1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "reference_processor.h"
18 
19 #include "art_field-inl.h"
20 #include "base/mutex.h"
21 #include "base/time_utils.h"
22 #include "base/utils.h"
23 #include "base/systrace.h"
24 #include "class_root-inl.h"
25 #include "collector/garbage_collector.h"
26 #include "jni/java_vm_ext.h"
27 #include "mirror/class-inl.h"
28 #include "mirror/object-inl.h"
29 #include "mirror/reference-inl.h"
30 #include "nativehelper/scoped_local_ref.h"
31 #include "object_callbacks.h"
32 #include "reflection.h"
33 #include "scoped_thread_state_change-inl.h"
34 #include "task_processor.h"
35 #include "thread-inl.h"
36 #include "thread_pool.h"
37 #include "well_known_classes.h"
38 
39 namespace art HIDDEN {
40 namespace gc {
41 
42 static constexpr bool kAsyncReferenceQueueAdd = false;
43 
ReferenceProcessor()44 ReferenceProcessor::ReferenceProcessor()
45     : collector_(nullptr),
46       condition_("reference processor condition", *Locks::reference_processor_lock_) ,
47       soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
48       weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
49       finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
50       phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
51       cleared_references_(Locks::reference_queue_cleared_references_lock_) {
52 }
53 
GetSlowPathFlagOffset(ObjPtr<mirror::Class> reference_class)54 static inline MemberOffset GetSlowPathFlagOffset(ObjPtr<mirror::Class> reference_class)
55     REQUIRES_SHARED(Locks::mutator_lock_) {
56   DCHECK(reference_class == GetClassRoot<mirror::Reference>());
57   // Second static field
58   ArtField* field = reference_class->GetStaticField(1);
59   DCHECK_STREQ(field->GetName(), "slowPathEnabled");
60   return field->GetOffset();
61 }
62 
SetSlowPathFlag(bool enabled)63 static inline void SetSlowPathFlag(bool enabled) REQUIRES_SHARED(Locks::mutator_lock_) {
64   ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>();
65   MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class);
66   reference_class->SetFieldBoolean</* kTransactionActive= */ false, /* kCheckTransaction= */ false>(
67       slow_path_offset, enabled ? 1 : 0);
68 }
69 
EnableSlowPath()70 void ReferenceProcessor::EnableSlowPath() {
71   SetSlowPathFlag(/* enabled= */ true);
72 }
73 
DisableSlowPath(Thread * self)74 void ReferenceProcessor::DisableSlowPath(Thread* self) {
75   SetSlowPathFlag(/* enabled= */ false);
76   condition_.Broadcast(self);
77 }
78 
SlowPathEnabled()79 bool ReferenceProcessor::SlowPathEnabled() {
80   ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>();
81   MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class);
82   return reference_class->GetFieldBoolean(slow_path_offset);
83 }
84 
BroadcastForSlowPath(Thread * self)85 void ReferenceProcessor::BroadcastForSlowPath(Thread* self) {
86   MutexLock mu(self, *Locks::reference_processor_lock_);
87   condition_.Broadcast(self);
88 }
89 
GetReferent(Thread * self,ObjPtr<mirror::Reference> reference)90 ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self,
91                                                        ObjPtr<mirror::Reference> reference) {
92   auto slow_path_required = [this, self]() REQUIRES_SHARED(Locks::mutator_lock_) {
93     return gUseReadBarrier ? !self->GetWeakRefAccessEnabled() : SlowPathEnabled();
94   };
95   if (!slow_path_required()) {
96     return reference->GetReferent();
97   }
98   // If the referent is null then it is already cleared, we can just return null since there is no
99   // scenario where it becomes non-null during the reference processing phase.
100   // A read barrier may be unsafe here, and we use the result only when it's null or marked.
101   ObjPtr<mirror::Object> referent = reference->template GetReferent<kWithoutReadBarrier>();
102   if (referent.IsNull()) {
103     return referent;
104   }
105 
106   bool started_trace = false;
107   uint64_t start_millis;
108   auto finish_trace = [](uint64_t start_millis) {
109     ATraceEnd();
110     uint64_t millis = MilliTime() - start_millis;
111     static constexpr uint64_t kReportMillis = 10;  // Long enough to risk dropped frames.
112     if (millis > kReportMillis) {
113       LOG(WARNING) << "Weak pointer dereference blocked for " << millis << " milliseconds.";
114     }
115   };
116 
117   MutexLock mu(self, *Locks::reference_processor_lock_);
118   // Keeping reference_processor_lock_ blocks the broadcast when we try to reenable the fast path.
119   while (slow_path_required()) {
120     DCHECK(collector_ != nullptr);
121     const bool other_read_barrier = !kUseBakerReadBarrier && gUseReadBarrier;
122     if (UNLIKELY(reference->IsFinalizerReferenceInstance()
123                  || rp_state_ == RpState::kStarting /* too early to determine mark state */
124                  || (other_read_barrier && reference->IsPhantomReferenceInstance()))) {
125       // Odd cases in which it doesn't hurt to just wait, or the wait is likely to be very brief.
126 
127       // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
128       // presence of threads blocking for weak ref access.
129       self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
130       if (!started_trace) {
131         ATraceBegin("GetReferent blocked");
132         started_trace = true;
133         start_millis = MilliTime();
134       }
135       condition_.WaitHoldingLocks(self);
136       continue;
137     }
138     DCHECK(!reference->IsPhantomReferenceInstance());
139 
140     if (rp_state_ == RpState::kInitClearingDone) {
141       // Reachable references have their final referent values.
142       break;
143     }
144     // Although reference processing is not done, we can always predict the correct return value
145     // based on the current mark state. No additional marking from finalizers has been done, since
146     // we hold reference_processor_lock_, which is required to advance to kInitClearingDone.
147     DCHECK(rp_state_ == RpState::kInitMarkingDone);
148     // Re-load and re-check referent, since the current one may have been read before we acquired
149     // reference_lock. In particular a Reference.clear() call may have intervened. (b/33569625)
150     referent = reference->GetReferent<kWithoutReadBarrier>();
151     ObjPtr<mirror::Object> forwarded_ref =
152         referent.IsNull() ? nullptr : collector_->IsMarked(referent.Ptr());
153     // Either the referent was marked, and forwarded_ref is the correct return value, or it
154     // was not, and forwarded_ref == null, which is again the correct return value.
155     if (started_trace) {
156       finish_trace(start_millis);
157     }
158     return forwarded_ref;
159   }
160   if (started_trace) {
161     finish_trace(start_millis);
162   }
163   return reference->GetReferent();
164 }
165 
166 // Forward SoftReferences. Can be done before we disable Reference access. Only
167 // invoked if we are not clearing SoftReferences.
ForwardSoftReferences(TimingLogger * timings)168 uint32_t ReferenceProcessor::ForwardSoftReferences(TimingLogger* timings) {
169   TimingLogger::ScopedTiming split(
170       concurrent_ ? "ForwardSoftReferences" : "(Paused)ForwardSoftReferences", timings);
171   // We used to argue that we should be smarter about doing this conditionally, but it's unclear
172   // that's actually better than the more predictable strategy of basically only clearing
173   // SoftReferences just before we would otherwise run out of memory.
174   uint32_t non_null_refs = soft_reference_queue_.ForwardSoftReferences(collector_);
175   if (ATraceEnabled()) {
176     static constexpr size_t kBufSize = 80;
177     char buf[kBufSize];
178     snprintf(buf, kBufSize, "Marking for %" PRIu32 " SoftReferences", non_null_refs);
179     ATraceBegin(buf);
180     collector_->ProcessMarkStack();
181     ATraceEnd();
182   } else {
183     collector_->ProcessMarkStack();
184   }
185   return non_null_refs;
186 }
187 
Setup(Thread * self,collector::GarbageCollector * collector,bool concurrent,bool clear_soft_references)188 void ReferenceProcessor::Setup(Thread* self,
189                                collector::GarbageCollector* collector,
190                                bool concurrent,
191                                bool clear_soft_references) {
192   DCHECK(collector != nullptr);
193   MutexLock mu(self, *Locks::reference_processor_lock_);
194   collector_ = collector;
195   rp_state_ = RpState::kStarting;
196   concurrent_ = concurrent;
197   clear_soft_references_ = clear_soft_references;
198 }
199 
200 // Process reference class instances and schedule finalizations.
201 // We advance rp_state_ to signal partial completion for the benefit of GetReferent.
ProcessReferences(Thread * self,TimingLogger * timings)202 void ReferenceProcessor::ProcessReferences(Thread* self, TimingLogger* timings) {
203   TimingLogger::ScopedTiming t(concurrent_ ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
204   if (!clear_soft_references_) {
205     // Forward any additional SoftReferences we discovered late, now that reference access has been
206     // inhibited.
207     while (!soft_reference_queue_.IsEmpty()) {
208       ForwardSoftReferences(timings);
209     }
210   }
211   {
212     MutexLock mu(self, *Locks::reference_processor_lock_);
213     if (!gUseReadBarrier) {
214       CHECK_EQ(SlowPathEnabled(), concurrent_) << "Slow path must be enabled iff concurrent";
215     } else {
216       // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent_ == false).
217       CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent_);
218     }
219     DCHECK(rp_state_ == RpState::kStarting);
220     rp_state_ = RpState::kInitMarkingDone;
221     condition_.Broadcast(self);
222   }
223   if (kIsDebugBuild && collector_->IsTransactionActive()) {
224     // In transaction mode, we shouldn't enqueue any Reference to the queues.
225     // See DelayReferenceReferent().
226     DCHECK(soft_reference_queue_.IsEmpty());
227     DCHECK(weak_reference_queue_.IsEmpty());
228     DCHECK(finalizer_reference_queue_.IsEmpty());
229     DCHECK(phantom_reference_queue_.IsEmpty());
230   }
231   // Clear all remaining soft and weak references with white referents.
232   // This misses references only reachable through finalizers.
233   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_);
234   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_);
235   // Defer PhantomReference processing until we've finished marking through finalizers.
236   {
237     // TODO: Capture mark state of some system weaks here. If the referent was marked here,
238     // then it is now safe to return, since it can only refer to marked objects. If it becomes
239     // marked below, that is no longer guaranteed.
240     MutexLock mu(self, *Locks::reference_processor_lock_);
241     rp_state_ = RpState::kInitClearingDone;
242     // At this point, all mutator-accessible data is marked (black). Objects enqueued for
243     // finalization will only be made available to the mutator via CollectClearedReferences after
244     // we're fully done marking. Soft and WeakReferences accessible to the mutator have been
245     // processed and refer only to black objects.  Thus there is no danger of the mutator getting
246     // access to non-black objects.  Weak reference processing is still nominally suspended,
247     // But many kinds of references, including all java.lang.ref ones, are handled normally from
248     // here on. See GetReferent().
249   }
250   {
251     TimingLogger::ScopedTiming t2(
252         concurrent_ ? "EnqueueFinalizerReferences" : "(Paused)EnqueueFinalizerReferences", timings);
253     // Preserve all white objects with finalize methods and schedule them for finalization.
254     FinalizerStats finalizer_stats =
255         finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector_);
256     if (ATraceEnabled()) {
257       static constexpr size_t kBufSize = 80;
258       char buf[kBufSize];
259       snprintf(buf, kBufSize, "Marking from %" PRIu32 " / %" PRIu32 " finalizers",
260                finalizer_stats.num_enqueued_, finalizer_stats.num_refs_);
261       ATraceBegin(buf);
262       collector_->ProcessMarkStack();
263       ATraceEnd();
264     } else {
265       collector_->ProcessMarkStack();
266     }
267   }
268 
269   // Process all soft and weak references with white referents, where the references are reachable
270   // only from finalizers. It is unclear that there is any way to do this without slightly
271   // violating some language spec. We choose to apply normal Reference processing rules for these.
272   // This exposes the following issues:
273   // 1) In the case of an unmarked referent, we may end up enqueuing an "unreachable" reference.
274   //    This appears unavoidable, since we need to clear the reference for safety, unless we
275   //    mark the referent and undo finalization decisions for objects we encounter during marking.
276   //    (Some versions of the RI seem to do something along these lines.)
277   //    Or we could clear the reference without enqueuing it, which also seems strange and
278   //    unhelpful.
279   // 2) In the case of a marked referent, we will preserve a reference to objects that may have
280   //    been enqueued for finalization. Again fixing this would seem to involve at least undoing
281   //    previous finalization / reference clearing decisions. (This would also mean than an object
282   //    containing both a strong and a WeakReference to the same referent could see the
283   //    WeakReference cleared.)
284   // The treatment in (2) is potentially quite dangerous, since Reference.get() can e.g. return a
285   // finalized object containing pointers to native objects that have already been deallocated.
286   // But it can be argued that this is just an instance of the broader rule that it is not safe
287   // for finalizers to access otherwise inaccessible finalizable objects.
288   soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_,
289                                              /*report_cleared=*/ true);
290   weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_,
291                                              /*report_cleared=*/ true);
292 
293   // Clear all phantom references with white referents. It's fine to do this just once here.
294   phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector_);
295 
296   // At this point all reference queues other than the cleared references should be empty.
297   DCHECK(soft_reference_queue_.IsEmpty());
298   DCHECK(weak_reference_queue_.IsEmpty());
299   DCHECK(finalizer_reference_queue_.IsEmpty());
300   DCHECK(phantom_reference_queue_.IsEmpty());
301 
302   {
303     MutexLock mu(self, *Locks::reference_processor_lock_);
304     // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
305     // could result in a stale is_marked_callback_ being called before the reference processing
306     // starts since there is a small window of time where slow_path_enabled_ is enabled but the
307     // callback isn't yet set.
308     if (!gUseReadBarrier && concurrent_) {
309       // Done processing, disable the slow path and broadcast to the waiters.
310       DisableSlowPath(self);
311     }
312   }
313 }
314 
315 // Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
316 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref,collector::GarbageCollector * collector)317 void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
318                                                 ObjPtr<mirror::Reference> ref,
319                                                 collector::GarbageCollector* collector) {
320   // klass can be the class of the old object if the visitor already updated the class of ref.
321   DCHECK(klass != nullptr);
322   DCHECK(klass->IsTypeOfReferenceClass());
323   mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
324   // do_atomic_update needs to be true because this happens outside of the reference processing
325   // phase.
326   if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update=*/true)) {
327     if (UNLIKELY(collector->IsTransactionActive())) {
328       // In transaction mode, keep the referent alive and avoid any reference processing to avoid the
329       // issue of rolling back reference processing.  do_atomic_update needs to be true because this
330       // happens outside of the reference processing phase.
331       if (!referent->IsNull()) {
332         collector->MarkHeapReference(referent, /*do_atomic_update=*/ true);
333       }
334       return;
335     }
336     Thread* self = Thread::Current();
337     // TODO: Remove these locks, and use atomic stacks for storing references?
338     // We need to check that the references haven't already been enqueued since we can end up
339     // scanning the same reference multiple times due to dirty cards.
340     if (klass->IsSoftReferenceClass()) {
341       soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
342     } else if (klass->IsWeakReferenceClass()) {
343       weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
344     } else if (klass->IsFinalizerReferenceClass()) {
345       finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
346     } else if (klass->IsPhantomReferenceClass()) {
347       phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
348     } else {
349       LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex
350                  << klass->GetAccessFlags();
351     }
352   }
353 }
354 
UpdateRoots(IsMarkedVisitor * visitor)355 void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) {
356   cleared_references_.UpdateRoots(visitor);
357 }
358 
359 class ClearedReferenceTask : public HeapTask {
360  public:
ClearedReferenceTask(jobject cleared_references)361   explicit ClearedReferenceTask(jobject cleared_references)
362       : HeapTask(NanoTime()), cleared_references_(cleared_references) {
363   }
Run(Thread * thread)364   void Run(Thread* thread) override {
365     ScopedObjectAccess soa(thread);
366     WellKnownClasses::java_lang_ref_ReferenceQueue_add->InvokeStatic<'V', 'L'>(
367         thread, soa.Decode<mirror::Object>(cleared_references_));
368     soa.Env()->DeleteGlobalRef(cleared_references_);
369   }
370 
371  private:
372   const jobject cleared_references_;
373 };
374 
CollectClearedReferences(Thread * self)375 SelfDeletingTask* ReferenceProcessor::CollectClearedReferences(Thread* self) {
376   Locks::mutator_lock_->AssertNotHeld(self);
377   // By default we don't actually need to do anything. Just return this no-op task to avoid having
378   // to put in ifs.
379   std::unique_ptr<SelfDeletingTask> result(new FunctionTask([](Thread*) {}));
380   // When a runtime isn't started there are no reference queues to care about so ignore.
381   if (!cleared_references_.IsEmpty()) {
382     if (LIKELY(Runtime::Current()->IsStarted())) {
383       jobject cleared_references;
384       {
385         ReaderMutexLock mu(self, *Locks::mutator_lock_);
386         cleared_references = self->GetJniEnv()->GetVm()->AddGlobalRef(
387             self, cleared_references_.GetList());
388       }
389       if (kAsyncReferenceQueueAdd) {
390         // TODO: This can cause RunFinalization to terminate before newly freed objects are
391         // finalized since they may not be enqueued by the time RunFinalization starts.
392         Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
393             self, new ClearedReferenceTask(cleared_references));
394       } else {
395         result.reset(new ClearedReferenceTask(cleared_references));
396       }
397     }
398     cleared_references_.Clear();
399   }
400   return result.release();
401 }
402 
ClearReferent(ObjPtr<mirror::Reference> ref)403 void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) {
404   Thread* self = Thread::Current();
405   MutexLock mu(self, *Locks::reference_processor_lock_);
406   // Need to wait until reference processing is done since IsMarkedHeapReference does not have a
407   // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions.
408   // This also handles the race where the referent gets cleared after a null check but before
409   // IsMarkedHeapReference is called.
410   WaitUntilDoneProcessingReferences(self);
411   if (Runtime::Current()->IsActiveTransaction()) {
412     ref->ClearReferent<true>();
413   } else {
414     ref->ClearReferent<false>();
415   }
416 }
417 
WaitUntilDoneProcessingReferences(Thread * self)418 void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) {
419   // Wait until we are done processing reference.
420   while ((!gUseReadBarrier && SlowPathEnabled()) ||
421          (gUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
422     // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
423     // presence of threads blocking for weak ref access.
424     self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
425     condition_.WaitHoldingLocks(self);
426   }
427 }
428 
MakeCircularListIfUnenqueued(ObjPtr<mirror::FinalizerReference> reference)429 bool ReferenceProcessor::MakeCircularListIfUnenqueued(
430     ObjPtr<mirror::FinalizerReference> reference) {
431   Thread* self = Thread::Current();
432   MutexLock mu(self, *Locks::reference_processor_lock_);
433   WaitUntilDoneProcessingReferences(self);
434   // At this point, since the sentinel of the reference is live, it is guaranteed to not be
435   // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
436   // phase. Since we are holding the reference processor lock, it guarantees that reference
437   // processing can't begin. The GC could have just enqueued the reference one one of the internal
438   // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
439   // race.
440   MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
441   if (reference->IsUnprocessed()) {
442     CHECK(reference->IsFinalizerReferenceInstance());
443     reference->SetPendingNext(reference);
444     return true;
445   }
446   return false;
447 }
448 
449 }  // namespace gc
450 }  // namespace art
451