1 /* 2 * Copyright (C) 2017 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_ 18 #define ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_ 19 20 #include "memory_region.h" 21 22 #include "bit_utils.h" 23 #include "memory_tool.h" 24 25 #include <array> 26 #include <cstdint> 27 28 namespace art { 29 30 // Bit memory region is a bit offset subregion of a normal memoryregion. This is useful for 31 // abstracting away the bit start offset to avoid needing passing as an argument everywhere. 32 class BitMemoryRegion final : public ValueObject { 33 public: 34 // Ensure all loads are naturally-aligned by aligning down the region's data pointer according to 35 // the largest data type that will be loaded via LoadBits (as StackMap BitTable uses over 8 36 // varints in the header, this is uint64_t). 37 using MaxSingleLoadType = uint64_t; 38 static constexpr size_t kMaxSingleLoadBytes = sizeof(MaxSingleLoadType); 39 40 BitMemoryRegion() = default; BitMemoryRegion(uint8_t * data,ssize_t bit_start,size_t bit_size)41 ALWAYS_INLINE BitMemoryRegion(uint8_t* data, ssize_t bit_start, size_t bit_size) { 42 // Normalize the data pointer. Note that bit_start may be negative. 43 data_ = AlignDown(data + (bit_start >> kBitsPerByteLog2), kMaxSingleLoadBytes); 44 bit_start_ = bit_start + kBitsPerByte * (data - data_); 45 bit_size_ = bit_size; 46 } BitMemoryRegion(MemoryRegion region)47 ALWAYS_INLINE explicit BitMemoryRegion(MemoryRegion region) 48 : BitMemoryRegion(region.begin(), /* bit_start */ 0, region.size_in_bits()) { 49 } BitMemoryRegion(MemoryRegion region,size_t bit_offset,size_t bit_length)50 ALWAYS_INLINE BitMemoryRegion(MemoryRegion region, size_t bit_offset, size_t bit_length) 51 : BitMemoryRegion(region) { 52 *this = Subregion(bit_offset, bit_length); 53 } 54 IsValid()55 ALWAYS_INLINE bool IsValid() const { return data_ != nullptr; } 56 data()57 const uint8_t* data() const { 58 DCHECK_ALIGNED(bit_start_, kBitsPerByte); 59 return data_ + bit_start_ / kBitsPerByte; 60 } 61 size_in_bits()62 size_t size_in_bits() const { 63 return bit_size_; 64 } 65 Resize(size_t bit_size)66 void Resize(size_t bit_size) { 67 bit_size_ = bit_size; 68 } 69 Subregion(size_t bit_offset,size_t bit_length)70 ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset, size_t bit_length) const { 71 DCHECK_LE(bit_offset, bit_size_); 72 DCHECK_LE(bit_length, bit_size_ - bit_offset); 73 BitMemoryRegion result = *this; 74 result.bit_start_ += bit_offset; 75 result.bit_size_ = bit_length; 76 return result; 77 } 78 Subregion(size_t bit_offset)79 ALWAYS_INLINE BitMemoryRegion Subregion(size_t bit_offset) const { 80 DCHECK_LE(bit_offset, bit_size_); 81 BitMemoryRegion result = *this; 82 result.bit_start_ += bit_offset; 83 result.bit_size_ -= bit_offset; 84 return result; 85 } 86 87 // Load a single bit in the region. The bit at offset 0 is the least 88 // significant bit in the first byte. LoadBit(size_t bit_offset)89 ALWAYS_INLINE bool LoadBit(size_t bit_offset) const { 90 DCHECK_LT(bit_offset, bit_size_); 91 size_t index = (bit_start_ + bit_offset) / kBitsPerByte; 92 size_t shift = (bit_start_ + bit_offset) % kBitsPerByte; 93 return ((data_[index] >> shift) & 1) != 0; 94 } 95 StoreBit(size_t bit_offset,bool value)96 ALWAYS_INLINE void StoreBit(size_t bit_offset, bool value) { 97 DCHECK_LT(bit_offset, bit_size_); 98 size_t index = (bit_start_ + bit_offset) / kBitsPerByte; 99 size_t shift = (bit_start_ + bit_offset) % kBitsPerByte; 100 data_[index] &= ~(1 << shift); // Clear bit. 101 data_[index] |= (value ? 1 : 0) << shift; // Set bit. 102 DCHECK_EQ(value, LoadBit(bit_offset)); 103 } 104 105 // Load `bit_length` bits from `data` starting at given `bit_offset`. 106 // The least significant bit is stored in the smallest memory offset. 107 template<typename Result = size_t> 108 ATTRIBUTE_NO_SANITIZE_ADDRESS // We might touch extra bytes due to the alignment. 109 ATTRIBUTE_NO_SANITIZE_HWADDRESS // The hwasan uses different attribute. LoadBits(size_t bit_offset,size_t bit_length)110 ALWAYS_INLINE Result LoadBits(size_t bit_offset, size_t bit_length) const { 111 static_assert(std::is_integral_v<Result>, "Result must be integral"); 112 static_assert(std::is_unsigned_v<Result>, "Result must be unsigned"); 113 static_assert(sizeof(Result) <= kMaxSingleLoadBytes); 114 DCHECK(IsAligned<sizeof(Result)>(data_)); 115 DCHECK_LE(bit_offset, bit_size_); 116 DCHECK_LE(bit_length, bit_size_ - bit_offset); 117 DCHECK_LE(bit_length, BitSizeOf<Result>()); 118 if (bit_length == 0) { 119 return 0; 120 } 121 // Load naturally-aligned value which contains the least significant bit. 122 Result* data = reinterpret_cast<Result*>(data_); 123 size_t width = BitSizeOf<Result>(); 124 size_t index = (bit_start_ + bit_offset) / width; 125 size_t shift = (bit_start_ + bit_offset) % width; 126 Result value = data[index] >> shift; 127 // Load extra value containing the most significant bit (it might be the same one). 128 // We can not just load the following value as that could potentially cause SIGSEGV. 129 Result extra = data[index + (shift + (bit_length - 1)) / width]; 130 // Mask to clear unwanted bits (the 1s are needed to avoid avoid undefined shift). 131 Result clear = (std::numeric_limits<Result>::max() << 1) << (bit_length - 1); 132 // Prepend the extra value. We add explicit '& (width - 1)' so that the shift is defined. 133 // It is a no-op for `shift != 0` and if `shift == 0` then `value == extra` because of 134 // bit_length <= width causing the `value` and `extra` to be read from the same location. 135 // The '& (width - 1)' is implied by the shift instruction on ARM and removed by compiler. 136 return (value | (extra << ((width - shift) & (width - 1)))) & ~clear; 137 } 138 139 // Store `bit_length` bits in `data` starting at given `bit_offset`. 140 // The least significant bit is stored in the smallest memory offset. StoreBits(size_t bit_offset,size_t value,size_t bit_length)141 ALWAYS_INLINE void StoreBits(size_t bit_offset, size_t value, size_t bit_length) { 142 DCHECK_LE(bit_offset, bit_size_); 143 DCHECK_LE(bit_length, bit_size_ - bit_offset); 144 DCHECK_LE(bit_length, BitSizeOf<size_t>()); 145 DCHECK_LE(value, MaxInt<size_t>(bit_length)); 146 if (bit_length == 0) { 147 return; 148 } 149 // Write data byte by byte to avoid races with other threads 150 // on bytes that do not overlap with this region. 151 size_t mask = std::numeric_limits<size_t>::max() >> (BitSizeOf<size_t>() - bit_length); 152 size_t index = (bit_start_ + bit_offset) / kBitsPerByte; 153 size_t shift = (bit_start_ + bit_offset) % kBitsPerByte; 154 data_[index] &= ~(mask << shift); // Clear bits. 155 data_[index] |= (value << shift); // Set bits. 156 size_t finished_bits = kBitsPerByte - shift; 157 for (int i = 1; finished_bits < bit_length; i++, finished_bits += kBitsPerByte) { 158 data_[index + i] &= ~(mask >> finished_bits); // Clear bits. 159 data_[index + i] |= (value >> finished_bits); // Set bits. 160 } 161 DCHECK_EQ(value, LoadBits(bit_offset, bit_length)); 162 } 163 164 // Copy bits from other bit region. CopyBits(const BitMemoryRegion & src)165 ALWAYS_INLINE void CopyBits(const BitMemoryRegion& src) { 166 DCHECK_EQ(size_in_bits(), src.size_in_bits()); 167 // Hopefully, the loads of the unused `value` shall be optimized away. 168 VisitChunks([this, &src](size_t offset, size_t num_bits, [[maybe_unused]] size_t value) 169 ALWAYS_INLINE { 170 StoreChunk(offset, src.LoadBits(offset, num_bits), num_bits); 171 return true; 172 }); 173 } 174 175 // And bits from other bit region. AndBits(const BitMemoryRegion & src)176 ALWAYS_INLINE void AndBits(const BitMemoryRegion& src) { 177 DCHECK_EQ(size_in_bits(), src.size_in_bits()); 178 VisitChunks([this, &src](size_t offset, size_t num_bits, size_t value) ALWAYS_INLINE { 179 StoreChunk(offset, value & src.LoadBits(offset, num_bits), num_bits); 180 return true; 181 }); 182 } 183 184 // Or bits from other bit region. OrBits(const BitMemoryRegion & src)185 ALWAYS_INLINE void OrBits(const BitMemoryRegion& src) { 186 DCHECK_EQ(size_in_bits(), src.size_in_bits()); 187 VisitChunks([this, &src](size_t offset, size_t num_bits, size_t value) ALWAYS_INLINE { 188 StoreChunk(offset, value | src.LoadBits(offset, num_bits), num_bits); 189 return true; 190 }); 191 } 192 193 // Xor bits from other bit region. XorBits(const BitMemoryRegion & src)194 ALWAYS_INLINE void XorBits(const BitMemoryRegion& src) { 195 DCHECK_EQ(size_in_bits(), src.size_in_bits()); 196 VisitChunks([this, &src](size_t offset, size_t num_bits, size_t value) ALWAYS_INLINE { 197 StoreChunk(offset, value ^ src.LoadBits(offset, num_bits), num_bits); 198 return true; 199 }); 200 } 201 202 // Count the number of set bits within this region. PopCount()203 ALWAYS_INLINE size_t PopCount() const { 204 size_t result = 0u; 205 VisitChunks([&]([[maybe_unused]] size_t offset, [[maybe_unused]] size_t num_bits, size_t value) 206 ALWAYS_INLINE { 207 result += POPCOUNT(value); 208 return true; 209 }); 210 return result; 211 } 212 213 // Count the number of set bits within the given bit range. PopCount(size_t bit_offset,size_t bit_length)214 ALWAYS_INLINE size_t PopCount(size_t bit_offset, size_t bit_length) const { 215 return Subregion(bit_offset, bit_length).PopCount(); 216 } 217 218 // Check if this region has all bits clear. HasAllBitsClear()219 ALWAYS_INLINE bool HasAllBitsClear() const { 220 return VisitChunks( 221 []([[maybe_unused]] size_t offset, [[maybe_unused]] size_t num_bits, size_t value) 222 ALWAYS_INLINE { return value == 0u; }); 223 } 224 225 // Check if this region has any bit set. HasSomeBitSet()226 ALWAYS_INLINE bool HasSomeBitSet() const { 227 return !HasAllBitsClear(); 228 } 229 230 // Check if there is any bit set within the given bit range. HasSomeBitSet(size_t bit_offset,size_t bit_length)231 ALWAYS_INLINE bool HasSomeBitSet(size_t bit_offset, size_t bit_length) const { 232 return Subregion(bit_offset, bit_length).HasSomeBitSet(); 233 } 234 Compare(const BitMemoryRegion & lhs,const BitMemoryRegion & rhs)235 static int Compare(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) { 236 if (lhs.size_in_bits() != rhs.size_in_bits()) { 237 return (lhs.size_in_bits() < rhs.size_in_bits()) ? -1 : 1; 238 } 239 int result = 0; 240 bool equals = lhs.VisitChunks( 241 [&](size_t offset, size_t num_bits, size_t lhs_value) ALWAYS_INLINE { 242 size_t rhs_value = rhs.LoadBits(offset, num_bits); 243 if (lhs_value == rhs_value) { 244 return true; 245 } 246 // We have found a difference. To avoid the comparison being dependent on how the region 247 // is split into chunks, check the lowest bit that differs. (Android is little-endian.) 248 int bit = CTZ(lhs_value ^ rhs_value); 249 result = ((rhs_value >> bit) & 1u) != 0u ? 1 : -1; 250 return false; // Stop iterating. 251 }); 252 DCHECK_EQ(equals, result == 0); 253 return result; 254 } 255 Equals(const BitMemoryRegion & lhs,const BitMemoryRegion & rhs)256 static bool Equals(const BitMemoryRegion& lhs, const BitMemoryRegion& rhs) { 257 if (lhs.size_in_bits() != rhs.size_in_bits()) { 258 return false; 259 } 260 return lhs.VisitChunks([&rhs](size_t offset, size_t num_bits, size_t lhs_value) ALWAYS_INLINE { 261 return lhs_value == rhs.LoadBits(offset, num_bits); 262 }); 263 } 264 265 private: 266 // Visit the region in aligned `size_t` chunks. The first and last chunk may have fewer bits. 267 // 268 // Returns `true` if the iteration visited all chunks successfully, i.e. none of the 269 // calls to `visitor(offset, num_bits, value)` returned `false`; otherwise `false`. 270 template <typename VisitorType> 271 ATTRIBUTE_NO_SANITIZE_ADDRESS // We might touch extra bytes due to the alignment. 272 ATTRIBUTE_NO_SANITIZE_HWADDRESS // The hwasan uses different attribute. VisitChunks(VisitorType && visitor)273 ALWAYS_INLINE bool VisitChunks(VisitorType&& visitor) const { 274 constexpr size_t kChunkSize = BitSizeOf<size_t>(); 275 size_t remaining_bits = bit_size_; 276 if (remaining_bits == 0) { 277 return true; 278 } 279 DCHECK(IsAligned<sizeof(size_t)>(data_)); 280 const size_t* data = reinterpret_cast<const size_t*>(data_); 281 size_t offset = 0u; 282 size_t bit_start = bit_start_; 283 data += bit_start / kChunkSize; 284 if ((bit_start % kChunkSize) != 0u) { 285 size_t leading_bits = kChunkSize - (bit_start % kChunkSize); 286 size_t value = (*data) >> (bit_start % kChunkSize); 287 if (leading_bits > remaining_bits) { 288 leading_bits = remaining_bits; 289 value = value & ~(std::numeric_limits<size_t>::max() << remaining_bits); 290 } 291 if (!visitor(offset, leading_bits, value)) { 292 return false; 293 } 294 offset += leading_bits; 295 remaining_bits -= leading_bits; 296 ++data; 297 } 298 while (remaining_bits >= kChunkSize) { 299 size_t value = *data; 300 if (!visitor(offset, kChunkSize, value)) { 301 return false; 302 } 303 offset += kChunkSize; 304 remaining_bits -= kChunkSize; 305 ++data; 306 } 307 if (remaining_bits != 0u) { 308 size_t value = (*data) & ~(std::numeric_limits<size_t>::max() << remaining_bits); 309 if (!visitor(offset, remaining_bits, value)) { 310 return false; 311 } 312 } 313 return true; 314 } 315 StoreChunk(size_t bit_offset,size_t value,size_t bit_length)316 ALWAYS_INLINE void StoreChunk(size_t bit_offset, size_t value, size_t bit_length) { 317 if (bit_length == BitSizeOf<size_t>()) { 318 DCHECK_ALIGNED(bit_start_ + bit_offset, BitSizeOf<size_t>()); 319 uint8_t* data = data_ + (bit_start_ + bit_offset) / kBitsPerByte; 320 DCHECK_ALIGNED(data, sizeof(size_t)); 321 reinterpret_cast<size_t*>(data)[0] = value; 322 } else { 323 StoreBits(bit_offset, value, bit_length); 324 } 325 } 326 327 uint8_t* data_ = nullptr; // The pointer is aligned down to kMaxSingleLoadBytes. 328 size_t bit_start_ = 0; 329 size_t bit_size_ = 0; 330 }; 331 332 // Minimum number of bits used for varint. A varint represents either a value stored "inline" or 333 // the number of bytes that are required to encode the value. 334 constexpr uint32_t kVarintBits = 4; 335 // Maximum value which is stored "inline". We use the rest of the values to encode the number of 336 // bytes required to encode the value when the value is greater than kVarintMax. 337 // We encode any value less than or equal to 11 inline. We use 12, 13, 14 and 15 338 // to represent that the value is encoded in 1, 2, 3 and 4 bytes respectively. 339 // 340 // For example if we want to encode 1, 15, 16, 7, 11, 256: 341 // 342 // Low numbers (1, 7, 11) are encoded inline. 15 and 12 are set with 12 to show 343 // we need to load one byte for each to have their real values (15 and 12), and 344 // 256 is set with 13 to show we need to load two bytes. This is done to 345 // compress the values in the bit array and keep the size down. Where the actual value 346 // is read from depends on the use case. 347 // 348 // Values greater than kVarintMax could be encoded as a separate list referred 349 // to as InterleavedVarints (see ReadInterleavedVarints / WriteInterleavedVarints). 350 // This is used when there are fixed number of fields like CodeInfo headers. 351 // In our example the interleaved encoding looks like below: 352 // 353 // Meaning: 1--- 15-- 12-- 7--- 11-- 256- 15------- 12------- 256---------------- 354 // Bits: 0001 1100 1100 0111 1011 1101 0000 1111 0000 1100 0000 0001 0000 0000 355 // 356 // In other cases the value is recorded just following the size encoding. This is 357 // referred as consecutive encoding (See ReadVarint / WriteVarint). In our 358 // example the consecutively encoded varints looks like below: 359 // 360 // Meaning: 1--- 15-- 15------- 12-- 12------- 7--- 11-- 256- 256---------------- 361 // Bits: 0001 1100 0000 1100 1100 0000 1100 0111 1011 1101 0000 0001 0000 0000 362 constexpr uint32_t kVarintMax = 11; 363 364 class BitMemoryReader { 365 public: 366 BitMemoryReader(BitMemoryReader&&) = default; BitMemoryReader(BitMemoryRegion data)367 explicit BitMemoryReader(BitMemoryRegion data) 368 : finished_region_(data.Subregion(0, 0) /* set the length to zero */ ) { 369 } 370 explicit BitMemoryReader(const uint8_t* data, ssize_t bit_offset = 0) 371 : finished_region_(const_cast<uint8_t*>(data), bit_offset, /* bit_length */ 0) { 372 } 373 data()374 const uint8_t* data() const { return finished_region_.data(); } 375 GetReadRegion()376 BitMemoryRegion GetReadRegion() const { return finished_region_; } 377 NumberOfReadBits()378 size_t NumberOfReadBits() const { return finished_region_.size_in_bits(); } 379 ReadRegion(size_t bit_length)380 ALWAYS_INLINE BitMemoryRegion ReadRegion(size_t bit_length) { 381 size_t bit_offset = finished_region_.size_in_bits(); 382 finished_region_.Resize(bit_offset + bit_length); 383 return finished_region_.Subregion(bit_offset, bit_length); 384 } 385 386 template<typename Result = size_t> ReadBits(size_t bit_length)387 ALWAYS_INLINE Result ReadBits(size_t bit_length) { 388 return ReadRegion(bit_length).LoadBits<Result>(/* bit_offset */ 0, bit_length); 389 } 390 ReadBit()391 ALWAYS_INLINE bool ReadBit() { 392 return ReadRegion(/* bit_length */ 1).LoadBit(/* bit_offset */ 0); 393 } 394 395 // Read variable-length bit-packed integer. 396 // The first four bits determine the variable length of the encoded integer: 397 // Values 0..11 represent the result as-is, with no further following bits. 398 // Values 12..15 mean the result is in the next 8/16/24/32-bits respectively. ReadVarint()399 ALWAYS_INLINE uint32_t ReadVarint() { 400 uint32_t x = ReadBits(kVarintBits); 401 return (x <= kVarintMax) ? x : ReadBits((x - kVarintMax) * kBitsPerByte); 402 } 403 404 // Read N 'interleaved' varints (different to just reading consecutive varints). 405 // All small values are stored first and the large values are stored after them. 406 // This requires fewer bit-reads compared to indidually storing the varints. 407 template<size_t N> ReadInterleavedVarints()408 ALWAYS_INLINE std::array<uint32_t, N> ReadInterleavedVarints() { 409 static_assert(N * kVarintBits <= BitMemoryRegion::kMaxSingleLoadBytes * kBitsPerByte, 410 "N too big"); 411 std::array<uint32_t, N> values; 412 // StackMap BitTable uses over 8 varints in the header, so we need uint64_t. 413 uint64_t data = ReadBits<uint64_t>(N * kVarintBits); 414 for (size_t i = 0; i < N; i++) { 415 values[i] = BitFieldExtract(data, i * kVarintBits, kVarintBits); 416 } 417 // Do the second part in its own loop as that seems to produce better code in clang. 418 for (size_t i = 0; i < N; i++) { 419 if (UNLIKELY(values[i] > kVarintMax)) { 420 values[i] = ReadBits((values[i] - kVarintMax) * kBitsPerByte); 421 } 422 } 423 return values; 424 } 425 426 private: 427 // Represents all of the bits which were read so far. There is no upper bound. 428 // Therefore, by definition, the "cursor" is always at the end of the region. 429 BitMemoryRegion finished_region_; 430 431 DISALLOW_COPY_AND_ASSIGN(BitMemoryReader); 432 }; 433 434 template<typename Vector> 435 class BitMemoryWriter { 436 public: 437 explicit BitMemoryWriter(Vector* out, size_t bit_offset = 0) out_(out)438 : out_(out), bit_start_(bit_offset), bit_offset_(bit_offset) { 439 DCHECK_EQ(NumberOfWrittenBits(), 0u); 440 } 441 Truncate(size_t bit_offset)442 void Truncate(size_t bit_offset) { 443 DCHECK_GE(bit_offset, bit_start_); 444 DCHECK_LE(bit_offset, bit_offset_); 445 bit_offset_ = bit_offset; 446 DCHECK_LE(BitsToBytesRoundUp(bit_offset), out_->size()); 447 out_->resize(BitsToBytesRoundUp(bit_offset)); // Shrink. 448 } 449 GetWrittenRegion()450 BitMemoryRegion GetWrittenRegion() const { 451 return BitMemoryRegion(out_->data(), bit_start_, bit_offset_ - bit_start_); 452 } 453 data()454 const uint8_t* data() const { return out_->data(); } 455 NumberOfWrittenBits()456 size_t NumberOfWrittenBits() const { return bit_offset_ - bit_start_; } 457 Allocate(size_t bit_length)458 ALWAYS_INLINE BitMemoryRegion Allocate(size_t bit_length) { 459 out_->resize(BitsToBytesRoundUp(bit_offset_ + bit_length)); 460 BitMemoryRegion region(out_->data(), bit_offset_, bit_length); 461 DCHECK_LE(bit_length, std::numeric_limits<size_t>::max() - bit_offset_) << "Overflow"; 462 bit_offset_ += bit_length; 463 return region; 464 } 465 WriteRegion(const BitMemoryRegion & region)466 ALWAYS_INLINE void WriteRegion(const BitMemoryRegion& region) { 467 Allocate(region.size_in_bits()).CopyBits(region); 468 } 469 WriteBits(uint32_t value,size_t bit_length)470 ALWAYS_INLINE void WriteBits(uint32_t value, size_t bit_length) { 471 Allocate(bit_length).StoreBits(/* bit_offset */ 0, value, bit_length); 472 } 473 WriteBit(bool value)474 ALWAYS_INLINE void WriteBit(bool value) { 475 Allocate(1).StoreBit(/* bit_offset */ 0, value); 476 } 477 478 template<size_t N> WriteInterleavedVarints(std::array<uint32_t,N> values)479 ALWAYS_INLINE void WriteInterleavedVarints(std::array<uint32_t, N> values) { 480 // Write small values (or the number of bytes needed for the large values). 481 for (uint32_t value : values) { 482 if (value > kVarintMax) { 483 WriteBits(kVarintMax + BitsToBytesRoundUp(MinimumBitsToStore(value)), kVarintBits); 484 } else { 485 WriteBits(value, kVarintBits); 486 } 487 } 488 // Write large values. 489 for (uint32_t value : values) { 490 if (value > kVarintMax) { 491 WriteBits(value, BitsToBytesRoundUp(MinimumBitsToStore(value)) * kBitsPerByte); 492 } 493 } 494 } 495 WriteVarint(uint32_t value)496 ALWAYS_INLINE void WriteVarint(uint32_t value) { 497 WriteInterleavedVarints<1>({value}); 498 } 499 WriteBytesAligned(const uint8_t * bytes,size_t length)500 void WriteBytesAligned(const uint8_t* bytes, size_t length) { 501 DCHECK_ALIGNED(bit_start_, kBitsPerByte); 502 DCHECK_ALIGNED(bit_offset_, kBitsPerByte); 503 DCHECK_EQ(BitsToBytesRoundUp(bit_offset_), out_->size()); 504 out_->insert(out_->end(), bytes, bytes + length); 505 bit_offset_ += length * kBitsPerByte; 506 } 507 ByteAlign()508 ALWAYS_INLINE void ByteAlign() { 509 DCHECK_ALIGNED(bit_start_, kBitsPerByte); 510 bit_offset_ = RoundUp(bit_offset_, kBitsPerByte); 511 } 512 513 private: 514 Vector* out_; 515 size_t bit_start_; 516 size_t bit_offset_; 517 518 DISALLOW_COPY_AND_ASSIGN(BitMemoryWriter); 519 }; 520 521 } // namespace art 522 523 #endif // ART_LIBARTBASE_BASE_BIT_MEMORY_REGION_H_ 524