1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reference_type_propagation.h"
18
19 #include "art_field-inl.h"
20 #include "art_method-inl.h"
21 #include "base/arena_allocator.h"
22 #include "base/pointer_size.h"
23 #include "base/scoped_arena_allocator.h"
24 #include "base/scoped_arena_containers.h"
25 #include "class_linker-inl.h"
26 #include "class_root-inl.h"
27 #include "handle_scope-inl.h"
28 #include "mirror/class-inl.h"
29 #include "mirror/dex_cache.h"
30 #include "scoped_thread_state_change-inl.h"
31
32 namespace art HIDDEN {
33
FindDexCacheWithHint(Thread * self,const DexFile & dex_file,Handle<mirror::DexCache> hint_dex_cache)34 static inline ObjPtr<mirror::DexCache> FindDexCacheWithHint(
35 Thread* self, const DexFile& dex_file, Handle<mirror::DexCache> hint_dex_cache)
36 REQUIRES_SHARED(Locks::mutator_lock_) {
37 if (LIKELY(hint_dex_cache->GetDexFile() == &dex_file)) {
38 return hint_dex_cache.Get();
39 } else {
40 return Runtime::Current()->GetClassLinker()->FindDexCache(self, dex_file);
41 }
42 }
43
44 class ReferenceTypePropagation::RTPVisitor final : public HGraphDelegateVisitor {
45 public:
RTPVisitor(HGraph * graph,Handle<mirror::DexCache> hint_dex_cache,bool is_first_run)46 RTPVisitor(HGraph* graph, Handle<mirror::DexCache> hint_dex_cache, bool is_first_run)
47 : HGraphDelegateVisitor(graph),
48 hint_dex_cache_(hint_dex_cache),
49 allocator_(graph->GetArenaStack()),
50 worklist_(allocator_.Adapter(kArenaAllocReferenceTypePropagation)),
51 is_first_run_(is_first_run) {
52 worklist_.reserve(kDefaultWorklistSize);
53 }
54
55 void VisitDeoptimize(HDeoptimize* deopt) override;
56 void VisitNewInstance(HNewInstance* new_instance) override;
57 void VisitLoadClass(HLoadClass* load_class) override;
58 void VisitInstanceOf(HInstanceOf* load_class) override;
59 void VisitClinitCheck(HClinitCheck* clinit_check) override;
60 void VisitLoadMethodHandle(HLoadMethodHandle* instr) override;
61 void VisitLoadMethodType(HLoadMethodType* instr) override;
62 void VisitLoadString(HLoadString* instr) override;
63 void VisitLoadException(HLoadException* instr) override;
64 void VisitNewArray(HNewArray* instr) override;
65 void VisitParameterValue(HParameterValue* instr) override;
66 void VisitInstanceFieldGet(HInstanceFieldGet* instr) override;
67 void VisitStaticFieldGet(HStaticFieldGet* instr) override;
68 void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instr) override;
69 void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instr) override;
70 void VisitInvoke(HInvoke* instr) override;
71 void VisitArrayGet(HArrayGet* instr) override;
72 void VisitCheckCast(HCheckCast* instr) override;
73 void VisitBoundType(HBoundType* instr) override;
74 void VisitNullCheck(HNullCheck* instr) override;
75 void VisitPhi(HPhi* phi) override;
76
77 void VisitBasicBlock(HBasicBlock* block) override;
78 void ProcessWorklist();
79
80 private:
81 void UpdateFieldAccessTypeInfo(HInstruction* instr, const FieldInfo& info);
82 void SetClassAsTypeInfo(HInstruction* instr, ObjPtr<mirror::Class> klass, bool is_exact)
83 REQUIRES_SHARED(Locks::mutator_lock_);
84 void BoundTypeForIfNotNull(HBasicBlock* block);
85 static void BoundTypeForIfInstanceOf(HBasicBlock* block);
86 static bool UpdateNullability(HInstruction* instr);
87 static void UpdateBoundType(HBoundType* bound_type) REQUIRES_SHARED(Locks::mutator_lock_);
88 void UpdateArrayGet(HArrayGet* instr) REQUIRES_SHARED(Locks::mutator_lock_);
89 void UpdatePhi(HPhi* phi) REQUIRES_SHARED(Locks::mutator_lock_);
90 bool UpdateReferenceTypeInfo(HInstruction* instr);
91 void UpdateReferenceTypeInfo(HInstruction* instr,
92 dex::TypeIndex type_idx,
93 const DexFile& dex_file,
94 bool is_exact);
95
96 // Returns true if this is an instruction we might need to recursively update.
97 // The types are (live) Phi, BoundType, ArrayGet, and NullCheck
98 static constexpr bool IsUpdateable(const HInstruction* instr);
99 void AddToWorklist(HInstruction* instruction);
100 void AddDependentInstructionsToWorklist(HInstruction* instruction);
101
GetHandleCache()102 HandleCache* GetHandleCache() {
103 return GetGraph()->GetHandleCache();
104 }
105
106 static constexpr size_t kDefaultWorklistSize = 8;
107
108 Handle<mirror::DexCache> hint_dex_cache_;
109
110 // Use local allocator for allocating memory.
111 ScopedArenaAllocator allocator_;
112 ScopedArenaVector<HInstruction*> worklist_;
113 const bool is_first_run_;
114
115 friend class ReferenceTypePropagation;
116 };
117
ReferenceTypePropagation(HGraph * graph,Handle<mirror::DexCache> hint_dex_cache,bool is_first_run,const char * name)118 ReferenceTypePropagation::ReferenceTypePropagation(HGraph* graph,
119 Handle<mirror::DexCache> hint_dex_cache,
120 bool is_first_run,
121 const char* name)
122 : HOptimization(graph, name), hint_dex_cache_(hint_dex_cache), is_first_run_(is_first_run) {}
123
Visit(HInstruction * instruction)124 void ReferenceTypePropagation::Visit(HInstruction* instruction) {
125 RTPVisitor visitor(graph_, hint_dex_cache_, is_first_run_);
126 instruction->Accept(&visitor);
127 }
128
Visit(ArrayRef<HInstruction * const> instructions)129 void ReferenceTypePropagation::Visit(ArrayRef<HInstruction* const> instructions) {
130 RTPVisitor visitor(graph_, hint_dex_cache_, is_first_run_);
131 for (HInstruction* instruction : instructions) {
132 if (instruction->IsPhi()) {
133 // Need to force phis to recalculate null-ness.
134 instruction->AsPhi()->SetCanBeNull(false);
135 }
136 }
137 for (HInstruction* instruction : instructions) {
138 instruction->Accept(&visitor);
139 // We don't know if the instruction list is ordered in the same way normal
140 // visiting would be so we need to process every instruction manually.
141 if (RTPVisitor::IsUpdateable(instruction)) {
142 visitor.AddToWorklist(instruction);
143 }
144 }
145 visitor.ProcessWorklist();
146 }
147
148 // Check if we should create a bound type for the given object at the specified
149 // position. Because of inlining and the fact we run RTP more than once and we
150 // might have a HBoundType already. If we do, we should not create a new one.
151 // In this case we also assert that there are no other uses of the object (except
152 // the bound type) dominated by the specified dominator_instr or dominator_block.
ShouldCreateBoundType(HInstruction * position,HInstruction * obj,ReferenceTypeInfo upper_bound,HInstruction * dominator_instr,HBasicBlock * dominator_block)153 static bool ShouldCreateBoundType(HInstruction* position,
154 HInstruction* obj,
155 ReferenceTypeInfo upper_bound,
156 HInstruction* dominator_instr,
157 HBasicBlock* dominator_block)
158 REQUIRES_SHARED(Locks::mutator_lock_) {
159 // If the position where we should insert the bound type is not already a
160 // a bound type then we need to create one.
161 if (position == nullptr || !position->IsBoundType()) {
162 return true;
163 }
164
165 HBoundType* existing_bound_type = position->AsBoundType();
166 if (existing_bound_type->GetUpperBound().IsSupertypeOf(upper_bound)) {
167 if (kIsDebugBuild) {
168 // Check that the existing HBoundType dominates all the uses.
169 for (const HUseListNode<HInstruction*>& use : obj->GetUses()) {
170 HInstruction* user = use.GetUser();
171 if (dominator_instr != nullptr) {
172 DCHECK(!dominator_instr->StrictlyDominates(user)
173 || user == existing_bound_type
174 || existing_bound_type->StrictlyDominates(user));
175 } else if (dominator_block != nullptr) {
176 DCHECK(!dominator_block->Dominates(user->GetBlock())
177 || user == existing_bound_type
178 || existing_bound_type->StrictlyDominates(user));
179 }
180 }
181 }
182 } else {
183 // TODO: if the current bound type is a refinement we could update the
184 // existing_bound_type with the a new upper limit. However, we also need to
185 // update its users and have access to the work list.
186 }
187 return false;
188 }
189
190 // Helper method to bound the type of `receiver` for all instructions dominated
191 // by `start_block`, or `start_instruction` if `start_block` is null. The new
192 // bound type will have its upper bound be `class_rti`.
BoundTypeIn(HInstruction * receiver,HBasicBlock * start_block,HInstruction * start_instruction,const ReferenceTypeInfo & class_rti)193 static void BoundTypeIn(HInstruction* receiver,
194 HBasicBlock* start_block,
195 HInstruction* start_instruction,
196 const ReferenceTypeInfo& class_rti) {
197 // We only need to bound the type if we have uses in the relevant block.
198 // So start with null and create the HBoundType lazily, only if it's needed.
199 HBoundType* bound_type = nullptr;
200 DCHECK(!receiver->IsLoadClass()) << "We should not replace HLoadClass instructions";
201 const HUseList<HInstruction*>& uses = receiver->GetUses();
202 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
203 HInstruction* user = it->GetUser();
204 size_t index = it->GetIndex();
205 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
206 ++it;
207 bool dominates = (start_instruction != nullptr)
208 ? start_instruction->StrictlyDominates(user)
209 : start_block->Dominates(user->GetBlock());
210 if (!dominates) {
211 continue;
212 }
213 if (bound_type == nullptr) {
214 ScopedObjectAccess soa(Thread::Current());
215 HInstruction* insert_point = (start_instruction != nullptr)
216 ? start_instruction->GetNext()
217 : start_block->GetFirstInstruction();
218 if (ShouldCreateBoundType(
219 insert_point, receiver, class_rti, start_instruction, start_block)) {
220 bound_type = new (receiver->GetBlock()->GetGraph()->GetAllocator()) HBoundType(receiver);
221 bound_type->SetUpperBound(class_rti, /* can_be_null= */ false);
222 start_block->InsertInstructionBefore(bound_type, insert_point);
223 // To comply with the RTP algorithm, don't type the bound type just yet, it will
224 // be handled in RTPVisitor::VisitBoundType.
225 } else {
226 // We already have a bound type on the position we would need to insert
227 // the new one. The existing bound type should dominate all the users
228 // (dchecked) so there's no need to continue.
229 break;
230 }
231 }
232 user->ReplaceInput(bound_type, index);
233 }
234 // If the receiver is a null check, also bound the type of the actual
235 // receiver.
236 if (receiver->IsNullCheck()) {
237 BoundTypeIn(receiver->InputAt(0), start_block, start_instruction, class_rti);
238 }
239 }
240
241 // Recognize the patterns:
242 // if (obj.shadow$_klass_ == Foo.class) ...
243 // deoptimize if (obj.shadow$_klass_ == Foo.class)
BoundTypeForClassCheck(HInstruction * check)244 static void BoundTypeForClassCheck(HInstruction* check) {
245 if (!check->IsIf() && !check->IsDeoptimize()) {
246 return;
247 }
248 HInstruction* compare = check->InputAt(0);
249 if (!compare->IsEqual() && !compare->IsNotEqual()) {
250 return;
251 }
252 HInstruction* input_one = compare->InputAt(0);
253 HInstruction* input_two = compare->InputAt(1);
254 HLoadClass* load_class = input_one->IsLoadClass()
255 ? input_one->AsLoadClass()
256 : input_two->AsLoadClassOrNull();
257 if (load_class == nullptr) {
258 return;
259 }
260
261 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
262 if (!class_rti.IsValid()) {
263 // We have loaded an unresolved class. Don't bother bounding the type.
264 return;
265 }
266
267 HInstruction* field_get = (load_class == input_one) ? input_two : input_one;
268 if (!field_get->IsInstanceFieldGet()) {
269 return;
270 }
271 HInstruction* receiver = field_get->InputAt(0);
272 ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
273 if (receiver_type.IsExact()) {
274 // If we already know the receiver type, don't bother updating its users.
275 return;
276 }
277
278 {
279 ScopedObjectAccess soa(Thread::Current());
280 ArtField* field = GetClassRoot<mirror::Object>()->GetInstanceField(0);
281 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
282 if (field_get->GetFieldInfo().GetField() != field) {
283 return;
284 }
285 }
286
287 if (check->IsIf()) {
288 HBasicBlock* trueBlock = compare->IsEqual()
289 ? check->AsIf()->IfTrueSuccessor()
290 : check->AsIf()->IfFalseSuccessor();
291 BoundTypeIn(receiver, trueBlock, /* start_instruction= */ nullptr, class_rti);
292 } else {
293 DCHECK(check->IsDeoptimize());
294 if (compare->IsEqual() && check->AsDeoptimize()->GuardsAnInput()) {
295 check->SetReferenceTypeInfo(class_rti);
296 }
297 }
298 }
299
Run()300 bool ReferenceTypePropagation::Run() {
301 DCHECK(Thread::Current() != nullptr)
302 << "ReferenceTypePropagation requires the use of Thread::Current(). Make sure you have a "
303 << "Runtime initialized before calling this optimization pass";
304 RTPVisitor visitor(graph_, hint_dex_cache_, is_first_run_);
305
306 // To properly propagate type info we need to visit in the dominator-based order.
307 // Reverse post order guarantees a node's dominators are visited first.
308 // We take advantage of this order in `VisitBasicBlock`.
309 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
310 visitor.VisitBasicBlock(block);
311 }
312
313 visitor.ProcessWorklist();
314 return true;
315 }
316
VisitBasicBlock(HBasicBlock * block)317 void ReferenceTypePropagation::RTPVisitor::VisitBasicBlock(HBasicBlock* block) {
318 // Handle Phis first as there might be instructions in the same block who depend on them.
319 VisitPhis(block);
320
321 // Handle instructions. Since RTP may add HBoundType instructions just after the
322 // last visited instruction, use `HInstructionIteratorHandleChanges` iterator.
323 VisitNonPhiInstructions(block);
324
325 // Add extra nodes to bound types.
326 BoundTypeForIfNotNull(block);
327 BoundTypeForIfInstanceOf(block);
328 BoundTypeForClassCheck(block->GetLastInstruction());
329 }
330
BoundTypeForIfNotNull(HBasicBlock * block)331 void ReferenceTypePropagation::RTPVisitor::BoundTypeForIfNotNull(HBasicBlock* block) {
332 HIf* ifInstruction = block->GetLastInstruction()->AsIfOrNull();
333 if (ifInstruction == nullptr) {
334 return;
335 }
336 HInstruction* ifInput = ifInstruction->InputAt(0);
337 if (!ifInput->IsNotEqual() && !ifInput->IsEqual()) {
338 return;
339 }
340 HInstruction* input0 = ifInput->InputAt(0);
341 HInstruction* input1 = ifInput->InputAt(1);
342 HInstruction* obj = nullptr;
343
344 if (input1->IsNullConstant()) {
345 obj = input0;
346 } else if (input0->IsNullConstant()) {
347 obj = input1;
348 } else {
349 return;
350 }
351
352 if (!obj->CanBeNull() || obj->IsNullConstant()) {
353 // Null check is dead code and will be removed by DCE.
354 return;
355 }
356 DCHECK(!obj->IsLoadClass()) << "We should not replace HLoadClass instructions";
357
358 // We only need to bound the type if we have uses in the relevant block.
359 // So start with null and create the HBoundType lazily, only if it's needed.
360 HBasicBlock* notNullBlock = ifInput->IsNotEqual()
361 ? ifInstruction->IfTrueSuccessor()
362 : ifInstruction->IfFalseSuccessor();
363
364 ReferenceTypeInfo object_rti =
365 ReferenceTypeInfo::Create(GetHandleCache()->GetObjectClassHandle(), /* is_exact= */ false);
366
367 BoundTypeIn(obj, notNullBlock, /* start_instruction= */ nullptr, object_rti);
368 }
369
370 // Returns true if one of the patterns below has been recognized. If so, the
371 // InstanceOf instruction together with the true branch of `ifInstruction` will
372 // be returned using the out parameters.
373 // Recognized patterns:
374 // (1) patterns equivalent to `if (obj instanceof X)`
375 // (a) InstanceOf -> Equal to 1 -> If
376 // (b) InstanceOf -> NotEqual to 0 -> If
377 // (c) InstanceOf -> If
378 // (2) patterns equivalent to `if (!(obj instanceof X))`
379 // (a) InstanceOf -> Equal to 0 -> If
380 // (b) InstanceOf -> NotEqual to 1 -> If
381 // (c) InstanceOf -> BooleanNot -> If
MatchIfInstanceOf(HIf * ifInstruction,HInstanceOf ** instanceOf,HBasicBlock ** trueBranch)382 static bool MatchIfInstanceOf(HIf* ifInstruction,
383 /* out */ HInstanceOf** instanceOf,
384 /* out */ HBasicBlock** trueBranch) {
385 HInstruction* input = ifInstruction->InputAt(0);
386
387 if (input->IsEqual()) {
388 HInstruction* rhs = input->AsEqual()->GetConstantRight();
389 if (rhs != nullptr) {
390 HInstruction* lhs = input->AsEqual()->GetLeastConstantLeft();
391 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
392 if (rhs->AsIntConstant()->IsTrue()) {
393 // Case (1a)
394 *trueBranch = ifInstruction->IfTrueSuccessor();
395 } else if (rhs->AsIntConstant()->IsFalse()) {
396 // Case (2a)
397 *trueBranch = ifInstruction->IfFalseSuccessor();
398 } else {
399 // Sometimes we see a comparison of instance-of with a constant which is neither 0 nor 1.
400 // In those cases, we cannot do the match if+instance-of.
401 return false;
402 }
403 *instanceOf = lhs->AsInstanceOf();
404 return true;
405 }
406 }
407 } else if (input->IsNotEqual()) {
408 HInstruction* rhs = input->AsNotEqual()->GetConstantRight();
409 if (rhs != nullptr) {
410 HInstruction* lhs = input->AsNotEqual()->GetLeastConstantLeft();
411 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
412 if (rhs->AsIntConstant()->IsFalse()) {
413 // Case (1b)
414 *trueBranch = ifInstruction->IfTrueSuccessor();
415 } else if (rhs->AsIntConstant()->IsTrue()) {
416 // Case (2b)
417 *trueBranch = ifInstruction->IfFalseSuccessor();
418 } else {
419 // Sometimes we see a comparison of instance-of with a constant which is neither 0 nor 1.
420 // In those cases, we cannot do the match if+instance-of.
421 return false;
422 }
423 *instanceOf = lhs->AsInstanceOf();
424 return true;
425 }
426 }
427 } else if (input->IsInstanceOf()) {
428 // Case (1c)
429 *instanceOf = input->AsInstanceOf();
430 *trueBranch = ifInstruction->IfTrueSuccessor();
431 return true;
432 } else if (input->IsBooleanNot()) {
433 HInstruction* not_input = input->InputAt(0);
434 if (not_input->IsInstanceOf()) {
435 // Case (2c)
436 *instanceOf = not_input->AsInstanceOf();
437 *trueBranch = ifInstruction->IfFalseSuccessor();
438 return true;
439 }
440 }
441
442 return false;
443 }
444
445 // Detects if `block` is the True block for the pattern
446 // `if (x instanceof ClassX) { }`
447 // If that's the case insert an HBoundType instruction to bound the type of `x`
448 // to `ClassX` in the scope of the dominated blocks.
BoundTypeForIfInstanceOf(HBasicBlock * block)449 void ReferenceTypePropagation::RTPVisitor::BoundTypeForIfInstanceOf(HBasicBlock* block) {
450 HIf* ifInstruction = block->GetLastInstruction()->AsIfOrNull();
451 if (ifInstruction == nullptr) {
452 return;
453 }
454
455 // Try to recognize common `if (instanceof)` and `if (!instanceof)` patterns.
456 HInstanceOf* instanceOf = nullptr;
457 HBasicBlock* instanceOfTrueBlock = nullptr;
458 if (!MatchIfInstanceOf(ifInstruction, &instanceOf, &instanceOfTrueBlock)) {
459 return;
460 }
461
462 ReferenceTypeInfo class_rti = instanceOf->GetTargetClassRTI();
463 if (!class_rti.IsValid()) {
464 // We have loaded an unresolved class. Don't bother bounding the type.
465 return;
466 }
467
468 HInstruction* obj = instanceOf->InputAt(0);
469 if (obj->GetReferenceTypeInfo().IsExact() && !obj->IsPhi()) {
470 // This method is being called while doing a fixed-point calculation
471 // over phis. Non-phis instruction whose type is already known do
472 // not need to be bound to another type.
473 // Not that this also prevents replacing `HLoadClass` with a `HBoundType`.
474 // `HCheckCast` and `HInstanceOf` expect a `HLoadClass` as a second
475 // input.
476 return;
477 }
478
479 {
480 ScopedObjectAccess soa(Thread::Current());
481 if (!class_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes()) {
482 class_rti = ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact= */ false);
483 }
484 }
485 BoundTypeIn(obj, instanceOfTrueBlock, /* start_instruction= */ nullptr, class_rti);
486 }
487
SetClassAsTypeInfo(HInstruction * instr,ObjPtr<mirror::Class> klass,bool is_exact)488 void ReferenceTypePropagation::RTPVisitor::SetClassAsTypeInfo(HInstruction* instr,
489 ObjPtr<mirror::Class> klass,
490 bool is_exact) {
491 if (instr->IsInvokeStaticOrDirect() && instr->AsInvokeStaticOrDirect()->IsStringInit()) {
492 // Calls to String.<init> are replaced with a StringFactory.
493 if (kIsDebugBuild) {
494 HInvokeStaticOrDirect* invoke = instr->AsInvokeStaticOrDirect();
495 ClassLinker* cl = Runtime::Current()->GetClassLinker();
496 Thread* self = Thread::Current();
497 StackHandleScope<2> hs(self);
498 const DexFile& dex_file = *invoke->GetResolvedMethodReference().dex_file;
499 uint32_t dex_method_index = invoke->GetResolvedMethodReference().index;
500 Handle<mirror::DexCache> dex_cache(
501 hs.NewHandle(FindDexCacheWithHint(self, dex_file, hint_dex_cache_)));
502 // Use a null loader, the target method is in a boot classpath dex file.
503 Handle<mirror::ClassLoader> loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
504 ArtMethod* method = cl->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
505 dex_method_index, dex_cache, loader, /* referrer= */ nullptr, kDirect);
506 DCHECK(method != nullptr);
507 ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
508 DCHECK(declaring_class != nullptr);
509 DCHECK(declaring_class->IsStringClass())
510 << "Expected String class: " << declaring_class->PrettyDescriptor();
511 DCHECK(method->IsConstructor())
512 << "Expected String.<init>: " << method->PrettyMethod();
513 }
514 instr->SetReferenceTypeInfo(
515 ReferenceTypeInfo::Create(GetHandleCache()->GetStringClassHandle(), /* is_exact= */ true));
516 } else if (IsAdmissible(klass)) {
517 ReferenceTypeInfo::TypeHandle handle = GetHandleCache()->NewHandle(klass);
518 is_exact = is_exact || handle->CannotBeAssignedFromOtherTypes();
519 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(handle, is_exact));
520 } else {
521 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
522 }
523 }
524
VisitDeoptimize(HDeoptimize * instr)525 void ReferenceTypePropagation::RTPVisitor::VisitDeoptimize(HDeoptimize* instr) {
526 BoundTypeForClassCheck(instr);
527 }
528
UpdateReferenceTypeInfo(HInstruction * instr,dex::TypeIndex type_idx,const DexFile & dex_file,bool is_exact)529 void ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr,
530 dex::TypeIndex type_idx,
531 const DexFile& dex_file,
532 bool is_exact) {
533 DCHECK_EQ(instr->GetType(), DataType::Type::kReference);
534
535 ScopedObjectAccess soa(Thread::Current());
536 StackHandleScope<2> hs(soa.Self());
537 Handle<mirror::DexCache> dex_cache =
538 hs.NewHandle(FindDexCacheWithHint(soa.Self(), dex_file, hint_dex_cache_));
539 Handle<mirror::ClassLoader> loader = hs.NewHandle(dex_cache->GetClassLoader());
540 ObjPtr<mirror::Class> klass = Runtime::Current()->GetClassLinker()->ResolveType(
541 type_idx, dex_cache, loader);
542 DCHECK_EQ(klass == nullptr, soa.Self()->IsExceptionPending());
543 soa.Self()->ClearException(); // Clean up the exception left by type resolution if any.
544 SetClassAsTypeInfo(instr, klass, is_exact);
545 }
546
VisitNewInstance(HNewInstance * instr)547 void ReferenceTypePropagation::RTPVisitor::VisitNewInstance(HNewInstance* instr) {
548 ScopedObjectAccess soa(Thread::Current());
549 SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact= */ true);
550 }
551
VisitNewArray(HNewArray * instr)552 void ReferenceTypePropagation::RTPVisitor::VisitNewArray(HNewArray* instr) {
553 ScopedObjectAccess soa(Thread::Current());
554 SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact= */ true);
555 }
556
VisitParameterValue(HParameterValue * instr)557 void ReferenceTypePropagation::RTPVisitor::VisitParameterValue(HParameterValue* instr) {
558 // We check if the existing type is valid: the inliner may have set it.
559 if (instr->GetType() == DataType::Type::kReference && !instr->GetReferenceTypeInfo().IsValid()) {
560 UpdateReferenceTypeInfo(instr,
561 instr->GetTypeIndex(),
562 instr->GetDexFile(),
563 /* is_exact= */ false);
564 }
565 }
566
UpdateFieldAccessTypeInfo(HInstruction * instr,const FieldInfo & info)567 void ReferenceTypePropagation::RTPVisitor::UpdateFieldAccessTypeInfo(HInstruction* instr,
568 const FieldInfo& info) {
569 if (instr->GetType() != DataType::Type::kReference) {
570 return;
571 }
572
573 ScopedObjectAccess soa(Thread::Current());
574 ObjPtr<mirror::Class> klass;
575
576 // The field is unknown only during tests.
577 if (info.GetField() != nullptr) {
578 klass = info.GetField()->LookupResolvedType();
579 }
580
581 SetClassAsTypeInfo(instr, klass, /* is_exact= */ false);
582 }
583
VisitInstanceFieldGet(HInstanceFieldGet * instr)584 void ReferenceTypePropagation::RTPVisitor::VisitInstanceFieldGet(HInstanceFieldGet* instr) {
585 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
586 }
587
VisitStaticFieldGet(HStaticFieldGet * instr)588 void ReferenceTypePropagation::RTPVisitor::VisitStaticFieldGet(HStaticFieldGet* instr) {
589 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
590 }
591
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instr)592 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedInstanceFieldGet(
593 HUnresolvedInstanceFieldGet* instr) {
594 // TODO: Use descriptor to get the actual type.
595 if (instr->GetFieldType() == DataType::Type::kReference) {
596 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
597 }
598 }
599
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instr)600 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedStaticFieldGet(
601 HUnresolvedStaticFieldGet* instr) {
602 // TODO: Use descriptor to get the actual type.
603 if (instr->GetFieldType() == DataType::Type::kReference) {
604 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
605 }
606 }
607
VisitLoadClass(HLoadClass * instr)608 void ReferenceTypePropagation::RTPVisitor::VisitLoadClass(HLoadClass* instr) {
609 ScopedObjectAccess soa(Thread::Current());
610 if (IsAdmissible(instr->GetClass().Get())) {
611 instr->SetValidLoadedClassRTI();
612 }
613 instr->SetReferenceTypeInfo(
614 ReferenceTypeInfo::Create(GetHandleCache()->GetClassClassHandle(), /* is_exact= */ true));
615 }
616
VisitInstanceOf(HInstanceOf * instr)617 void ReferenceTypePropagation::RTPVisitor::VisitInstanceOf(HInstanceOf* instr) {
618 ScopedObjectAccess soa(Thread::Current());
619 if (IsAdmissible(instr->GetClass().Get())) {
620 instr->SetValidTargetClassRTI();
621 }
622 }
623
VisitClinitCheck(HClinitCheck * instr)624 void ReferenceTypePropagation::RTPVisitor::VisitClinitCheck(HClinitCheck* instr) {
625 instr->SetReferenceTypeInfo(instr->InputAt(0)->GetReferenceTypeInfo());
626 }
627
VisitLoadMethodHandle(HLoadMethodHandle * instr)628 void ReferenceTypePropagation::RTPVisitor::VisitLoadMethodHandle(HLoadMethodHandle* instr) {
629 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
630 GetHandleCache()->GetMethodHandleClassHandle(), /* is_exact= */ true));
631 }
632
VisitLoadMethodType(HLoadMethodType * instr)633 void ReferenceTypePropagation::RTPVisitor::VisitLoadMethodType(HLoadMethodType* instr) {
634 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
635 GetHandleCache()->GetMethodTypeClassHandle(), /* is_exact= */ true));
636 }
637
VisitLoadString(HLoadString * instr)638 void ReferenceTypePropagation::RTPVisitor::VisitLoadString(HLoadString* instr) {
639 instr->SetReferenceTypeInfo(
640 ReferenceTypeInfo::Create(GetHandleCache()->GetStringClassHandle(), /* is_exact= */ true));
641 }
642
VisitLoadException(HLoadException * instr)643 void ReferenceTypePropagation::RTPVisitor::VisitLoadException(HLoadException* instr) {
644 DCHECK(instr->GetBlock()->IsCatchBlock());
645 TryCatchInformation* catch_info = instr->GetBlock()->GetTryCatchInformation();
646
647 if (catch_info->IsValidTypeIndex()) {
648 UpdateReferenceTypeInfo(instr,
649 catch_info->GetCatchTypeIndex(),
650 catch_info->GetCatchDexFile(),
651 /* is_exact= */ false);
652 } else {
653 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
654 GetHandleCache()->GetThrowableClassHandle(), /* is_exact= */ false));
655 }
656 }
657
VisitNullCheck(HNullCheck * instr)658 void ReferenceTypePropagation::RTPVisitor::VisitNullCheck(HNullCheck* instr) {
659 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
660 if (parent_rti.IsValid()) {
661 instr->SetReferenceTypeInfo(parent_rti);
662 }
663 }
664
VisitBoundType(HBoundType * instr)665 void ReferenceTypePropagation::RTPVisitor::VisitBoundType(HBoundType* instr) {
666 ReferenceTypeInfo class_rti = instr->GetUpperBound();
667 if (class_rti.IsValid()) {
668 ScopedObjectAccess soa(Thread::Current());
669 // Narrow the type as much as possible.
670 HInstruction* obj = instr->InputAt(0);
671 ReferenceTypeInfo obj_rti = obj->GetReferenceTypeInfo();
672 if (class_rti.IsExact()) {
673 instr->SetReferenceTypeInfo(class_rti);
674 } else if (obj_rti.IsValid()) {
675 if (class_rti.IsSupertypeOf(obj_rti)) {
676 // Object type is more specific.
677 instr->SetReferenceTypeInfo(obj_rti);
678 } else {
679 // Upper bound is more specific, or unrelated to the object's type.
680 // Note that the object might then be exact, and we know the code dominated by this
681 // bound type is dead. To not confuse potential other optimizations, we mark
682 // the bound as non-exact.
683 instr->SetReferenceTypeInfo(
684 ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact= */ false));
685 }
686 } else {
687 // Object not typed yet. Leave BoundType untyped for now rather than
688 // assign the type conservatively.
689 }
690 instr->SetCanBeNull(obj->CanBeNull() && instr->GetUpperCanBeNull());
691 } else {
692 // The owner of the BoundType was already visited. If the class is unresolved,
693 // the BoundType should have been removed from the data flow and this method
694 // should remove it from the graph.
695 DCHECK(!instr->HasUses());
696 instr->GetBlock()->RemoveInstruction(instr);
697 }
698 }
699
VisitCheckCast(HCheckCast * check_cast)700 void ReferenceTypePropagation::RTPVisitor::VisitCheckCast(HCheckCast* check_cast) {
701 HBoundType* bound_type = check_cast->GetNext()->AsBoundTypeOrNull();
702 if (bound_type == nullptr || bound_type->GetUpperBound().IsValid()) {
703 // The next instruction is not an uninitialized BoundType. This must be
704 // an RTP pass after SsaBuilder and we do not need to do anything.
705 return;
706 }
707 DCHECK_EQ(bound_type->InputAt(0), check_cast->InputAt(0));
708
709 ScopedObjectAccess soa(Thread::Current());
710 Handle<mirror::Class> klass = check_cast->GetClass();
711 if (IsAdmissible(klass.Get())) {
712 DCHECK(is_first_run_);
713 check_cast->SetValidTargetClassRTI();
714 // This is the first run of RTP and class is resolved.
715 bool is_exact = klass->CannotBeAssignedFromOtherTypes();
716 bound_type->SetUpperBound(ReferenceTypeInfo::Create(klass, is_exact),
717 /* CheckCast succeeds for nulls. */ true);
718 } else {
719 // This is the first run of RTP and class is unresolved. Remove the binding.
720 // The instruction itself is removed in VisitBoundType so as to not
721 // invalidate HInstructionIterator.
722 bound_type->ReplaceWith(bound_type->InputAt(0));
723 }
724 }
725
VisitPhi(HPhi * phi)726 void ReferenceTypePropagation::RTPVisitor::VisitPhi(HPhi* phi) {
727 if (phi->IsDead() || phi->GetType() != DataType::Type::kReference) {
728 return;
729 }
730
731 if (phi->GetBlock()->IsLoopHeader()) {
732 // Set the initial type for the phi. Use the non back edge input for reaching
733 // a fixed point faster.
734 HInstruction* first_input = phi->InputAt(0);
735 ReferenceTypeInfo first_input_rti = first_input->GetReferenceTypeInfo();
736 if (first_input_rti.IsValid() && !first_input->IsNullConstant()) {
737 phi->SetCanBeNull(first_input->CanBeNull());
738 phi->SetReferenceTypeInfo(first_input_rti);
739 }
740 AddToWorklist(phi);
741 } else {
742 // Eagerly compute the type of the phi, for quicker convergence. Note
743 // that we don't need to add users to the worklist because we are
744 // doing a reverse post-order visit, therefore either the phi users are
745 // non-loop phi and will be visited later in the visit, or are loop-phis,
746 // and they are already in the work list.
747 UpdateNullability(phi);
748 UpdateReferenceTypeInfo(phi);
749 }
750 }
751
FixUpInstructionType(HInstruction * instruction,HandleCache * handle_cache)752 void ReferenceTypePropagation::FixUpInstructionType(HInstruction* instruction,
753 HandleCache* handle_cache) {
754 if (instruction->IsSelect()) {
755 ScopedObjectAccess soa(Thread::Current());
756 HSelect* select = instruction->AsSelect();
757 ReferenceTypeInfo false_rti = select->GetFalseValue()->GetReferenceTypeInfo();
758 ReferenceTypeInfo true_rti = select->GetTrueValue()->GetReferenceTypeInfo();
759 select->SetReferenceTypeInfo(MergeTypes(false_rti, true_rti, handle_cache));
760 } else {
761 LOG(FATAL) << "Invalid instruction in FixUpInstructionType";
762 }
763 }
764
MergeTypes(const ReferenceTypeInfo & a,const ReferenceTypeInfo & b,HandleCache * handle_cache)765 ReferenceTypeInfo ReferenceTypePropagation::MergeTypes(const ReferenceTypeInfo& a,
766 const ReferenceTypeInfo& b,
767 HandleCache* handle_cache) {
768 if (!b.IsValid()) {
769 return a;
770 }
771 if (!a.IsValid()) {
772 return b;
773 }
774
775 bool is_exact = a.IsExact() && b.IsExact();
776 ReferenceTypeInfo::TypeHandle result_type_handle;
777 ReferenceTypeInfo::TypeHandle a_type_handle = a.GetTypeHandle();
778 ReferenceTypeInfo::TypeHandle b_type_handle = b.GetTypeHandle();
779 bool a_is_interface = a_type_handle->IsInterface();
780 bool b_is_interface = b_type_handle->IsInterface();
781
782 if (a.GetTypeHandle().Get() == b.GetTypeHandle().Get()) {
783 result_type_handle = a_type_handle;
784 } else if (a.IsSupertypeOf(b)) {
785 result_type_handle = a_type_handle;
786 is_exact = false;
787 } else if (b.IsSupertypeOf(a)) {
788 result_type_handle = b_type_handle;
789 is_exact = false;
790 } else if (!a_is_interface && !b_is_interface) {
791 result_type_handle =
792 handle_cache->NewHandle(a_type_handle->GetCommonSuperClass(b_type_handle));
793 is_exact = false;
794 } else {
795 // This can happen if:
796 // - both types are interfaces. TODO(calin): implement
797 // - one is an interface, the other a class, and the type does not implement the interface
798 // e.g:
799 // void foo(Interface i, boolean cond) {
800 // Object o = cond ? i : new Object();
801 // }
802 result_type_handle = handle_cache->GetObjectClassHandle();
803 is_exact = false;
804 }
805
806 return ReferenceTypeInfo::Create(result_type_handle, is_exact);
807 }
808
UpdateArrayGet(HArrayGet * instr)809 void ReferenceTypePropagation::RTPVisitor::UpdateArrayGet(HArrayGet* instr) {
810 DCHECK_EQ(DataType::Type::kReference, instr->GetType());
811
812 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
813 if (!parent_rti.IsValid()) {
814 return;
815 }
816
817 Handle<mirror::Class> handle = parent_rti.GetTypeHandle();
818 if (handle->IsObjectArrayClass() && IsAdmissible(handle->GetComponentType())) {
819 ReferenceTypeInfo::TypeHandle component_handle =
820 GetHandleCache()->NewHandle(handle->GetComponentType());
821 bool is_exact = component_handle->CannotBeAssignedFromOtherTypes();
822 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(component_handle, is_exact));
823 } else {
824 // We don't know what the parent actually is, so we fallback to object.
825 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
826 }
827 }
828
UpdateReferenceTypeInfo(HInstruction * instr)829 bool ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr) {
830 ScopedObjectAccess soa(Thread::Current());
831
832 ReferenceTypeInfo previous_rti = instr->GetReferenceTypeInfo();
833 if (instr->IsBoundType()) {
834 UpdateBoundType(instr->AsBoundType());
835 } else if (instr->IsPhi()) {
836 UpdatePhi(instr->AsPhi());
837 } else if (instr->IsNullCheck()) {
838 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
839 if (parent_rti.IsValid()) {
840 instr->SetReferenceTypeInfo(parent_rti);
841 }
842 } else if (instr->IsArrayGet()) {
843 // TODO: consider if it's worth "looking back" and binding the input object
844 // to an array type.
845 UpdateArrayGet(instr->AsArrayGet());
846 } else {
847 LOG(FATAL) << "Invalid instruction (should not get here)";
848 }
849
850 return !previous_rti.IsEqual(instr->GetReferenceTypeInfo());
851 }
852
VisitInvoke(HInvoke * instr)853 void ReferenceTypePropagation::RTPVisitor::VisitInvoke(HInvoke* instr) {
854 if (instr->GetType() != DataType::Type::kReference) {
855 return;
856 }
857
858 ScopedObjectAccess soa(Thread::Current());
859 // FIXME: Treat InvokePolymorphic separately, as we can get a more specific return type from
860 // protoId than the one obtained from the resolved method.
861 ArtMethod* method = instr->GetResolvedMethod();
862 ObjPtr<mirror::Class> klass = (method == nullptr) ? nullptr : method->LookupResolvedReturnType();
863 SetClassAsTypeInfo(instr, klass, /* is_exact= */ false);
864 }
865
VisitArrayGet(HArrayGet * instr)866 void ReferenceTypePropagation::RTPVisitor::VisitArrayGet(HArrayGet* instr) {
867 if (instr->GetType() != DataType::Type::kReference) {
868 return;
869 }
870
871 ScopedObjectAccess soa(Thread::Current());
872 UpdateArrayGet(instr);
873 if (!instr->GetReferenceTypeInfo().IsValid()) {
874 worklist_.push_back(instr);
875 }
876 }
877
UpdateBoundType(HBoundType * instr)878 void ReferenceTypePropagation::RTPVisitor::UpdateBoundType(HBoundType* instr) {
879 ReferenceTypeInfo input_rti = instr->InputAt(0)->GetReferenceTypeInfo();
880 if (!input_rti.IsValid()) {
881 return; // No new info yet.
882 }
883
884 ReferenceTypeInfo upper_bound_rti = instr->GetUpperBound();
885 if (upper_bound_rti.IsExact()) {
886 instr->SetReferenceTypeInfo(upper_bound_rti);
887 } else if (upper_bound_rti.IsSupertypeOf(input_rti)) {
888 // input is more specific.
889 instr->SetReferenceTypeInfo(input_rti);
890 } else {
891 // upper_bound is more specific or unrelated.
892 // Note that the object might then be exact, and we know the code dominated by this
893 // bound type is dead. To not confuse potential other optimizations, we mark
894 // the bound as non-exact.
895 instr->SetReferenceTypeInfo(
896 ReferenceTypeInfo::Create(upper_bound_rti.GetTypeHandle(), /* is_exact= */ false));
897 }
898 }
899
900 // NullConstant inputs are ignored during merging as they do not provide any useful information.
901 // If all the inputs are NullConstants then the type of the phi will be set to Object.
UpdatePhi(HPhi * instr)902 void ReferenceTypePropagation::RTPVisitor::UpdatePhi(HPhi* instr) {
903 DCHECK(instr->IsLive());
904
905 HInputsRef inputs = instr->GetInputs();
906 size_t first_input_index_not_null = 0;
907 while (first_input_index_not_null < inputs.size() &&
908 inputs[first_input_index_not_null]->IsNullConstant()) {
909 first_input_index_not_null++;
910 }
911 if (first_input_index_not_null == inputs.size()) {
912 // All inputs are NullConstants, set the type to object.
913 // This may happen in the presence of inlining.
914 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
915 return;
916 }
917
918 ReferenceTypeInfo new_rti = instr->InputAt(first_input_index_not_null)->GetReferenceTypeInfo();
919
920 if (new_rti.IsValid() && new_rti.IsObjectClass() && !new_rti.IsExact()) {
921 // Early return if we are Object and inexact.
922 instr->SetReferenceTypeInfo(new_rti);
923 return;
924 }
925
926 for (size_t i = first_input_index_not_null + 1; i < inputs.size(); i++) {
927 if (inputs[i]->IsNullConstant()) {
928 continue;
929 }
930 new_rti = MergeTypes(new_rti, inputs[i]->GetReferenceTypeInfo(), GetHandleCache());
931 if (new_rti.IsValid() && new_rti.IsObjectClass()) {
932 if (!new_rti.IsExact()) {
933 break;
934 } else {
935 continue;
936 }
937 }
938 }
939
940 if (new_rti.IsValid()) {
941 instr->SetReferenceTypeInfo(new_rti);
942 }
943 }
944
IsUpdateable(const HInstruction * instr)945 constexpr bool ReferenceTypePropagation::RTPVisitor::IsUpdateable(const HInstruction* instr) {
946 return (instr->IsPhi() && instr->AsPhi()->IsLive()) ||
947 instr->IsBoundType() ||
948 instr->IsNullCheck() ||
949 instr->IsArrayGet();
950 }
951
952 // Re-computes and updates the nullability of the instruction. Returns whether or
953 // not the nullability was changed.
UpdateNullability(HInstruction * instr)954 bool ReferenceTypePropagation::RTPVisitor::UpdateNullability(HInstruction* instr) {
955 DCHECK(IsUpdateable(instr));
956
957 if (!instr->IsPhi() && !instr->IsBoundType()) {
958 return false;
959 }
960
961 bool existing_can_be_null = instr->CanBeNull();
962 if (instr->IsPhi()) {
963 HPhi* phi = instr->AsPhi();
964 bool new_can_be_null = false;
965 for (HInstruction* input : phi->GetInputs()) {
966 if (input->CanBeNull()) {
967 new_can_be_null = true;
968 break;
969 }
970 }
971 phi->SetCanBeNull(new_can_be_null);
972 } else if (instr->IsBoundType()) {
973 HBoundType* bound_type = instr->AsBoundType();
974 bound_type->SetCanBeNull(instr->InputAt(0)->CanBeNull() && bound_type->GetUpperCanBeNull());
975 }
976 return existing_can_be_null != instr->CanBeNull();
977 }
978
ProcessWorklist()979 void ReferenceTypePropagation::RTPVisitor::ProcessWorklist() {
980 while (!worklist_.empty()) {
981 HInstruction* instruction = worklist_.back();
982 worklist_.pop_back();
983 bool updated_nullability = UpdateNullability(instruction);
984 bool updated_reference_type = UpdateReferenceTypeInfo(instruction);
985 if (updated_nullability || updated_reference_type) {
986 AddDependentInstructionsToWorklist(instruction);
987 }
988 }
989 }
990
AddToWorklist(HInstruction * instruction)991 void ReferenceTypePropagation::RTPVisitor::AddToWorklist(HInstruction* instruction) {
992 DCHECK_EQ(instruction->GetType(), DataType::Type::kReference)
993 << instruction->DebugName() << ":" << instruction->GetType();
994 worklist_.push_back(instruction);
995 }
996
AddDependentInstructionsToWorklist(HInstruction * instruction)997 void ReferenceTypePropagation::RTPVisitor::AddDependentInstructionsToWorklist(
998 HInstruction* instruction) {
999 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
1000 HInstruction* user = use.GetUser();
1001 if ((user->IsPhi() && user->AsPhi()->IsLive())
1002 || user->IsBoundType()
1003 || user->IsNullCheck()
1004 || (user->IsArrayGet() && (user->GetType() == DataType::Type::kReference))) {
1005 AddToWorklist(user);
1006 }
1007 }
1008 }
1009
1010 } // namespace art
1011