1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_BASE_MUTEX_INL_H_
18 #define ART_RUNTIME_BASE_MUTEX_INL_H_
19 
20 #include <inttypes.h>
21 
22 #include "mutex.h"
23 
24 #include "base/utils.h"
25 #include "base/value_object.h"
26 #include "thread.h"
27 
28 #if ART_USE_FUTEXES
29 #include <linux/futex.h>
30 #include <sys/syscall.h>
31 #endif  // ART_USE_FUTEXES
32 
33 #define CHECK_MUTEX_CALL(call, args) CHECK_PTHREAD_CALL(call, args, name_)
34 
35 namespace art HIDDEN {
36 
37 #if ART_USE_FUTEXES
futex(volatile int * uaddr,int op,int val,const struct timespec * timeout,volatile int * uaddr2,int val3)38 static inline int futex(volatile int *uaddr, int op, int val, const struct timespec *timeout,
39                         volatile int *uaddr2, int val3) {
40   return syscall(SYS_futex, uaddr, op, val, timeout, uaddr2, val3);
41 }
42 #endif  // ART_USE_FUTEXES
43 
44 // The following isn't strictly necessary, but we want updates on Atomic<pid_t> to be lock-free.
45 // TODO: Use std::atomic::is_always_lock_free after switching to C++17 atomics.
46 static_assert(sizeof(pid_t) <= sizeof(int32_t), "pid_t should fit in 32 bits");
47 
SafeGetTid(const Thread * self)48 static inline pid_t SafeGetTid(const Thread* self) {
49   if (self != nullptr) {
50     return self->GetTid();
51   } else {
52     return GetTid();
53   }
54 }
55 
CheckUnattachedThread(LockLevel level)56 static inline void CheckUnattachedThread(LockLevel level) NO_THREAD_SAFETY_ANALYSIS {
57   // The check below enumerates the cases where we expect not to be able to check the validity of
58   // locks on a thread. Lock checking is disabled to avoid deadlock when checking shutdown lock.
59   // TODO: tighten this check.
60   CHECK(!Locks::IsSafeToCallAbortRacy() ||
61         // Used during thread creation to avoid races with runtime shutdown. Thread::Current not
62         // yet established.
63         level == kRuntimeShutdownLock ||
64         // Thread Ids are allocated/released before threads are established.
65         level == kAllocatedThreadIdsLock ||
66         // Thread LDT's are initialized without Thread::Current established.
67         level == kModifyLdtLock ||
68         // Threads are unregistered while holding the thread list lock, during this process they
69         // no longer exist and so we expect an unlock with no self.
70         level == kThreadListLock ||
71         // Ignore logging which may or may not have set up thread data structures.
72         level == kLoggingLock ||
73         // When transitioning from suspended to runnable, a daemon thread might be in
74         // a situation where the runtime is shutting down. To not crash our debug locking
75         // mechanism we just pass null Thread* to the MutexLock during that transition
76         // (see Thread::TransitionFromSuspendedToRunnable).
77         level == kThreadSuspendCountLock ||
78         // Avoid recursive death.
79         level == kAbortLock ||
80         // Locks at the absolute top of the stack can be locked at any time.
81         level == kTopLockLevel ||
82         // The unexpected signal handler may be catching signals from any thread.
83         level == kUnexpectedSignalLock)
84       << level;
85 }
86 
RegisterAsLocked(Thread * self,bool check)87 inline void BaseMutex::RegisterAsLocked(Thread* self, bool check) {
88   if (UNLIKELY(self == nullptr)) {
89     if (check) {
90       CheckUnattachedThread(level_);
91     }
92   } else {
93     RegisterAsLockedImpl(self, level_, check);
94   }
95 }
96 
RegisterAsLockedImpl(Thread * self,LockLevel level,bool check)97 inline void BaseMutex::RegisterAsLockedImpl(Thread* self, LockLevel level, bool check) {
98   DCHECK(self != nullptr);
99   DCHECK_EQ(level_, level);
100   // It would be nice to avoid this condition checking in the non-debug case,
101   // but that would make the various methods that check if a mutex is held not
102   // work properly for thread wait locks. Since the vast majority of lock
103   // acquisitions are not thread wait locks, this check should not be too
104   // expensive.
105   if (UNLIKELY(level == kThreadWaitLock) && self->GetHeldMutex(kThreadWaitLock) != nullptr) {
106     level = kThreadWaitWakeLock;
107   }
108   if (check) {
109     // Check if a bad Mutex of this level or lower is held.
110     bool bad_mutexes_held = false;
111     // Specifically allow a kTopLockLevel lock to be gained when the current thread holds the
112     // mutator_lock_ exclusive. This is because we suspending when holding locks at this level is
113     // not allowed and if we hold the mutator_lock_ exclusive we must unsuspend stuff eventually
114     // so there are no deadlocks.
115     if (level == kTopLockLevel &&
116         Locks::mutator_lock_->IsSharedHeld(self) &&
117         !Locks::mutator_lock_->IsExclusiveHeld(self)) {
118       LOG(ERROR) << "Lock level violation: holding \"" << Locks::mutator_lock_->name_ << "\" "
119                   << "(level " << kMutatorLock << " - " << static_cast<int>(kMutatorLock)
120                   << ") non-exclusive while locking \"" << name_ << "\" "
121                   << "(level " << level << " - " << static_cast<int>(level) << ") a top level"
122                   << "mutex. This is not allowed.";
123       bad_mutexes_held = true;
124     } else if (this == Locks::mutator_lock_ && self->GetHeldMutex(kTopLockLevel) != nullptr) {
125       LOG(ERROR) << "Lock level violation. Locking mutator_lock_ while already having a "
126                  << "kTopLevelLock (" << self->GetHeldMutex(kTopLockLevel)->name_ << "held is "
127                  << "not allowed.";
128       bad_mutexes_held = true;
129     }
130     for (int i = level; i >= 0; --i) {
131       LockLevel lock_level_i = static_cast<LockLevel>(i);
132       BaseMutex* held_mutex = self->GetHeldMutex(lock_level_i);
133       if (level == kTopLockLevel &&
134           lock_level_i == kMutatorLock &&
135           Locks::mutator_lock_->IsExclusiveHeld(self)) {
136         // This is checked above.
137         continue;
138       } else if (UNLIKELY(held_mutex != nullptr) && lock_level_i != kAbortLock) {
139         LOG(ERROR) << "Lock level violation: holding \"" << held_mutex->name_ << "\" "
140                    << "(level " << lock_level_i << " - " << i
141                    << ") while locking \"" << name_ << "\" "
142                    << "(level " << level << " - " << static_cast<int>(level) << ")";
143         if (lock_level_i > kAbortLock) {
144           // Only abort in the check below if this is more than abort level lock.
145           bad_mutexes_held = true;
146         }
147       }
148     }
149     if (gAborting == 0) {  // Avoid recursive aborts.
150       CHECK(!bad_mutexes_held);
151     }
152   }
153   // Don't record monitors as they are outside the scope of analysis. They may be inspected off of
154   // the monitor list.
155   if (level != kMonitorLock) {
156     self->SetHeldMutex(level, this);
157   }
158 }
159 
RegisterAsUnlocked(Thread * self)160 inline void BaseMutex::RegisterAsUnlocked(Thread* self) {
161   if (UNLIKELY(self == nullptr)) {
162     if (kDebugLocking) {
163       CheckUnattachedThread(level_);
164     }
165   } else {
166     RegisterAsUnlockedImpl(self, level_);
167   }
168 }
169 
RegisterAsUnlockedImpl(Thread * self,LockLevel level)170 inline void BaseMutex::RegisterAsUnlockedImpl(Thread* self, LockLevel level) {
171   DCHECK(self != nullptr);
172   DCHECK_EQ(level_, level);
173   if (level != kMonitorLock) {
174     if (UNLIKELY(level == kThreadWaitLock) && self->GetHeldMutex(kThreadWaitWakeLock) == this) {
175       level = kThreadWaitWakeLock;
176     }
177     if (kDebugLocking && gAborting == 0) {  // Avoid recursive aborts.
178       if (level == kThreadWaitWakeLock) {
179         CHECK(self->GetHeldMutex(kThreadWaitLock) != nullptr) << "Held " << kThreadWaitWakeLock << " without " << kThreadWaitLock;;
180       }
181       CHECK(self->GetHeldMutex(level) == this) << "Unlocking on unacquired mutex: " << name_;
182     }
183     self->SetHeldMutex(level, nullptr);
184   }
185 }
186 
SharedLock(Thread * self)187 inline void ReaderWriterMutex::SharedLock(Thread* self) {
188   DCHECK(self == nullptr || self == Thread::Current());
189 #if ART_USE_FUTEXES
190   bool done = false;
191   do {
192     int32_t cur_state = state_.load(std::memory_order_relaxed);
193     if (LIKELY(cur_state >= 0)) {
194       // Add as an extra reader.
195       done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1);
196     } else {
197       HandleSharedLockContention(self, cur_state);
198     }
199   } while (!done);
200 #else
201   CHECK_MUTEX_CALL(pthread_rwlock_rdlock, (&rwlock_));
202 #endif
203   DCHECK(GetExclusiveOwnerTid() == 0 || GetExclusiveOwnerTid() == -1);
204   RegisterAsLocked(self);
205   AssertSharedHeld(self);
206 }
207 
SharedUnlock(Thread * self)208 inline void ReaderWriterMutex::SharedUnlock(Thread* self) {
209   DCHECK(self == nullptr || self == Thread::Current());
210   DCHECK(GetExclusiveOwnerTid() == 0 || GetExclusiveOwnerTid() == -1);
211   AssertSharedHeld(self);
212   RegisterAsUnlocked(self);
213 #if ART_USE_FUTEXES
214   bool done = false;
215   do {
216     int32_t cur_state = state_.load(std::memory_order_relaxed);
217     if (LIKELY(cur_state > 0)) {
218       // Reduce state by 1 and impose lock release load/store ordering.
219       // Note, the num_contenders_ load below musn't reorder before the CompareAndSet.
220       done = state_.CompareAndSetWeakSequentiallyConsistent(cur_state, cur_state - 1);
221       if (done && (cur_state - 1) == 0) {  // Weak CAS may fail spuriously.
222         if (num_contenders_.load(std::memory_order_seq_cst) > 0) {
223           // Wake any exclusive waiters as there are now no readers.
224           futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
225         }
226       }
227     } else {
228       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
229     }
230   } while (!done);
231 #else
232   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
233 #endif
234 }
235 
IsExclusiveHeld(const Thread * self)236 inline bool Mutex::IsExclusiveHeld(const Thread* self) const {
237   DCHECK(self == nullptr || self == Thread::Current());
238   bool result = (GetExclusiveOwnerTid() == SafeGetTid(self));
239   if (kDebugLocking) {
240     // Debug check that if we think it is locked we have it in our held mutexes.
241     if (result && self != nullptr && level_ != kMonitorLock && !gAborting) {
242       if (level_ == kThreadWaitLock && self->GetHeldMutex(kThreadWaitLock) != this) {
243         CHECK_EQ(self->GetHeldMutex(kThreadWaitWakeLock), this);
244       } else {
245         CHECK_EQ(self->GetHeldMutex(level_), this);
246       }
247     }
248   }
249   return result;
250 }
251 
GetExclusiveOwnerTid()252 inline pid_t Mutex::GetExclusiveOwnerTid() const {
253   return exclusive_owner_.load(std::memory_order_relaxed);
254 }
255 
AssertExclusiveHeld(const Thread * self)256 inline void Mutex::AssertExclusiveHeld(const Thread* self) const {
257   if (kDebugLocking && (gAborting == 0)) {
258     CHECK(IsExclusiveHeld(self)) << *this;
259   }
260 }
261 
AssertHeld(const Thread * self)262 inline void Mutex::AssertHeld(const Thread* self) const {
263   AssertExclusiveHeld(self);
264 }
265 
IsExclusiveHeld(const Thread * self)266 inline bool ReaderWriterMutex::IsExclusiveHeld(const Thread* self) const {
267   DCHECK(self == nullptr || self == Thread::Current());
268   bool result = (GetExclusiveOwnerTid() == SafeGetTid(self));
269   if (kDebugLocking) {
270     // Verify that if the pthread thinks we own the lock the Thread agrees.
271     if (self != nullptr && result)  {
272       CHECK_EQ(self->GetHeldMutex(level_), this);
273     }
274   }
275   return result;
276 }
277 
GetExclusiveOwnerTid()278 inline pid_t ReaderWriterMutex::GetExclusiveOwnerTid() const {
279 #if ART_USE_FUTEXES
280   int32_t state = state_.load(std::memory_order_relaxed);
281   if (state == 0) {
282     return 0;  // No owner.
283   } else if (state > 0) {
284     return -1;  // Shared.
285   } else {
286     return exclusive_owner_.load(std::memory_order_relaxed);
287   }
288 #else
289   return exclusive_owner_.load(std::memory_order_relaxed);
290 #endif
291 }
292 
AssertExclusiveHeld(const Thread * self)293 inline void ReaderWriterMutex::AssertExclusiveHeld(const Thread* self) const {
294   if (kDebugLocking && (gAborting == 0)) {
295     CHECK(IsExclusiveHeld(self)) << *this;
296   }
297 }
298 
AssertWriterHeld(const Thread * self)299 inline void ReaderWriterMutex::AssertWriterHeld(const Thread* self) const {
300   AssertExclusiveHeld(self);
301 }
302 
TransitionFromRunnableToSuspended(Thread * self)303 inline void MutatorMutex::TransitionFromRunnableToSuspended(Thread* self) {
304   AssertSharedHeld(self);
305   RegisterAsUnlockedImpl(self, kMutatorLock);
306 }
307 
TransitionFromSuspendedToRunnable(Thread * self)308 inline void MutatorMutex::TransitionFromSuspendedToRunnable(Thread* self) {
309   RegisterAsLockedImpl(self, kMutatorLock, kDebugLocking);
310   AssertSharedHeld(self);
311 }
312 
ReaderMutexLock(Thread * self,ReaderWriterMutex & mu)313 inline ReaderMutexLock::ReaderMutexLock(Thread* self, ReaderWriterMutex& mu)
314     : self_(self), mu_(mu) {
315   mu_.SharedLock(self_);
316 }
317 
~ReaderMutexLock()318 inline ReaderMutexLock::~ReaderMutexLock() {
319   mu_.SharedUnlock(self_);
320 }
321 
322 }  // namespace art
323 
324 #endif  // ART_RUNTIME_BASE_MUTEX_INL_H_
325