1 /*
2  ** Copyright 2003-2010, VisualOn, Inc.
3  **
4  ** Licensed under the Apache License, Version 2.0 (the "License");
5  ** you may not use this file except in compliance with the License.
6  ** You may obtain a copy of the License at
7  **
8  **     http://www.apache.org/licenses/LICENSE-2.0
9  **
10  ** Unless required by applicable law or agreed to in writing, software
11  ** distributed under the License is distributed on an "AS IS" BASIS,
12  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  ** See the License for the specific language governing permissions and
14  ** limitations under the License.
15  */
16 
17 /***********************************************************************
18 *       File: apisf_2s.c                                               *
19 *                                                                      *
20 *       Description: Coding/Decodeing of ISF parameters with predication
21 *       The ISF vector is quantized using two-stage VQ with split-by-2 *
22 *       in 1st stage and split-by-5(or 3) in the second stage          *
23 *                                                                      *
24 ************************************************************************/
25 
26 #include "typedef.h"
27 #include "basic_op.h"
28 #include "cnst.h"
29 #include "acelp.h"
30 #include "qpisf_2s.tab"                    /* Codebooks of isfs */
31 
32 #define MU         10923                   /* Prediction factor   (1.0/3.0) in Q15 */
33 #define N_SURV_MAX 4                       /* 4 survivors max */
34 #define ALPHA      29491                   /* 0. 9 in Q15     */
35 #define ONE_ALPHA (32768-ALPHA)            /* (1.0 - ALPHA) in Q15 */
36 
37 /* private functions */
38 static void VQ_stage1(
39         Word16 * x,                           /* input : ISF residual vector           */
40         Word16 * dico,                        /* input : quantization codebook         */
41         Word16 dim,                           /* input : dimention of vector           */
42         Word16 dico_size,                     /* input : size of quantization codebook */
43         Word16 * index,                       /* output: indices of survivors          */
44         Word16 surv                           /* input : number of survivor            */
45         );
46 
47 /**************************************************************************
48 * Function:   Qpisf_2s_46B()                                              *
49 *                                                                         *
50 * Description: Quantization of isf parameters with prediction. (46 bits)  *
51 *                                                                         *
52 * The isf vector is quantized using two-stage VQ with split-by-2 in       *
53 *  1st stage and split-by-5 in the second stage.                          *
54 ***************************************************************************/
55 
Qpisf_2s_46b(Word16 * isf1,Word16 * isf_q,Word16 * past_isfq,Word16 * indice,Word16 nb_surv)56 void Qpisf_2s_46b(
57         Word16 * isf1,                        /* (i) Q15 : ISF in the frequency domain (0..0.5) */
58         Word16 * isf_q,                       /* (o) Q15 : quantized ISF               (0..0.5) */
59         Word16 * past_isfq,                   /* (io)Q15 : past ISF quantizer                   */
60         Word16 * indice,                      /* (o)     : quantization indices                 */
61         Word16 nb_surv                        /* (i)     : number of survivor (1, 2, 3 or 4)    */
62         )
63 {
64     Word16 tmp_ind[5];
65     Word16 surv1[N_SURV_MAX];              /* indices of survivors from 1st stage */
66     Word32 i, k, temp, min_err, distance;
67     Word16 isf[ORDER];
68     Word16 isf_stage2[ORDER];
69 
70     for (i = 0; i < ORDER; i++)
71     {
72         isf[i] = vo_sub(isf1[i], mean_isf[i]);
73         isf[i] = vo_sub(isf[i], vo_mult(MU, past_isfq[i]));
74     }
75 
76     VQ_stage1(&isf[0], dico1_isf, 9, SIZE_BK1, surv1, nb_surv);
77 
78     distance = MAX_32;
79 
80     for (k = 0; k < nb_surv; k++)
81     {
82         for (i = 0; i < 9; i++)
83         {
84             isf_stage2[i] = vo_sub(isf[i], dico1_isf[i + surv1[k] * 9]);
85         }
86         tmp_ind[0] = Sub_VQ(&isf_stage2[0], dico21_isf, 3, SIZE_BK21, &min_err);
87         temp = min_err;
88         tmp_ind[1] = Sub_VQ(&isf_stage2[3], dico22_isf, 3, SIZE_BK22, &min_err);
89         temp = vo_L_add(temp, min_err);
90         tmp_ind[2] = Sub_VQ(&isf_stage2[6], dico23_isf, 3, SIZE_BK23, &min_err);
91         temp = vo_L_add(temp, min_err);
92 
93         if(temp < distance)
94         {
95             distance = temp;
96             indice[0] = surv1[k];
97             for (i = 0; i < 3; i++)
98             {
99                 indice[i + 2] = tmp_ind[i];
100             }
101         }
102     }
103 
104 
105     VQ_stage1(&isf[9], dico2_isf, 7, SIZE_BK2, surv1, nb_surv);
106 
107     distance = MAX_32;
108 
109     for (k = 0; k < nb_surv; k++)
110     {
111         for (i = 0; i < 7; i++)
112         {
113             isf_stage2[i] = vo_sub(isf[9 + i], dico2_isf[i + surv1[k] * 7]);
114         }
115 
116         tmp_ind[0] = Sub_VQ(&isf_stage2[0], dico24_isf, 3, SIZE_BK24, &min_err);
117         temp = min_err;
118         tmp_ind[1] = Sub_VQ(&isf_stage2[3], dico25_isf, 4, SIZE_BK25, &min_err);
119         temp = vo_L_add(temp, min_err);
120 
121         if(temp < distance)
122         {
123             distance = temp;
124             indice[1] = surv1[k];
125             for (i = 0; i < 2; i++)
126             {
127                 indice[i + 5] = tmp_ind[i];
128             }
129         }
130     }
131 
132     Dpisf_2s_46b(indice, isf_q, past_isfq, isf_q, isf_q, 0, 0);
133 
134     return;
135 }
136 
137 /*****************************************************************************
138 * Function:   Qpisf_2s_36B()                                                 *
139 *                                                                            *
140 * Description: Quantization of isf parameters with prediction. (36 bits)     *
141 *                                                                            *
142 * The isf vector is quantized using two-stage VQ with split-by-2 in          *
143 *  1st stage and split-by-3 in the second stage.                             *
144 ******************************************************************************/
145 
Qpisf_2s_36b(Word16 * isf1,Word16 * isf_q,Word16 * past_isfq,Word16 * indice,Word16 nb_surv)146 void Qpisf_2s_36b(
147         Word16 * isf1,                        /* (i) Q15 : ISF in the frequency domain (0..0.5) */
148         Word16 * isf_q,                       /* (o) Q15 : quantized ISF               (0..0.5) */
149         Word16 * past_isfq,                   /* (io)Q15 : past ISF quantizer                   */
150         Word16 * indice,                      /* (o)     : quantization indices                 */
151         Word16 nb_surv                        /* (i)     : number of survivor (1, 2, 3 or 4)    */
152         )
153 {
154     Word16 i, k, tmp_ind[5];
155     Word16 surv1[N_SURV_MAX];              /* indices of survivors from 1st stage */
156     Word32 temp, min_err, distance;
157     Word16 isf[ORDER];
158     Word16 isf_stage2[ORDER];
159 
160     for (i = 0; i < ORDER; i++)
161     {
162         isf[i] = vo_sub(isf1[i], mean_isf[i]);
163         isf[i] = vo_sub(isf[i], vo_mult(MU, past_isfq[i]));
164     }
165 
166     VQ_stage1(&isf[0], dico1_isf, 9, SIZE_BK1, surv1, nb_surv);
167 
168     distance = MAX_32;
169 
170     for (k = 0; k < nb_surv; k++)
171     {
172         for (i = 0; i < 9; i++)
173         {
174             isf_stage2[i] = vo_sub(isf[i], dico1_isf[i + surv1[k] * 9]);
175         }
176 
177         tmp_ind[0] = Sub_VQ(&isf_stage2[0], dico21_isf_36b, 5, SIZE_BK21_36b, &min_err);
178         temp = min_err;
179         tmp_ind[1] = Sub_VQ(&isf_stage2[5], dico22_isf_36b, 4, SIZE_BK22_36b, &min_err);
180         temp = vo_L_add(temp, min_err);
181 
182         if(temp < distance)
183         {
184             distance = temp;
185             indice[0] = surv1[k];
186             for (i = 0; i < 2; i++)
187             {
188                 indice[i + 2] = tmp_ind[i];
189             }
190         }
191     }
192 
193     VQ_stage1(&isf[9], dico2_isf, 7, SIZE_BK2, surv1, nb_surv);
194     distance = MAX_32;
195 
196     for (k = 0; k < nb_surv; k++)
197     {
198         for (i = 0; i < 7; i++)
199         {
200             isf_stage2[i] = vo_sub(isf[9 + i], dico2_isf[i + surv1[k] * 7]);
201         }
202 
203         tmp_ind[0] = Sub_VQ(&isf_stage2[0], dico23_isf_36b, 7, SIZE_BK23_36b, &min_err);
204         temp = min_err;
205 
206         if(temp < distance)
207         {
208             distance = temp;
209             indice[1] = surv1[k];
210             indice[4] = tmp_ind[0];
211         }
212     }
213 
214     Dpisf_2s_36b(indice, isf_q, past_isfq, isf_q, isf_q, 0, 0);
215 
216     return;
217 }
218 
219 /*********************************************************************
220 * Function: Dpisf_2s_46b()                                           *
221 *                                                                    *
222 * Description: Decoding of ISF parameters                            *
223 **********************************************************************/
224 
Dpisf_2s_46b(Word16 * indice,Word16 * isf_q,Word16 * past_isfq,Word16 * isfold,Word16 * isf_buf,Word16 bfi,Word16 enc_dec)225 void Dpisf_2s_46b(
226         Word16 * indice,                      /* input:  quantization indices                       */
227         Word16 * isf_q,                       /* output: quantized ISF in frequency domain (0..0.5) */
228         Word16 * past_isfq,                   /* i/0   : past ISF quantizer                    */
229         Word16 * isfold,                      /* input : past quantized ISF                    */
230         Word16 * isf_buf,                     /* input : isf buffer                                                        */
231         Word16 bfi,                           /* input : Bad frame indicator                   */
232         Word16 enc_dec
233         )
234 {
235     Word16 ref_isf[M], tmp;
236     Word32 i, j, L_tmp;
237 
238     if (bfi == 0)                          /* Good frame */
239     {
240         for (i = 0; i < 9; i++)
241         {
242             isf_q[i] = dico1_isf[indice[0] * 9 + i];
243         }
244         for (i = 0; i < 7; i++)
245         {
246             isf_q[i + 9] = dico2_isf[indice[1] * 7 + i];
247         }
248 
249         for (i = 0; i < 3; i++)
250         {
251             isf_q[i] = add1(isf_q[i], dico21_isf[indice[2] * 3 + i]);
252             isf_q[i + 3] = add1(isf_q[i + 3], dico22_isf[indice[3] * 3 + i]);
253             isf_q[i + 6] = add1(isf_q[i + 6], dico23_isf[indice[4] * 3 + i]);
254             isf_q[i + 9] = add1(isf_q[i + 9], dico24_isf[indice[5] * 3 + i]);
255         }
256 
257         for (i = 0; i < 4; i++)
258         {
259             isf_q[i + 12] = add1(isf_q[i + 12], dico25_isf[indice[6] * 4 + i]);
260         }
261 
262         for (i = 0; i < ORDER; i++)
263         {
264             tmp = isf_q[i];
265             isf_q[i] = add1(tmp, mean_isf[i]);
266             isf_q[i] = add1(isf_q[i], vo_mult(MU, past_isfq[i]));
267             past_isfq[i] = tmp;
268         }
269 
270         if (enc_dec)
271         {
272             for (i = 0; i < M; i++)
273             {
274                 for (j = (L_MEANBUF - 1); j > 0; j--)
275                 {
276                     isf_buf[j * M + i] = isf_buf[(j - 1) * M + i];
277                 }
278                 isf_buf[i] = isf_q[i];
279             }
280         }
281     } else
282     {                                      /* bad frame */
283         for (i = 0; i < M; i++)
284         {
285             L_tmp = mean_isf[i] << 14;
286             for (j = 0; j < L_MEANBUF; j++)
287             {
288                 L_tmp += (isf_buf[j * M + i] << 14);
289             }
290             ref_isf[i] = vo_round(L_tmp);
291         }
292 
293         /* use the past ISFs slightly shifted towards their mean */
294         for (i = 0; i < ORDER; i++)
295         {
296             isf_q[i] = add1(vo_mult(ALPHA, isfold[i]), vo_mult(ONE_ALPHA, ref_isf[i]));
297         }
298 
299         /* estimate past quantized residual to be used in next frame */
300         for (i = 0; i < ORDER; i++)
301         {
302             tmp = add1(ref_isf[i], vo_mult(past_isfq[i], MU));      /* predicted ISF */
303             past_isfq[i] = vo_sub(isf_q[i], tmp);
304             past_isfq[i] = (past_isfq[i] >> 1);        /* past_isfq[i] *= 0.5 */
305         }
306     }
307 
308     Reorder_isf(isf_q, ISF_GAP, ORDER);
309     return;
310 }
311 
312 /*********************************************************************
313 * Function:   Disf_2s_36b()                                          *
314 *                                                                    *
315 * Description: Decoding of ISF parameters                            *
316 *********************************************************************/
317 
Dpisf_2s_36b(Word16 * indice,Word16 * isf_q,Word16 * past_isfq,Word16 * isfold,Word16 * isf_buf,Word16 bfi,Word16 enc_dec)318 void Dpisf_2s_36b(
319         Word16 * indice,                      /* input:  quantization indices                       */
320         Word16 * isf_q,                       /* output: quantized ISF in frequency domain (0..0.5) */
321         Word16 * past_isfq,                   /* i/0   : past ISF quantizer                    */
322         Word16 * isfold,                      /* input : past quantized ISF                    */
323         Word16 * isf_buf,                     /* input : isf buffer                                                        */
324         Word16 bfi,                           /* input : Bad frame indicator                   */
325         Word16 enc_dec
326         )
327 {
328     Word16 ref_isf[M], tmp;
329     Word32 i, j, L_tmp;
330 
331     if (bfi == 0)                          /* Good frame */
332     {
333         for (i = 0; i < 9; i++)
334         {
335             isf_q[i] = dico1_isf[indice[0] * 9 + i];
336         }
337         for (i = 0; i < 7; i++)
338         {
339             isf_q[i + 9] = dico2_isf[indice[1] * 7 + i];
340         }
341 
342         for (i = 0; i < 5; i++)
343         {
344             isf_q[i] = add1(isf_q[i], dico21_isf_36b[indice[2] * 5 + i]);
345         }
346         for (i = 0; i < 4; i++)
347         {
348             isf_q[i + 5] = add1(isf_q[i + 5], dico22_isf_36b[indice[3] * 4 + i]);
349         }
350         for (i = 0; i < 7; i++)
351         {
352             isf_q[i + 9] = add1(isf_q[i + 9], dico23_isf_36b[indice[4] * 7 + i]);
353         }
354 
355         for (i = 0; i < ORDER; i++)
356         {
357             tmp = isf_q[i];
358             isf_q[i] = add1(tmp, mean_isf[i]);
359             isf_q[i] = add1(isf_q[i], vo_mult(MU, past_isfq[i]));
360             past_isfq[i] = tmp;
361         }
362 
363 
364         if (enc_dec)
365         {
366             for (i = 0; i < M; i++)
367             {
368                 for (j = (L_MEANBUF - 1); j > 0; j--)
369                 {
370                     isf_buf[j * M + i] = isf_buf[(j - 1) * M + i];
371                 }
372                 isf_buf[i] = isf_q[i];
373             }
374         }
375     } else
376     {                                      /* bad frame */
377         for (i = 0; i < M; i++)
378         {
379             L_tmp = (mean_isf[i] << 14);
380             for (j = 0; j < L_MEANBUF; j++)
381             {
382                 L_tmp += (isf_buf[j * M + i] << 14);
383             }
384             ref_isf[i] = vo_round(L_tmp);
385         }
386 
387         /* use the past ISFs slightly shifted towards their mean */
388         for (i = 0; i < ORDER; i++)
389         {
390             isf_q[i] = add1(vo_mult(ALPHA, isfold[i]), vo_mult(ONE_ALPHA, ref_isf[i]));
391         }
392 
393         /* estimate past quantized residual to be used in next frame */
394         for (i = 0; i < ORDER; i++)
395         {
396             tmp = add1(ref_isf[i], vo_mult(past_isfq[i], MU));      /* predicted ISF */
397             past_isfq[i] = vo_sub(isf_q[i], tmp);
398             past_isfq[i] = past_isfq[i] >> 1;         /* past_isfq[i] *= 0.5 */
399         }
400     }
401 
402     Reorder_isf(isf_q, ISF_GAP, ORDER);
403 
404     return;
405 }
406 
407 
408 /***************************************************************************
409 * Function:  Reorder_isf()                                                 *
410 *                                                                          *
411 * Description: To make sure that the  isfs are properly order and to       *
412 *              keep a certain minimum distance between consecutive isfs.   *
413 *--------------------------------------------------------------------------*
414 *    Argument         description                     in/out               *
415 *                                                                          *
416 *     isf[]           vector of isfs                    i/o                *
417 *     min_dist        minimum required distance         i                  *
418 *     n               LPC order                         i                  *
419 ****************************************************************************/
420 
Reorder_isf(Word16 * isf,Word16 min_dist,Word16 n)421 void Reorder_isf(
422         Word16 * isf,                         /* (i/o) Q15: ISF in the frequency domain (0..0.5) */
423         Word16 min_dist,                      /* (i) Q15  : minimum distance to keep             */
424         Word16 n                              /* (i)      : number of ISF                        */
425         )
426 {
427     Word32 i;
428     Word16 isf_min;
429 
430     isf_min = min_dist;
431     for (i = 0; i < n - 1; i++)
432     {
433         if(isf[i] < isf_min)
434         {
435             isf[i] = isf_min;
436         }
437         isf_min = (isf[i] + min_dist);
438     }
439     return;
440 }
441 
442 
Sub_VQ(Word16 * x,Word16 * dico,Word16 dim,Word16 dico_size,Word32 * distance)443 Word16 Sub_VQ(                             /* output: return quantization index     */
444         Word16 * x,                           /* input : ISF residual vector           */
445         Word16 * dico,                        /* input : quantization codebook         */
446         Word16 dim,                           /* input : dimention of vector           */
447         Word16 dico_size,                     /* input : size of quantization codebook */
448         Word32 * distance                     /* output: error of quantization         */
449          )
450 {
451     Word16 temp, *p_dico;
452     Word32 i, j, index;
453     Word32 dist_min, dist;
454 
455     dist_min = MAX_32;
456     p_dico = dico;
457 
458     index = 0;
459     for (i = 0; i < dico_size; i++)
460     {
461         dist = 0;
462 
463         for (j = 0; j < dim; j++)
464         {
465             temp = x[j] - (*p_dico++);
466             dist += (temp * temp)<<1;
467         }
468 
469         if(dist < dist_min)
470         {
471             dist_min = dist;
472             index = i;
473         }
474     }
475 
476     *distance = dist_min;
477 
478     /* Reading the selected vector */
479     p_dico = &dico[index * dim];
480     for (j = 0; j < dim; j++)
481     {
482         x[j] = *p_dico++;
483     }
484 
485     return index;
486 }
487 
488 
VQ_stage1(Word16 * x,Word16 * dico,Word16 dim,Word16 dico_size,Word16 * index,Word16 surv)489 static void VQ_stage1(
490         Word16 * x,                           /* input : ISF residual vector           */
491         Word16 * dico,                        /* input : quantization codebook         */
492         Word16 dim,                           /* input : dimention of vector           */
493         Word16 dico_size,                     /* input : size of quantization codebook */
494         Word16 * index,                       /* output: indices of survivors          */
495         Word16 surv                           /* input : number of survivor            */
496         )
497 {
498     Word16 temp, *p_dico;
499     Word32 i, j, k, l;
500     Word32 dist_min[N_SURV_MAX], dist;
501 
502     dist_min[0] = MAX_32;
503     dist_min[1] = MAX_32;
504     dist_min[2] = MAX_32;
505     dist_min[3] = MAX_32;
506     index[0] = 0;
507     index[1] = 1;
508     index[2] = 2;
509     index[3] = 3;
510 
511     p_dico = dico;
512 
513     for (i = 0; i < dico_size; i++)
514     {
515         dist = 0;
516         for (j = 0; j < dim; j++)
517         {
518             temp = x[j] -  (*p_dico++);
519             dist += (temp * temp)<<1;
520         }
521 
522         for (k = 0; k < surv; k++)
523         {
524             if(dist < dist_min[k])
525             {
526                 for (l = surv - 1; l > k; l--)
527                 {
528                     dist_min[l] = dist_min[l - 1];
529                     index[l] = index[l - 1];
530                 }
531                 dist_min[k] = dist;
532                 index[k] = i;
533                 break;
534             }
535         }
536     }
537     return;
538 }
539 
540 
541 
542 
543