1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_GC_COLLECTOR_CONCURRENT_COPYING_INL_H_
18 #define ART_RUNTIME_GC_COLLECTOR_CONCURRENT_COPYING_INL_H_
19 
20 #include "concurrent_copying.h"
21 
22 #include "gc/accounting/atomic_stack.h"
23 #include "gc/accounting/space_bitmap-inl.h"
24 #include "gc/heap.h"
25 #include "gc/space/region_space-inl.h"
26 #include "gc/verification.h"
27 #include "lock_word.h"
28 #include "mirror/class.h"
29 #include "mirror/object-readbarrier-inl.h"
30 
31 namespace art HIDDEN {
32 namespace gc {
33 namespace collector {
34 
MarkUnevacFromSpaceRegion(Thread * const self,mirror::Object * ref,accounting::ContinuousSpaceBitmap * bitmap)35 inline mirror::Object* ConcurrentCopying::MarkUnevacFromSpaceRegion(
36     Thread* const self,
37     mirror::Object* ref,
38     accounting::ContinuousSpaceBitmap* bitmap) {
39   if (use_generational_cc_ && !done_scanning_.load(std::memory_order_acquire)) {
40     // Everything in the unevac space should be marked for young generation CC,
41     // except for large objects.
42     DCHECK(!young_gen_ || region_space_bitmap_->Test(ref) || region_space_->IsLargeObject(ref))
43         << ref << " "
44         << ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->PrettyClass();
45     // Since the mark bitmap is still filled in from last GC (or from marking phase of 2-phase CC,
46     // we can not use that or else the mutator may see references to the from space. Instead, use
47     // the baker pointer itself as the mark bit.
48     if (ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState())) {
49       // TODO: We don't actually need to scan this object later, we just need to clear the gray
50       // bit.
51       // TODO: We could also set the mark bit here for "free" since this case comes from the
52       // read barrier.
53       PushOntoMarkStack(self, ref);
54     }
55     DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
56     return ref;
57   }
58   // For the Baker-style RB, in a rare case, we could incorrectly change the object from non-gray
59   // (black) to gray even though the object has already been marked through. This happens if a
60   // mutator thread gets preempted before the AtomicSetReadBarrierState below, GC marks through the
61   // object (changes it from non-gray (white) to gray and back to non-gray (black)), and the thread
62   // runs and incorrectly changes it from non-gray (black) to gray. If this happens, the object
63   // will get added to the mark stack again and get changed back to non-gray (black) after it is
64   // processed.
65   if (kUseBakerReadBarrier) {
66     // Test the bitmap first to avoid graying an object that has already been marked through most
67     // of the time.
68     if (bitmap->Test(ref)) {
69       return ref;
70     }
71   }
72   // This may or may not succeed, which is ok because the object may already be gray.
73   bool success = false;
74   if (kUseBakerReadBarrier) {
75     // GC will mark the bitmap when popping from mark stack. If only the GC is touching the bitmap
76     // we can avoid an expensive CAS.
77     // For the baker case, an object is marked if either the mark bit marked or the bitmap bit is
78     // set.
79     success = ref->AtomicSetReadBarrierState(/* expected_rb_state= */ ReadBarrier::NonGrayState(),
80                                              /* rb_state= */ ReadBarrier::GrayState());
81   } else {
82     success = !bitmap->AtomicTestAndSet(ref);
83   }
84   if (success) {
85     // Newly marked.
86     if (kUseBakerReadBarrier) {
87       DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
88     }
89     PushOntoMarkStack(self, ref);
90   }
91   return ref;
92 }
93 
94 template<bool kGrayImmuneObject>
MarkImmuneSpace(Thread * const self,mirror::Object * ref)95 inline mirror::Object* ConcurrentCopying::MarkImmuneSpace(Thread* const self,
96                                                           mirror::Object* ref) {
97   if (kUseBakerReadBarrier) {
98     // The GC-running thread doesn't (need to) gray immune objects except when updating thread roots
99     // in the thread flip on behalf of suspended threads (when gc_grays_immune_objects_ is
100     // true). Also, a mutator doesn't (need to) gray an immune object after GC has updated all
101     // immune space objects (when updated_all_immune_objects_ is true).
102     if (kIsDebugBuild) {
103       if (self == thread_running_gc_) {
104         DCHECK(!kGrayImmuneObject ||
105                updated_all_immune_objects_.load(std::memory_order_relaxed) ||
106                gc_grays_immune_objects_);
107       } else {
108         DCHECK(kGrayImmuneObject);
109       }
110     }
111     if (!kGrayImmuneObject || updated_all_immune_objects_.load(std::memory_order_relaxed)) {
112       return ref;
113     }
114     // This may or may not succeed, which is ok because the object may already be gray.
115     bool success =
116         ref->AtomicSetReadBarrierState(/* expected_rb_state= */ ReadBarrier::NonGrayState(),
117                                        /* rb_state= */ ReadBarrier::GrayState());
118     if (success) {
119       MutexLock mu(self, immune_gray_stack_lock_);
120       immune_gray_stack_.push_back(ref);
121     }
122   }
123   return ref;
124 }
125 
126 template<bool kGrayImmuneObject, bool kNoUnEvac, bool kFromGCThread>
Mark(Thread * const self,mirror::Object * from_ref,mirror::Object * holder,MemberOffset offset)127 inline mirror::Object* ConcurrentCopying::Mark(Thread* const self,
128                                                mirror::Object* from_ref,
129                                                mirror::Object* holder,
130                                                MemberOffset offset) {
131   // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
132   DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_);
133   if (from_ref == nullptr) {
134     return nullptr;
135   }
136   DCHECK(heap_->collector_type_ == kCollectorTypeCC);
137   if (kFromGCThread) {
138     DCHECK(is_active_);
139     DCHECK_EQ(self, thread_running_gc_);
140   } else if (UNLIKELY(kUseBakerReadBarrier && !is_active_)) {
141     // In the lock word forward address state, the read barrier bits
142     // in the lock word are part of the stored forwarding address and
143     // invalid. This is usually OK as the from-space copy of objects
144     // aren't accessed by mutators due to the to-space
145     // invariant. However, during the dex2oat image writing relocation
146     // and the zygote compaction, objects can be in the forward
147     // address state (to store the forward/relocation addresses) and
148     // they can still be accessed and the invalid read barrier bits
149     // are consulted. If they look like gray but aren't really, the
150     // read barriers slow path can trigger when it shouldn't. To guard
151     // against this, return here if the CC collector isn't running.
152     return from_ref;
153   }
154   DCHECK(region_space_ != nullptr) << "Read barrier slow path taken when CC isn't running?";
155   if (region_space_->HasAddress(from_ref)) {
156     space::RegionSpace::RegionType rtype = region_space_->GetRegionTypeUnsafe(from_ref);
157     switch (rtype) {
158       case space::RegionSpace::RegionType::kRegionTypeToSpace:
159         // It's already marked.
160         return from_ref;
161       case space::RegionSpace::RegionType::kRegionTypeFromSpace: {
162         mirror::Object* to_ref = GetFwdPtr(from_ref);
163         if (to_ref == nullptr) {
164           // It isn't marked yet. Mark it by copying it to the to-space.
165           to_ref = Copy(self, from_ref, holder, offset);
166         }
167         // The copy should either be in a to-space region, or in the
168         // non-moving space, if it could not fit in a to-space region.
169         DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
170             << "from_ref=" << from_ref << " to_ref=" << to_ref;
171         return to_ref;
172       }
173       case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace:
174         if (kNoUnEvac && use_generational_cc_ && !region_space_->IsLargeObject(from_ref)) {
175           if (!kFromGCThread) {
176             DCHECK(IsMarkedInUnevacFromSpace(from_ref)) << "Returning unmarked object to mutator";
177           }
178           return from_ref;
179         }
180         return MarkUnevacFromSpaceRegion(self, from_ref, region_space_bitmap_);
181       default:
182         // The reference is in an unused region. Remove memory protection from
183         // the region space and log debugging information.
184         region_space_->Unprotect();
185         LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(holder, offset, from_ref);
186         region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
187         heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal= */ true);
188         UNREACHABLE();
189     }
190   } else {
191     if (immune_spaces_.ContainsObject(from_ref)) {
192       return MarkImmuneSpace<kGrayImmuneObject>(self, from_ref);
193     } else {
194       return MarkNonMoving(self, from_ref, holder, offset);
195     }
196   }
197 }
198 
MarkFromReadBarrier(mirror::Object * from_ref)199 inline mirror::Object* ConcurrentCopying::MarkFromReadBarrier(mirror::Object* from_ref) {
200   mirror::Object* ret;
201   Thread* const self = Thread::Current();
202   // We can get here before marking starts since we gray immune objects before the marking phase.
203   if (from_ref == nullptr || !self->GetIsGcMarking()) {
204     return from_ref;
205   }
206   // TODO: Consider removing this check when we are done investigating slow paths. b/30162165
207   if (UNLIKELY(mark_from_read_barrier_measurements_)) {
208     ret = MarkFromReadBarrierWithMeasurements(self, from_ref);
209   } else {
210     ret = Mark</*kGrayImmuneObject=*/true, /*kNoUnEvac=*/false, /*kFromGCThread=*/false>(self,
211                                                                                          from_ref);
212   }
213   // Only set the mark bit for baker barrier.
214   if (kUseBakerReadBarrier && LIKELY(!rb_mark_bit_stack_full_ && ret->AtomicSetMarkBit(0, 1))) {
215     // If the mark stack is full, we may temporarily go to mark and back to unmarked. Seeing both
216     // values are OK since the only race is doing an unnecessary Mark.
217     if (!rb_mark_bit_stack_->AtomicPushBack(ret)) {
218       // Mark stack is full, set the bit back to zero.
219       CHECK(ret->AtomicSetMarkBit(1, 0));
220       // Set rb_mark_bit_stack_full_, this is racy but OK since AtomicPushBack is thread safe.
221       rb_mark_bit_stack_full_ = true;
222     }
223   }
224   return ret;
225 }
226 
GetFwdPtrUnchecked(mirror::Object * from_ref)227 inline mirror::Object* ConcurrentCopying::GetFwdPtrUnchecked(mirror::Object* from_ref) {
228   LockWord lw = from_ref->GetLockWord(false);
229   if (lw.GetState() == LockWord::kForwardingAddress) {
230     mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress());
231     DCHECK(fwd_ptr != nullptr);
232     return fwd_ptr;
233   } else {
234     return nullptr;
235   }
236 }
237 
GetFwdPtr(mirror::Object * from_ref)238 inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) {
239   DCHECK(region_space_->IsInFromSpace(from_ref));
240   return GetFwdPtrUnchecked(from_ref);
241 }
242 
IsMarkedInUnevacFromSpace(mirror::Object * from_ref)243 inline bool ConcurrentCopying::IsMarkedInUnevacFromSpace(mirror::Object* from_ref) {
244   // Use load-acquire on the read barrier pointer to ensure that we never see a black (non-gray)
245   // read barrier state with an unmarked bit due to reordering.
246   DCHECK(region_space_->IsInUnevacFromSpace(from_ref));
247   if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) {
248     return true;
249   } else if (!use_generational_cc_ || done_scanning_.load(std::memory_order_acquire)) {
250     // If the card table scanning is not finished yet, then only read-barrier
251     // state should be checked. Checking the mark bitmap is unreliable as there
252     // may be some objects - whose corresponding card is dirty - which are
253     // marked in the mark bitmap, but cannot be considered marked unless their
254     // read-barrier state is set to Gray.
255     //
256     // Why read read-barrier state before checking done_scanning_?
257     // If the read-barrier state was read *after* done_scanning_, then there
258     // exists a concurrency race due to which even after the object is marked,
259     // read-barrier state is checked *after* that, this function will return
260     // false. The following scenario may cause the race:
261     //
262     // 1. Mutator thread reads done_scanning_ and upon finding it false, gets
263     // suspended before reading the object's read-barrier state.
264     // 2. GC thread finishes card-table scan and then sets done_scanning_ to
265     // true.
266     // 3. GC thread grays the object, scans it, marks in the bitmap, and then
267     // changes its read-barrier state back to non-gray.
268     // 4. Mutator thread resumes, reads the object's read-barrier state and
269     // returns false.
270     return region_space_bitmap_->Test(from_ref);
271   }
272   return false;
273 }
274 
275 }  // namespace collector
276 }  // namespace gc
277 }  // namespace art
278 
279 #endif  // ART_RUNTIME_GC_COLLECTOR_CONCURRENT_COPYING_INL_H_
280