metrics->FullGcFreedBytes();
183 gc_freed_bytes_delta_ = metrics->FullGcFreedBytesDelta();
184 gc_duration_ = metrics->FullGcDuration();
185 gc_duration_delta_ = metrics->FullGcDurationDelta();
186 }
187 }
188
MarkHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)189 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
190 bool do_atomic_update) {
191 Thread* const self = Thread::Current();
192 if (UNLIKELY(do_atomic_update)) {
193 // Used to mark the referent in DelayReferenceReferent in transaction mode.
194 mirror::Object* from_ref = field->AsMirrorPtr();
195 if (from_ref == nullptr) {
196 return;
197 }
198 mirror::Object* to_ref = Mark(self, from_ref);
199 if (from_ref != to_ref) {
200 do {
201 if (field->AsMirrorPtr() != from_ref) {
202 // Concurrently overwritten by a mutator.
203 break;
204 }
205 } while (!field->CasWeakRelaxed(from_ref, to_ref));
206 // "Relaxed" is not technically sufficient by C++ rules. However, we use a "release"
207 // operation to originally store the forwarding pointer, or a constructor fence if we
208 // directly obtained to_ref from Copy(). We then count on the fact that all later accesses
209 // to the to_ref object are data/address-dependent on the forwarding pointer, and there is
210 // no reasonable way for the compiler to eliminate that depenency. This is very similar to
211 // the reasoning we must use for final fields in any case.
212 }
213 } else {
214 // Used for preserving soft references, should be OK to not have a CAS here since there should be
215 // no other threads which can trigger read barriers on the same referent during reference
216 // processing.
217 field->Assign(Mark(self, field->AsMirrorPtr()));
218 }
219 }
220
~ConcurrentCopying()221 ConcurrentCopying::~ConcurrentCopying() {
222 STLDeleteElements(&pooled_mark_stacks_);
223 }
224
RunPhases()225 void ConcurrentCopying::RunPhases() {
226 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
227 CHECK(!is_active_);
228 is_active_ = true;
229 Thread* self = Thread::Current();
230 thread_running_gc_ = self;
231 Locks::mutator_lock_->AssertNotHeld(self);
232 {
233 ReaderMutexLock mu(self, *Locks::mutator_lock_);
234 InitializePhase();
235 // In case of forced evacuation, all regions are evacuated and hence no
236 // need to compute live_bytes.
237 if (use_generational_cc_ && !young_gen_ && !force_evacuate_all_) {
238 MarkingPhase();
239 }
240 }
241 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
242 // Switch to read barrier mark entrypoints before we gray the objects. This is required in case
243 // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887).
244 ActivateReadBarrierEntrypoints();
245 // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in
246 // the pause.
247 ReaderMutexLock mu(self, *Locks::mutator_lock_);
248 GrayAllDirtyImmuneObjects();
249 }
250 FlipThreadRoots();
251 {
252 ReaderMutexLock mu(self, *Locks::mutator_lock_);
253 CopyingPhase();
254 }
255 // Verify no from space refs. This causes a pause.
256 if (kEnableNoFromSpaceRefsVerification) {
257 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
258 ScopedPause pause(this, false);
259 CheckEmptyMarkStack();
260 if (kVerboseMode) {
261 LOG(INFO) << "Verifying no from-space refs";
262 }
263 VerifyNoFromSpaceReferences();
264 if (kVerboseMode) {
265 LOG(INFO) << "Done verifying no from-space refs";
266 }
267 CheckEmptyMarkStack();
268 }
269 {
270 ReaderMutexLock mu(self, *Locks::mutator_lock_);
271 ReclaimPhase();
272 }
273 FinishPhase();
274 CHECK(is_active_);
275 is_active_ = false;
276 thread_running_gc_ = nullptr;
277 }
278
279 class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure {
280 public:
ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying * concurrent_copying)281 explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying)
282 : concurrent_copying_(concurrent_copying) {}
283
Run(Thread * thread)284 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
285 // Note: self is not necessarily equal to thread since thread may be suspended.
286 Thread* self = Thread::Current();
287 DCHECK(thread == self ||
288 thread->IsSuspended() ||
289 thread->GetState() == ThreadState::kWaitingPerformingGc)
290 << thread->GetState() << " thread " << thread << " self " << self;
291 // Switch to the read barrier entrypoints.
292 thread->SetReadBarrierEntrypoints();
293 // If thread is a running mutator, then act on behalf of the garbage collector.
294 // See the code in ThreadList::RunCheckpoint.
295 concurrent_copying_->GetBarrier().Pass(self);
296 }
297
298 private:
299 ConcurrentCopying* const concurrent_copying_;
300 };
301
302 class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure {
303 public:
ActivateReadBarrierEntrypointsCallback(ConcurrentCopying * concurrent_copying)304 explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying)
305 : concurrent_copying_(concurrent_copying) {}
306
Run(Thread * self)307 void Run([[maybe_unused]] Thread* self) override REQUIRES(Locks::thread_list_lock_) {
308 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
309 // to avoid a race with ThreadList::Register().
310 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
311 concurrent_copying_->is_using_read_barrier_entrypoints_ = true;
312 }
313
314 private:
315 ConcurrentCopying* const concurrent_copying_;
316 };
317
ActivateReadBarrierEntrypoints()318 void ConcurrentCopying::ActivateReadBarrierEntrypoints() {
319 Thread* const self = Thread::Current();
320 ActivateReadBarrierEntrypointsCheckpoint checkpoint(this);
321 ThreadList* thread_list = Runtime::Current()->GetThreadList();
322 gc_barrier_->Init(self, 0);
323 ActivateReadBarrierEntrypointsCallback callback(this);
324 const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback);
325 // If there are no threads to wait which implies that all the checkpoint functions are finished,
326 // then no need to release the mutator lock.
327 if (barrier_count == 0) {
328 return;
329 }
330 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
331 gc_barrier_->Increment(self, barrier_count);
332 }
333
CreateInterRegionRefBitmaps()334 void ConcurrentCopying::CreateInterRegionRefBitmaps() {
335 DCHECK(use_generational_cc_);
336 DCHECK(!region_space_inter_region_bitmap_.IsValid());
337 DCHECK(!non_moving_space_inter_region_bitmap_.IsValid());
338 DCHECK(region_space_ != nullptr);
339 DCHECK(heap_->non_moving_space_ != nullptr);
340 // Region-space
341 region_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
342 "region-space inter region ref bitmap",
343 reinterpret_cast<uint8_t*>(region_space_->Begin()),
344 region_space_->Limit() - region_space_->Begin());
345 CHECK(region_space_inter_region_bitmap_.IsValid())
346 << "Couldn't allocate region-space inter region ref bitmap";
347
348 // non-moving-space
349 non_moving_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
350 "non-moving-space inter region ref bitmap",
351 reinterpret_cast<uint8_t*>(heap_->non_moving_space_->Begin()),
352 heap_->non_moving_space_->Limit() - heap_->non_moving_space_->Begin());
353 CHECK(non_moving_space_inter_region_bitmap_.IsValid())
354 << "Couldn't allocate non-moving-space inter region ref bitmap";
355 }
356
BindBitmaps()357 void ConcurrentCopying::BindBitmaps() {
358 Thread* self = Thread::Current();
359 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
360 // Mark all of the spaces we never collect as immune.
361 for (const auto& space : heap_->GetContinuousSpaces()) {
362 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
363 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
364 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
365 immune_spaces_.AddSpace(space);
366 } else {
367 CHECK(!space->IsZygoteSpace());
368 CHECK(!space->IsImageSpace());
369 CHECK(space == region_space_ || space == heap_->non_moving_space_);
370 if (use_generational_cc_) {
371 if (space == region_space_) {
372 region_space_bitmap_ = region_space_->GetMarkBitmap();
373 } else if (young_gen_ && space->IsContinuousMemMapAllocSpace()) {
374 DCHECK_EQ(space->GetGcRetentionPolicy(), space::kGcRetentionPolicyAlwaysCollect);
375 space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
376 }
377 if (young_gen_) {
378 // Age all of the cards for the region space so that we know which evac regions to scan.
379 heap_->GetCardTable()->ModifyCardsAtomic(space->Begin(),
380 space->End(),
381 AgeCardVisitor(),
382 VoidFunctor());
383 } else {
384 // In a full-heap GC cycle, the card-table corresponding to region-space and
385 // non-moving space can be cleared, because this cycle only needs to
386 // capture writes during the marking phase of this cycle to catch
387 // objects that skipped marking due to heap mutation. Furthermore,
388 // if the next GC is a young-gen cycle, then it only needs writes to
389 // be captured after the thread-flip of this GC cycle, as that is when
390 // the young-gen for the next GC cycle starts getting populated.
391 heap_->GetCardTable()->ClearCardRange(space->Begin(), space->Limit());
392 }
393 } else {
394 if (space == region_space_) {
395 // It is OK to clear the bitmap with mutators running since the only place it is read is
396 // VisitObjects which has exclusion with CC.
397 region_space_bitmap_ = region_space_->GetMarkBitmap();
398 region_space_bitmap_->Clear(ShouldEagerlyReleaseMemoryToOS());
399 }
400 }
401 }
402 }
403 if (use_generational_cc_ && young_gen_) {
404 for (const auto& space : GetHeap()->GetDiscontinuousSpaces()) {
405 CHECK(space->IsLargeObjectSpace());
406 space->AsLargeObjectSpace()->CopyLiveToMarked();
407 }
408 }
409 }
410
InitializePhase()411 void ConcurrentCopying::InitializePhase() {
412 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
413 num_bytes_allocated_before_gc_ = static_cast<int64_t>(heap_->GetBytesAllocated());
414 if (kVerboseMode) {
415 LOG(INFO) << "GC InitializePhase";
416 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
417 << reinterpret_cast<void*>(region_space_->Limit());
418 }
419 CheckEmptyMarkStack();
420 rb_mark_bit_stack_full_ = false;
421 mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
422 if (measure_read_barrier_slow_path_) {
423 rb_slow_path_ns_.store(0, std::memory_order_relaxed);
424 rb_slow_path_count_.store(0, std::memory_order_relaxed);
425 rb_slow_path_count_gc_.store(0, std::memory_order_relaxed);
426 }
427
428 immune_spaces_.Reset();
429 bytes_moved_.store(0, std::memory_order_relaxed);
430 objects_moved_.store(0, std::memory_order_relaxed);
431 bytes_moved_gc_thread_ = 0;
432 objects_moved_gc_thread_ = 0;
433 bytes_scanned_ = 0;
434 GcCause gc_cause = GetCurrentIteration()->GetGcCause();
435
436 force_evacuate_all_ = false;
437 if (!use_generational_cc_ || !young_gen_) {
438 if (gc_cause == kGcCauseExplicit ||
439 gc_cause == kGcCauseCollectorTransition ||
440 GetCurrentIteration()->GetClearSoftReferences()) {
441 force_evacuate_all_ = true;
442 }
443 }
444 if (kUseBakerReadBarrier) {
445 updated_all_immune_objects_.store(false, std::memory_order_relaxed);
446 // GC may gray immune objects in the thread flip.
447 gc_grays_immune_objects_ = true;
448 if (kIsDebugBuild) {
449 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
450 DCHECK(immune_gray_stack_.empty());
451 }
452 }
453 if (use_generational_cc_) {
454 done_scanning_.store(false, std::memory_order_release);
455 }
456 BindBitmaps();
457 if (kVerboseMode) {
458 LOG(INFO) << "young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha;
459 LOG(INFO) << "force_evacuate_all=" << std::boolalpha << force_evacuate_all_ << std::noboolalpha;
460 LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
461 << "-" << immune_spaces_.GetLargestImmuneRegion().End();
462 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
463 LOG(INFO) << "Immune space: " << *space;
464 }
465 LOG(INFO) << "GC end of InitializePhase";
466 }
467 if (use_generational_cc_ && !young_gen_) {
468 region_space_bitmap_->Clear(ShouldEagerlyReleaseMemoryToOS());
469 }
470 mark_stack_mode_.store(ConcurrentCopying::kMarkStackModeThreadLocal, std::memory_order_release);
471 // Mark all of the zygote large objects without graying them.
472 MarkZygoteLargeObjects();
473 }
474
475 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
476 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
477 public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)478 ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
479 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
480 }
481
Run(Thread * thread)482 void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
483 // We are either running this in the target thread, or the target thread will wait for us
484 // before switching back to runnable.
485 Thread* self = Thread::Current();
486 CHECK(thread == self || thread->GetState() != ThreadState::kRunnable)
487 << thread->GetState() << " thread " << thread << " self " << self;
488 thread->SetIsGcMarkingAndUpdateEntrypoints(true);
489 if (use_tlab_ && thread->HasTlab()) {
490 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
491 }
492 if (kUseThreadLocalAllocationStack) {
493 thread->RevokeThreadLocalAllocationStack();
494 }
495 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
496 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
497 // only.
498 thread->VisitRoots(this, kVisitRootFlagAllRoots);
499 }
500
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info)501 void VisitRoots(mirror::Object*** roots,
502 size_t count,
503 [[maybe_unused]] const RootInfo& info) override
504 REQUIRES_SHARED(Locks::mutator_lock_) {
505 Thread* self = Thread::Current();
506 for (size_t i = 0; i < count; ++i) {
507 mirror::Object** root = roots[i];
508 mirror::Object* ref = *root;
509 if (ref != nullptr) {
510 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
511 if (to_ref != ref) {
512 *root = to_ref;
513 }
514 }
515 }
516 }
517
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info)518 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
519 size_t count,
520 [[maybe_unused]] const RootInfo& info) override
521 REQUIRES_SHARED(Locks::mutator_lock_) {
522 Thread* self = Thread::Current();
523 for (size_t i = 0; i < count; ++i) {
524 mirror::CompressedReference<mirror::Object>* const root = roots[i];
525 if (!root->IsNull()) {
526 mirror::Object* ref = root->AsMirrorPtr();
527 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
528 if (to_ref != ref) {
529 root->Assign(to_ref);
530 }
531 }
532 }
533 }
534
535 private:
536 ConcurrentCopying* const concurrent_copying_;
537 const bool use_tlab_;
538 };
539
540 // Called back from Runtime::FlipThreadRoots() during a pause.
541 class ConcurrentCopying::FlipCallback : public Closure {
542 public:
FlipCallback(ConcurrentCopying * concurrent_copying)543 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
544 : concurrent_copying_(concurrent_copying) {
545 }
546
Run(Thread * thread)547 void Run(Thread* thread) override REQUIRES(Locks::mutator_lock_) {
548 ConcurrentCopying* cc = concurrent_copying_;
549 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
550 // Note: self is not necessarily equal to thread since thread may be suspended.
551 Thread* self = Thread::Current();
552 if (kVerifyNoMissingCardMarks && cc->young_gen_) {
553 cc->VerifyNoMissingCardMarks();
554 }
555 CHECK_EQ(thread, self);
556 Locks::mutator_lock_->AssertExclusiveHeld(self);
557 space::RegionSpace::EvacMode evac_mode = space::RegionSpace::kEvacModeLivePercentNewlyAllocated;
558 if (cc->young_gen_) {
559 CHECK(!cc->force_evacuate_all_);
560 evac_mode = space::RegionSpace::kEvacModeNewlyAllocated;
561 } else if (cc->force_evacuate_all_) {
562 evac_mode = space::RegionSpace::kEvacModeForceAll;
563 }
564 {
565 TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings());
566 // Only change live bytes for 1-phase full heap CC, that is if we are either not running in
567 // generational-mode, or it's an 'evacuate-all' mode GC.
568 cc->region_space_->SetFromSpace(
569 cc->rb_table_,
570 evac_mode,
571 /*clear_live_bytes=*/ !cc->use_generational_cc_ || cc->force_evacuate_all_);
572 }
573 cc->SwapStacks();
574 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
575 cc->RecordLiveStackFreezeSize(self);
576 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
577 }
578 cc->is_marking_ = true;
579 if (kIsDebugBuild && !cc->use_generational_cc_) {
580 cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
581 }
582 Runtime* runtime = Runtime::Current();
583 if (UNLIKELY(runtime->IsActiveTransaction())) {
584 CHECK(runtime->IsAotCompiler());
585 TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings());
586 runtime->GetClassLinker()->VisitTransactionRoots(cc);
587 }
588 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
589 cc->GrayAllNewlyDirtyImmuneObjects();
590 if (kIsDebugBuild) {
591 // Check that all non-gray immune objects only reference immune objects.
592 cc->VerifyGrayImmuneObjects();
593 }
594 }
595 ObjPtr<mirror::Class> java_lang_Object =
596 GetClassRoot<mirror::Object, kWithoutReadBarrier>(runtime->GetClassLinker());
597 DCHECK(java_lang_Object != nullptr);
598 cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(thread, java_lang_Object.Ptr()));
599 }
600
601 private:
602 ConcurrentCopying* const concurrent_copying_;
603 };
604
605 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
606 public:
VerifyGrayImmuneObjectsVisitor(ConcurrentCopying * collector)607 explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
608 : collector_(collector) {}
609
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool) const610 void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
611 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
612 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
613 CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
614 obj, offset);
615 }
616
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const617 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
618 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
619 CHECK(klass->IsTypeOfReferenceClass());
620 CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
621 ref,
622 mirror::Reference::ReferentOffset());
623 }
624
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const625 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
626 ALWAYS_INLINE
627 REQUIRES_SHARED(Locks::mutator_lock_) {
628 if (!root->IsNull()) {
629 VisitRoot(root);
630 }
631 }
632
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const633 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
634 ALWAYS_INLINE
635 REQUIRES_SHARED(Locks::mutator_lock_) {
636 CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
637 }
638
639 private:
640 ConcurrentCopying* const collector_;
641
CheckReference(ObjPtr<mirror::Object> ref,ObjPtr<mirror::Object> holder,MemberOffset offset) const642 void CheckReference(ObjPtr<mirror::Object> ref,
643 ObjPtr<mirror::Object> holder,
644 MemberOffset offset) const
645 REQUIRES_SHARED(Locks::mutator_lock_) {
646 if (ref != nullptr) {
647 if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
648 // Not immune, must be a zygote large object.
649 space::LargeObjectSpace* large_object_space =
650 Runtime::Current()->GetHeap()->GetLargeObjectsSpace();
651 CHECK(large_object_space->Contains(ref.Ptr()) &&
652 large_object_space->IsZygoteLargeObject(Thread::Current(), ref.Ptr()))
653 << "Non gray object references non immune, non zygote large object "<< ref << " "
654 << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
655 << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
656 } else {
657 // Make sure the large object class is immune since we will never scan the large object.
658 CHECK(collector_->immune_spaces_.ContainsObject(
659 ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
660 }
661 }
662 }
663 };
664
VerifyGrayImmuneObjects()665 void ConcurrentCopying::VerifyGrayImmuneObjects() {
666 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
667 for (auto& space : immune_spaces_.GetSpaces()) {
668 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
669 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
670 VerifyGrayImmuneObjectsVisitor visitor(this);
671 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
672 reinterpret_cast<uintptr_t>(space->Limit()),
673 [&visitor](mirror::Object* obj)
674 REQUIRES_SHARED(Locks::mutator_lock_) {
675 // If an object is not gray, it should only have references to things in the immune spaces.
676 if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
677 obj->VisitReferences</*kVisitNativeRoots=*/true,
678 kDefaultVerifyFlags,
679 kWithoutReadBarrier>(visitor, visitor);
680 }
681 });
682 }
683 }
684
685 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
686 public:
VerifyNoMissingCardMarkVisitor(ConcurrentCopying * cc,ObjPtr<mirror::Object> holder)687 VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
688 : cc_(cc),
689 holder_(holder) {}
690
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const691 void operator()(ObjPtr<mirror::Object> obj,
692 MemberOffset offset,
693 [[maybe_unused]] bool is_static) const
694 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
695 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
696 CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
697 offset), offset.Uint32Value());
698 }
699 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const700 void operator()(ObjPtr<mirror::Class> klass,
701 ObjPtr<mirror::Reference> ref) const
702 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
703 CHECK(klass->IsTypeOfReferenceClass());
704 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
705 }
706
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const707 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
708 REQUIRES_SHARED(Locks::mutator_lock_) {
709 if (!root->IsNull()) {
710 VisitRoot(root);
711 }
712 }
713
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const714 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
715 REQUIRES_SHARED(Locks::mutator_lock_) {
716 CheckReference(root->AsMirrorPtr());
717 }
718
CheckReference(mirror::Object * ref,int32_t offset=-1) const719 void CheckReference(mirror::Object* ref, int32_t offset = -1) const
720 REQUIRES_SHARED(Locks::mutator_lock_) {
721 if (ref != nullptr && cc_->region_space_->IsInNewlyAllocatedRegion(ref)) {
722 LOG(FATAL_WITHOUT_ABORT)
723 << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
724 << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
725 LOG(FATAL_WITHOUT_ABORT) << "time=" << cc_->region_space_->Time();
726 constexpr const char* kIndent = " ";
727 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(holder_.Ptr(), "holder_", kIndent);
728 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(ref, "ref", kIndent);
729 LOG(FATAL) << "Unexpected reference to newly allocated region.";
730 }
731 }
732
733 private:
734 ConcurrentCopying* const cc_;
735 const ObjPtr<mirror::Object> holder_;
736 };
737
VerifyNoMissingCardMarks()738 void ConcurrentCopying::VerifyNoMissingCardMarks() {
739 auto visitor = [&](mirror::Object* obj)
740 REQUIRES(Locks::mutator_lock_)
741 REQUIRES(!mark_stack_lock_) {
742 // Objects on clean cards should never have references to newly allocated regions. Note
743 // that aged cards are also not clean.
744 if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) {
745 VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder=*/ obj);
746 obj->VisitReferences</*kVisitNativeRoots=*/true, kVerifyNone, kWithoutReadBarrier>(
747 internal_visitor, internal_visitor);
748 }
749 };
750 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
751 region_space_->Walk(visitor);
752 {
753 ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
754 heap_->GetLiveBitmap()->Visit(visitor);
755 }
756 }
757
758 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()759 void ConcurrentCopying::FlipThreadRoots() {
760 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
761 if (kVerboseMode || heap_->dump_region_info_before_gc_) {
762 LOG(INFO) << "time=" << region_space_->Time();
763 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
764 }
765 Thread* self = Thread::Current();
766 Locks::mutator_lock_->AssertNotHeld(self);
767 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
768 FlipCallback flip_callback(this);
769
770 Runtime::Current()->GetThreadList()->FlipThreadRoots(
771 &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener());
772
773 is_asserting_to_space_invariant_ = true;
774 QuasiAtomic::ThreadFenceForConstructor(); // TODO: Remove?
775 if (kVerboseMode) {
776 LOG(INFO) << "time=" << region_space_->Time();
777 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
778 LOG(INFO) << "GC end of FlipThreadRoots";
779 }
780 }
781
782 template <bool kConcurrent>
783 class ConcurrentCopying::GrayImmuneObjectVisitor {
784 public:
GrayImmuneObjectVisitor(Thread * self)785 explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {}
786
operator ()(mirror::Object * obj) const787 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
788 if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::NonGrayState()) {
789 if (kConcurrent) {
790 Locks::mutator_lock_->AssertSharedHeld(self_);
791 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
792 // Mod union table VisitObjects may visit the same object multiple times so we can't check
793 // the result of the atomic set.
794 } else {
795 Locks::mutator_lock_->AssertExclusiveHeld(self_);
796 obj->SetReadBarrierState(ReadBarrier::GrayState());
797 }
798 }
799 }
800
Callback(mirror::Object * obj,void * arg)801 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
802 reinterpret_cast<GrayImmuneObjectVisitor<kConcurrent>*>(arg)->operator()(obj);
803 }
804
805 private:
806 Thread* const self_;
807 };
808
GrayAllDirtyImmuneObjects()809 void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
810 TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings());
811 accounting::CardTable* const card_table = heap_->GetCardTable();
812 Thread* const self = Thread::Current();
813 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ true>;
814 VisitorType visitor(self);
815 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
816 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
817 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
818 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
819 // Mark all the objects on dirty cards since these may point to objects in other space.
820 // Once these are marked, the GC will eventually clear them later.
821 // Table is non null for boot image and zygote spaces. It is only null for application image
822 // spaces.
823 if (table != nullptr) {
824 table->ProcessCards();
825 table->VisitObjects(&VisitorType::Callback, &visitor);
826 // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here,
827 // there would be races with the mutator marking new cards.
828 } else {
829 // Keep cards aged if we don't have a mod-union table since we may need to scan them in future
830 // GCs. This case is for app images.
831 card_table->ModifyCardsAtomic(
832 space->Begin(),
833 space->End(),
834 [](uint8_t card) {
835 return (card != gc::accounting::CardTable::kCardClean)
836 ? gc::accounting::CardTable::kCardAged
837 : card;
838 },
839 /* card modified visitor */ VoidFunctor());
840 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
841 space->Begin(),
842 space->End(),
843 visitor,
844 gc::accounting::CardTable::kCardAged);
845 }
846 }
847 }
848
GrayAllNewlyDirtyImmuneObjects()849 void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() {
850 TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings());
851 accounting::CardTable* const card_table = heap_->GetCardTable();
852 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ false>;
853 Thread* const self = Thread::Current();
854 VisitorType visitor(self);
855 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
856 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
857 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
858 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
859
860 // Don't need to scan aged cards since we did these before the pause. Note that scanning cards
861 // also handles the mod-union table cards.
862 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
863 space->Begin(),
864 space->End(),
865 visitor,
866 gc::accounting::CardTable::kCardDirty);
867 if (table != nullptr) {
868 // Add the cards to the mod-union table so that we can clear cards to save RAM.
869 table->ProcessCards();
870 TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
871 card_table->ClearCardRange(space->Begin(),
872 AlignDown(space->End(), accounting::CardTable::kCardSize));
873 }
874 }
875 // Since all of the objects that may point to other spaces are gray, we can avoid all the read
876 // barriers in the immune spaces.
877 updated_all_immune_objects_.store(true, std::memory_order_relaxed);
878 }
879
SwapStacks()880 void ConcurrentCopying::SwapStacks() {
881 heap_->SwapStacks();
882 }
883
RecordLiveStackFreezeSize(Thread * self)884 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
885 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
886 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
887 }
888
889 // Used to visit objects in the immune spaces.
ScanImmuneObject(mirror::Object * obj)890 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
891 DCHECK(obj != nullptr);
892 DCHECK(immune_spaces_.ContainsObject(obj));
893 // Update the fields without graying it or pushing it onto the mark stack.
894 if (use_generational_cc_ && young_gen_) {
895 // Young GC does not care about references to unevac space. It is safe to not gray these as
896 // long as scan immune objects happens after scanning the dirty cards.
897 Scan<true>(obj);
898 } else {
899 Scan<false>(obj);
900 }
901 }
902
903 class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
904 public:
ImmuneSpaceScanObjVisitor(ConcurrentCopying * cc)905 explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
906 : collector_(cc) {}
907
operator ()(mirror::Object * obj) const908 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
909 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
910 // Only need to scan gray objects.
911 if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
912 collector_->ScanImmuneObject(obj);
913 // Done scanning the object, go back to black (non-gray). Release order
914 // required to ensure that stores of to-space references done by
915 // ScanImmuneObject() are visible before state change.
916 bool success = obj->AtomicSetReadBarrierState(
917 ReadBarrier::GrayState(), ReadBarrier::NonGrayState(), std::memory_order_release);
918 CHECK(success)
919 << Runtime::Current()->GetHeap()->GetVerification()->DumpObjectInfo(obj, "failed CAS");
920 }
921 } else {
922 collector_->ScanImmuneObject(obj);
923 }
924 }
925
Callback(mirror::Object * obj,void * arg)926 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
927 reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
928 }
929
930 private:
931 ConcurrentCopying* const collector_;
932 };
933
934 template <bool kAtomicTestAndSet>
935 class ConcurrentCopying::CaptureRootsForMarkingVisitor : public RootVisitor {
936 public:
CaptureRootsForMarkingVisitor(ConcurrentCopying * cc,Thread * self)937 explicit CaptureRootsForMarkingVisitor(ConcurrentCopying* cc, Thread* self)
938 : collector_(cc), self_(self) {}
939
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info)940 void VisitRoots(mirror::Object*** roots,
941 size_t count,
942 [[maybe_unused]] const RootInfo& info) override
943 REQUIRES_SHARED(Locks::mutator_lock_) {
944 for (size_t i = 0; i < count; ++i) {
945 mirror::Object** root = roots[i];
946 mirror::Object* ref = *root;
947 if (ref != nullptr && !collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
948 collector_->PushOntoMarkStack(self_, ref);
949 }
950 }
951 }
952
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info)953 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
954 size_t count,
955 [[maybe_unused]] const RootInfo& info) override
956 REQUIRES_SHARED(Locks::mutator_lock_) {
957 for (size_t i = 0; i < count; ++i) {
958 mirror::CompressedReference<mirror::Object>* const root = roots[i];
959 if (!root->IsNull()) {
960 mirror::Object* ref = root->AsMirrorPtr();
961 if (!collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
962 collector_->PushOntoMarkStack(self_, ref);
963 }
964 }
965 }
966 }
967
968 private:
969 ConcurrentCopying* const collector_;
970 Thread* const self_;
971 };
972
973 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
974 public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)975 RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
976 bool disable_weak_ref_access)
977 : concurrent_copying_(concurrent_copying),
978 disable_weak_ref_access_(disable_weak_ref_access) {
979 }
980
Run(Thread * thread)981 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
982 // Note: self is not necessarily equal to thread since thread may be suspended.
983 Thread* const self = Thread::Current();
984 CHECK(thread == self ||
985 thread->IsSuspended() ||
986 thread->GetState() == ThreadState::kWaitingPerformingGc)
987 << thread->GetState() << " thread " << thread << " self " << self;
988 // Revoke thread local mark stacks.
989 {
990 MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
991 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
992 if (tl_mark_stack != nullptr) {
993 concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
994 thread->SetThreadLocalMarkStack(nullptr);
995 }
996 }
997 // Disable weak ref access.
998 if (disable_weak_ref_access_) {
999 thread->SetWeakRefAccessEnabled(false);
1000 }
1001 // If thread is a running mutator, then act on behalf of the garbage collector.
1002 // See the code in ThreadList::RunCheckpoint.
1003 concurrent_copying_->GetBarrier().Pass(self);
1004 }
1005
1006 protected:
1007 ConcurrentCopying* const concurrent_copying_;
1008
1009 private:
1010 const bool disable_weak_ref_access_;
1011 };
1012
1013 class ConcurrentCopying::CaptureThreadRootsForMarkingAndCheckpoint :
1014 public RevokeThreadLocalMarkStackCheckpoint {
1015 public:
CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying * cc)1016 explicit CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying* cc) :
1017 RevokeThreadLocalMarkStackCheckpoint(cc, /* disable_weak_ref_access */ false) {}
1018
Run(Thread * thread)1019 void Run(Thread* thread) override
1020 REQUIRES_SHARED(Locks::mutator_lock_) {
1021 Thread* const self = Thread::Current();
1022 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1023 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
1024 // only.
1025 CaptureRootsForMarkingVisitor</*kAtomicTestAndSet*/ true> visitor(concurrent_copying_, self);
1026 thread->VisitRoots(&visitor, kVisitRootFlagAllRoots);
1027 // If thread_running_gc_ performed the root visit then its thread-local
1028 // mark-stack should be null as we directly push to gc_mark_stack_.
1029 CHECK(self == thread || self->GetThreadLocalMarkStack() == nullptr);
1030 // Barrier handling is done in the base class' Run() below.
1031 RevokeThreadLocalMarkStackCheckpoint::Run(thread);
1032 }
1033 };
1034
CaptureThreadRootsForMarking()1035 void ConcurrentCopying::CaptureThreadRootsForMarking() {
1036 TimingLogger::ScopedTiming split("CaptureThreadRootsForMarking", GetTimings());
1037 if (kVerboseMode) {
1038 LOG(INFO) << "time=" << region_space_->Time();
1039 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1040 }
1041 Thread* const self = Thread::Current();
1042 CaptureThreadRootsForMarkingAndCheckpoint check_point(this);
1043 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1044 gc_barrier_->Init(self, 0);
1045 size_t barrier_count = thread_list->RunCheckpoint(&check_point, /* callback */ nullptr);
1046 // If there are no threads to wait which implys that all the checkpoint functions are finished,
1047 // then no need to release the mutator lock.
1048 if (barrier_count == 0) {
1049 return;
1050 }
1051 Locks::mutator_lock_->SharedUnlock(self);
1052 {
1053 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1054 gc_barrier_->Increment(self, barrier_count);
1055 }
1056 Locks::mutator_lock_->SharedLock(self);
1057 if (kVerboseMode) {
1058 LOG(INFO) << "time=" << region_space_->Time();
1059 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1060 LOG(INFO) << "GC end of CaptureThreadRootsForMarking";
1061 }
1062 }
1063
1064 // Used to scan ref fields of an object.
1065 template <bool kHandleInterRegionRefs>
1066 class ConcurrentCopying::ComputeLiveBytesAndMarkRefFieldsVisitor {
1067 public:
ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying * collector,size_t obj_region_idx)1068 explicit ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying* collector,
1069 size_t obj_region_idx)
1070 : collector_(collector),
1071 obj_region_idx_(obj_region_idx),
1072 contains_inter_region_idx_(false) {}
1073
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1074 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1075 ALWAYS_INLINE
1076 REQUIRES_SHARED(Locks::mutator_lock_)
1077 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
1078 DCHECK_EQ(collector_->RegionSpace()->RegionIdxForRef(obj), obj_region_idx_);
1079 DCHECK(kHandleInterRegionRefs || collector_->immune_spaces_.ContainsObject(obj));
1080 mirror::Object* ref =
1081 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1082 // TODO(lokeshgidra): Remove the following condition once b/173676071 is fixed.
1083 if (UNLIKELY(ref == nullptr && offset == mirror::Object::ClassOffset())) {
1084 // It has been verified as a race condition (see b/173676071)! After a small
1085 // wait when we reload the class pointer, it turns out to be a valid class
1086 // object. So as a workaround, we can continue execution and log an error
1087 // that this happened.
1088 for (size_t i = 0; i < 1000; i++) {
1089 // Wait for 1ms at a time. Don't wait for more than 1 second in total.
1090 usleep(1000);
1091 ref = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
1092 if (ref != nullptr) {
1093 LOG(ERROR) << "klass pointer for obj: "
1094 << obj << " (" << mirror::Object::PrettyTypeOf(obj)
1095 << ") found to be null first. Reloading after a small wait fetched klass: "
1096 << ref << " (" << mirror::Object::PrettyTypeOf(ref) << ")";
1097 break;
1098 }
1099 }
1100
1101 if (UNLIKELY(ref == nullptr)) {
1102 // It must be heap corruption. Remove memory protection and dump data.
1103 collector_->region_space_->Unprotect();
1104 LOG(FATAL_WITHOUT_ABORT) << "klass pointer for ref: " << obj << " found to be null.";
1105 collector_->heap_->GetVerification()->LogHeapCorruption(obj, offset, ref, /* fatal */ true);
1106 }
1107 }
1108 CheckReference(ref);
1109 }
1110
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1111 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1112 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1113 DCHECK(klass->IsTypeOfReferenceClass());
1114 // If the referent is not null, then we must re-visit the object during
1115 // copying phase to enqueue it for delayed processing and setting
1116 // read-barrier state to gray to ensure that call to GetReferent() triggers
1117 // the read-barrier. We use same data structure that is used to remember
1118 // objects with inter-region refs for this purpose too.
1119 if (kHandleInterRegionRefs
1120 && !contains_inter_region_idx_
1121 && ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr) {
1122 contains_inter_region_idx_ = true;
1123 }
1124 }
1125
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1126 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1127 ALWAYS_INLINE
1128 REQUIRES_SHARED(Locks::mutator_lock_) {
1129 if (!root->IsNull()) {
1130 VisitRoot(root);
1131 }
1132 }
1133
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1134 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1135 ALWAYS_INLINE
1136 REQUIRES_SHARED(Locks::mutator_lock_) {
1137 CheckReference(root->AsMirrorPtr());
1138 }
1139
ContainsInterRegionRefs() const1140 bool ContainsInterRegionRefs() const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) {
1141 return contains_inter_region_idx_;
1142 }
1143
1144 private:
CheckReference(mirror::Object * ref) const1145 void CheckReference(mirror::Object* ref) const
1146 REQUIRES_SHARED(Locks::mutator_lock_) {
1147 if (ref == nullptr) {
1148 // Nothing to do.
1149 return;
1150 }
1151 if (!collector_->TestAndSetMarkBitForRef(ref)) {
1152 collector_->PushOntoLocalMarkStack(ref);
1153 }
1154 if (kHandleInterRegionRefs && !contains_inter_region_idx_) {
1155 size_t ref_region_idx = collector_->RegionSpace()->RegionIdxForRef(ref);
1156 // If a region-space object refers to an outside object, we will have a
1157 // mismatch of region idx, but the object need not be re-visited in
1158 // copying phase.
1159 if (ref_region_idx != static_cast<size_t>(-1) && obj_region_idx_ != ref_region_idx) {
1160 contains_inter_region_idx_ = true;
1161 }
1162 }
1163 }
1164
1165 ConcurrentCopying* const collector_;
1166 const size_t obj_region_idx_;
1167 mutable bool contains_inter_region_idx_;
1168 };
1169
AddLiveBytesAndScanRef(mirror::Object * ref)1170 void ConcurrentCopying::AddLiveBytesAndScanRef(mirror::Object* ref) {
1171 DCHECK(ref != nullptr);
1172 DCHECK(!immune_spaces_.ContainsObject(ref));
1173 DCHECK(TestMarkBitmapForRef(ref));
1174 size_t obj_region_idx = static_cast<size_t>(-1);
1175 if (LIKELY(region_space_->HasAddress(ref))) {
1176 obj_region_idx = region_space_->RegionIdxForRefUnchecked(ref);
1177 // Add live bytes to the corresponding region
1178 if (!region_space_->IsRegionNewlyAllocated(obj_region_idx)) {
1179 // Newly Allocated regions are always chosen for evacuation. So no need
1180 // to update live_bytes_.
1181 size_t obj_size = ref->SizeOf<kDefaultVerifyFlags>();
1182 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1183 region_space_->AddLiveBytes(ref, alloc_size);
1184 }
1185 }
1186 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ true>
1187 visitor(this, obj_region_idx);
1188 ref->VisitReferences</*kVisitNativeRoots=*/ true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1189 visitor, visitor);
1190 // Mark the corresponding card dirty if the object contains any
1191 // inter-region reference.
1192 if (visitor.ContainsInterRegionRefs()) {
1193 if (obj_region_idx == static_cast<size_t>(-1)) {
1194 // If an inter-region ref has been found in a non-region-space, then it
1195 // must be non-moving-space. This is because this function cannot be
1196 // called on a immune-space object, and a large-object-space object has
1197 // only class object reference, which is either in some immune-space, or
1198 // in non-moving-space.
1199 DCHECK(heap_->non_moving_space_->HasAddress(ref));
1200 non_moving_space_inter_region_bitmap_.Set(ref);
1201 } else {
1202 region_space_inter_region_bitmap_.Set(ref);
1203 }
1204 }
1205 }
1206
1207 template <bool kAtomic>
TestAndSetMarkBitForRef(mirror::Object * ref)1208 bool ConcurrentCopying::TestAndSetMarkBitForRef(mirror::Object* ref) {
1209 accounting::ContinuousSpaceBitmap* bitmap = nullptr;
1210 accounting::LargeObjectBitmap* los_bitmap = nullptr;
1211 if (LIKELY(region_space_->HasAddress(ref))) {
1212 bitmap = region_space_bitmap_;
1213 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1214 bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
1215 } else if (immune_spaces_.ContainsObject(ref)) {
1216 // References to immune space objects are always live.
1217 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1218 return true;
1219 } else {
1220 // Should be a large object. Must be aligned and the LOS must exist.
1221 if (kIsDebugBuild && (!IsAlignedParam(ref, space::LargeObjectSpace::ObjectAlignment()) ||
1222 heap_->GetLargeObjectsSpace() == nullptr)) {
1223 // It must be heap corruption. Remove memory protection and dump data.
1224 region_space_->Unprotect();
1225 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1226 MemberOffset(0),
1227 ref,
1228 /* fatal */ true);
1229 }
1230 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
1231 }
1232 if (kAtomic) {
1233 return (bitmap != nullptr) ? bitmap->AtomicTestAndSet(ref) : los_bitmap->AtomicTestAndSet(ref);
1234 } else {
1235 return (bitmap != nullptr) ? bitmap->Set(ref) : los_bitmap->Set(ref);
1236 }
1237 }
1238
TestMarkBitmapForRef(mirror::Object * ref)1239 bool ConcurrentCopying::TestMarkBitmapForRef(mirror::Object* ref) {
1240 if (LIKELY(region_space_->HasAddress(ref))) {
1241 return region_space_bitmap_->Test(ref);
1242 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1243 return heap_->GetNonMovingSpace()->GetMarkBitmap()->Test(ref);
1244 } else if (immune_spaces_.ContainsObject(ref)) {
1245 // References to immune space objects are always live.
1246 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1247 return true;
1248 } else {
1249 // Should be a large object. Must be aligned and the LOS must exist.
1250 if (kIsDebugBuild && (!IsAlignedParam(ref, space::LargeObjectSpace::ObjectAlignment()) ||
1251 heap_->GetLargeObjectsSpace() == nullptr)) {
1252 // It must be heap corruption. Remove memory protection and dump data.
1253 region_space_->Unprotect();
1254 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1255 MemberOffset(0),
1256 ref,
1257 /* fatal */ true);
1258 }
1259 return heap_->GetLargeObjectsSpace()->GetMarkBitmap()->Test(ref);
1260 }
1261 }
1262
PushOntoLocalMarkStack(mirror::Object * ref)1263 void ConcurrentCopying::PushOntoLocalMarkStack(mirror::Object* ref) {
1264 if (kIsDebugBuild) {
1265 Thread *self = Thread::Current();
1266 DCHECK_EQ(thread_running_gc_, self);
1267 DCHECK(self->GetThreadLocalMarkStack() == nullptr);
1268 }
1269 DCHECK_EQ(mark_stack_mode_.load(std::memory_order_relaxed), kMarkStackModeThreadLocal);
1270 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1271 ExpandGcMarkStack();
1272 }
1273 gc_mark_stack_->PushBack(ref);
1274 }
1275
ProcessMarkStackForMarkingAndComputeLiveBytes()1276 void ConcurrentCopying::ProcessMarkStackForMarkingAndComputeLiveBytes() {
1277 // Process thread-local mark stack containing thread roots
1278 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ false,
1279 /* checkpoint_callback */ nullptr,
1280 [this] (mirror::Object* ref)
1281 REQUIRES_SHARED(Locks::mutator_lock_) {
1282 AddLiveBytesAndScanRef(ref);
1283 });
1284 {
1285 MutexLock mu(thread_running_gc_, mark_stack_lock_);
1286 CHECK(revoked_mark_stacks_.empty());
1287 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
1288 }
1289
1290 while (!gc_mark_stack_->IsEmpty()) {
1291 mirror::Object* ref = gc_mark_stack_->PopBack();
1292 AddLiveBytesAndScanRef(ref);
1293 }
1294 }
1295
1296 class ConcurrentCopying::ImmuneSpaceCaptureRefsVisitor {
1297 public:
ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying * cc)1298 explicit ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying* cc) : collector_(cc) {}
1299
operator ()(mirror::Object * obj) const1300 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
1301 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ false>
1302 visitor(collector_, /*obj_region_idx*/ static_cast<size_t>(-1));
1303 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1304 visitor, visitor);
1305 }
1306
Callback(mirror::Object * obj,void * arg)1307 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
1308 reinterpret_cast<ImmuneSpaceCaptureRefsVisitor*>(arg)->operator()(obj);
1309 }
1310
1311 private:
1312 ConcurrentCopying* const collector_;
1313 };
1314
1315 /* Invariants for two-phase CC
1316 * ===========================
1317 * A) Definitions
1318 * ---------------
1319 * 1) Black: marked in bitmap, rb_state is non-gray, and not in mark stack
1320 * 2) Black-clean: marked in bitmap, and corresponding card is clean/aged
1321 * 3) Black-dirty: marked in bitmap, and corresponding card is dirty
1322 * 4) Gray: marked in bitmap, and exists in mark stack
1323 * 5) Gray-dirty: marked in bitmap, rb_state is gray, corresponding card is
1324 * dirty, and exists in mark stack
1325 * 6) White: unmarked in bitmap, rb_state is non-gray, and not in mark stack
1326 *
1327 * B) Before marking phase
1328 * -----------------------
1329 * 1) All objects are white
1330 * 2) Cards are either clean or aged (cannot be asserted without a STW pause)
1331 * 3) Mark bitmap is cleared
1332 * 4) Mark stack is empty
1333 *
1334 * C) During marking phase
1335 * ------------------------
1336 * 1) If a black object holds an inter-region or white reference, then its
1337 * corresponding card is dirty. In other words, it changes from being
1338 * black-clean to black-dirty
1339 * 2) No black-clean object points to a white object
1340 *
1341 * D) After marking phase
1342 * -----------------------
1343 * 1) There are no gray objects
1344 * 2) All newly allocated objects are in from space
1345 * 3) No white object can be reachable, directly or otherwise, from a
1346 * black-clean object
1347 *
1348 * E) During copying phase
1349 * ------------------------
1350 * 1) Mutators cannot observe white and black-dirty objects
1351 * 2) New allocations are in to-space (newly allocated regions are part of to-space)
1352 * 3) An object in mark stack must have its rb_state = Gray
1353 *
1354 * F) During card table scan
1355 * --------------------------
1356 * 1) Referents corresponding to root references are gray or in to-space
1357 * 2) Every path from an object that is read or written by a mutator during
1358 * this period to a dirty black object goes through some gray object.
1359 * Mutators preserve this by graying black objects as needed during this
1360 * period. Ensures that a mutator never encounters a black dirty object.
1361 *
1362 * G) After card table scan
1363 * ------------------------
1364 * 1) There are no black-dirty objects
1365 * 2) Referents corresponding to root references are gray, black-clean or in
1366 * to-space
1367 *
1368 * H) After copying phase
1369 * -----------------------
1370 * 1) Mark stack is empty
1371 * 2) No references into evacuated from-space
1372 * 3) No reference to an object which is unmarked and is also not in newly
1373 * allocated region. In other words, no reference to white objects.
1374 */
1375
MarkingPhase()1376 void ConcurrentCopying::MarkingPhase() {
1377 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
1378 if (kVerboseMode) {
1379 LOG(INFO) << "GC MarkingPhase";
1380 }
1381 accounting::CardTable* const card_table = heap_->GetCardTable();
1382 Thread* const self = Thread::Current();
1383 CHECK_EQ(self, thread_running_gc_);
1384 // Clear live_bytes_ of every non-free region, except the ones that are newly
1385 // allocated.
1386 region_space_->SetAllRegionLiveBytesZero();
1387 if (kIsDebugBuild) {
1388 region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1389 }
1390 // Scan immune spaces
1391 {
1392 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1393 for (auto& space : immune_spaces_.GetSpaces()) {
1394 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1395 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1396 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1397 ImmuneSpaceCaptureRefsVisitor visitor(this);
1398 if (table != nullptr) {
1399 table->VisitObjects(ImmuneSpaceCaptureRefsVisitor::Callback, &visitor);
1400 } else {
1401 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1402 card_table->Scan<false>(
1403 live_bitmap,
1404 space->Begin(),
1405 space->Limit(),
1406 visitor,
1407 accounting::CardTable::kCardDirty - 1);
1408 }
1409 }
1410 }
1411 // Scan runtime roots
1412 {
1413 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1414 CaptureRootsForMarkingVisitor visitor(this, self);
1415 Runtime::Current()->VisitConcurrentRoots(&visitor, kVisitRootFlagAllRoots);
1416 }
1417 {
1418 // TODO: don't visit the transaction roots if it's not active.
1419 TimingLogger::ScopedTiming split2("VisitNonThreadRoots", GetTimings());
1420 CaptureRootsForMarkingVisitor visitor(this, self);
1421 Runtime::Current()->VisitNonThreadRoots(&visitor);
1422 }
1423 // Capture thread roots
1424 CaptureThreadRootsForMarking();
1425 // Process mark stack
1426 ProcessMarkStackForMarkingAndComputeLiveBytes();
1427
1428 if (kVerboseMode) {
1429 LOG(INFO) << "GC end of MarkingPhase";
1430 }
1431 }
1432
1433 template <bool kNoUnEvac>
ScanDirtyObject(mirror::Object * obj)1434 void ConcurrentCopying::ScanDirtyObject(mirror::Object* obj) {
1435 Scan<kNoUnEvac>(obj);
1436 // Set the read-barrier state of a reference-type object to gray if its
1437 // referent is not marked yet. This is to ensure that if GetReferent() is
1438 // called, it triggers the read-barrier to process the referent before use.
1439 if (UNLIKELY((obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass()))) {
1440 mirror::Object* referent =
1441 obj->AsReference<kVerifyNone, kWithoutReadBarrier>()->GetReferent<kWithoutReadBarrier>();
1442 if (referent != nullptr && !IsInToSpace(referent)) {
1443 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
1444 }
1445 }
1446 }
1447
1448 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
CopyingPhase()1449 void ConcurrentCopying::CopyingPhase() {
1450 TimingLogger::ScopedTiming split("CopyingPhase", GetTimings());
1451 if (kVerboseMode) {
1452 LOG(INFO) << "GC CopyingPhase";
1453 }
1454 Thread* self = Thread::Current();
1455 accounting::CardTable* const card_table = heap_->GetCardTable();
1456 if (kIsDebugBuild) {
1457 MutexLock mu(self, *Locks::thread_list_lock_);
1458 CHECK(weak_ref_access_enabled_);
1459 }
1460
1461 // Scan immune spaces.
1462 // Update all the fields in the immune spaces first without graying the objects so that we
1463 // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
1464 // of the objects.
1465 if (kUseBakerReadBarrier) {
1466 gc_grays_immune_objects_ = false;
1467 }
1468 if (use_generational_cc_) {
1469 if (kVerboseMode) {
1470 LOG(INFO) << "GC ScanCardsForSpace";
1471 }
1472 TimingLogger::ScopedTiming split2("ScanCardsForSpace", GetTimings());
1473 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1474 CHECK(!done_scanning_.load(std::memory_order_relaxed));
1475 if (kIsDebugBuild) {
1476 // Leave some time for mutators to race ahead to try and find races between the GC card
1477 // scanning and mutators reading references.
1478 usleep(10 * 1000);
1479 }
1480 for (space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) {
1481 if (space->IsImageSpace() || space->IsZygoteSpace()) {
1482 // Image and zygote spaces are already handled since we gray the objects in the pause.
1483 continue;
1484 }
1485 // Scan all of the objects on dirty cards in unevac from space, and non moving space. These
1486 // are from previous GCs (or from marking phase of 2-phase full GC) and may reference things
1487 // in the from space.
1488 //
1489 // Note that we do not need to process the large-object space (the only discontinuous space)
1490 // as it contains only large string objects and large primitive array objects, that have no
1491 // reference to other objects, except their class. There is no need to scan these large
1492 // objects, as the String class and the primitive array classes are expected to never move
1493 // during a collection:
1494 // - In the case where we run with a boot image, these classes are part of the image space,
1495 // which is an immune space.
1496 // - In the case where we run without a boot image, these classes are allocated in the
1497 // non-moving space (see art::ClassLinker::InitWithoutImage).
1498 card_table->Scan<false>(
1499 space->GetMarkBitmap(),
1500 space->Begin(),
1501 space->End(),
1502 [this, space](mirror::Object* obj)
1503 REQUIRES(Locks::heap_bitmap_lock_)
1504 REQUIRES_SHARED(Locks::mutator_lock_) {
1505 // TODO: This code may be refactored to avoid scanning object while
1506 // done_scanning_ is false by setting rb_state to gray, and pushing the
1507 // object on mark stack. However, it will also require clearing the
1508 // corresponding mark-bit and, for region space objects,
1509 // decrementing the object's size from the corresponding region's
1510 // live_bytes.
1511 if (young_gen_) {
1512 // Don't push or gray unevac refs.
1513 if (kIsDebugBuild && space == region_space_) {
1514 // We may get unevac large objects.
1515 if (!region_space_->IsInUnevacFromSpace(obj)) {
1516 CHECK(region_space_bitmap_->Test(obj));
1517 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
1518 LOG(FATAL) << "Scanning " << obj << " not in unevac space";
1519 }
1520 }
1521 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1522 } else if (space != region_space_) {
1523 DCHECK(space == heap_->non_moving_space_);
1524 // We need to process un-evac references as they may be unprocessed,
1525 // if they skipped the marking phase due to heap mutation.
1526 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1527 non_moving_space_inter_region_bitmap_.Clear(obj);
1528 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1529 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1530 region_space_inter_region_bitmap_.Clear(obj);
1531 }
1532 },
1533 accounting::CardTable::kCardAged);
1534
1535 if (!young_gen_) {
1536 auto visitor = [this](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1537 // We don't need to process un-evac references as any unprocessed
1538 // ones will be taken care of in the card-table scan above.
1539 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1540 };
1541 if (space == region_space_) {
1542 region_space_->ScanUnevacFromSpace(®ion_space_inter_region_bitmap_, visitor);
1543 } else {
1544 DCHECK(space == heap_->non_moving_space_);
1545 non_moving_space_inter_region_bitmap_.VisitMarkedRange(
1546 reinterpret_cast<uintptr_t>(space->Begin()),
1547 reinterpret_cast<uintptr_t>(space->End()),
1548 visitor);
1549 }
1550 }
1551 }
1552 // Done scanning unevac space.
1553 done_scanning_.store(true, std::memory_order_release);
1554 // NOTE: inter-region-ref bitmaps can be cleared here to release memory, if needed.
1555 // Currently we do it in ReclaimPhase().
1556 if (kVerboseMode) {
1557 LOG(INFO) << "GC end of ScanCardsForSpace";
1558 }
1559 }
1560 {
1561 // For a sticky-bit collection, this phase needs to be after the card scanning since the
1562 // mutator may read an unevac space object out of an image object. If the image object is no
1563 // longer gray it will trigger a read barrier for the unevac space object.
1564 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1565 for (auto& space : immune_spaces_.GetSpaces()) {
1566 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1567 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1568 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1569 ImmuneSpaceScanObjVisitor visitor(this);
1570 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
1571 table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
1572 } else {
1573 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1574 card_table->Scan<false>(
1575 live_bitmap,
1576 space->Begin(),
1577 space->Limit(),
1578 visitor,
1579 accounting::CardTable::kCardDirty - 1);
1580 }
1581 }
1582 }
1583 if (kUseBakerReadBarrier) {
1584 // This release fence makes the field updates in the above loop visible before allowing mutator
1585 // getting access to immune objects without graying it first.
1586 updated_all_immune_objects_.store(true, std::memory_order_release);
1587 // Now "un-gray" (conceptually blacken) immune objects concurrently accessed and grayed by
1588 // mutators. We can't do this in the above loop because we would incorrectly disable the read
1589 // barrier by un-graying (conceptually blackening) an object which may point to an unscanned,
1590 // white object, breaking the to-space invariant (a mutator shall never observe a from-space
1591 // (white) object).
1592 //
1593 // Make sure no mutators are in the middle of marking an immune object before un-graying
1594 // (blackening) immune objects.
1595 IssueEmptyCheckpoint();
1596 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
1597 if (kVerboseMode) {
1598 LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
1599 }
1600 for (mirror::Object* obj : immune_gray_stack_) {
1601 DCHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::GrayState());
1602 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
1603 ReadBarrier::NonGrayState());
1604 DCHECK(success);
1605 }
1606 immune_gray_stack_.clear();
1607 }
1608
1609 {
1610 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1611 Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
1612 }
1613 {
1614 // TODO: don't visit the transaction roots if it's not active.
1615 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
1616 Runtime::Current()->VisitNonThreadRoots(this);
1617 }
1618
1619 {
1620 TimingLogger::ScopedTiming split7("Process mark stacks and References", GetTimings());
1621
1622 // Process the mark stack once in the thread local stack mode. This marks most of the live
1623 // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and
1624 // system weaks) that may happen concurrently while we are processing the mark stack and newly
1625 // mark/gray objects and push refs on the mark stack.
1626 ProcessMarkStack();
1627
1628 ReferenceProcessor* rp = GetHeap()->GetReferenceProcessor();
1629 bool clear_soft_references = GetCurrentIteration()->GetClearSoftReferences();
1630 rp->Setup(self, this, /*concurrent=*/ true, clear_soft_references);
1631 if (!clear_soft_references) {
1632 // Forward as many SoftReferences as possible before inhibiting reference access.
1633 rp->ForwardSoftReferences(GetTimings());
1634 }
1635
1636 // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
1637 // primary reasons are that we need to use a checkpoint to process thread-local mark
1638 // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
1639 // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
1640 // reach the point where we process weak references, we can avoid using a lock when accessing
1641 // the GC mark stack, which makes mark stack processing more efficient.
1642
1643 // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
1644 // for the last time before transitioning to the shared mark stack mode, which would process new
1645 // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
1646 // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
1647 // important to do these together so that we can ensure that mutators won't
1648 // newly gray objects and push new refs onto the mark stack due to weak ref accesses and
1649 // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
1650 // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
1651 // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
1652 // We must use a stop-the-world pause to disable weak ref access. A checkpoint may lead to a
1653 // deadlock if one mutator acquires a low-level mutex and then gets blocked while accessing
1654 // a weak-ref (after participating in the checkpoint), and another mutator indefinitely waits
1655 // for the mutex before it participates in the checkpoint. Consequently, the gc-thread blocks
1656 // forever as the checkpoint never finishes (See runtime/mutator_gc_coord.md).
1657 SwitchToSharedMarkStackMode();
1658 CHECK(!self->GetWeakRefAccessEnabled());
1659
1660 // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
1661 // (which may be non-empty if there were refs found on thread-local mark stacks during the above
1662 // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
1663 // (via read barriers) have no way to produce any more refs to process. Marking converges once
1664 // before we process weak refs below.
1665 ProcessMarkStack();
1666 CheckEmptyMarkStack();
1667
1668 // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
1669 // lock from this point on.
1670 SwitchToGcExclusiveMarkStackMode();
1671 CheckEmptyMarkStack();
1672 if (kVerboseMode) {
1673 LOG(INFO) << "ProcessReferences";
1674 }
1675 // Process weak references. This also marks through finalizers. Although
1676 // reference processing is "disabled", some accesses will proceed once we've ensured that
1677 // objects directly reachable by the mutator are marked, i.e. before we mark through
1678 // finalizers.
1679 ProcessReferences(self);
1680 CheckEmptyMarkStack();
1681 // JNI WeakGlobalRefs and most other system weaks cannot be processed until we're done marking
1682 // through finalizers, since such references to finalizer-reachable objects must be preserved.
1683 if (kVerboseMode) {
1684 LOG(INFO) << "SweepSystemWeaks";
1685 }
1686 SweepSystemWeaks(self);
1687 CheckEmptyMarkStack();
1688 ReenableWeakRefAccess(self);
1689 if (kVerboseMode) {
1690 LOG(INFO) << "SweepSystemWeaks done";
1691 }
1692 // Marking is done. Disable marking.
1693 DisableMarking();
1694 CheckEmptyMarkStack();
1695 }
1696
1697 if (kIsDebugBuild) {
1698 MutexLock mu(self, *Locks::thread_list_lock_);
1699 CHECK(weak_ref_access_enabled_);
1700 }
1701 if (kVerboseMode) {
1702 LOG(INFO) << "GC end of CopyingPhase";
1703 }
1704 }
1705
ReenableWeakRefAccess(Thread * self)1706 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
1707 if (kVerboseMode) {
1708 LOG(INFO) << "ReenableWeakRefAccess";
1709 }
1710 // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
1711 {
1712 MutexLock mu(self, *Locks::thread_list_lock_);
1713 weak_ref_access_enabled_ = true; // This is for new threads.
1714 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1715 for (Thread* thread : thread_list) {
1716 thread->SetWeakRefAccessEnabled(true);
1717 }
1718 }
1719 // Unblock blocking threads.
1720 GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
1721 Runtime::Current()->BroadcastForNewSystemWeaks();
1722 }
1723
1724 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
1725 public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)1726 explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
1727 : concurrent_copying_(concurrent_copying) {
1728 }
1729
Run(Thread * thread)1730 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
1731 // Note: self is not necessarily equal to thread since thread may be suspended.
1732 Thread* self = Thread::Current();
1733 DCHECK(thread == self ||
1734 thread->IsSuspended() ||
1735 thread->GetState() == ThreadState::kWaitingPerformingGc)
1736 << thread->GetState() << " thread " << thread << " self " << self;
1737 // We sweep interpreter caches here so that it can be done after all
1738 // reachable objects are marked and the mutators can sweep their caches
1739 // without synchronization.
1740 thread->SweepInterpreterCache(concurrent_copying_);
1741 // Disable the thread-local is_gc_marking flag.
1742 // Note a thread that has just started right before this checkpoint may have already this flag
1743 // set to false, which is ok.
1744 thread->SetIsGcMarkingAndUpdateEntrypoints(false);
1745 // If thread is a running mutator, then act on behalf of the garbage collector.
1746 // See the code in ThreadList::RunCheckpoint.
1747 concurrent_copying_->GetBarrier().Pass(self);
1748 }
1749
1750 private:
1751 ConcurrentCopying* const concurrent_copying_;
1752 };
1753
1754 class ConcurrentCopying::DisableMarkingCallback : public Closure {
1755 public:
DisableMarkingCallback(ConcurrentCopying * concurrent_copying)1756 explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
1757 : concurrent_copying_(concurrent_copying) {
1758 }
1759
Run(Thread * self)1760 void Run([[maybe_unused]] Thread* self) override REQUIRES(Locks::thread_list_lock_) {
1761 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
1762 // to avoid a race with ThreadList::Register().
1763 CHECK(concurrent_copying_->is_marking_);
1764 concurrent_copying_->is_marking_ = false;
1765 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
1766 CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_);
1767 concurrent_copying_->is_using_read_barrier_entrypoints_ = false;
1768 } else {
1769 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
1770 }
1771 }
1772
1773 private:
1774 ConcurrentCopying* const concurrent_copying_;
1775 };
1776
IssueDisableMarkingCheckpoint()1777 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
1778 Thread* self = Thread::Current();
1779 DisableMarkingCheckpoint check_point(this);
1780 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1781 gc_barrier_->Init(self, 0);
1782 DisableMarkingCallback dmc(this);
1783 size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
1784 // If there are no threads to wait which implies that all the checkpoint functions are finished,
1785 // then no need to release the mutator lock.
1786 if (barrier_count == 0) {
1787 return;
1788 }
1789 // Release locks then wait for all mutator threads to pass the barrier.
1790 Locks::mutator_lock_->SharedUnlock(self);
1791 {
1792 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1793 gc_barrier_->Increment(self, barrier_count);
1794 }
1795 Locks::mutator_lock_->SharedLock(self);
1796 }
1797
DisableMarking()1798 void ConcurrentCopying::DisableMarking() {
1799 // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
1800 // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
1801 // cached in a local variable.
1802 IssueDisableMarkingCheckpoint();
1803 if (kUseTableLookupReadBarrier) {
1804 heap_->rb_table_->ClearAll();
1805 DCHECK(heap_->rb_table_->IsAllCleared());
1806 }
1807 if (kIsDebugBuild) {
1808 is_mark_stack_push_disallowed_.store(1, std::memory_order_relaxed);
1809 }
1810 mark_stack_mode_.store(kMarkStackModeOff, std::memory_order_release);
1811 }
1812
IssueEmptyCheckpoint()1813 void ConcurrentCopying::IssueEmptyCheckpoint() {
1814 Thread* self = Thread::Current();
1815 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1816 // Release locks then wait for all mutator threads to pass the barrier.
1817 Locks::mutator_lock_->SharedUnlock(self);
1818 thread_list->RunEmptyCheckpoint();
1819 Locks::mutator_lock_->SharedLock(self);
1820 }
1821
ExpandGcMarkStack()1822 void ConcurrentCopying::ExpandGcMarkStack() {
1823 DCHECK(gc_mark_stack_->IsFull());
1824 const size_t new_size = gc_mark_stack_->Capacity() * 2;
1825 std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
1826 gc_mark_stack_->End());
1827 gc_mark_stack_->Resize(new_size);
1828 for (auto& ref : temp) {
1829 gc_mark_stack_->PushBack(ref.AsMirrorPtr());
1830 }
1831 DCHECK(!gc_mark_stack_->IsFull());
1832 }
1833
PushOntoMarkStack(Thread * const self,mirror::Object * to_ref)1834 void ConcurrentCopying::PushOntoMarkStack(Thread* const self, mirror::Object* to_ref) {
1835 DCHECK_EQ(is_mark_stack_push_disallowed_.load(std::memory_order_relaxed), 0)
1836 << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
1837 CHECK(thread_running_gc_ != nullptr);
1838 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_acquire);
1839 if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
1840 if (LIKELY(self == thread_running_gc_)) {
1841 // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
1842 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1843 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1844 ExpandGcMarkStack();
1845 }
1846 gc_mark_stack_->PushBack(to_ref);
1847 } else {
1848 // Otherwise, use a thread-local mark stack.
1849 accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
1850 if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
1851 MutexLock mu(self, mark_stack_lock_);
1852 // Get a new thread local mark stack.
1853 accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
1854 if (!pooled_mark_stacks_.empty()) {
1855 // Use a pooled mark stack.
1856 new_tl_mark_stack = pooled_mark_stacks_.back();
1857 pooled_mark_stacks_.pop_back();
1858 } else {
1859 // None pooled. Create a new one.
1860 new_tl_mark_stack =
1861 accounting::AtomicStack<mirror::Object>::Create(
1862 "thread local mark stack", 4 * KB, 4 * KB);
1863 }
1864 DCHECK(new_tl_mark_stack != nullptr);
1865 DCHECK(new_tl_mark_stack->IsEmpty());
1866 new_tl_mark_stack->PushBack(to_ref);
1867 self->SetThreadLocalMarkStack(new_tl_mark_stack);
1868 if (tl_mark_stack != nullptr) {
1869 // Store the old full stack into a vector.
1870 revoked_mark_stacks_.push_back(tl_mark_stack);
1871 }
1872 } else {
1873 tl_mark_stack->PushBack(to_ref);
1874 }
1875 }
1876 } else if (mark_stack_mode == kMarkStackModeShared) {
1877 // Access the shared GC mark stack with a lock.
1878 MutexLock mu(self, mark_stack_lock_);
1879 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1880 ExpandGcMarkStack();
1881 }
1882 gc_mark_stack_->PushBack(to_ref);
1883 } else {
1884 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1885 static_cast<uint32_t>(kMarkStackModeGcExclusive))
1886 << "ref=" << to_ref
1887 << " self->gc_marking=" << self->GetIsGcMarking()
1888 << " cc->is_marking=" << is_marking_;
1889 CHECK(self == thread_running_gc_)
1890 << "Only GC-running thread should access the mark stack "
1891 << "in the GC exclusive mark stack mode. "
1892 << "ref=" << to_ref
1893 << " self->gc_marking=" << self->GetIsGcMarking()
1894 << " cc->is_marking=" << is_marking_;
1895 // Access the GC mark stack without a lock.
1896 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1897 ExpandGcMarkStack();
1898 }
1899 gc_mark_stack_->PushBack(to_ref);
1900 }
1901 }
1902
GetAllocationStack()1903 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
1904 return heap_->allocation_stack_.get();
1905 }
1906
GetLiveStack()1907 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
1908 return heap_->live_stack_.get();
1909 }
1910
1911 // The following visitors are used to verify that there's no references to the from-space left after
1912 // marking.
1913 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
1914 public:
VerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)1915 explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
1916 : collector_(collector) {}
1917
operator ()(mirror::Object * ref,MemberOffset offset=MemberOffset (0),mirror::Object * holder=nullptr) const1918 void operator()(mirror::Object* ref,
1919 MemberOffset offset = MemberOffset(0),
1920 mirror::Object* holder = nullptr) const
1921 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1922 if (ref == nullptr) {
1923 // OK.
1924 return;
1925 }
1926 collector_->AssertToSpaceInvariant(holder, offset, ref);
1927 if (kUseBakerReadBarrier) {
1928 CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState())
1929 << "Ref " << ref << " " << ref->PrettyTypeOf() << " has gray rb_state";
1930 }
1931 }
1932
VisitRoot(mirror::Object * root,const RootInfo & info)1933 void VisitRoot(mirror::Object* root, [[maybe_unused]] const RootInfo& info) override
1934 REQUIRES_SHARED(Locks::mutator_lock_) {
1935 DCHECK(root != nullptr);
1936 operator()(root);
1937 }
1938
1939 private:
1940 ConcurrentCopying* const collector_;
1941 };
1942
1943 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
1944 public:
VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)1945 explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
1946 : collector_(collector) {}
1947
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const1948 void operator()(ObjPtr<mirror::Object> obj,
1949 MemberOffset offset,
1950 [[maybe_unused]] bool is_static) const
1951 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1952 mirror::Object* ref =
1953 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1954 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1955 visitor(ref, offset, obj.Ptr());
1956 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1957 void operator()(ObjPtr<mirror::Class> klass,
1958 ObjPtr<mirror::Reference> ref) const
1959 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1960 CHECK(klass->IsTypeOfReferenceClass());
1961 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
1962 }
1963
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1964 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1965 REQUIRES_SHARED(Locks::mutator_lock_) {
1966 if (!root->IsNull()) {
1967 VisitRoot(root);
1968 }
1969 }
1970
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1971 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1972 REQUIRES_SHARED(Locks::mutator_lock_) {
1973 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1974 visitor(root->AsMirrorPtr());
1975 }
1976
1977 private:
1978 ConcurrentCopying* const collector_;
1979 };
1980
1981 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()1982 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
1983 Thread* self = Thread::Current();
1984 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
1985 // Verify all threads have is_gc_marking to be false
1986 {
1987 MutexLock mu(self, *Locks::thread_list_lock_);
1988 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1989 for (Thread* thread : thread_list) {
1990 CHECK(!thread->GetIsGcMarking());
1991 }
1992 }
1993
1994 auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj)
1995 REQUIRES_SHARED(Locks::mutator_lock_) {
1996 CHECK(obj != nullptr);
1997 space::RegionSpace* region_space = RegionSpace();
1998 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
1999 VerifyNoFromSpaceRefsFieldVisitor visitor(this);
2000 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
2001 visitor,
2002 visitor);
2003 if (kUseBakerReadBarrier) {
2004 CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::NonGrayState())
2005 << "obj=" << obj << " has gray rb_state " << obj->GetReadBarrierState();
2006 }
2007 };
2008 // Roots.
2009 {
2010 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2011 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
2012 Runtime::Current()->VisitRoots(&ref_visitor);
2013 }
2014 // The to-space.
2015 region_space_->WalkToSpace(verify_no_from_space_refs_visitor);
2016 // Non-moving spaces.
2017 {
2018 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2019 heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor);
2020 }
2021 // The alloc stack.
2022 {
2023 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
2024 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
2025 it < end; ++it) {
2026 mirror::Object* const obj = it->AsMirrorPtr();
2027 if (obj != nullptr && obj->GetClass() != nullptr) {
2028 // TODO: need to call this only if obj is alive?
2029 ref_visitor(obj);
2030 verify_no_from_space_refs_visitor(obj);
2031 }
2032 }
2033 }
2034 // TODO: LOS. But only refs in LOS are classes.
2035 }
2036
2037 // The following visitors are used to assert the to-space invariant.
2038 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
2039 public:
AssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)2040 explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
2041 : collector_(collector) {}
2042
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const2043 void operator()(ObjPtr<mirror::Object> obj,
2044 MemberOffset offset,
2045 [[maybe_unused]] bool is_static) const
2046 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2047 mirror::Object* ref =
2048 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
2049 collector_->AssertToSpaceInvariant(obj.Ptr(), offset, ref);
2050 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const2051 void operator()(ObjPtr<mirror::Class> klass, [[maybe_unused]] ObjPtr<mirror::Reference> ref) const
2052 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2053 CHECK(klass->IsTypeOfReferenceClass());
2054 }
2055
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2056 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2057 REQUIRES_SHARED(Locks::mutator_lock_) {
2058 if (!root->IsNull()) {
2059 VisitRoot(root);
2060 }
2061 }
2062
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2063 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2064 REQUIRES_SHARED(Locks::mutator_lock_) {
2065 mirror::Object* ref = root->AsMirrorPtr();
2066 collector_->AssertToSpaceInvariant(/* obj */ nullptr, MemberOffset(0), ref);
2067 }
2068
2069 private:
2070 ConcurrentCopying* const collector_;
2071 };
2072
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback)2073 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
2074 Closure* checkpoint_callback) {
2075 Thread* self = Thread::Current();
2076 Locks::mutator_lock_->AssertSharedHeld(self);
2077 ThreadList* thread_list = Runtime::Current()->GetThreadList();
2078 RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
2079 if (disable_weak_ref_access) {
2080 // We're the only thread that could possibly ask for exclusive access here.
2081 Locks::mutator_lock_->SharedUnlock(self);
2082 {
2083 ScopedPause pause(this);
2084 MutexLock mu(self, *Locks::thread_list_lock_);
2085 checkpoint_callback->Run(self);
2086 for (Thread* thread : thread_list->GetList()) {
2087 check_point.Run(thread);
2088 }
2089 }
2090 Locks::mutator_lock_->SharedLock(self);
2091 } else {
2092 gc_barrier_->Init(self, 0);
2093 size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
2094 // If there are no threads to wait which implys that all the checkpoint functions are finished,
2095 // then no need to release the mutator lock.
2096 if (barrier_count == 0) {
2097 return;
2098 }
2099 Locks::mutator_lock_->SharedUnlock(self);
2100 {
2101 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
2102 gc_barrier_->Increment(self, barrier_count);
2103 }
2104 Locks::mutator_lock_->SharedLock(self);
2105 }
2106 }
2107
RevokeThreadLocalMarkStack(Thread * thread)2108 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
2109 Thread* self = Thread::Current();
2110 CHECK_EQ(self, thread);
2111 MutexLock mu(self, mark_stack_lock_);
2112 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
2113 if (tl_mark_stack != nullptr) {
2114 CHECK(is_marking_);
2115 revoked_mark_stacks_.push_back(tl_mark_stack);
2116 thread->SetThreadLocalMarkStack(nullptr);
2117 }
2118 }
2119
ProcessMarkStack()2120 void ConcurrentCopying::ProcessMarkStack() {
2121 if (kVerboseMode) {
2122 LOG(INFO) << "ProcessMarkStack. ";
2123 }
2124 bool empty_prev = false;
2125 while (true) {
2126 bool empty = ProcessMarkStackOnce();
2127 if (empty_prev && empty) {
2128 // Saw empty mark stack for a second time, done.
2129 break;
2130 }
2131 empty_prev = empty;
2132 }
2133 }
2134
ProcessMarkStackOnce()2135 bool ConcurrentCopying::ProcessMarkStackOnce() {
2136 DCHECK(thread_running_gc_ != nullptr);
2137 Thread* const self = Thread::Current();
2138 DCHECK(self == thread_running_gc_);
2139 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2140 size_t count = 0;
2141 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_acquire);
2142 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2143 // Process the thread-local mark stacks and the GC mark stack.
2144 count += ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ false,
2145 /* checkpoint_callback= */ nullptr,
2146 [this] (mirror::Object* ref)
2147 REQUIRES_SHARED(Locks::mutator_lock_) {
2148 ProcessMarkStackRef(ref);
2149 });
2150 while (!gc_mark_stack_->IsEmpty()) {
2151 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2152 ProcessMarkStackRef(to_ref);
2153 ++count;
2154 }
2155 gc_mark_stack_->Reset();
2156 } else if (mark_stack_mode == kMarkStackModeShared) {
2157 // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
2158 // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
2159 // disabled at this point.
2160 IssueEmptyCheckpoint();
2161 // Process the shared GC mark stack with a lock.
2162 {
2163 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2164 CHECK(revoked_mark_stacks_.empty());
2165 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2166 }
2167 while (true) {
2168 std::vector<mirror::Object*> refs;
2169 {
2170 // Copy refs with lock. Note the number of refs should be small.
2171 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2172 if (gc_mark_stack_->IsEmpty()) {
2173 break;
2174 }
2175 for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
2176 p != gc_mark_stack_->End(); ++p) {
2177 refs.push_back(p->AsMirrorPtr());
2178 }
2179 gc_mark_stack_->Reset();
2180 }
2181 for (mirror::Object* ref : refs) {
2182 ProcessMarkStackRef(ref);
2183 ++count;
2184 }
2185 }
2186 } else {
2187 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
2188 static_cast<uint32_t>(kMarkStackModeGcExclusive));
2189 {
2190 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2191 CHECK(revoked_mark_stacks_.empty());
2192 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2193 }
2194 // Process the GC mark stack in the exclusive mode. No need to take the lock.
2195 while (!gc_mark_stack_->IsEmpty()) {
2196 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2197 ProcessMarkStackRef(to_ref);
2198 ++count;
2199 }
2200 gc_mark_stack_->Reset();
2201 }
2202
2203 // Return true if the stack was empty.
2204 return count == 0;
2205 }
2206
2207 template <typename Processor>
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback,const Processor & processor)2208 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
2209 Closure* checkpoint_callback,
2210 const Processor& processor) {
2211 // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
2212 RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
2213 if (disable_weak_ref_access) {
2214 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode_.load(std::memory_order_relaxed)),
2215 static_cast<uint32_t>(kMarkStackModeShared));
2216 }
2217 size_t count = 0;
2218 std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
2219 {
2220 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2221 // Make a copy of the mark stack vector.
2222 mark_stacks = revoked_mark_stacks_;
2223 revoked_mark_stacks_.clear();
2224 }
2225 for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
2226 for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
2227 mirror::Object* to_ref = p->AsMirrorPtr();
2228 processor(to_ref);
2229 ++count;
2230 }
2231 {
2232 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2233 if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
2234 // The pool has enough. Delete it.
2235 delete mark_stack;
2236 } else {
2237 // Otherwise, put it into the pool for later reuse.
2238 mark_stack->Reset();
2239 pooled_mark_stacks_.push_back(mark_stack);
2240 }
2241 }
2242 }
2243 if (disable_weak_ref_access) {
2244 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2245 CHECK(revoked_mark_stacks_.empty());
2246 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2247 }
2248 return count;
2249 }
2250
ProcessMarkStackRef(mirror::Object * to_ref)2251 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
2252 DCHECK(!region_space_->IsInFromSpace(to_ref));
2253 size_t obj_size = 0;
2254 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(to_ref);
2255 if (kUseBakerReadBarrier) {
2256 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2257 << " to_ref=" << to_ref
2258 << " rb_state=" << to_ref->GetReadBarrierState()
2259 << " is_marked=" << IsMarked(to_ref)
2260 << " type=" << to_ref->PrettyTypeOf()
2261 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2262 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2263 << " region_type=" << rtype;
2264 }
2265 bool add_to_live_bytes = false;
2266 // Invariant: There should be no object from a newly-allocated
2267 // region (either large or non-large) on the mark stack.
2268 DCHECK(!region_space_->IsInNewlyAllocatedRegion(to_ref)) << to_ref;
2269 bool perform_scan = false;
2270 switch (rtype) {
2271 case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace:
2272 // Mark the bitmap only in the GC thread here so that we don't need a CAS.
2273 if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
2274 // It may be already marked if we accidentally pushed the same object twice due to the racy
2275 // bitmap read in MarkUnevacFromSpaceRegion.
2276 if (use_generational_cc_ && young_gen_) {
2277 CHECK(region_space_->IsLargeObject(to_ref));
2278 region_space_->ZeroLiveBytesForLargeObject(to_ref);
2279 }
2280 perform_scan = true;
2281 // Only add to the live bytes if the object was not already marked and we are not the young
2282 // GC.
2283 // Why add live bytes even after 2-phase GC?
2284 // We need to ensure that if there is a unevac region with any live
2285 // objects, then its live_bytes must be non-zero. Otherwise,
2286 // ClearFromSpace() will clear the region. Considering, that we may skip
2287 // live objects during marking phase of 2-phase GC, we have to take care
2288 // of such objects here.
2289 add_to_live_bytes = true;
2290 }
2291 break;
2292 case space::RegionSpace::RegionType::kRegionTypeToSpace:
2293 if (use_generational_cc_) {
2294 // Copied to to-space, set the bit so that the next GC can scan objects.
2295 region_space_bitmap_->Set(to_ref);
2296 }
2297 perform_scan = true;
2298 break;
2299 default:
2300 DCHECK(!region_space_->HasAddress(to_ref)) << to_ref;
2301 DCHECK(!immune_spaces_.ContainsObject(to_ref));
2302 // Non-moving or large-object space.
2303 if (kUseBakerReadBarrier) {
2304 accounting::ContinuousSpaceBitmap* mark_bitmap =
2305 heap_->GetNonMovingSpace()->GetMarkBitmap();
2306 const bool is_los = !mark_bitmap->HasAddress(to_ref);
2307 if (is_los) {
2308 if (!IsAlignedParam(to_ref, space::LargeObjectSpace::ObjectAlignment())) {
2309 // Ref is a large object that is not aligned, it must be heap
2310 // corruption. Remove memory protection and dump data before
2311 // AtomicSetReadBarrierState since it will fault if the address is not
2312 // valid.
2313 region_space_->Unprotect();
2314 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
2315 MemberOffset(0),
2316 to_ref,
2317 /* fatal */ true);
2318 }
2319 DCHECK(heap_->GetLargeObjectsSpace())
2320 << "ref=" << to_ref
2321 << " doesn't belong to non-moving space and large object space doesn't exist";
2322 accounting::LargeObjectBitmap* los_bitmap =
2323 heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2324 DCHECK(los_bitmap->HasAddress(to_ref));
2325 // Only the GC thread could be setting the LOS bit map hence doesn't
2326 // need to be atomically done.
2327 perform_scan = !los_bitmap->Set(to_ref);
2328 } else {
2329 // Only the GC thread could be setting the non-moving space bit map
2330 // hence doesn't need to be atomically done.
2331 perform_scan = !mark_bitmap->Set(to_ref);
2332 }
2333 } else {
2334 perform_scan = true;
2335 }
2336 }
2337 if (perform_scan) {
2338 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2339 if (use_generational_cc_ && young_gen_) {
2340 Scan<true>(to_ref, obj_size);
2341 } else {
2342 Scan<false>(to_ref, obj_size);
2343 }
2344 }
2345 if (kUseBakerReadBarrier) {
2346 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2347 << " to_ref=" << to_ref
2348 << " rb_state=" << to_ref->GetReadBarrierState()
2349 << " is_marked=" << IsMarked(to_ref)
2350 << " type=" << to_ref->PrettyTypeOf()
2351 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2352 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2353 << " region_type=" << rtype
2354 // TODO: Temporary; remove this when this is no longer needed (b/116087961).
2355 << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
2356 }
2357 #ifdef USE_BAKER_READ_BARRIER
2358 mirror::Object* referent = nullptr;
2359 if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
2360 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
2361 !IsInToSpace(referent)))) {
2362 // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
2363 // will change it to non-gray later in ReferenceQueue::DisableReadBarrierForReference.
2364 DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr)
2365 << "Left unenqueued ref gray " << to_ref;
2366 } else {
2367 // We may occasionally leave a reference non-gray in the queue if its referent happens to be
2368 // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
2369 // above IsInToSpace() evaluates to true and we change the color from gray to non-gray here in
2370 // this else block.
2371 if (kUseBakerReadBarrier) {
2372 bool success = to_ref->AtomicSetReadBarrierState(
2373 ReadBarrier::GrayState(), ReadBarrier::NonGrayState(), std::memory_order_release);
2374 DCHECK(success) << "Must succeed as we won the race.";
2375 }
2376 }
2377 #else
2378 DCHECK(!kUseBakerReadBarrier);
2379 #endif
2380
2381 if (add_to_live_bytes) {
2382 // Add to the live bytes per unevacuated from-space. Note this code is always run by the
2383 // GC-running thread (no synchronization required).
2384 DCHECK(region_space_bitmap_->Test(to_ref));
2385 if (obj_size == 0) {
2386 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2387 }
2388 region_space_->AddLiveBytes(to_ref, RoundUp(obj_size, space::RegionSpace::kAlignment));
2389 }
2390 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
2391 CHECK(to_ref != nullptr);
2392 space::RegionSpace* region_space = RegionSpace();
2393 CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space";
2394 AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref);
2395 AssertToSpaceInvariantFieldVisitor visitor(this);
2396 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
2397 visitor,
2398 visitor);
2399 }
2400 }
2401
2402 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
2403 public:
DisableWeakRefAccessCallback(ConcurrentCopying * concurrent_copying)2404 explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
2405 : concurrent_copying_(concurrent_copying) {
2406 }
2407
Run(Thread * self)2408 void Run([[maybe_unused]] Thread* self) override REQUIRES(Locks::thread_list_lock_) {
2409 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
2410 // to avoid a deadlock b/31500969.
2411 CHECK(concurrent_copying_->weak_ref_access_enabled_);
2412 concurrent_copying_->weak_ref_access_enabled_ = false;
2413 }
2414
2415 private:
2416 ConcurrentCopying* const concurrent_copying_;
2417 };
2418
SwitchToSharedMarkStackMode()2419 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
2420 Thread* self = Thread::Current();
2421 DCHECK(thread_running_gc_ != nullptr);
2422 DCHECK(self == thread_running_gc_);
2423 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2424 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode_.load(std::memory_order_relaxed)),
2425 static_cast<uint32_t>(kMarkStackModeThreadLocal));
2426 mark_stack_mode_.store(kMarkStackModeShared, std::memory_order_release);
2427 DisableWeakRefAccessCallback dwrac(this);
2428 // Process the thread local mark stacks one last time after switching to the shared mark stack
2429 // mode and disable weak ref accesses.
2430 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ true,
2431 &dwrac,
2432 [this] (mirror::Object* ref)
2433 REQUIRES_SHARED(Locks::mutator_lock_) {
2434 ProcessMarkStackRef(ref);
2435 });
2436 if (kVerboseMode) {
2437 LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
2438 }
2439 }
2440
SwitchToGcExclusiveMarkStackMode()2441 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
2442 Thread* self = Thread::Current();
2443 DCHECK(thread_running_gc_ != nullptr);
2444 DCHECK(self == thread_running_gc_);
2445 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2446 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode_.load(std::memory_order_relaxed)),
2447 static_cast<uint32_t>(kMarkStackModeShared));
2448 mark_stack_mode_.store(kMarkStackModeGcExclusive, std::memory_order_release);
2449 if (kVerboseMode) {
2450 LOG(INFO) << "Switched to GC exclusive mark stack mode";
2451 }
2452 }
2453
CheckEmptyMarkStack()2454 void ConcurrentCopying::CheckEmptyMarkStack() {
2455 Thread* self = Thread::Current();
2456 DCHECK(thread_running_gc_ != nullptr);
2457 DCHECK(self == thread_running_gc_);
2458 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2459 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_acquire);
2460 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2461 // Thread-local mark stack mode.
2462 RevokeThreadLocalMarkStacks(false, nullptr);
2463 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2464 if (!revoked_mark_stacks_.empty()) {
2465 for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
2466 while (!mark_stack->IsEmpty()) {
2467 mirror::Object* obj = mark_stack->PopBack();
2468 if (kUseBakerReadBarrier) {
2469 uint32_t rb_state = obj->GetReadBarrierState();
2470 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
2471 << rb_state << " is_marked=" << IsMarked(obj);
2472 } else {
2473 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
2474 << " is_marked=" << IsMarked(obj);
2475 }
2476 }
2477 }
2478 LOG(FATAL) << "mark stack is not empty";
2479 }
2480 } else {
2481 // Shared, GC-exclusive, or off.
2482 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2483 CHECK(gc_mark_stack_->IsEmpty());
2484 CHECK(revoked_mark_stacks_.empty());
2485 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2486 }
2487 }
2488
SweepSystemWeaks(Thread * self)2489 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
2490 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
2491 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2492 Runtime::Current()->SweepSystemWeaks(this);
2493 }
2494
Sweep(bool swap_bitmaps)2495 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
2496 if (use_generational_cc_ && young_gen_) {
2497 // Only sweep objects on the live stack.
2498 SweepArray(heap_->GetLiveStack(), /* swap_bitmaps= */ false);
2499 } else {
2500 {
2501 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
2502 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
2503 if (kEnableFromSpaceAccountingCheck) {
2504 // Ensure that nobody inserted items in the live stack after we swapped the stacks.
2505 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
2506 }
2507 heap_->MarkAllocStackAsLive(live_stack);
2508 live_stack->Reset();
2509 }
2510 CheckEmptyMarkStack();
2511 TimingLogger::ScopedTiming split("Sweep", GetTimings());
2512 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
2513 if (space->IsContinuousMemMapAllocSpace() && space != region_space_
2514 && !immune_spaces_.ContainsSpace(space)) {
2515 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2516 TimingLogger::ScopedTiming split2(
2517 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
2518 RecordFree(alloc_space->Sweep(swap_bitmaps));
2519 }
2520 }
2521 SweepLargeObjects(swap_bitmaps);
2522 }
2523 }
2524
2525 // Copied and adapted from MarkSweep::SweepArray.
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)2526 void ConcurrentCopying::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
2527 // This method is only used when Generational CC collection is enabled.
2528 DCHECK(use_generational_cc_);
2529 CheckEmptyMarkStack();
2530 TimingLogger::ScopedTiming t("SweepArray", GetTimings());
2531 Thread* self = Thread::Current();
2532 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
2533 sweep_array_free_buffer_mem_map_.BaseBegin());
2534 size_t chunk_free_pos = 0;
2535 ObjectBytePair freed;
2536 ObjectBytePair freed_los;
2537 // How many objects are left in the array, modified after each space is swept.
2538 StackReference<mirror::Object>* objects = allocations->Begin();
2539 size_t count = allocations->Size();
2540 // Start by sweeping the continuous spaces.
2541 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
2542 if (!space->IsAllocSpace() ||
2543 space == region_space_ ||
2544 immune_spaces_.ContainsSpace(space) ||
2545 space->GetLiveBitmap() == nullptr) {
2546 continue;
2547 }
2548 space::AllocSpace* alloc_space = space->AsAllocSpace();
2549 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
2550 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
2551 if (swap_bitmaps) {
2552 std::swap(live_bitmap, mark_bitmap);
2553 }
2554 StackReference<mirror::Object>* out = objects;
2555 for (size_t i = 0; i < count; ++i) {
2556 mirror::Object* const obj = objects[i].AsMirrorPtr();
2557 if (kUseThreadLocalAllocationStack && obj == nullptr) {
2558 continue;
2559 }
2560 if (space->HasAddress(obj)) {
2561 // This object is in the space, remove it from the array and add it to the sweep buffer
2562 // if needed.
2563 if (!mark_bitmap->Test(obj)) {
2564 if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
2565 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2566 freed.objects += chunk_free_pos;
2567 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2568 chunk_free_pos = 0;
2569 }
2570 chunk_free_buffer[chunk_free_pos++] = obj;
2571 }
2572 } else {
2573 (out++)->Assign(obj);
2574 }
2575 }
2576 if (chunk_free_pos > 0) {
2577 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2578 freed.objects += chunk_free_pos;
2579 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2580 chunk_free_pos = 0;
2581 }
2582 // All of the references which space contained are no longer in the allocation stack, update
2583 // the count.
2584 count = out - objects;
2585 }
2586 // Handle the large object space.
2587 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
2588 if (large_object_space != nullptr) {
2589 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
2590 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
2591 if (swap_bitmaps) {
2592 std::swap(large_live_objects, large_mark_objects);
2593 }
2594 for (size_t i = 0; i < count; ++i) {
2595 mirror::Object* const obj = objects[i].AsMirrorPtr();
2596 // Handle large objects.
2597 if (kUseThreadLocalAllocationStack && obj == nullptr) {
2598 continue;
2599 }
2600 if (!large_mark_objects->Test(obj)) {
2601 ++freed_los.objects;
2602 freed_los.bytes += large_object_space->Free(self, obj);
2603 }
2604 }
2605 }
2606 {
2607 TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
2608 RecordFree(freed);
2609 RecordFreeLOS(freed_los);
2610 t2.NewTiming("ResetStack");
2611 allocations->Reset();
2612 }
2613 sweep_array_free_buffer_mem_map_.MadviseDontNeedAndZero();
2614 }
2615
MarkZygoteLargeObjects()2616 void ConcurrentCopying::MarkZygoteLargeObjects() {
2617 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
2618 Thread* const self = Thread::Current();
2619 WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
2620 space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
2621 if (los != nullptr) {
2622 // Pick the current live bitmap (mark bitmap if swapped).
2623 accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
2624 accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
2625 // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
2626 std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
2627 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
2628 reinterpret_cast<uintptr_t>(range.second),
2629 [mark_bitmap, los, self](mirror::Object* obj)
2630 REQUIRES(Locks::heap_bitmap_lock_)
2631 REQUIRES_SHARED(Locks::mutator_lock_) {
2632 if (los->IsZygoteLargeObject(self, obj)) {
2633 mark_bitmap->Set(obj);
2634 }
2635 });
2636 }
2637 }
2638
SweepLargeObjects(bool swap_bitmaps)2639 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
2640 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
2641 if (heap_->GetLargeObjectsSpace() != nullptr) {
2642 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
2643 }
2644 }
2645
CaptureRssAtPeak()2646 void ConcurrentCopying::CaptureRssAtPeak() {
2647 using range_t = std::pair<void*, void*>;
2648 // This operation is expensive as several calls to mincore() are performed.
2649 // Also, this must be called before clearing regions in ReclaimPhase().
2650 // Therefore, we make it conditional on the flag that enables dumping GC
2651 // performance info on shutdown.
2652 if (Runtime::Current()->GetDumpGCPerformanceOnShutdown()) {
2653 std::list<range_t> gc_ranges;
2654 auto add_gc_range = [&gc_ranges](void* start, size_t size) {
2655 void* end = static_cast<char*>(start) + RoundUp(size, gPageSize);
2656 gc_ranges.emplace_back(range_t(start, end));
2657 };
2658
2659 // region space
2660 DCHECK(IsAlignedParam(region_space_->Limit(), gPageSize));
2661 gc_ranges.emplace_back(range_t(region_space_->Begin(), region_space_->Limit()));
2662 // mark bitmap
2663 add_gc_range(region_space_bitmap_->Begin(), region_space_bitmap_->Size());
2664
2665 // non-moving space
2666 {
2667 DCHECK(IsAlignedParam(heap_->non_moving_space_->Limit(), gPageSize));
2668 gc_ranges.emplace_back(range_t(heap_->non_moving_space_->Begin(),
2669 heap_->non_moving_space_->Limit()));
2670 // mark bitmap
2671 accounting::ContinuousSpaceBitmap *bitmap = heap_->non_moving_space_->GetMarkBitmap();
2672 add_gc_range(bitmap->Begin(), bitmap->Size());
2673 // live bitmap. Deal with bound bitmaps.
2674 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2675 if (heap_->non_moving_space_->HasBoundBitmaps()) {
2676 DCHECK_EQ(bitmap->Begin(),
2677 heap_->non_moving_space_->GetLiveBitmap()->Begin());
2678 bitmap = heap_->non_moving_space_->GetTempBitmap();
2679 } else {
2680 bitmap = heap_->non_moving_space_->GetLiveBitmap();
2681 }
2682 add_gc_range(bitmap->Begin(), bitmap->Size());
2683 }
2684 // large-object space
2685 if (heap_->GetLargeObjectsSpace()) {
2686 heap_->GetLargeObjectsSpace()->ForEachMemMap([&add_gc_range](const MemMap& map) {
2687 DCHECK(IsAlignedParam(map.BaseSize(), gPageSize));
2688 add_gc_range(map.BaseBegin(), map.BaseSize());
2689 });
2690 // mark bitmap
2691 accounting::LargeObjectBitmap* bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2692 add_gc_range(bitmap->Begin(), bitmap->Size());
2693 // live bitmap
2694 bitmap = heap_->GetLargeObjectsSpace()->GetLiveBitmap();
2695 add_gc_range(bitmap->Begin(), bitmap->Size());
2696 }
2697 // card table
2698 add_gc_range(heap_->GetCardTable()->MemMapBegin(), heap_->GetCardTable()->MemMapSize());
2699 // inter-region refs
2700 if (use_generational_cc_ && !young_gen_) {
2701 // region space
2702 add_gc_range(region_space_inter_region_bitmap_.Begin(),
2703 region_space_inter_region_bitmap_.Size());
2704 // non-moving space
2705 add_gc_range(non_moving_space_inter_region_bitmap_.Begin(),
2706 non_moving_space_inter_region_bitmap_.Size());
2707 }
2708 // Extract RSS using mincore(). Updates the cummulative RSS counter.
2709 ExtractRssFromMincore(&gc_ranges);
2710 }
2711 }
2712
ReclaimPhase()2713 void ConcurrentCopying::ReclaimPhase() {
2714 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
2715 if (kVerboseMode) {
2716 LOG(INFO) << "GC ReclaimPhase";
2717 }
2718 Thread* self = Thread::Current();
2719
2720 // Free data for class loaders that we unloaded. This includes removing
2721 // dead methods from JIT's internal maps. This must be done before
2722 // reclaiming the memory of the dead methods' declaring classes.
2723 Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
2724
2725 {
2726 // Double-check that the mark stack is empty.
2727 // Note: need to set this after VerifyNoFromSpaceRef().
2728 is_asserting_to_space_invariant_ = false;
2729 QuasiAtomic::ThreadFenceForConstructor(); // TODO: Remove?
2730 if (kVerboseMode) {
2731 LOG(INFO) << "Issue an empty check point. ";
2732 }
2733 IssueEmptyCheckpoint();
2734 // Disable the check.
2735 if (kIsDebugBuild) {
2736 is_mark_stack_push_disallowed_.store(0, std::memory_order_relaxed);
2737 }
2738 if (kUseBakerReadBarrier) {
2739 updated_all_immune_objects_.store(false, std::memory_order_seq_cst);
2740 }
2741 CheckEmptyMarkStack();
2742 }
2743
2744 // Capture RSS at the time when memory usage is at its peak. All GC related
2745 // memory ranges like java heap, card table, bitmap etc. are taken into
2746 // account.
2747 // TODO: We can fetch resident memory for region space directly by going
2748 // through list of allocated regions. This way we can avoid calling mincore on
2749 // the biggest memory range, thereby reducing the cost of this function.
2750 CaptureRssAtPeak();
2751
2752 // Sweep the malloc spaces before clearing the from space since the memory tool mode might
2753 // access the object classes in the from space for dead objects.
2754 {
2755 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2756 Sweep(/* swap_bitmaps= */ false);
2757 SwapBitmaps();
2758 heap_->UnBindBitmaps();
2759
2760 // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
2761 DCHECK(region_space_bitmap_ != nullptr);
2762 region_space_bitmap_ = nullptr;
2763 }
2764
2765
2766 {
2767 // Record freed objects.
2768 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
2769 // Don't include thread-locals that are in the to-space.
2770 const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
2771 const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
2772 uint64_t to_bytes = bytes_moved_.load(std::memory_order_relaxed) + bytes_moved_gc_thread_;
2773 cumulative_bytes_moved_ += to_bytes;
2774 uint64_t to_objects = objects_moved_.load(std::memory_order_relaxed) + objects_moved_gc_thread_;
2775 if (kEnableFromSpaceAccountingCheck) {
2776 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
2777 }
2778 // to_bytes <= from_bytes is only approximately true, because objects expand a little when
2779 // copying to non-moving space in near-OOM situations.
2780 if (from_bytes > 0) {
2781 copied_live_bytes_ratio_sum_ += static_cast<float>(to_bytes) / from_bytes;
2782 gc_count_++;
2783 }
2784
2785 // Cleared bytes and objects, populated by the call to RegionSpace::ClearFromSpace below.
2786 uint64_t cleared_bytes;
2787 uint64_t cleared_objects;
2788 bool should_eagerly_release_memory = ShouldEagerlyReleaseMemoryToOS();
2789 {
2790 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
2791 region_space_->ClearFromSpace(&cleared_bytes,
2792 &cleared_objects,
2793 /*clear_bitmap*/ !young_gen_,
2794 should_eagerly_release_memory);
2795 // `cleared_bytes` may be greater than the from space equivalents since
2796 // RegionSpace::ClearFromSpace may clear empty unevac regions.
2797 CHECK_GE(cleared_bytes, from_bytes);
2798 }
2799
2800 // If we need to release available memory to the OS, go over all free
2801 // regions which the kernel might still cache.
2802 if (should_eagerly_release_memory) {
2803 TimingLogger::ScopedTiming split4("Release free regions", GetTimings());
2804 region_space_->ReleaseFreeRegions();
2805 }
2806
2807 // freed_bytes could conceivably be negative if we fall back to nonmoving space and have to
2808 // pad to a larger size.
2809 int64_t freed_bytes = (int64_t)cleared_bytes - (int64_t)to_bytes;
2810 uint64_t freed_objects = cleared_objects - to_objects;
2811 if (kVerboseMode) {
2812 LOG(INFO) << "RecordFree:"
2813 << " from_bytes=" << from_bytes
2814 << " unevac_from_bytes=" << unevac_from_bytes
2815 << " to_bytes=" << to_bytes
2816 << " freed_bytes=" << freed_bytes
2817 << " from_space size=" << region_space_->FromSpaceSize()
2818 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
2819 << " to_space size=" << region_space_->ToSpaceSize();
2820 LOG(INFO) << "(before) num_bytes_allocated="
2821 << heap_->num_bytes_allocated_.load();
2822 }
2823 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
2824 GetCurrentIteration()->SetScannedBytes(bytes_scanned_);
2825 if (kVerboseMode) {
2826 LOG(INFO) << "(after) num_bytes_allocated="
2827 << heap_->num_bytes_allocated_.load();
2828 }
2829
2830 float reclaimed_bytes_ratio = static_cast<float>(freed_bytes) / num_bytes_allocated_before_gc_;
2831 reclaimed_bytes_ratio_sum_ += reclaimed_bytes_ratio;
2832 }
2833
2834 CheckEmptyMarkStack();
2835
2836 if (heap_->dump_region_info_after_gc_) {
2837 LOG(INFO) << "time=" << region_space_->Time();
2838 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
2839 }
2840
2841 if (kVerboseMode) {
2842 LOG(INFO) << "GC end of ReclaimPhase";
2843 }
2844 }
2845
DumpReferenceInfo(mirror::Object * ref,const char * ref_name,const char * indent)2846 std::string ConcurrentCopying::DumpReferenceInfo(mirror::Object* ref,
2847 const char* ref_name,
2848 const char* indent) {
2849 std::ostringstream oss;
2850 oss << indent << heap_->GetVerification()->DumpObjectInfo(ref, ref_name) << '\n';
2851 if (ref != nullptr) {
2852 if (kUseBakerReadBarrier) {
2853 oss << indent << ref_name << "->GetMarkBit()=" << ref->GetMarkBit() << '\n';
2854 oss << indent << ref_name << "->GetReadBarrierState()=" << ref->GetReadBarrierState() << '\n';
2855 }
2856 }
2857 if (region_space_->HasAddress(ref)) {
2858 oss << indent << "Region containing " << ref_name << ":" << '\n';
2859 region_space_->DumpRegionForObject(oss, ref);
2860 if (region_space_bitmap_ != nullptr) {
2861 oss << indent << "region_space_bitmap_->Test(" << ref_name << ")="
2862 << std::boolalpha << region_space_bitmap_->Test(ref) << std::noboolalpha;
2863 }
2864 }
2865 return oss.str();
2866 }
2867
DumpHeapReference(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2868 std::string ConcurrentCopying::DumpHeapReference(mirror::Object* obj,
2869 MemberOffset offset,
2870 mirror::Object* ref) {
2871 std::ostringstream oss;
2872 constexpr const char* kIndent = " ";
2873 oss << kIndent << "Invalid reference: ref=" << ref
2874 << " referenced from: object=" << obj << " offset= " << offset << '\n';
2875 // Information about `obj`.
2876 oss << DumpReferenceInfo(obj, "obj", kIndent) << '\n';
2877 // Information about `ref`.
2878 oss << DumpReferenceInfo(ref, "ref", kIndent);
2879 return oss.str();
2880 }
2881
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2882 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
2883 MemberOffset offset,
2884 mirror::Object* ref) {
2885 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2886 if (is_asserting_to_space_invariant_) {
2887 if (ref == nullptr) {
2888 // OK.
2889 return;
2890 } else if (region_space_->HasAddress(ref)) {
2891 // Check to-space invariant in region space (moving space).
2892 using RegionType = space::RegionSpace::RegionType;
2893 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2894 if (type == RegionType::kRegionTypeToSpace) {
2895 // OK.
2896 return;
2897 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2898 if (!IsMarkedInUnevacFromSpace(ref)) {
2899 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2900 // Remove memory protection from the region space and log debugging information.
2901 region_space_->Unprotect();
2902 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2903 Thread::Current()->DumpJavaStack(LOG_STREAM(FATAL_WITHOUT_ABORT));
2904 }
2905 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2906 } else {
2907 // Not OK: either a from-space ref or a reference in an unused region.
2908 if (type == RegionType::kRegionTypeFromSpace) {
2909 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
2910 } else {
2911 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
2912 }
2913 // Remove memory protection from the region space and log debugging information.
2914 region_space_->Unprotect();
2915 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2916 if (obj != nullptr) {
2917 LogFromSpaceRefHolder(obj, offset);
2918 LOG(FATAL_WITHOUT_ABORT) << "UNEVAC " << region_space_->IsInUnevacFromSpace(obj) << " "
2919 << obj << " " << obj->GetMarkBit();
2920 if (region_space_->HasAddress(obj)) {
2921 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
2922 }
2923 LOG(FATAL_WITHOUT_ABORT) << "CARD " << static_cast<size_t>(
2924 *Runtime::Current()->GetHeap()->GetCardTable()->CardFromAddr(
2925 reinterpret_cast<uint8_t*>(obj)));
2926 if (region_space_->HasAddress(obj)) {
2927 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << region_space_bitmap_->Test(obj);
2928 } else {
2929 accounting::ContinuousSpaceBitmap* mark_bitmap =
2930 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
2931 if (mark_bitmap != nullptr) {
2932 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << mark_bitmap->Test(obj);
2933 } else {
2934 accounting::LargeObjectBitmap* los_bitmap =
2935 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
2936 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << los_bitmap->Test(obj);
2937 }
2938 }
2939 }
2940 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
2941 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
2942 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
2943 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
2944 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
2945 LOG(FATAL) << "Invalid reference " << ref
2946 << " referenced from object " << obj << " at offset " << offset;
2947 }
2948 } else {
2949 // Check to-space invariant in non-moving space.
2950 AssertToSpaceInvariantInNonMovingSpace(obj, ref);
2951 }
2952 }
2953 }
2954
2955 class RootPrinter {
2956 public:
RootPrinter()2957 RootPrinter() { }
2958
2959 template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)2960 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
2961 REQUIRES_SHARED(Locks::mutator_lock_) {
2962 if (!root->IsNull()) {
2963 VisitRoot(root);
2964 }
2965 }
2966
2967 template <class MirrorType>
VisitRoot(mirror::Object ** root)2968 void VisitRoot(mirror::Object** root)
2969 REQUIRES_SHARED(Locks::mutator_lock_) {
2970 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
2971 }
2972
2973 template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)2974 void VisitRoot(mirror::CompressedReference<MirrorType>* root)
2975 REQUIRES_SHARED(Locks::mutator_lock_) {
2976 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
2977 }
2978 };
2979
DumpGcRoot(mirror::Object * ref)2980 std::string ConcurrentCopying::DumpGcRoot(mirror::Object* ref) {
2981 std::ostringstream oss;
2982 constexpr const char* kIndent = " ";
2983 oss << kIndent << "Invalid GC root: ref=" << ref << '\n';
2984 // Information about `ref`.
2985 oss << DumpReferenceInfo(ref, "ref", kIndent);
2986 return oss.str();
2987 }
2988
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)2989 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
2990 mirror::Object* ref) {
2991 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2992 if (is_asserting_to_space_invariant_) {
2993 if (ref == nullptr) {
2994 // OK.
2995 return;
2996 } else if (region_space_->HasAddress(ref)) {
2997 // Check to-space invariant in region space (moving space).
2998 using RegionType = space::RegionSpace::RegionType;
2999 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
3000 if (type == RegionType::kRegionTypeToSpace) {
3001 // OK.
3002 return;
3003 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
3004 if (!IsMarkedInUnevacFromSpace(ref)) {
3005 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
3006 // Remove memory protection from the region space and log debugging information.
3007 region_space_->Unprotect();
3008 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
3009 }
3010 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
3011 } else {
3012 // Not OK: either a from-space ref or a reference in an unused region.
3013 if (type == RegionType::kRegionTypeFromSpace) {
3014 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
3015 } else {
3016 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
3017 }
3018 // Remove memory protection from the region space and log debugging information.
3019 region_space_->Unprotect();
3020 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
3021 if (gc_root_source == nullptr) {
3022 // No info.
3023 } else if (gc_root_source->HasArtField()) {
3024 ArtField* field = gc_root_source->GetArtField();
3025 LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
3026 << ArtField::PrettyField(field);
3027 RootPrinter root_printer;
3028 field->VisitRoots(root_printer);
3029 } else if (gc_root_source->HasArtMethod()) {
3030 ArtMethod* method = gc_root_source->GetArtMethod();
3031 LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
3032 << ArtMethod::PrettyMethod(method);
3033 RootPrinter root_printer;
3034 method->VisitRoots(root_printer, kRuntimePointerSize);
3035 }
3036 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3037 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
3038 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
3039 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
3040 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
3041 LOG(FATAL) << "Invalid reference " << ref;
3042 }
3043 } else {
3044 // Check to-space invariant in non-moving space.
3045 AssertToSpaceInvariantInNonMovingSpace(/* obj= */ nullptr, ref);
3046 }
3047 }
3048 }
3049
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)3050 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
3051 if (kUseBakerReadBarrier) {
3052 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
3053 << " holder rb_state=" << obj->GetReadBarrierState();
3054 } else {
3055 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
3056 }
3057 if (region_space_->IsInFromSpace(obj)) {
3058 LOG(INFO) << "holder is in the from-space.";
3059 } else if (region_space_->IsInToSpace(obj)) {
3060 LOG(INFO) << "holder is in the to-space.";
3061 } else if (region_space_->IsInUnevacFromSpace(obj)) {
3062 LOG(INFO) << "holder is in the unevac from-space.";
3063 if (IsMarkedInUnevacFromSpace(obj)) {
3064 LOG(INFO) << "holder is marked in the region space bitmap.";
3065 } else {
3066 LOG(INFO) << "holder is not marked in the region space bitmap.";
3067 }
3068 } else {
3069 // In a non-moving space.
3070 if (immune_spaces_.ContainsObject(obj)) {
3071 LOG(INFO) << "holder is in an immune image or the zygote space.";
3072 } else {
3073 LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
3074 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3075 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3076 const bool is_los = !mark_bitmap->HasAddress(obj);
3077 if (is_los) {
3078 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(obj))
3079 << "obj=" << obj
3080 << " LOS bit map covers the entire lower 4GB address range";
3081 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3082 }
3083 if (!is_los && mark_bitmap->Test(obj)) {
3084 LOG(INFO) << "holder is marked in the non-moving space mark bit map.";
3085 } else if (is_los && los_bitmap->Test(obj)) {
3086 LOG(INFO) << "holder is marked in the los bit map.";
3087 } else {
3088 // If ref is on the allocation stack, then it is considered
3089 // mark/alive (but not necessarily on the live stack.)
3090 if (IsOnAllocStack(obj)) {
3091 LOG(INFO) << "holder is on the alloc stack.";
3092 } else {
3093 LOG(INFO) << "holder is not marked or on the alloc stack.";
3094 }
3095 }
3096 }
3097 }
3098 LOG(INFO) << "offset=" << offset.SizeValue();
3099 }
3100
IsMarkedInNonMovingSpace(mirror::Object * from_ref)3101 bool ConcurrentCopying::IsMarkedInNonMovingSpace(mirror::Object* from_ref) {
3102 DCHECK(!region_space_->HasAddress(from_ref)) << "ref=" << from_ref;
3103 DCHECK(!immune_spaces_.ContainsObject(from_ref)) << "ref=" << from_ref;
3104 if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) {
3105 return true;
3106 } else if (!use_generational_cc_ || done_scanning_.load(std::memory_order_acquire)) {
3107 // Read the comment in IsMarkedInUnevacFromSpace()
3108 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3109 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3110 const bool is_los = !mark_bitmap->HasAddress(from_ref);
3111 if (is_los) {
3112 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(from_ref))
3113 << "ref=" << from_ref
3114 << " doesn't belong to non-moving space and large object space doesn't exist";
3115 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3116 }
3117 if (is_los ? los_bitmap->Test(from_ref) : mark_bitmap->Test(from_ref)) {
3118 return true;
3119 }
3120 }
3121 return IsOnAllocStack(from_ref);
3122 }
3123
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)3124 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
3125 mirror::Object* ref) {
3126 CHECK(ref != nullptr);
3127 CHECK(!region_space_->HasAddress(ref)) << "obj=" << obj << " ref=" << ref;
3128 // In a non-moving space. Check that the ref is marked.
3129 if (immune_spaces_.ContainsObject(ref)) {
3130 // Immune space case.
3131 if (kUseBakerReadBarrier) {
3132 // Immune object may not be gray if called from the GC.
3133 if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
3134 return;
3135 }
3136 bool updated_all_immune_objects = updated_all_immune_objects_.load(std::memory_order_seq_cst);
3137 CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
3138 << "Unmarked immune space ref. obj=" << obj << " rb_state="
3139 << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
3140 << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
3141 << " updated_all_immune_objects=" << updated_all_immune_objects;
3142 }
3143 } else {
3144 // Non-moving space and large-object space (LOS) cases.
3145 // If `ref` is on the allocation stack, then it may not be
3146 // marked live, but considered marked/alive (but not
3147 // necessarily on the live stack).
3148 CHECK(IsMarkedInNonMovingSpace(ref))
3149 << "Unmarked ref that's not on the allocation stack."
3150 << " obj=" << obj
3151 << " ref=" << ref
3152 << " rb_state=" << ref->GetReadBarrierState()
3153 << " is_marking=" << std::boolalpha << is_marking_ << std::noboolalpha
3154 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
3155 << " done_scanning="
3156 << std::boolalpha << done_scanning_.load(std::memory_order_acquire) << std::noboolalpha
3157 << " self=" << Thread::Current();
3158 }
3159 }
3160
3161 // Used to scan ref fields of an object.
3162 template <bool kNoUnEvac>
3163 class ConcurrentCopying::RefFieldsVisitor {
3164 public:
RefFieldsVisitor(ConcurrentCopying * collector,Thread * const thread)3165 explicit RefFieldsVisitor(ConcurrentCopying* collector, Thread* const thread)
3166 : collector_(collector), thread_(thread) {
3167 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3168 DCHECK_IMPLIES(kNoUnEvac, collector_->use_generational_cc_);
3169 }
3170
operator ()(mirror::Object * obj,MemberOffset offset,bool) const3171 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
3172 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
3173 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
3174 collector_->Process<kNoUnEvac>(obj, offset);
3175 }
3176
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3177 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3178 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
3179 CHECK(klass->IsTypeOfReferenceClass());
3180 collector_->DelayReferenceReferent(klass, ref);
3181 }
3182
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3183 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
3184 ALWAYS_INLINE
3185 REQUIRES_SHARED(Locks::mutator_lock_) {
3186 if (!root->IsNull()) {
3187 VisitRoot(root);
3188 }
3189 }
3190
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3191 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
3192 ALWAYS_INLINE
3193 REQUIRES_SHARED(Locks::mutator_lock_) {
3194 collector_->MarkRoot</*kGrayImmuneObject=*/false>(thread_, root);
3195 }
3196
3197 private:
3198 ConcurrentCopying* const collector_;
3199 Thread* const thread_;
3200 };
3201
3202 template <bool kNoUnEvac>
Scan(mirror::Object * to_ref,size_t obj_size)3203 inline void ConcurrentCopying::Scan(mirror::Object* to_ref, size_t obj_size) {
3204 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3205 DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_);
3206 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3207 // Avoid all read barriers during visit references to help performance.
3208 // Don't do this in transaction mode because we may read the old value of an field which may
3209 // trigger read barriers.
3210 Thread::Current()->ModifyDebugDisallowReadBarrier(1);
3211 }
3212 if (obj_size == 0) {
3213 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
3214 }
3215 bytes_scanned_ += obj_size;
3216
3217 DCHECK(!region_space_->IsInFromSpace(to_ref));
3218 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3219 RefFieldsVisitor<kNoUnEvac> visitor(this, thread_running_gc_);
3220 // Disable the read barrier for a performance reason.
3221 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
3222 visitor, visitor);
3223 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3224 thread_running_gc_->ModifyDebugDisallowReadBarrier(-1);
3225 }
3226 }
3227
3228 template <bool kNoUnEvac>
Process(mirror::Object * obj,MemberOffset offset)3229 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
3230 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3231 DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_);
3232 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3233 mirror::Object* ref = obj->GetFieldObject<
3234 mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
3235 mirror::Object* to_ref = Mark</*kGrayImmuneObject=*/false, kNoUnEvac, /*kFromGCThread=*/true>(
3236 thread_running_gc_,
3237 ref,
3238 /*holder=*/ obj,
3239 offset);
3240 if (to_ref == ref) {
3241 return;
3242 }
3243 // This may fail if the mutator writes to the field at the same time. But it's ok.
3244 mirror::Object* expected_ref = ref;
3245 mirror::Object* new_ref = to_ref;
3246 do {
3247 if (expected_ref !=
3248 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
3249 // It was updated by the mutator.
3250 break;
3251 }
3252 // Use release CAS to make sure threads reading the reference see contents of copied objects.
3253 } while (!obj->CasFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(
3254 offset,
3255 expected_ref,
3256 new_ref,
3257 CASMode::kWeak,
3258 std::memory_order_release));
3259 }
3260
3261 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info)3262 inline void ConcurrentCopying::VisitRoots(mirror::Object*** roots,
3263 size_t count,
3264 [[maybe_unused]] const RootInfo& info) {
3265 Thread* const self = Thread::Current();
3266 for (size_t i = 0; i < count; ++i) {
3267 mirror::Object** root = roots[i];
3268 mirror::Object* ref = *root;
3269 mirror::Object* to_ref = Mark(self, ref);
3270 if (to_ref == ref) {
3271 continue;
3272 }
3273 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
3274 mirror::Object* expected_ref = ref;
3275 mirror::Object* new_ref = to_ref;
3276 do {
3277 if (expected_ref != addr->load(std::memory_order_relaxed)) {
3278 // It was updated by the mutator.
3279 break;
3280 }
3281 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3282 }
3283 }
3284
3285 template<bool kGrayImmuneObject>
MarkRoot(Thread * const self,mirror::CompressedReference<mirror::Object> * root)3286 inline void ConcurrentCopying::MarkRoot(Thread* const self,
3287 mirror::CompressedReference<mirror::Object>* root) {
3288 DCHECK(!root->IsNull());
3289 mirror::Object* const ref = root->AsMirrorPtr();
3290 mirror::Object* to_ref = Mark<kGrayImmuneObject>(self, ref);
3291 if (to_ref != ref) {
3292 auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
3293 auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
3294 auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
3295 // If the cas fails, then it was updated by the mutator.
3296 do {
3297 if (ref != addr->load(std::memory_order_relaxed).AsMirrorPtr()) {
3298 // It was updated by the mutator.
3299 break;
3300 }
3301 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3302 }
3303 }
3304
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info)3305 inline void ConcurrentCopying::VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
3306 size_t count,
3307 [[maybe_unused]] const RootInfo& info) {
3308 Thread* const self = Thread::Current();
3309 for (size_t i = 0; i < count; ++i) {
3310 mirror::CompressedReference<mirror::Object>* const root = roots[i];
3311 if (!root->IsNull()) {
3312 // kGrayImmuneObject is true because this is used for the thread flip.
3313 MarkRoot</*kGrayImmuneObject=*/true>(self, root);
3314 }
3315 }
3316 }
3317
3318 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
3319 class ConcurrentCopying::ScopedGcGraysImmuneObjects {
3320 public:
ScopedGcGraysImmuneObjects(ConcurrentCopying * collector)3321 explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
3322 : collector_(collector), enabled_(false) {
3323 if (kUseBakerReadBarrier &&
3324 collector_->thread_running_gc_ == Thread::Current() &&
3325 !collector_->gc_grays_immune_objects_) {
3326 collector_->gc_grays_immune_objects_ = true;
3327 enabled_ = true;
3328 }
3329 }
3330
~ScopedGcGraysImmuneObjects()3331 ~ScopedGcGraysImmuneObjects() {
3332 if (kUseBakerReadBarrier &&
3333 collector_->thread_running_gc_ == Thread::Current() &&
3334 enabled_) {
3335 DCHECK(collector_->gc_grays_immune_objects_);
3336 collector_->gc_grays_immune_objects_ = false;
3337 }
3338 }
3339
3340 private:
3341 ConcurrentCopying* const collector_;
3342 bool enabled_;
3343 };
3344
3345 // Fill the given memory block with a fake object. Used to fill in a
3346 // copy of objects that was lost in race.
FillWithFakeObject(Thread * const self,mirror::Object * fake_obj,size_t byte_size)3347 void ConcurrentCopying::FillWithFakeObject(Thread* const self,
3348 mirror::Object* fake_obj,
3349 size_t byte_size) {
3350 // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
3351 // barriers here because we need the updated reference to the int array class, etc. Temporary set
3352 // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
3353 ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
3354 CHECK_ALIGNED(byte_size, kObjectAlignment);
3355 memset(fake_obj, 0, byte_size);
3356 // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
3357 // Explicitly mark to make sure to get an object in the to-space.
3358 mirror::Class* int_array_class = down_cast<mirror::Class*>(
3359 Mark(self, GetClassRoot<mirror::IntArray, kWithoutReadBarrier>().Ptr()));
3360 CHECK(int_array_class != nullptr);
3361 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3362 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
3363 }
3364 size_t component_size = int_array_class->GetComponentSize();
3365 CHECK_EQ(component_size, sizeof(int32_t));
3366 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
3367 if (data_offset > byte_size) {
3368 // An int array is too big. Use java.lang.Object.
3369 CHECK(java_lang_Object_ != nullptr);
3370 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3371 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
3372 }
3373 CHECK_EQ(byte_size, java_lang_Object_->GetObjectSize<kVerifyNone>());
3374 fake_obj->SetClass(java_lang_Object_);
3375 CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()));
3376 } else {
3377 // Use an int array.
3378 fake_obj->SetClass(int_array_class);
3379 CHECK(fake_obj->IsArrayInstance<kVerifyNone>());
3380 int32_t length = (byte_size - data_offset) / component_size;
3381 ObjPtr<mirror::Array> fake_arr = fake_obj->AsArray<kVerifyNone>();
3382 fake_arr->SetLength(length);
3383 CHECK_EQ(fake_arr->GetLength(), length)
3384 << "byte_size=" << byte_size << " length=" << length
3385 << " component_size=" << component_size << " data_offset=" << data_offset;
3386 CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()))
3387 << "byte_size=" << byte_size << " length=" << length
3388 << " component_size=" << component_size << " data_offset=" << data_offset;
3389 }
3390 }
3391
3392 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(Thread * const self,size_t alloc_size)3393 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(Thread* const self, size_t alloc_size) {
3394 // Try to reuse the blocks that were unused due to CAS failures.
3395 CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
3396 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
3397 size_t byte_size;
3398 uint8_t* addr;
3399 {
3400 MutexLock mu(self, skipped_blocks_lock_);
3401 auto it = skipped_blocks_map_.lower_bound(alloc_size);
3402 if (it == skipped_blocks_map_.end()) {
3403 // Not found.
3404 return nullptr;
3405 }
3406 byte_size = it->first;
3407 CHECK_GE(byte_size, alloc_size);
3408 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
3409 // If remainder would be too small for a fake object, retry with a larger request size.
3410 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
3411 if (it == skipped_blocks_map_.end()) {
3412 // Not found.
3413 return nullptr;
3414 }
3415 CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
3416 CHECK_GE(it->first - alloc_size, min_object_size)
3417 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
3418 }
3419 // Found a block.
3420 CHECK(it != skipped_blocks_map_.end());
3421 byte_size = it->first;
3422 addr = it->second;
3423 CHECK_GE(byte_size, alloc_size);
3424 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
3425 CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
3426 if (kVerboseMode) {
3427 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
3428 }
3429 skipped_blocks_map_.erase(it);
3430 }
3431 memset(addr, 0, byte_size);
3432 if (byte_size > alloc_size) {
3433 // Return the remainder to the map.
3434 CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
3435 CHECK_GE(byte_size - alloc_size, min_object_size);
3436 // FillWithFakeObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
3437 // violation and possible deadlock. The deadlock case is a recursive case:
3438 // FillWithFakeObject -> Mark(IntArray.class) -> Copy -> AllocateInSkippedBlock.
3439 FillWithFakeObject(self,
3440 reinterpret_cast<mirror::Object*>(addr + alloc_size),
3441 byte_size - alloc_size);
3442 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
3443 {
3444 MutexLock mu(self, skipped_blocks_lock_);
3445 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
3446 }
3447 }
3448 return reinterpret_cast<mirror::Object*>(addr);
3449 }
3450
Copy(Thread * const self,mirror::Object * from_ref,mirror::Object * holder,MemberOffset offset)3451 mirror::Object* ConcurrentCopying::Copy(Thread* const self,
3452 mirror::Object* from_ref,
3453 mirror::Object* holder,
3454 MemberOffset offset) {
3455 DCHECK(region_space_->IsInFromSpace(from_ref));
3456 // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
3457 // from a previous GC that is either inside or outside the allocated region.
3458 mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
3459 if (UNLIKELY(klass == nullptr)) {
3460 // Remove memory protection from the region space and log debugging information.
3461 region_space_->Unprotect();
3462 heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal= */ true);
3463 }
3464 // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
3465 // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
3466 // objects, but it's ok and necessary.
3467 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
3468 size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
3469 // Large objects are never evacuated.
3470 CHECK_LE(region_space_alloc_size, space::RegionSpace::kRegionSize);
3471 size_t region_space_bytes_allocated = 0U;
3472 size_t non_moving_space_bytes_allocated = 0U;
3473 size_t bytes_allocated = 0U;
3474 size_t unused_size;
3475 bool fall_back_to_non_moving = false;
3476 mirror::Object* to_ref = region_space_->AllocNonvirtual</*kForEvac=*/ true>(
3477 region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &unused_size);
3478 bytes_allocated = region_space_bytes_allocated;
3479 if (LIKELY(to_ref != nullptr)) {
3480 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
3481 } else {
3482 // Failed to allocate in the region space. Try the skipped blocks.
3483 to_ref = AllocateInSkippedBlock(self, region_space_alloc_size);
3484 if (to_ref != nullptr) {
3485 // Succeeded to allocate in a skipped block.
3486 if (heap_->use_tlab_) {
3487 // This is necessary for the tlab case as it's not accounted in the space.
3488 region_space_->RecordAlloc(to_ref);
3489 }
3490 bytes_allocated = region_space_alloc_size;
3491 heap_->num_bytes_allocated_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3492 to_space_bytes_skipped_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3493 to_space_objects_skipped_.fetch_sub(1, std::memory_order_relaxed);
3494 } else {
3495 // Fall back to the non-moving space.
3496 fall_back_to_non_moving = true;
3497 if (kVerboseMode) {
3498 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
3499 << to_space_bytes_skipped_.load(std::memory_order_relaxed)
3500 << " skipped_objects="
3501 << to_space_objects_skipped_.load(std::memory_order_relaxed);
3502 }
3503 to_ref = heap_->non_moving_space_->Alloc(
3504 self, obj_size, &non_moving_space_bytes_allocated, nullptr, &unused_size);
3505 if (UNLIKELY(to_ref == nullptr)) {
3506 LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
3507 << obj_size << " byte object in region type "
3508 << region_space_->GetRegionType(from_ref);
3509 LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
3510 }
3511 bytes_allocated = non_moving_space_bytes_allocated;
3512 }
3513 }
3514 DCHECK(to_ref != nullptr);
3515
3516 // Copy the object excluding the lock word since that is handled in the loop.
3517 to_ref->SetClass(klass);
3518 const size_t kObjectHeaderSize = sizeof(mirror::Object);
3519 DCHECK_GE(obj_size, kObjectHeaderSize);
3520 static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
3521 sizeof(LockWord),
3522 "Object header size does not match");
3523 // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
3524 // object in the from space is immutable other than the lock word. b/31423258
3525 memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
3526 reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
3527 obj_size - kObjectHeaderSize);
3528
3529 // Attempt to install the forward pointer. This is in a loop as the
3530 // lock word atomic write can fail.
3531 while (true) {
3532 LockWord old_lock_word = from_ref->GetLockWord(false);
3533
3534 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
3535 // Lost the race. Another thread (either GC or mutator) stored
3536 // the forwarding pointer first. Make the lost copy (to_ref)
3537 // look like a valid but dead (fake) object and keep it for
3538 // future reuse.
3539 FillWithFakeObject(self, to_ref, bytes_allocated);
3540 if (!fall_back_to_non_moving) {
3541 DCHECK(region_space_->IsInToSpace(to_ref));
3542 // Record the lost copy for later reuse.
3543 heap_->num_bytes_allocated_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3544 to_space_bytes_skipped_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3545 to_space_objects_skipped_.fetch_add(1, std::memory_order_relaxed);
3546 MutexLock mu(self, skipped_blocks_lock_);
3547 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
3548 reinterpret_cast<uint8_t*>(to_ref)));
3549 } else {
3550 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3551 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3552 // Free the non-moving-space chunk.
3553 heap_->non_moving_space_->Free(self, to_ref);
3554 }
3555
3556 // Get the winner's forward ptr.
3557 mirror::Object* lost_fwd_ptr = to_ref;
3558 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
3559 CHECK(to_ref != nullptr);
3560 CHECK_NE(to_ref, lost_fwd_ptr);
3561 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
3562 << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
3563 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3564 return to_ref;
3565 }
3566
3567 // Copy the old lock word over since we did not copy it yet.
3568 to_ref->SetLockWord(old_lock_word, false);
3569 // Set the gray ptr.
3570 if (kUseBakerReadBarrier) {
3571 to_ref->SetReadBarrierState(ReadBarrier::GrayState());
3572 }
3573
3574 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
3575
3576 // Try to atomically write the fwd ptr. Make sure that the copied object is visible to any
3577 // readers of the fwd pointer.
3578 bool success = from_ref->CasLockWord(old_lock_word,
3579 new_lock_word,
3580 CASMode::kWeak,
3581 std::memory_order_release);
3582 if (LIKELY(success)) {
3583 // The CAS succeeded.
3584 DCHECK(thread_running_gc_ != nullptr);
3585 if (LIKELY(self == thread_running_gc_)) {
3586 objects_moved_gc_thread_ += 1;
3587 bytes_moved_gc_thread_ += bytes_allocated;
3588 } else {
3589 objects_moved_.fetch_add(1, std::memory_order_relaxed);
3590 bytes_moved_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3591 }
3592
3593 if (LIKELY(!fall_back_to_non_moving)) {
3594 DCHECK(region_space_->IsInToSpace(to_ref));
3595 } else {
3596 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3597 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3598 if (!use_generational_cc_ || !young_gen_) {
3599 // Mark it in the live bitmap.
3600 CHECK(!heap_->non_moving_space_->GetLiveBitmap()->AtomicTestAndSet(to_ref));
3601 }
3602 if (!kUseBakerReadBarrier) {
3603 // Mark it in the mark bitmap.
3604 CHECK(!heap_->non_moving_space_->GetMarkBitmap()->AtomicTestAndSet(to_ref));
3605 }
3606 }
3607 if (kUseBakerReadBarrier) {
3608 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
3609 }
3610 DCHECK(GetFwdPtr(from_ref) == to_ref);
3611 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3612 // Make sure that anyone who sees to_ref also sees both the object contents and the
3613 // fwd pointer.
3614 QuasiAtomic::ThreadFenceForConstructor();
3615 PushOntoMarkStack(self, to_ref);
3616 return to_ref;
3617 } else {
3618 // The CAS failed. It may have lost the race or may have failed
3619 // due to monitor/hashcode ops. Either way, retry.
3620 }
3621 }
3622 }
3623
IsMarked(mirror::Object * from_ref)3624 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
3625 DCHECK(from_ref != nullptr);
3626 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
3627 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
3628 // It's already marked.
3629 return from_ref;
3630 }
3631 mirror::Object* to_ref;
3632 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
3633 to_ref = GetFwdPtr(from_ref);
3634 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
3635 heap_->non_moving_space_->HasAddress(to_ref))
3636 << "from_ref=" << from_ref << " to_ref=" << to_ref;
3637 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
3638 if (IsMarkedInUnevacFromSpace(from_ref)) {
3639 to_ref = from_ref;
3640 } else {
3641 to_ref = nullptr;
3642 }
3643 } else {
3644 // At this point, `from_ref` should not be in the region space
3645 // (i.e. within an "unused" region).
3646 DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
3647 // from_ref is in a non-moving space.
3648 if (immune_spaces_.ContainsObject(from_ref)) {
3649 // An immune object is alive.
3650 to_ref = from_ref;
3651 } else {
3652 // Non-immune non-moving space. Use the mark bitmap.
3653 if (IsMarkedInNonMovingSpace(from_ref)) {
3654 // Already marked.
3655 to_ref = from_ref;
3656 } else {
3657 to_ref = nullptr;
3658 }
3659 }
3660 }
3661 return to_ref;
3662 }
3663
IsOnAllocStack(mirror::Object * ref)3664 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
3665 // TODO: Explain why this is here. What release operation does it pair with?
3666 std::atomic_thread_fence(std::memory_order_acquire);
3667 accounting::ObjectStack* alloc_stack = GetAllocationStack();
3668 return alloc_stack->Contains(ref);
3669 }
3670
MarkNonMoving(Thread * const self,mirror::Object * ref,mirror::Object * holder,MemberOffset offset)3671 mirror::Object* ConcurrentCopying::MarkNonMoving(Thread* const self,
3672 mirror::Object* ref,
3673 mirror::Object* holder,
3674 MemberOffset offset) {
3675 // ref is in a non-moving space (from_ref == to_ref).
3676 DCHECK(!region_space_->HasAddress(ref)) << ref;
3677 DCHECK(!immune_spaces_.ContainsObject(ref));
3678 // Use the mark bitmap.
3679 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3680 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3681 const bool is_los = !mark_bitmap->HasAddress(ref);
3682 if (is_los) {
3683 if (!IsAlignedParam(ref, space::LargeObjectSpace::ObjectAlignment())) {
3684 // Ref is a large object that is not aligned, it must be heap
3685 // corruption. Remove memory protection and dump data before
3686 // AtomicSetReadBarrierState since it will fault if the address is not
3687 // valid.
3688 region_space_->Unprotect();
3689 heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal= */ true);
3690 }
3691 DCHECK(heap_->GetLargeObjectsSpace())
3692 << "ref=" << ref
3693 << " doesn't belong to non-moving space and large object space doesn't exist";
3694 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3695 DCHECK(los_bitmap->HasAddress(ref));
3696 }
3697 if (use_generational_cc_) {
3698 // The sticky-bit CC collector is only compatible with Baker-style read barriers.
3699 DCHECK(kUseBakerReadBarrier);
3700 // Not done scanning, use AtomicSetReadBarrierPointer.
3701 if (!done_scanning_.load(std::memory_order_acquire)) {
3702 // Since the mark bitmap is still filled in from last GC, we can not use that or else the
3703 // mutator may see references to the from space. Instead, use the Baker pointer itself as
3704 // the mark bit.
3705 //
3706 // We need to avoid marking objects that are on allocation stack as that will lead to a
3707 // situation (after this GC cycle is finished) where some object(s) are on both allocation
3708 // stack and live bitmap. This leads to visiting the same object(s) twice during a heapdump
3709 // (b/117426281).
3710 if (!IsOnAllocStack(ref) &&
3711 ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState())) {
3712 // TODO: We don't actually need to scan this object later, we just need to clear the gray
3713 // bit.
3714 // We don't need to mark newly allocated objects (those in allocation stack) as they can
3715 // only point to to-space objects. Also, they are considered live till the next GC cycle.
3716 PushOntoMarkStack(self, ref);
3717 }
3718 return ref;
3719 }
3720 }
3721 if (!is_los && mark_bitmap->Test(ref)) {
3722 // Already marked.
3723 } else if (is_los && los_bitmap->Test(ref)) {
3724 // Already marked in LOS.
3725 } else if (IsOnAllocStack(ref)) {
3726 // If it's on the allocation stack, it's considered marked. Keep it white (non-gray).
3727 // Objects on the allocation stack need not be marked.
3728 if (!is_los) {
3729 DCHECK(!mark_bitmap->Test(ref));
3730 } else {
3731 DCHECK(!los_bitmap->Test(ref));
3732 }
3733 if (kUseBakerReadBarrier) {
3734 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState());
3735 }
3736 } else {
3737 // Not marked nor on the allocation stack. Try to mark it.
3738 // This may or may not succeed, which is ok.
3739 bool success = false;
3740 if (kUseBakerReadBarrier) {
3741 success = ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(),
3742 ReadBarrier::GrayState());
3743 } else {
3744 success = is_los ?
3745 !los_bitmap->AtomicTestAndSet(ref) :
3746 !mark_bitmap->AtomicTestAndSet(ref);
3747 }
3748 if (success) {
3749 if (kUseBakerReadBarrier) {
3750 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
3751 }
3752 PushOntoMarkStack(self, ref);
3753 }
3754 }
3755 return ref;
3756 }
3757
FinishPhase()3758 void ConcurrentCopying::FinishPhase() {
3759 Thread* const self = Thread::Current();
3760 {
3761 MutexLock mu(self, mark_stack_lock_);
3762 CHECK(revoked_mark_stacks_.empty());
3763 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
3764 }
3765 bool should_eagerly_release_memory = ShouldEagerlyReleaseMemoryToOS();
3766 // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
3767 // positives.
3768 if (!kVerifyNoMissingCardMarks && !use_generational_cc_) {
3769 TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
3770 // We do not currently use the region space cards at all, madvise them away to save ram.
3771 heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
3772 } else if (use_generational_cc_ && !young_gen_) {
3773 region_space_inter_region_bitmap_.Clear(should_eagerly_release_memory);
3774 non_moving_space_inter_region_bitmap_.Clear(should_eagerly_release_memory);
3775 }
3776 {
3777 MutexLock mu(self, skipped_blocks_lock_);
3778 skipped_blocks_map_.clear();
3779 }
3780 {
3781 ReaderMutexLock mu(self, *Locks::mutator_lock_);
3782 {
3783 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3784 heap_->ClearMarkedObjects(should_eagerly_release_memory);
3785 }
3786 if (kUseBakerReadBarrier && kFilterModUnionCards) {
3787 TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
3788 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3789 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
3790 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
3791 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
3792 // Filter out cards that don't need to be set.
3793 if (table != nullptr) {
3794 table->FilterCards();
3795 }
3796 }
3797 }
3798 if (kUseBakerReadBarrier) {
3799 TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
3800 DCHECK(rb_mark_bit_stack_ != nullptr);
3801 const auto* limit = rb_mark_bit_stack_->End();
3802 for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
3803 CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0))
3804 << "rb_mark_bit_stack_->Begin()" << rb_mark_bit_stack_->Begin() << '\n'
3805 << "rb_mark_bit_stack_->End()" << rb_mark_bit_stack_->End() << '\n'
3806 << "rb_mark_bit_stack_->IsFull()"
3807 << std::boolalpha << rb_mark_bit_stack_->IsFull() << std::noboolalpha << '\n'
3808 << DumpReferenceInfo(it->AsMirrorPtr(), "*it");
3809 }
3810 rb_mark_bit_stack_->Reset();
3811 }
3812 }
3813 if (measure_read_barrier_slow_path_) {
3814 MutexLock mu(self, rb_slow_path_histogram_lock_);
3815 rb_slow_path_time_histogram_.AdjustAndAddValue(
3816 rb_slow_path_ns_.load(std::memory_order_relaxed));
3817 rb_slow_path_count_total_ += rb_slow_path_count_.load(std::memory_order_relaxed);
3818 rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.load(std::memory_order_relaxed);
3819 }
3820 }
3821
IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)3822 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
3823 bool do_atomic_update) {
3824 mirror::Object* from_ref = field->AsMirrorPtr();
3825 if (from_ref == nullptr) {
3826 return true;
3827 }
3828 mirror::Object* to_ref = IsMarked(from_ref);
3829 if (to_ref == nullptr) {
3830 return false;
3831 }
3832 if (from_ref != to_ref) {
3833 if (do_atomic_update) {
3834 do {
3835 if (field->AsMirrorPtr() != from_ref) {
3836 // Concurrently overwritten by a mutator.
3837 break;
3838 }
3839 } while (!field->CasWeakRelaxed(from_ref, to_ref));
3840 // See comment in MarkHeapReference() for memory ordering.
3841 } else {
3842 field->Assign(to_ref);
3843 }
3844 }
3845 return true;
3846 }
3847
MarkObject(mirror::Object * from_ref)3848 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
3849 return Mark(Thread::Current(), from_ref);
3850 }
3851
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> reference)3852 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
3853 ObjPtr<mirror::Reference> reference) {
3854 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
3855 }
3856
ProcessReferences(Thread * self)3857 void ConcurrentCopying::ProcessReferences(Thread* self) {
3858 // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
3859 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3860 GetHeap()->GetReferenceProcessor()->ProcessReferences(self, GetTimings());
3861 }
3862
RevokeAllThreadLocalBuffers()3863 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
3864 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
3865 region_space_->RevokeAllThreadLocalBuffers();
3866 }
3867
MarkFromReadBarrierWithMeasurements(Thread * const self,mirror::Object * from_ref)3868 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(Thread* const self,
3869 mirror::Object* from_ref) {
3870 if (self != thread_running_gc_) {
3871 rb_slow_path_count_.fetch_add(1u, std::memory_order_relaxed);
3872 } else {
3873 rb_slow_path_count_gc_.fetch_add(1u, std::memory_order_relaxed);
3874 }
3875 ScopedTrace tr(__FUNCTION__);
3876 const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
3877 mirror::Object* ret =
3878 Mark</*kGrayImmuneObject=*/true, /*kNoUnEvac=*/false, /*kFromGCThread=*/false>(self,
3879 from_ref);
3880 if (measure_read_barrier_slow_path_) {
3881 rb_slow_path_ns_.fetch_add(NanoTime() - start_time, std::memory_order_relaxed);
3882 }
3883 return ret;
3884 }
3885
DumpPerformanceInfo(std::ostream & os)3886 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
3887 GarbageCollector::DumpPerformanceInfo(os);
3888 size_t num_gc_cycles = GetCumulativeTimings().GetIterations();
3889 MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
3890 if (rb_slow_path_time_histogram_.SampleSize() > 0) {
3891 Histogram<uint64_t>::CumulativeData cumulative_data;
3892 rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
3893 rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
3894 }
3895 if (rb_slow_path_count_total_ > 0) {
3896 os << "Slow path count " << rb_slow_path_count_total_ << "\n";
3897 }
3898 if (rb_slow_path_count_gc_total_ > 0) {
3899 os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
3900 }
3901
3902 os << "Average " << (young_gen_ ? "minor" : "major") << " GC reclaim bytes ratio "
3903 << (reclaimed_bytes_ratio_sum_ / num_gc_cycles) << " over " << num_gc_cycles
3904 << " GC cycles\n";
3905
3906 os << "Average " << (young_gen_ ? "minor" : "major") << " GC copied live bytes ratio "
3907 << (copied_live_bytes_ratio_sum_ / gc_count_) << " over " << gc_count_
3908 << " " << (young_gen_ ? "minor" : "major") << " GCs\n";
3909
3910 os << "Cumulative bytes moved " << cumulative_bytes_moved_ << "\n";
3911
3912 os << "Peak regions allocated "
3913 << region_space_->GetMaxPeakNumNonFreeRegions() << " ("
3914 << PrettySize(region_space_->GetMaxPeakNumNonFreeRegions() * space::RegionSpace::kRegionSize)
3915 << ") / " << region_space_->GetNumRegions() / 2 << " ("
3916 << PrettySize(region_space_->GetNumRegions() * space::RegionSpace::kRegionSize / 2)
3917 << ")\n";
3918 if (!young_gen_) {
3919 os << "Total madvise time " << PrettyDuration(region_space_->GetMadviseTime()) << "\n";
3920 }
3921 }
3922
3923 } // namespace collector
3924 } // namespace gc
3925 } // namespace art
3926