1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_space.h"
18
19 #include <sys/statvfs.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <array>
24 #include <memory>
25 #include <optional>
26 #include <random>
27 #include <string>
28 #include <vector>
29
30 #include "android-base/logging.h"
31 #include "android-base/stringprintf.h"
32 #include "android-base/strings.h"
33 #include "android-base/unique_fd.h"
34 #include "arch/instruction_set.h"
35 #include "art_field-inl.h"
36 #include "art_method-inl.h"
37 #include "base/array_ref.h"
38 #include "base/bit_memory_region.h"
39 #include "base/callee_save_type.h"
40 #include "base/file_utils.h"
41 #include "base/globals.h"
42 #include "base/macros.h"
43 #include "base/memfd.h"
44 #include "base/os.h"
45 #include "base/pointer_size.h"
46 #include "base/stl_util.h"
47 #include "base/systrace.h"
48 #include "base/time_utils.h"
49 #include "base/utils.h"
50 #include "class_root-inl.h"
51 #include "dex/art_dex_file_loader.h"
52 #include "dex/dex_file_loader.h"
53 #include "exec_utils.h"
54 #include "gc/accounting/space_bitmap-inl.h"
55 #include "gc/task_processor.h"
56 #include "intern_table-inl.h"
57 #include "mirror/class-inl.h"
58 #include "mirror/executable-inl.h"
59 #include "mirror/object-inl.h"
60 #include "mirror/object-refvisitor-inl.h"
61 #include "mirror/var_handle.h"
62 #include "oat/image-inl.h"
63 #include "oat/image.h"
64 #include "oat/oat.h"
65 #include "oat/oat_file.h"
66 #include "profile/profile_compilation_info.h"
67 #include "runtime.h"
68 #include "space-inl.h"
69
70 namespace art HIDDEN {
71 namespace gc {
72 namespace space {
73
74 namespace {
75
76 using ::android::base::Join;
77 using ::android::base::StringAppendF;
78 using ::android::base::StringPrintf;
79
80 // We do not allow the boot image and extensions to take more than 1GiB. They are
81 // supposed to be much smaller and allocating more that this would likely fail anyway.
82 static constexpr size_t kMaxTotalImageReservationSize = 1 * GB;
83
84 } // namespace
85
86 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
87
ImageSpace(const std::string & image_filename,const char * image_location,const std::vector<std::string> & profile_files,MemMap && mem_map,accounting::ContinuousSpaceBitmap && live_bitmap,uint8_t * end)88 ImageSpace::ImageSpace(const std::string& image_filename,
89 const char* image_location,
90 const std::vector<std::string>& profile_files,
91 MemMap&& mem_map,
92 accounting::ContinuousSpaceBitmap&& live_bitmap,
93 uint8_t* end)
94 : MemMapSpace(image_filename,
95 std::move(mem_map),
96 mem_map.Begin(),
97 end,
98 end,
99 kGcRetentionPolicyNeverCollect),
100 live_bitmap_(std::move(live_bitmap)),
101 oat_file_non_owned_(nullptr),
102 image_location_(image_location),
103 profile_files_(profile_files) {
104 DCHECK(live_bitmap_.IsValid());
105 }
106
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)107 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
108 CHECK_ALIGNED(min_delta, kElfSegmentAlignment);
109 CHECK_ALIGNED(max_delta, kElfSegmentAlignment);
110 CHECK_LT(min_delta, max_delta);
111
112 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
113 if (r % 2 == 0) {
114 r = RoundUp(r, kElfSegmentAlignment);
115 } else {
116 r = RoundDown(r, kElfSegmentAlignment);
117 }
118 CHECK_LE(min_delta, r);
119 CHECK_GE(max_delta, r);
120 CHECK_ALIGNED(r, kElfSegmentAlignment);
121 return r;
122 }
123
ChooseRelocationOffsetDelta()124 static int32_t ChooseRelocationOffsetDelta() {
125 return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
126 }
127
FindImageFilenameImpl(const char * image_location,const InstructionSet image_isa,bool * has_system,std::string * system_filename)128 static bool FindImageFilenameImpl(const char* image_location,
129 const InstructionSet image_isa,
130 bool* has_system,
131 std::string* system_filename) {
132 *has_system = false;
133
134 // image_location = /system/framework/boot.art
135 // system_image_location = /system/framework/<image_isa>/boot.art
136 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
137 if (OS::FileExists(system_image_filename.c_str())) {
138 *system_filename = system_image_filename;
139 *has_system = true;
140 }
141
142 return *has_system;
143 }
144
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system)145 bool ImageSpace::FindImageFilename(const char* image_location,
146 const InstructionSet image_isa,
147 std::string* system_filename,
148 bool* has_system) {
149 return FindImageFilenameImpl(image_location,
150 image_isa,
151 has_system,
152 system_filename);
153 }
154
ReadSpecificImageHeader(File * image_file,const char * file_description,ImageHeader * image_header,std::string * error_msg)155 static bool ReadSpecificImageHeader(File* image_file,
156 const char* file_description,
157 /*out*/ImageHeader* image_header,
158 /*out*/std::string* error_msg) {
159 if (!image_file->PreadFully(image_header, sizeof(ImageHeader), /*offset=*/ 0)) {
160 *error_msg = StringPrintf("Unable to read image header from \"%s\"", file_description);
161 return false;
162 }
163 if (!image_header->IsValid()) {
164 *error_msg = StringPrintf("Image header from \"%s\" is invalid", file_description);
165 return false;
166 }
167 return true;
168 }
169
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header,std::string * error_msg)170 static bool ReadSpecificImageHeader(const char* filename,
171 /*out*/ImageHeader* image_header,
172 /*out*/std::string* error_msg) {
173 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
174 if (image_file.get() == nullptr) {
175 *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header", filename);
176 return false;
177 }
178 return ReadSpecificImageHeader(image_file.get(), filename, image_header, error_msg);
179 }
180
ReadSpecificImageHeader(const char * filename,std::string * error_msg)181 static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename,
182 std::string* error_msg) {
183 std::unique_ptr<ImageHeader> hdr(new ImageHeader);
184 if (!ReadSpecificImageHeader(filename, hdr.get(), error_msg)) {
185 return nullptr;
186 }
187 return hdr;
188 }
189
VerifyImageAllocations()190 void ImageSpace::VerifyImageAllocations() {
191 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
192 while (current < End()) {
193 CHECK_ALIGNED(current, kObjectAlignment);
194 auto* obj = reinterpret_cast<mirror::Object*>(current);
195 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
196 CHECK(live_bitmap_.Test(obj)) << obj->PrettyTypeOf();
197 if (kUseBakerReadBarrier) {
198 obj->AssertReadBarrierState();
199 }
200 current += RoundUp(obj->SizeOf(), kObjectAlignment);
201 }
202 }
203
204 // Helper class for relocating from one range of memory to another.
205 class RelocationRange {
206 public:
207 RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)208 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
209 : source_(source),
210 dest_(dest),
211 length_(length) {}
212
InSource(uintptr_t address) const213 bool InSource(uintptr_t address) const {
214 return address - source_ < length_;
215 }
216
InDest(const void * dest) const217 bool InDest(const void* dest) const {
218 return InDest(reinterpret_cast<uintptr_t>(dest));
219 }
220
InDest(uintptr_t address) const221 bool InDest(uintptr_t address) const {
222 return address - dest_ < length_;
223 }
224
225 // Translate a source address to the destination space.
ToDest(uintptr_t address) const226 uintptr_t ToDest(uintptr_t address) const {
227 DCHECK(InSource(address));
228 return address + Delta();
229 }
230
231 template <typename T>
ToDest(T * src) const232 T* ToDest(T* src) const {
233 return reinterpret_cast<T*>(ToDest(reinterpret_cast<uintptr_t>(src)));
234 }
235
236 // Returns the delta between the dest from the source.
Delta() const237 uintptr_t Delta() const {
238 return dest_ - source_;
239 }
240
Source() const241 uintptr_t Source() const {
242 return source_;
243 }
244
Dest() const245 uintptr_t Dest() const {
246 return dest_;
247 }
248
Length() const249 uintptr_t Length() const {
250 return length_;
251 }
252
253 private:
254 const uintptr_t source_;
255 const uintptr_t dest_;
256 const uintptr_t length_;
257 };
258
operator <<(std::ostream & os,const RelocationRange & reloc)259 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
260 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
261 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
262 << reinterpret_cast<const void*>(reloc.Dest()) << "-"
263 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
264 }
265
266 template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor>
267 class ImageSpace::PatchObjectVisitor final {
268 public:
PatchObjectVisitor(HeapVisitor heap_visitor,NativeVisitor native_visitor)269 explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor)
270 : heap_visitor_(heap_visitor), native_visitor_(native_visitor) {}
271
VisitClass(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Class> class_class)272 void VisitClass(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Class> class_class)
273 REQUIRES_SHARED(Locks::mutator_lock_) {
274 // A mirror::Class object consists of
275 // - instance fields inherited from j.l.Object,
276 // - instance fields inherited from j.l.Class,
277 // - embedded tables (vtable, interface method table),
278 // - static fields of the class itself.
279 // The reference fields are at the start of each field section (this is how the
280 // ClassLinker orders fields; except when that would create a gap between superclass
281 // fields and the first reference of the subclass due to alignment, it can be filled
282 // with smaller fields - but that's not the case for j.l.Object and j.l.Class).
283
284 DCHECK_ALIGNED(klass.Ptr(), kObjectAlignment);
285 static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check.");
286 // First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class.
287 // This should be the only reference field in j.l.Object and we assert that below.
288 DCHECK_EQ(class_class,
289 heap_visitor_(klass->GetClass<kVerifyNone, kWithoutReadBarrier>()));
290 klass->SetFieldObjectWithoutWriteBarrier<
291 /*kTransactionActive=*/ false,
292 /*kCheckTransaction=*/ true,
293 kVerifyNone>(mirror::Object::ClassOffset(), class_class);
294 // Then patch the reference instance fields described by j.l.Class.class.
295 // Use the sizeof(Object) to determine where these reference fields start;
296 // this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()`
297 // after patching but the j.l.Class may not have been patched yet.
298 size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>();
299 DCHECK_NE(num_reference_instance_fields, 0u);
300 static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check.");
301 MemberOffset instance_field_offset(sizeof(mirror::Object));
302 for (size_t i = 0; i != num_reference_instance_fields; ++i) {
303 PatchReferenceField(klass, instance_field_offset);
304 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
305 "Heap reference sizes equality check.");
306 instance_field_offset =
307 MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize);
308 }
309 // Now that we have patched the `super_class_`, if this is the j.l.Class.class,
310 // we can get a reference to j.l.Object.class and assert that it has only one
311 // reference instance field (the `klass_` patched above).
312 if (kIsDebugBuild && klass == class_class) {
313 ObjPtr<mirror::Class> object_class =
314 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
315 CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u);
316 }
317 // Then patch static fields.
318 size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>();
319 if (num_reference_static_fields != 0u) {
320 MemberOffset static_field_offset =
321 klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize);
322 for (size_t i = 0; i != num_reference_static_fields; ++i) {
323 PatchReferenceField(klass, static_field_offset);
324 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
325 "Heap reference sizes equality check.");
326 static_field_offset =
327 MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize);
328 }
329 }
330 // Then patch native pointers.
331 klass->FixupNativePointers<kVerifyNone>(klass.Ptr(), kPointerSize, *this);
332 }
333
334 template <typename T>
operator ()(T * ptr,void ** dest_addr) const335 T* operator()(T* ptr, [[maybe_unused]] void** dest_addr) const {
336 return (ptr != nullptr) ? native_visitor_(ptr) : nullptr;
337 }
338
VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)339 void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)
340 REQUIRES_SHARED(Locks::mutator_lock_) {
341 // Fully patch the pointer array, including the `klass_` field.
342 PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset());
343
344 int32_t length = pointer_array->GetLength<kVerifyNone>();
345 for (int32_t i = 0; i != length; ++i) {
346 ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(
347 pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize));
348 PatchNativePointer</*kMayBeNull=*/ false>(method_entry);
349 }
350 }
351
VisitObject(mirror::Object * object)352 void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) {
353 // Visit all reference fields.
354 object->VisitReferences</*kVisitNativeRoots=*/ false,
355 kVerifyNone,
356 kWithoutReadBarrier>(*this, *this);
357 // This function should not be called for classes.
358 DCHECK(!object->IsClass<kVerifyNone>());
359 }
360
361 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static) const362 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
363 MemberOffset field_offset,
364 bool is_static)
365 const REQUIRES_SHARED(Locks::mutator_lock_) {
366 DCHECK(!is_static);
367 PatchReferenceField(object, field_offset);
368 }
369 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const370 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
371 REQUIRES_SHARED(Locks::mutator_lock_) {
372 DCHECK(klass->IsTypeOfReferenceClass());
373 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
374 }
375 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const376 void VisitRootIfNonNull(
377 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const378 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
379
VisitNativeDexCacheArray(mirror::NativeArray<T> * array)380 template <typename T> void VisitNativeDexCacheArray(mirror::NativeArray<T>* array)
381 REQUIRES_SHARED(Locks::mutator_lock_) {
382 if (array == nullptr) {
383 return;
384 }
385 DCHECK_ALIGNED(array, static_cast<size_t>(kPointerSize));
386 uint32_t size = (kPointerSize == PointerSize::k32)
387 ? reinterpret_cast<uint32_t*>(array)[-1]
388 : dchecked_integral_cast<uint32_t>(reinterpret_cast<uint64_t*>(array)[-1]);
389 for (uint32_t i = 0; i < size; ++i) {
390 PatchNativePointer(array->GetPtrEntryPtrSize(i, kPointerSize));
391 }
392 }
393
VisitGcRootDexCacheArray(mirror::GcRootArray<T> * array)394 template <typename T> void VisitGcRootDexCacheArray(mirror::GcRootArray<T>* array)
395 REQUIRES_SHARED(Locks::mutator_lock_) {
396 if (array == nullptr) {
397 return;
398 }
399 DCHECK_ALIGNED(array, sizeof(GcRoot<T>));
400 static_assert(sizeof(GcRoot<T>) == sizeof(uint32_t));
401 uint32_t size = reinterpret_cast<uint32_t*>(array)[-1];
402 for (uint32_t i = 0; i < size; ++i) {
403 PatchGcRoot(array->GetGcRootAddress(i));
404 }
405 }
406
VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)407 void VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)
408 REQUIRES_SHARED(Locks::mutator_lock_) {
409 mirror::NativeArray<ArtMethod>* old_resolved_methods = dex_cache->GetResolvedMethodsArray();
410 if (old_resolved_methods != nullptr) {
411 mirror::NativeArray<ArtMethod>* resolved_methods = native_visitor_(old_resolved_methods);
412 dex_cache->SetResolvedMethodsArray(resolved_methods);
413 VisitNativeDexCacheArray(resolved_methods);
414 }
415
416 mirror::NativeArray<ArtField>* old_resolved_fields = dex_cache->GetResolvedFieldsArray();
417 if (old_resolved_fields != nullptr) {
418 mirror::NativeArray<ArtField>* resolved_fields = native_visitor_(old_resolved_fields);
419 dex_cache->SetResolvedFieldsArray(resolved_fields);
420 VisitNativeDexCacheArray(resolved_fields);
421 }
422
423 mirror::GcRootArray<mirror::String>* old_strings = dex_cache->GetStringsArray();
424 if (old_strings != nullptr) {
425 mirror::GcRootArray<mirror::String>* strings = native_visitor_(old_strings);
426 dex_cache->SetStringsArray(strings);
427 VisitGcRootDexCacheArray(strings);
428 }
429
430 mirror::GcRootArray<mirror::Class>* old_types = dex_cache->GetResolvedTypesArray();
431 if (old_types != nullptr) {
432 mirror::GcRootArray<mirror::Class>* types = native_visitor_(old_types);
433 dex_cache->SetResolvedTypesArray(types);
434 VisitGcRootDexCacheArray(types);
435 }
436 }
437
438 template <bool kMayBeNull = true, typename T>
PatchGcRoot(GcRoot<T> * root) const439 ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const
440 REQUIRES_SHARED(Locks::mutator_lock_) {
441 static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check");
442 T* old_value = root->template Read<kWithoutReadBarrier>();
443 DCHECK(kMayBeNull || old_value != nullptr);
444 if (!kMayBeNull || old_value != nullptr) {
445 *root = GcRoot<T>(heap_visitor_(old_value));
446 }
447 }
448
449 template <bool kMayBeNull = true, typename T>
PatchNativePointer(T ** entry) const450 ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const {
451 if (kPointerSize == PointerSize::k64) {
452 uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry);
453 T* old_value = reinterpret_cast64<T*>(*raw_entry);
454 DCHECK(kMayBeNull || old_value != nullptr);
455 if (!kMayBeNull || old_value != nullptr) {
456 T* new_value = native_visitor_(old_value);
457 *raw_entry = reinterpret_cast64<uint64_t>(new_value);
458 }
459 } else {
460 uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry);
461 T* old_value = reinterpret_cast32<T*>(*raw_entry);
462 DCHECK(kMayBeNull || old_value != nullptr);
463 if (!kMayBeNull || old_value != nullptr) {
464 T* new_value = native_visitor_(old_value);
465 *raw_entry = reinterpret_cast32<uint32_t>(new_value);
466 }
467 }
468 }
469
470 template <bool kMayBeNull = true>
PatchReferenceField(ObjPtr<mirror::Object> object,MemberOffset offset) const471 ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const
472 REQUIRES_SHARED(Locks::mutator_lock_) {
473 ObjPtr<mirror::Object> old_value =
474 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
475 DCHECK(kMayBeNull || old_value != nullptr);
476 if (!kMayBeNull || old_value != nullptr) {
477 ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr());
478 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
479 /*kCheckTransaction=*/ true,
480 kVerifyNone>(offset, new_value);
481 }
482 }
483
484 private:
485 // Heap objects visitor.
486 HeapVisitor heap_visitor_;
487
488 // Native objects visitor.
489 NativeVisitor native_visitor_;
490 };
491
492 template <typename ReferenceVisitor>
493 class ImageSpace::ClassTableVisitor final {
494 public:
ClassTableVisitor(const ReferenceVisitor & reference_visitor)495 explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor)
496 : reference_visitor_(reference_visitor) {}
497
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const498 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
499 REQUIRES_SHARED(Locks::mutator_lock_) {
500 DCHECK(root->AsMirrorPtr() != nullptr);
501 root->Assign(reference_visitor_(root->AsMirrorPtr()));
502 }
503
504 private:
505 ReferenceVisitor reference_visitor_;
506 };
507
508 class ImageSpace::RemapInternedStringsVisitor {
509 public:
RemapInternedStringsVisitor(const SafeMap<mirror::String *,mirror::String * > & intern_remap)510 explicit RemapInternedStringsVisitor(
511 const SafeMap<mirror::String*, mirror::String*>& intern_remap)
512 REQUIRES_SHARED(Locks::mutator_lock_)
513 : intern_remap_(intern_remap),
514 string_class_(GetStringClass()) {}
515
516 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static) const517 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
518 MemberOffset field_offset,
519 [[maybe_unused]] bool is_static) const
520 REQUIRES_SHARED(Locks::mutator_lock_) {
521 ObjPtr<mirror::Object> old_value =
522 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(field_offset);
523 if (old_value != nullptr &&
524 old_value->GetClass<kVerifyNone, kWithoutReadBarrier>() == string_class_) {
525 auto it = intern_remap_.find(old_value->AsString().Ptr());
526 if (it != intern_remap_.end()) {
527 mirror::String* new_value = it->second;
528 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
529 /*kCheckTransaction=*/ true,
530 kVerifyNone>(field_offset, new_value);
531 }
532 }
533 }
534 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const535 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
536 REQUIRES_SHARED(Locks::mutator_lock_) {
537 DCHECK(klass->IsTypeOfReferenceClass());
538 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
539 }
540 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const541 void VisitRootIfNonNull(
542 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const543 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
544
545 private:
GetStringClass()546 mirror::Class* GetStringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
547 DCHECK(!intern_remap_.empty());
548 return intern_remap_.begin()->first->GetClass<kVerifyNone, kWithoutReadBarrier>();
549 }
550
551 const SafeMap<mirror::String*, mirror::String*>& intern_remap_;
552 mirror::Class* const string_class_;
553 };
554
555 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
556 // nested class), but not declare functions in the header.
557 class ImageSpace::Loader {
558 public:
InitAppImage(const char * image_filename,const char * image_location,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)559 static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename,
560 const char* image_location,
561 const OatFile* oat_file,
562 ArrayRef<ImageSpace* const> boot_image_spaces,
563 /*out*/std::string* error_msg)
564 REQUIRES_SHARED(Locks::mutator_lock_) {
565 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
566
567 std::unique_ptr<ImageSpace> space = Init(image_filename,
568 image_location,
569 &logger,
570 /*image_reservation=*/ nullptr,
571 error_msg);
572 if (space != nullptr) {
573 space->oat_file_non_owned_ = oat_file;
574 const ImageHeader& image_header = space->GetImageHeader();
575
576 // Check the oat file checksum.
577 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
578 const uint32_t image_oat_checksum = image_header.GetOatChecksum();
579 // Note image_oat_checksum is 0 for images generated by the runtime.
580 if (image_oat_checksum != 0u && oat_checksum != image_oat_checksum) {
581 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
582 oat_checksum,
583 image_oat_checksum,
584 image_filename);
585 return nullptr;
586 }
587 size_t boot_image_space_dependencies;
588 if (!ValidateBootImageChecksum(image_filename,
589 image_header,
590 oat_file,
591 boot_image_spaces,
592 &boot_image_space_dependencies,
593 error_msg)) {
594 DCHECK(!error_msg->empty());
595 return nullptr;
596 }
597
598 uint32_t expected_reservation_size = RoundUp(image_header.GetImageSize(),
599 kElfSegmentAlignment);
600 if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
601 !CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) {
602 return nullptr;
603 }
604
605 {
606 TimingLogger::ScopedTiming timing("RelocateImage", &logger);
607 const PointerSize pointer_size = image_header.GetPointerSize();
608 uint32_t boot_image_begin =
609 reinterpret_cast32<uint32_t>(boot_image_spaces.front()->Begin());
610 bool result;
611 if (pointer_size == PointerSize::k64) {
612 result = RelocateInPlace<PointerSize::k64>(boot_image_begin,
613 space->GetMemMap()->Begin(),
614 space->GetLiveBitmap(),
615 oat_file,
616 error_msg);
617 } else {
618 result = RelocateInPlace<PointerSize::k32>(boot_image_begin,
619 space->GetMemMap()->Begin(),
620 space->GetLiveBitmap(),
621 oat_file,
622 error_msg);
623 }
624 if (!result) {
625 return nullptr;
626 }
627 }
628
629 DCHECK_LE(boot_image_space_dependencies, boot_image_spaces.size());
630 if (boot_image_space_dependencies != boot_image_spaces.size()) {
631 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", &logger);
632 // There shall be no duplicates with boot image spaces this app image depends on.
633 ArrayRef<ImageSpace* const> old_spaces =
634 boot_image_spaces.SubArray(/*pos=*/ boot_image_space_dependencies);
635 SafeMap<mirror::String*, mirror::String*> intern_remap;
636 RemoveInternTableDuplicates(old_spaces, space.get(), &intern_remap);
637 if (!intern_remap.empty()) {
638 RemapInternedStringDuplicates(intern_remap, space.get());
639 }
640 }
641
642 const ImageHeader& primary_header = boot_image_spaces.front()->GetImageHeader();
643 static_assert(static_cast<size_t>(ImageHeader::kResolutionMethod) == 0u);
644 for (size_t i = 0u; i != static_cast<size_t>(ImageHeader::kImageMethodsCount); ++i) {
645 ImageHeader::ImageMethod method = static_cast<ImageHeader::ImageMethod>(i);
646 CHECK_EQ(primary_header.GetImageMethod(method), image_header.GetImageMethod(method))
647 << method;
648 }
649
650 VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get();
651 }
652 if (VLOG_IS_ON(image)) {
653 logger.Dump(LOG_STREAM(INFO));
654 }
655 return space;
656 }
657
Init(const char * image_filename,const char * image_location,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)658 static std::unique_ptr<ImageSpace> Init(const char* image_filename,
659 const char* image_location,
660 TimingLogger* logger,
661 /*inout*/MemMap* image_reservation,
662 /*out*/std::string* error_msg)
663 REQUIRES_SHARED(Locks::mutator_lock_) {
664 CHECK(image_filename != nullptr);
665 CHECK(image_location != nullptr);
666
667 std::unique_ptr<File> file;
668 {
669 TimingLogger::ScopedTiming timing("OpenImageFile", logger);
670 file.reset(OS::OpenFileForReading(image_filename));
671 if (file == nullptr) {
672 *error_msg = StringPrintf("Failed to open '%s'", image_filename);
673 return nullptr;
674 }
675 }
676 return Init(file.get(),
677 image_filename,
678 image_location,
679 /*profile_files=*/ {},
680 /*allow_direct_mapping=*/ true,
681 logger,
682 image_reservation,
683 error_msg);
684 }
685
Init(File * file,const char * image_filename,const char * image_location,const std::vector<std::string> & profile_files,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)686 static std::unique_ptr<ImageSpace> Init(File* file,
687 const char* image_filename,
688 const char* image_location,
689 const std::vector<std::string>& profile_files,
690 bool allow_direct_mapping,
691 TimingLogger* logger,
692 /*inout*/MemMap* image_reservation,
693 /*out*/std::string* error_msg)
694 REQUIRES_SHARED(Locks::mutator_lock_) {
695 CHECK(image_filename != nullptr);
696 CHECK(image_location != nullptr);
697
698 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
699
700 ImageHeader image_header;
701 {
702 TimingLogger::ScopedTiming timing("ReadImageHeader", logger);
703 bool success = file->PreadFully(&image_header, sizeof(image_header), /*offset=*/ 0u);
704 if (!success || !image_header.IsValid()) {
705 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
706 return nullptr;
707 }
708 }
709 // Check that the file is larger or equal to the header size + data size.
710 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
711 if (image_file_size < sizeof(ImageHeader) + image_header.GetDataSize()) {
712 *error_msg = StringPrintf(
713 "Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
714 image_file_size,
715 static_cast<uint64_t>(sizeof(ImageHeader) + image_header.GetDataSize()));
716 return nullptr;
717 }
718
719 if (VLOG_IS_ON(startup)) {
720 LOG(INFO) << "Dumping image sections";
721 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
722 const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
723 auto& section = image_header.GetImageSection(section_idx);
724 LOG(INFO) << section_idx << " start="
725 << reinterpret_cast<void*>(image_header.GetImageBegin() + section.Offset()) << " "
726 << section;
727 }
728 }
729
730 const auto& bitmap_section = image_header.GetImageBitmapSection();
731 // The location we want to map from is the first aligned page after the end of the stored
732 // (possibly compressed) data.
733 const size_t image_bitmap_offset =
734 RoundUp(sizeof(ImageHeader) + image_header.GetDataSize(), kElfSegmentAlignment);
735 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
736 if (end_of_bitmap != image_file_size) {
737 *error_msg = StringPrintf(
738 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.",
739 image_file_size,
740 end_of_bitmap);
741 return nullptr;
742 }
743
744 // GetImageBegin is the preferred address to map the image. If we manage to map the
745 // image at the image begin, the amount of fixup work required is minimized.
746 // If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to
747 // avoid reading proc maps for a mapping failure and slowing everything down.
748 // For the boot image, we have already reserved the memory and we load the image
749 // into the `image_reservation`.
750 MemMap map = LoadImageFile(
751 image_filename,
752 image_location,
753 image_header,
754 file->Fd(),
755 allow_direct_mapping,
756 logger,
757 image_reservation,
758 error_msg);
759 if (!map.IsValid()) {
760 DCHECK(!error_msg->empty());
761 return nullptr;
762 }
763 DCHECK_EQ(0, memcmp(&image_header, map.Begin(), sizeof(ImageHeader)));
764
765 MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(),
766 PROT_READ,
767 MAP_PRIVATE,
768 file->Fd(),
769 image_bitmap_offset,
770 /*low_4gb=*/ false,
771 image_filename,
772 error_msg);
773 if (!image_bitmap_map.IsValid()) {
774 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
775 return nullptr;
776 }
777 const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1);
778 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
779 image_filename,
780 bitmap_index));
781 // Bitmap only needs to cover until the end of the mirror objects section.
782 const ImageSection& image_objects = image_header.GetObjectsSection();
783 // We only want the mirror object, not the ArtFields and ArtMethods.
784 uint8_t* const image_end = map.Begin() + image_objects.End();
785 accounting::ContinuousSpaceBitmap bitmap;
786 {
787 TimingLogger::ScopedTiming timing("CreateImageBitmap", logger);
788 bitmap = accounting::ContinuousSpaceBitmap::CreateFromMemMap(
789 bitmap_name,
790 std::move(image_bitmap_map),
791 reinterpret_cast<uint8_t*>(map.Begin()),
792 // Make sure the bitmap is aligned to card size instead of just bitmap word size.
793 RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize));
794 if (!bitmap.IsValid()) {
795 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
796 return nullptr;
797 }
798 }
799 // We only want the mirror object, not the ArtFields and ArtMethods.
800 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
801 image_location,
802 profile_files,
803 std::move(map),
804 std::move(bitmap),
805 image_end));
806 return space;
807 }
808
CheckImageComponentCount(const ImageSpace & space,uint32_t expected_component_count,std::string * error_msg)809 static bool CheckImageComponentCount(const ImageSpace& space,
810 uint32_t expected_component_count,
811 /*out*/std::string* error_msg) {
812 const ImageHeader& header = space.GetImageHeader();
813 if (header.GetComponentCount() != expected_component_count) {
814 *error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u",
815 space.GetImageFilename().c_str(),
816 header.GetComponentCount(),
817 expected_component_count);
818 return false;
819 }
820 return true;
821 }
822
CheckImageReservationSize(const ImageSpace & space,uint32_t expected_reservation_size,std::string * error_msg)823 static bool CheckImageReservationSize(const ImageSpace& space,
824 uint32_t expected_reservation_size,
825 /*out*/std::string* error_msg) {
826 const ImageHeader& header = space.GetImageHeader();
827 if (header.GetImageReservationSize() != expected_reservation_size) {
828 *error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u",
829 space.GetImageFilename().c_str(),
830 header.GetImageReservationSize(),
831 expected_reservation_size);
832 return false;
833 }
834 return true;
835 }
836
837 template <typename Container>
RemoveInternTableDuplicates(const Container & old_spaces,ImageSpace * new_space,SafeMap<mirror::String *,mirror::String * > * intern_remap)838 static void RemoveInternTableDuplicates(
839 const Container& old_spaces,
840 /*inout*/ImageSpace* new_space,
841 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
842 REQUIRES_SHARED(Locks::mutator_lock_) {
843 const ImageSection& new_interns = new_space->GetImageHeader().GetInternedStringsSection();
844 if (new_interns.Size() != 0u) {
845 const uint8_t* new_data = new_space->Begin() + new_interns.Offset();
846 size_t new_read_count;
847 InternTable::UnorderedSet new_set(new_data, /*make_copy_of_data=*/ false, &new_read_count);
848 for (const auto& old_space : old_spaces) {
849 const ImageSection& old_interns = old_space->GetImageHeader().GetInternedStringsSection();
850 if (old_interns.Size() != 0u) {
851 const uint8_t* old_data = old_space->Begin() + old_interns.Offset();
852 size_t old_read_count;
853 InternTable::UnorderedSet old_set(
854 old_data, /*make_copy_of_data=*/ false, &old_read_count);
855 RemoveDuplicates(old_set, &new_set, intern_remap);
856 }
857 }
858 }
859 }
860
RemapInternedStringDuplicates(const SafeMap<mirror::String *,mirror::String * > & intern_remap,ImageSpace * new_space)861 static void RemapInternedStringDuplicates(
862 const SafeMap<mirror::String*, mirror::String*>& intern_remap,
863 ImageSpace* new_space) REQUIRES_SHARED(Locks::mutator_lock_) {
864 RemapInternedStringsVisitor visitor(intern_remap);
865 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
866 uint32_t objects_end = new_space->GetImageHeader().GetObjectsSection().Size();
867 DCHECK_ALIGNED(objects_end, kObjectAlignment);
868 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
869 mirror::Object* object = reinterpret_cast<mirror::Object*>(new_space->Begin() + pos);
870 object->VisitReferences</*kVisitNativeRoots=*/ false,
871 kVerifyNone,
872 kWithoutReadBarrier>(visitor, visitor);
873 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
874 }
875 }
876
877 private:
878 // Remove duplicates found in the `old_set` from the `new_set`.
879 // Record the removed Strings for remapping. No read barriers are needed as the
880 // tables are either just being loaded and not yet a part of the heap, or boot
881 // image intern tables with non-moveable Strings used when loading an app image.
RemoveDuplicates(const InternTable::UnorderedSet & old_set,InternTable::UnorderedSet * new_set,SafeMap<mirror::String *,mirror::String * > * intern_remap)882 static void RemoveDuplicates(const InternTable::UnorderedSet& old_set,
883 /*inout*/InternTable::UnorderedSet* new_set,
884 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
885 REQUIRES_SHARED(Locks::mutator_lock_) {
886 if (old_set.size() < new_set->size()) {
887 for (const GcRoot<mirror::String>& old_s : old_set) {
888 auto new_it = new_set->find(old_s);
889 if (UNLIKELY(new_it != new_set->end())) {
890 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(), old_s.Read<kWithoutReadBarrier>());
891 new_set->erase(new_it);
892 }
893 }
894 } else {
895 for (auto new_it = new_set->begin(), end = new_set->end(); new_it != end; ) {
896 auto old_it = old_set.find(*new_it);
897 if (UNLIKELY(old_it != old_set.end())) {
898 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(),
899 old_it->Read<kWithoutReadBarrier>());
900 new_it = new_set->erase(new_it);
901 } else {
902 ++new_it;
903 }
904 }
905 }
906 }
907
ValidateBootImageChecksum(const char * image_filename,const ImageHeader & image_header,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,size_t * boot_image_space_dependencies,std::string * error_msg)908 static bool ValidateBootImageChecksum(const char* image_filename,
909 const ImageHeader& image_header,
910 const OatFile* oat_file,
911 ArrayRef<ImageSpace* const> boot_image_spaces,
912 /*out*/size_t* boot_image_space_dependencies,
913 /*out*/std::string* error_msg) {
914 // Use the boot image component count to calculate the checksum from
915 // the appropriate number of boot image chunks.
916 uint32_t boot_image_component_count = image_header.GetBootImageComponentCount();
917 size_t expected_image_component_count = ImageSpace::GetNumberOfComponents(boot_image_spaces);
918 if (boot_image_component_count > expected_image_component_count) {
919 *error_msg = StringPrintf("Too many boot image dependencies (%u > %zu) in image %s",
920 boot_image_component_count,
921 expected_image_component_count,
922 image_filename);
923 return false;
924 }
925 uint32_t checksum = 0u;
926 size_t chunk_count = 0u;
927 size_t space_pos = 0u;
928 uint64_t boot_image_size = 0u;
929 for (size_t component_count = 0u; component_count != boot_image_component_count; ) {
930 const ImageHeader& current_header = boot_image_spaces[space_pos]->GetImageHeader();
931 if (current_header.GetComponentCount() > boot_image_component_count - component_count) {
932 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
933 "%u is between %zu and %zu",
934 image_filename,
935 boot_image_component_count,
936 component_count,
937 component_count + current_header.GetComponentCount());
938 return false;
939 }
940 component_count += current_header.GetComponentCount();
941 checksum ^= current_header.GetImageChecksum();
942 chunk_count += 1u;
943 space_pos += current_header.GetImageSpaceCount();
944 boot_image_size += current_header.GetImageReservationSize();
945 }
946 if (image_header.GetBootImageChecksum() != checksum) {
947 *error_msg = StringPrintf("Boot image checksum mismatch (0x%08x != 0x%08x) in image %s",
948 image_header.GetBootImageChecksum(),
949 checksum,
950 image_filename);
951 return false;
952 }
953 if (image_header.GetBootImageSize() != boot_image_size) {
954 *error_msg = StringPrintf("Boot image size mismatch (0x%08x != 0x%08" PRIx64 ") in image %s",
955 image_header.GetBootImageSize(),
956 boot_image_size,
957 image_filename);
958 return false;
959 }
960 // Oat checksums, if present, have already been validated, so we know that
961 // they match the loaded image spaces. Therefore, we just verify that they
962 // are consistent in the number of boot image chunks they list by looking
963 // for the kImageChecksumPrefix at the start of each component.
964 const char* oat_boot_class_path_checksums =
965 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
966 if (oat_boot_class_path_checksums != nullptr) {
967 size_t oat_bcp_chunk_count = 0u;
968 while (*oat_boot_class_path_checksums == kImageChecksumPrefix) {
969 oat_bcp_chunk_count += 1u;
970 // Find the start of the next component if any.
971 const char* separator = strchr(oat_boot_class_path_checksums, ':');
972 oat_boot_class_path_checksums = (separator != nullptr) ? separator + 1u : "";
973 }
974 if (oat_bcp_chunk_count != chunk_count) {
975 *error_msg = StringPrintf("Boot image chunk count mismatch (%zu != %zu) in image %s",
976 oat_bcp_chunk_count,
977 chunk_count,
978 image_filename);
979 return false;
980 }
981 }
982 *boot_image_space_dependencies = space_pos;
983 return true;
984 }
985
LoadImageFile(const char * image_filename,const char * image_location,const ImageHeader & image_header,int fd,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)986 static MemMap LoadImageFile(const char* image_filename,
987 const char* image_location,
988 const ImageHeader& image_header,
989 int fd,
990 bool allow_direct_mapping,
991 TimingLogger* logger,
992 /*inout*/MemMap* image_reservation,
993 /*out*/std::string* error_msg)
994 REQUIRES_SHARED(Locks::mutator_lock_) {
995 TimingLogger::ScopedTiming timing("MapImageFile", logger);
996
997 // The runtime might not be available at this point if we're running dex2oat or oatdump, in
998 // which case we just truncate the madvise optimization limit completely.
999 Runtime* runtime = Runtime::Current();
1000 const size_t madvise_size_limit = runtime ? runtime->GetMadviseWillNeedSizeArt() : 0;
1001
1002 const bool is_compressed = image_header.HasCompressedBlock();
1003 if (!is_compressed && allow_direct_mapping) {
1004 uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr;
1005 // The reserved memory size is aligned up to kElfSegmentAlignment to ensure
1006 // that the next reserved area will be aligned to the value.
1007 MemMap map = MemMap::MapFileAtAddress(
1008 address,
1009 CondRoundUp<kPageSizeAgnostic>(image_header.GetImageSize(), kElfSegmentAlignment),
1010 PROT_READ | PROT_WRITE,
1011 MAP_PRIVATE,
1012 fd,
1013 /*start=*/0,
1014 /*low_4gb=*/true,
1015 image_filename,
1016 /*reuse=*/false,
1017 image_reservation,
1018 error_msg);
1019 if (map.IsValid()) {
1020 Runtime::MadviseFileForRange(
1021 madvise_size_limit, map.Size(), map.Begin(), map.End(), image_filename);
1022 }
1023 return map;
1024 }
1025
1026 // Reserve output and copy/decompress into it.
1027 // The reserved memory size is aligned up to kElfSegmentAlignment to ensure
1028 // that the next reserved area will be aligned to the value.
1029 MemMap map = MemMap::MapAnonymous(image_location,
1030 CondRoundUp<kPageSizeAgnostic>(image_header.GetImageSize(),
1031 kElfSegmentAlignment),
1032 PROT_READ | PROT_WRITE,
1033 /*low_4gb=*/ true,
1034 image_reservation,
1035 error_msg);
1036 if (map.IsValid()) {
1037 const size_t stored_size = image_header.GetDataSize();
1038 MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size,
1039 PROT_READ,
1040 MAP_PRIVATE,
1041 fd,
1042 /*start=*/ 0,
1043 /*low_4gb=*/ false,
1044 image_filename,
1045 error_msg);
1046 if (!temp_map.IsValid()) {
1047 DCHECK(error_msg == nullptr || !error_msg->empty());
1048 return MemMap::Invalid();
1049 }
1050
1051 Runtime::MadviseFileForRange(
1052 madvise_size_limit, temp_map.Size(), temp_map.Begin(), temp_map.End(), image_filename);
1053
1054 if (is_compressed) {
1055 memcpy(map.Begin(), &image_header, sizeof(ImageHeader));
1056
1057 Runtime::ScopedThreadPoolUsage stpu;
1058 ThreadPool* const pool = stpu.GetThreadPool();
1059 const uint64_t start = NanoTime();
1060 Thread* const self = Thread::Current();
1061 static constexpr size_t kMinBlocks = 2u;
1062 const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks;
1063 bool failed_decompression = false;
1064 for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) {
1065 auto function = [&](Thread*) {
1066 const uint64_t start2 = NanoTime();
1067 ScopedTrace trace("LZ4 decompress block");
1068 bool result = block.Decompress(/*out_ptr=*/map.Begin(),
1069 /*in_ptr=*/temp_map.Begin(),
1070 error_msg);
1071 if (!result) {
1072 failed_decompression = true;
1073 if (error_msg != nullptr) {
1074 *error_msg = "Failed to decompress image block " + *error_msg;
1075 }
1076 }
1077 VLOG(image) << "Decompress block " << block.GetDataSize() << " -> "
1078 << block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2);
1079 };
1080 if (use_parallel) {
1081 pool->AddTask(self, new FunctionTask(std::move(function)));
1082 } else {
1083 function(self);
1084 }
1085 }
1086 if (use_parallel) {
1087 ScopedTrace trace("Waiting for workers");
1088 // Go to native since we don't want to suspend while holding the mutator lock.
1089 ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1090 pool->Wait(self, true, false);
1091 }
1092 const uint64_t time = NanoTime() - start;
1093 // Add one 1 ns to prevent possible divide by 0.
1094 VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
1095 << PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1))
1096 << "/s)";
1097 if (failed_decompression) {
1098 DCHECK(error_msg == nullptr || !error_msg->empty());
1099 return MemMap::Invalid();
1100 }
1101 } else {
1102 DCHECK(!allow_direct_mapping);
1103 // We do not allow direct mapping for boot image extensions compiled to a memfd.
1104 // This prevents wasting memory by kernel keeping the contents of the file alive
1105 // despite these contents being unreachable once the file descriptor is closed
1106 // and mmapped memory is copied for all existing mappings.
1107 //
1108 // Most pages would be copied during relocation while there is only one mapping.
1109 // We could use MAP_SHARED for relocation and then msync() and remap MAP_PRIVATE
1110 // as required for forking from zygote, but there would still be some pages
1111 // wasted anyway and we want to avoid that. (For example, static synchronized
1112 // methods use the class object for locking and thus modify its lockword.)
1113
1114 // No other process should race to overwrite the extension in memfd.
1115 DCHECK_EQ(memcmp(temp_map.Begin(), &image_header, sizeof(ImageHeader)), 0);
1116 memcpy(map.Begin(), temp_map.Begin(), temp_map.Size());
1117 }
1118 }
1119
1120 return map;
1121 }
1122
1123 class EmptyRange {
1124 public:
InSource(uintptr_t) const1125 ALWAYS_INLINE bool InSource(uintptr_t) const { return false; }
InDest(uintptr_t) const1126 ALWAYS_INLINE bool InDest(uintptr_t) const { return false; }
ToDest(uintptr_t) const1127 ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const {
1128 LOG(FATAL) << "Unreachable";
1129 UNREACHABLE();
1130 }
1131 };
1132
1133 template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange>
1134 class ForwardAddress {
1135 public:
ForwardAddress(const Range0 & range0=Range0 (),const Range1 & range1=Range1 (),const Range2 & range2=Range2 ())1136 explicit ForwardAddress(const Range0& range0 = Range0(),
1137 const Range1& range1 = Range1(),
1138 const Range2& range2 = Range2())
1139 : range0_(range0), range1_(range1), range2_(range2) {}
1140
1141 // Return the relocated address of a heap object.
1142 // Null checks must be performed in the caller (for performance reasons).
1143 template <typename T>
operator ()(T * src) const1144 ALWAYS_INLINE T* operator()(T* src) const {
1145 DCHECK(src != nullptr);
1146 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
1147 if (range2_.InSource(uint_src)) {
1148 return reinterpret_cast<T*>(range2_.ToDest(uint_src));
1149 }
1150 if (range1_.InSource(uint_src)) {
1151 return reinterpret_cast<T*>(range1_.ToDest(uint_src));
1152 }
1153 CHECK(range0_.InSource(uint_src))
1154 << reinterpret_cast<const void*>(src) << " not in "
1155 << reinterpret_cast<const void*>(range0_.Source()) << "-"
1156 << reinterpret_cast<const void*>(range0_.Source() + range0_.Length());
1157 return reinterpret_cast<T*>(range0_.ToDest(uint_src));
1158 }
1159
1160 private:
1161 const Range0 range0_;
1162 const Range1 range1_;
1163 const Range2 range2_;
1164 };
1165
1166 template <typename Forward>
1167 class FixupRootVisitor {
1168 public:
1169 template<typename... Args>
FixupRootVisitor(Args...args)1170 explicit FixupRootVisitor(Args... args) : forward_(args...) {}
1171
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1172 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1173 REQUIRES_SHARED(Locks::mutator_lock_) {
1174 if (!root->IsNull()) {
1175 VisitRoot(root);
1176 }
1177 }
1178
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1179 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1180 REQUIRES_SHARED(Locks::mutator_lock_) {
1181 mirror::Object* ref = root->AsMirrorPtr();
1182 mirror::Object* new_ref = forward_(ref);
1183 if (ref != new_ref) {
1184 root->Assign(new_ref);
1185 }
1186 }
1187
1188 private:
1189 Forward forward_;
1190 };
1191
1192 template <typename Forward>
1193 class FixupObjectVisitor {
1194 public:
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const Forward & forward)1195 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
1196 const Forward& forward)
1197 : visited_(visited), forward_(forward) {}
1198
1199 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1200 ALWAYS_INLINE void VisitRootIfNonNull(
1201 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
1202
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1203 ALWAYS_INLINE void VisitRoot(
1204 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
1205
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const1206 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1207 MemberOffset offset,
1208 [[maybe_unused]] bool is_static) const NO_THREAD_SAFETY_ANALYSIS {
1209 // Space is not yet added to the heap, don't do a read barrier.
1210 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
1211 offset);
1212 if (ref != nullptr) {
1213 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1214 // image.
1215 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref));
1216 }
1217 }
1218
1219 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1220 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1221 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1222 DCHECK(klass->IsTypeOfReferenceClass());
1223 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
1224 }
1225
operator ()(mirror::Object * obj) const1226 void operator()(mirror::Object* obj) const
1227 NO_THREAD_SAFETY_ANALYSIS {
1228 if (!visited_->Set(obj)) {
1229 // Not already visited.
1230 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
1231 *this,
1232 *this);
1233 CHECK(!obj->IsClass());
1234 }
1235 }
1236
1237 private:
1238 gc::accounting::ContinuousSpaceBitmap* const visited_;
1239 Forward forward_;
1240 };
1241
1242 // Relocate an image space mapped at target_base which possibly used to be at a different base
1243 // address. In place means modifying a single ImageSpace in place rather than relocating from
1244 // one ImageSpace to another.
1245 template <PointerSize kPointerSize>
RelocateInPlace(uint32_t boot_image_begin,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)1246 static bool RelocateInPlace(uint32_t boot_image_begin,
1247 uint8_t* target_base,
1248 accounting::ContinuousSpaceBitmap* bitmap,
1249 const OatFile* app_oat_file,
1250 std::string* error_msg) {
1251 DCHECK(error_msg != nullptr);
1252 // Set up sections.
1253 ImageHeader* image_header = reinterpret_cast<ImageHeader*>(target_base);
1254 const uint32_t boot_image_size = image_header->GetBootImageSize();
1255 const ImageSection& objects_section = image_header->GetObjectsSection();
1256 // Where the app image objects are mapped to.
1257 uint8_t* objects_location = target_base + objects_section.Offset();
1258 TimingLogger logger(__FUNCTION__, true, false);
1259 RelocationRange boot_image(image_header->GetBootImageBegin(),
1260 boot_image_begin,
1261 boot_image_size);
1262 // Metadata is everything after the objects section, use exclusion to be safe.
1263 RelocationRange app_image_metadata(
1264 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.End(),
1265 reinterpret_cast<uintptr_t>(target_base) + objects_section.End(),
1266 image_header->GetImageSize() - objects_section.End());
1267 // App image heap objects, may be mapped in the heap.
1268 RelocationRange app_image_objects(
1269 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.Offset(),
1270 reinterpret_cast<uintptr_t>(objects_location),
1271 objects_section.Size());
1272 // Use the oat data section since this is where the OatFile::Begin is.
1273 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header->GetOatDataBegin()),
1274 // Not necessarily in low 4GB.
1275 reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1276 image_header->GetOatDataEnd() - image_header->GetOatDataBegin());
1277 VLOG(image) << "App image metadata " << app_image_metadata;
1278 VLOG(image) << "App image objects " << app_image_objects;
1279 VLOG(image) << "App oat " << app_oat;
1280 VLOG(image) << "Boot image " << boot_image;
1281 // True if we need to fixup any heap pointers.
1282 const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 ||
1283 app_image_objects.Delta() != 0;
1284 if (!fixup_image) {
1285 // Nothing to fix up.
1286 return true;
1287 }
1288 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1289 // TODO: Assert that the app image does not contain any Method, Constructor,
1290 // FieldVarHandle or StaticFieldVarHandle. These require extra relocation
1291 // for the `ArtMethod*` and `ArtField*` pointers they contain.
1292
1293 using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>;
1294 ForwardObject forward_object(boot_image, app_image_objects);
1295 ForwardObject forward_metadata(boot_image, app_image_metadata);
1296 using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>;
1297 ForwardCode forward_code(boot_image, app_oat);
1298 PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor(
1299 forward_object,
1300 forward_metadata);
1301 if (fixup_image) {
1302 // Two pass approach, fix up all classes first, then fix up non class-objects.
1303 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1304 gc::accounting::ContinuousSpaceBitmap visited_bitmap(
1305 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1306 target_base,
1307 image_header->GetImageSize()));
1308 {
1309 TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1310 ObjPtr<mirror::Class> class_class = [&]() NO_THREAD_SAFETY_ANALYSIS {
1311 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots = app_image_objects.ToDest(
1312 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr());
1313 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
1314 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
1315 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
1316 ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(boot_image.ToDest(
1317 image_roots->GetWithoutChecks<kVerifyNone,
1318 kWithoutReadBarrier>(class_roots_index).Ptr()));
1319 return GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
1320 }();
1321 const auto& class_table_section = image_header->GetClassTableSection();
1322 if (class_table_section.Size() > 0u) {
1323 ScopedObjectAccess soa(Thread::Current());
1324 ClassTableVisitor class_table_visitor(forward_object);
1325 size_t read_count = 0u;
1326 const uint8_t* data = target_base + class_table_section.Offset();
1327 // We avoid making a copy of the data since we want modifications to be propagated to the
1328 // memory map.
1329 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
1330 for (ClassTable::TableSlot& slot : temp_set) {
1331 slot.VisitRoot(class_table_visitor);
1332 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
1333 if (!app_image_objects.InDest(klass.Ptr())) {
1334 continue;
1335 }
1336 const bool already_marked = visited_bitmap.Set(klass.Ptr());
1337 CHECK(!already_marked) << "App image class already visited";
1338 patch_object_visitor.VisitClass(klass, class_class);
1339 // Then patch the non-embedded vtable and iftable.
1340 ObjPtr<mirror::PointerArray> vtable =
1341 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1342 if (vtable != nullptr &&
1343 app_image_objects.InDest(vtable.Ptr()) &&
1344 !visited_bitmap.Set(vtable.Ptr())) {
1345 patch_object_visitor.VisitPointerArray(vtable);
1346 }
1347 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1348 if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) {
1349 // Avoid processing the fields of iftable since we will process them later anyways
1350 // below.
1351 int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
1352 for (int32_t i = 0; i != ifcount; ++i) {
1353 ObjPtr<mirror::PointerArray> unpatched_ifarray =
1354 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1355 if (unpatched_ifarray != nullptr) {
1356 // The iftable has not been patched, so we need to explicitly adjust the pointer.
1357 ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr());
1358 if (app_image_objects.InDest(ifarray.Ptr()) &&
1359 !visited_bitmap.Set(ifarray.Ptr())) {
1360 patch_object_visitor.VisitPointerArray(ifarray);
1361 }
1362 }
1363 }
1364 }
1365 }
1366 }
1367 }
1368
1369 // Fixup objects may read fields in the boot image so we hold the mutator lock (although it is
1370 // probably not required).
1371 TimingLogger::ScopedTiming timing("Fixup objects", &logger);
1372 ScopedObjectAccess soa(Thread::Current());
1373 // Need to update the image to be at the target base.
1374 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1375 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1376 FixupObjectVisitor<ForwardObject> fixup_object_visitor(&visited_bitmap, forward_object);
1377 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1378 // Fixup image roots.
1379 CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>(
1380 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr())));
1381 image_header->RelocateImageReferences(app_image_objects.Delta());
1382 image_header->RelocateBootImageReferences(boot_image.Delta());
1383 CHECK_EQ(image_header->GetImageBegin(), target_base);
1384
1385 // Fix up dex cache arrays.
1386 ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
1387 image_header->GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)
1388 ->AsObjectArray<mirror::DexCache, kVerifyNone>();
1389 for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1390 ObjPtr<mirror::DexCache> dex_cache =
1391 dex_caches->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(i);
1392 patch_object_visitor.VisitDexCacheArrays(dex_cache);
1393 }
1394 }
1395 {
1396 // Only touches objects in the app image, no need for mutator lock.
1397 TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1398 image_header->VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
1399 // TODO: Consider a separate visitor for runtime vs normal methods.
1400 if (UNLIKELY(method.IsRuntimeMethod())) {
1401 ImtConflictTable* table = method.GetImtConflictTable(kPointerSize);
1402 if (table != nullptr) {
1403 ImtConflictTable* new_table = forward_metadata(table);
1404 if (table != new_table) {
1405 method.SetImtConflictTable(new_table, kPointerSize);
1406 }
1407 }
1408 const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize);
1409 const void* new_code = forward_code(old_code);
1410 if (old_code != new_code) {
1411 method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize);
1412 }
1413 } else {
1414 patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
1415 method.UpdateEntrypoints(forward_code, kPointerSize);
1416 }
1417 }, target_base, kPointerSize);
1418 }
1419 if (fixup_image) {
1420 {
1421 // Only touches objects in the app image, no need for mutator lock.
1422 TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1423 image_header->VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS {
1424 patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
1425 &field.DeclaringClassRoot());
1426 }, target_base);
1427 }
1428 {
1429 TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1430 image_header->VisitPackedImTables(forward_metadata, target_base, kPointerSize);
1431 }
1432 {
1433 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1434 image_header->VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize);
1435 }
1436 // Fix up the intern table.
1437 const auto& intern_table_section = image_header->GetInternedStringsSection();
1438 if (intern_table_section.Size() > 0u) {
1439 TimingLogger::ScopedTiming timing("Fixup intern table", &logger);
1440 ScopedObjectAccess soa(Thread::Current());
1441 // Fixup the pointers in the newly written intern table to contain image addresses.
1442 InternTable temp_intern_table;
1443 // Note that we require that ReadFromMemory does not make an internal copy of the elements
1444 // so that the VisitRoots() will update the memory directly rather than the copies.
1445 temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(),
1446 [&](InternTable::UnorderedSet& strings)
1447 REQUIRES_SHARED(Locks::mutator_lock_) {
1448 for (GcRoot<mirror::String>& root : strings) {
1449 root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>()));
1450 }
1451 }, /*is_boot_image=*/ false);
1452 }
1453 }
1454 if (VLOG_IS_ON(image)) {
1455 logger.Dump(LOG_STREAM(INFO));
1456 }
1457 return true;
1458 }
1459 };
1460
AppendImageChecksum(uint32_t component_count,uint32_t checksum,std::string * checksums)1461 void ImageSpace::AppendImageChecksum(uint32_t component_count,
1462 uint32_t checksum,
1463 /*inout*/ std::string* checksums) {
1464 static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check.");
1465 StringAppendF(checksums, "i;%u/%08x", component_count, checksum);
1466 }
1467
CheckAndRemoveImageChecksum(uint32_t component_count,uint32_t checksum,std::string_view * oat_checksums,std::string * error_msg)1468 static bool CheckAndRemoveImageChecksum(uint32_t component_count,
1469 uint32_t checksum,
1470 /*inout*/std::string_view* oat_checksums,
1471 /*out*/std::string* error_msg) {
1472 std::string image_checksum;
1473 ImageSpace::AppendImageChecksum(component_count, checksum, &image_checksum);
1474 if (!oat_checksums->starts_with(image_checksum)) {
1475 *error_msg = StringPrintf("Image checksum mismatch, expected %s to start with %s",
1476 std::string(*oat_checksums).c_str(),
1477 image_checksum.c_str());
1478 return false;
1479 }
1480 oat_checksums->remove_prefix(image_checksum.size());
1481 return true;
1482 }
1483
GetPrimaryImageLocation()1484 std::string ImageSpace::BootImageLayout::GetPrimaryImageLocation() {
1485 DCHECK(!image_locations_.empty());
1486 std::string location = image_locations_[0];
1487 size_t profile_separator_pos = location.find(kProfileSeparator);
1488 if (profile_separator_pos != std::string::npos) {
1489 location.resize(profile_separator_pos);
1490 }
1491 if (location.find('/') == std::string::npos) {
1492 // No path, so use the path from the first boot class path component.
1493 size_t slash_pos = boot_class_path_.empty()
1494 ? std::string::npos
1495 : boot_class_path_[0].rfind('/');
1496 if (slash_pos == std::string::npos) {
1497 return std::string();
1498 }
1499 location.insert(0u, boot_class_path_[0].substr(0u, slash_pos + 1u));
1500 }
1501 return location;
1502 }
1503
VerifyImageLocation(ArrayRef<const std::string> components,size_t * named_components_count,std::string * error_msg)1504 bool ImageSpace::BootImageLayout::VerifyImageLocation(
1505 ArrayRef<const std::string> components,
1506 /*out*/size_t* named_components_count,
1507 /*out*/std::string* error_msg) {
1508 DCHECK(named_components_count != nullptr);
1509
1510 // Validate boot class path. Require a path and non-empty name in each component.
1511 for (const std::string& bcp_component : boot_class_path_) {
1512 size_t bcp_slash_pos = bcp_component.rfind('/');
1513 if (bcp_slash_pos == std::string::npos || bcp_slash_pos == bcp_component.size() - 1u) {
1514 *error_msg = StringPrintf("Invalid boot class path component: %s", bcp_component.c_str());
1515 return false;
1516 }
1517 }
1518
1519 // Validate the format of image location components.
1520 size_t components_size = components.size();
1521 if (components_size == 0u) {
1522 *error_msg = "Empty image location.";
1523 return false;
1524 }
1525 size_t wildcards_start = components_size; // No wildcards.
1526 for (size_t i = 0; i != components_size; ++i) {
1527 const std::string& component = components[i];
1528 DCHECK(!component.empty()); // Guaranteed by Split().
1529 std::vector<std::string> parts = android::base::Split(component, {kProfileSeparator});
1530 size_t wildcard_pos = component.find('*');
1531 if (wildcard_pos == std::string::npos) {
1532 if (wildcards_start != components.size()) {
1533 *error_msg =
1534 StringPrintf("Image component without wildcard after component with wildcard: %s",
1535 component.c_str());
1536 return false;
1537 }
1538 for (size_t j = 0; j < parts.size(); j++) {
1539 if (parts[j].empty()) {
1540 *error_msg = StringPrintf("Missing component and/or profile name in %s",
1541 component.c_str());
1542 return false;
1543 }
1544 if (parts[j].back() == '/') {
1545 *error_msg = StringPrintf("%s name ends with path separator: %s",
1546 j == 0 ? "Image component" : "Profile",
1547 component.c_str());
1548 return false;
1549 }
1550 }
1551 } else {
1552 if (parts.size() > 1) {
1553 *error_msg = StringPrintf("Unsupproted wildcard (*) and profile delimiter (!) in %s",
1554 component.c_str());
1555 return false;
1556 }
1557 if (wildcards_start == components_size) {
1558 wildcards_start = i;
1559 }
1560 // Wildcard must be the last character.
1561 if (wildcard_pos != component.size() - 1u) {
1562 *error_msg = StringPrintf("Unsupported wildcard (*) position in %s", component.c_str());
1563 return false;
1564 }
1565 // And it must be either plain wildcard or preceded by a path separator.
1566 if (component.size() != 1u && component[wildcard_pos - 1u] != '/') {
1567 *error_msg = StringPrintf("Non-plain wildcard (*) not preceded by path separator '/': %s",
1568 component.c_str());
1569 return false;
1570 }
1571 if (i == 0) {
1572 *error_msg = StringPrintf("Primary component contains wildcard (*): %s", component.c_str());
1573 return false;
1574 }
1575 }
1576 }
1577
1578 *named_components_count = wildcards_start;
1579 return true;
1580 }
1581
MatchNamedComponents(ArrayRef<const std::string> named_components,std::vector<NamedComponentLocation> * named_component_locations,std::string * error_msg)1582 bool ImageSpace::BootImageLayout::MatchNamedComponents(
1583 ArrayRef<const std::string> named_components,
1584 /*out*/std::vector<NamedComponentLocation>* named_component_locations,
1585 /*out*/std::string* error_msg) {
1586 DCHECK(!named_components.empty());
1587 DCHECK(named_component_locations->empty());
1588 named_component_locations->reserve(named_components.size());
1589 size_t bcp_component_count = boot_class_path_.size();
1590 size_t bcp_pos = 0;
1591 std::string base_name;
1592 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
1593 std::string component = named_components[i];
1594 std::vector<std::string> profile_filenames; // Empty.
1595 std::vector<std::string> parts = android::base::Split(component, {kProfileSeparator});
1596 for (size_t j = 0; j < parts.size(); j++) {
1597 if (j == 0) {
1598 component = std::move(parts[j]);
1599 DCHECK(!component.empty()); // Checked by VerifyImageLocation()
1600 } else {
1601 profile_filenames.push_back(std::move(parts[j]));
1602 DCHECK(!profile_filenames.back().empty()); // Checked by VerifyImageLocation()
1603 }
1604 }
1605 size_t slash_pos = component.rfind('/');
1606 std::string base_location;
1607 if (i == 0u) {
1608 // The primary boot image name is taken as provided. It forms the base
1609 // for expanding the extension filenames.
1610 if (slash_pos != std::string::npos) {
1611 base_name = component.substr(slash_pos + 1u);
1612 base_location = component;
1613 } else {
1614 base_name = component;
1615 base_location = GetBcpComponentPath(0u) + component;
1616 }
1617 } else {
1618 std::string to_match;
1619 if (slash_pos != std::string::npos) {
1620 // If we have the full path, we just need to match the filename to the BCP component.
1621 base_location = component.substr(0u, slash_pos + 1u) + base_name;
1622 to_match = component;
1623 }
1624 while (true) {
1625 if (slash_pos == std::string::npos) {
1626 // If we do not have a full path, we need to update the path based on the BCP location.
1627 std::string path = GetBcpComponentPath(bcp_pos);
1628 to_match = path + component;
1629 base_location = path + base_name;
1630 }
1631 if (ExpandLocation(base_location, bcp_pos) == to_match) {
1632 break;
1633 }
1634 ++bcp_pos;
1635 if (bcp_pos == bcp_component_count) {
1636 *error_msg = StringPrintf("Image component %s does not match a boot class path component",
1637 component.c_str());
1638 return false;
1639 }
1640 }
1641 }
1642 for (std::string& profile_filename : profile_filenames) {
1643 if (profile_filename.find('/') == std::string::npos) {
1644 profile_filename.insert(/*pos*/ 0u, GetBcpComponentPath(bcp_pos));
1645 }
1646 }
1647 NamedComponentLocation location;
1648 location.base_location = base_location;
1649 location.bcp_index = bcp_pos;
1650 location.profile_filenames = profile_filenames;
1651 named_component_locations->push_back(location);
1652 ++bcp_pos;
1653 }
1654 return true;
1655 }
1656
ValidateBootImageChecksum(const char * file_description,const ImageHeader & header,std::string * error_msg)1657 bool ImageSpace::BootImageLayout::ValidateBootImageChecksum(const char* file_description,
1658 const ImageHeader& header,
1659 /*out*/std::string* error_msg) {
1660 uint32_t boot_image_component_count = header.GetBootImageComponentCount();
1661 if (chunks_.empty() != (boot_image_component_count == 0u)) {
1662 *error_msg = StringPrintf("Unexpected boot image component count in %s: %u, %s",
1663 file_description,
1664 boot_image_component_count,
1665 chunks_.empty() ? "should be 0" : "should not be 0");
1666 return false;
1667 }
1668 uint32_t component_count = 0u;
1669 uint32_t composite_checksum = 0u;
1670 uint64_t boot_image_size = 0u;
1671 for (const ImageChunk& chunk : chunks_) {
1672 if (component_count == boot_image_component_count) {
1673 break; // Hit the component count.
1674 }
1675 if (chunk.start_index != component_count) {
1676 break; // End of contiguous chunks, fail below; same as reaching end of `chunks_`.
1677 }
1678 if (chunk.component_count > boot_image_component_count - component_count) {
1679 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
1680 "%u is between %u and %u",
1681 file_description,
1682 boot_image_component_count,
1683 component_count,
1684 component_count + chunk.component_count);
1685 return false;
1686 }
1687 component_count += chunk.component_count;
1688 composite_checksum ^= chunk.checksum;
1689 boot_image_size += chunk.reservation_size;
1690 }
1691 DCHECK_LE(component_count, boot_image_component_count);
1692 if (component_count != boot_image_component_count) {
1693 *error_msg = StringPrintf("Missing boot image components for checksum in %s: %u > %u",
1694 file_description,
1695 boot_image_component_count,
1696 component_count);
1697 return false;
1698 }
1699 if (composite_checksum != header.GetBootImageChecksum()) {
1700 *error_msg = StringPrintf("Boot image checksum mismatch in %s: 0x%08x != 0x%08x",
1701 file_description,
1702 header.GetBootImageChecksum(),
1703 composite_checksum);
1704 return false;
1705 }
1706 if (boot_image_size != header.GetBootImageSize()) {
1707 *error_msg = StringPrintf("Boot image size mismatch in %s: 0x%08x != 0x%08" PRIx64,
1708 file_description,
1709 header.GetBootImageSize(),
1710 boot_image_size);
1711 return false;
1712 }
1713 return true;
1714 }
1715
ValidateHeader(const ImageHeader & header,size_t bcp_index,const char * file_description,std::string * error_msg)1716 bool ImageSpace::BootImageLayout::ValidateHeader(const ImageHeader& header,
1717 size_t bcp_index,
1718 const char* file_description,
1719 /*out*/std::string* error_msg) {
1720 size_t bcp_component_count = boot_class_path_.size();
1721 DCHECK_LT(bcp_index, bcp_component_count);
1722 size_t allowed_component_count = bcp_component_count - bcp_index;
1723 DCHECK_LE(total_reservation_size_, kMaxTotalImageReservationSize);
1724 size_t allowed_reservation_size = kMaxTotalImageReservationSize - total_reservation_size_;
1725
1726 if (header.GetComponentCount() == 0u ||
1727 header.GetComponentCount() > allowed_component_count) {
1728 *error_msg = StringPrintf("Unexpected component count in %s, received %u, "
1729 "expected non-zero and <= %zu",
1730 file_description,
1731 header.GetComponentCount(),
1732 allowed_component_count);
1733 return false;
1734 }
1735 if (header.GetImageReservationSize() > allowed_reservation_size) {
1736 *error_msg = StringPrintf("Reservation size too big in %s: %u > %zu",
1737 file_description,
1738 header.GetImageReservationSize(),
1739 allowed_reservation_size);
1740 return false;
1741 }
1742 if (!ValidateBootImageChecksum(file_description, header, error_msg)) {
1743 return false;
1744 }
1745
1746 return true;
1747 }
1748
ValidateOatFile(const std::string & base_location,const std::string & base_filename,size_t bcp_index,size_t component_count,std::string * error_msg)1749 bool ImageSpace::BootImageLayout::ValidateOatFile(
1750 const std::string& base_location,
1751 const std::string& base_filename,
1752 size_t bcp_index,
1753 size_t component_count,
1754 /*out*/std::string* error_msg) {
1755 std::string art_filename = ExpandLocation(base_filename, bcp_index);
1756 std::string art_location = ExpandLocation(base_location, bcp_index);
1757 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename);
1758 std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(art_location);
1759 int oat_fd = bcp_index < boot_class_path_oat_files_.size()
1760 ? boot_class_path_oat_files_[bcp_index].Fd()
1761 : -1;
1762 int vdex_fd = bcp_index < boot_class_path_vdex_files_.size()
1763 ? boot_class_path_vdex_files_[bcp_index].Fd()
1764 : -1;
1765 auto dex_filenames =
1766 ArrayRef<const std::string>(boot_class_path_).SubArray(bcp_index, component_count);
1767 ArrayRef<File> dex_files =
1768 bcp_index + component_count < boot_class_path_files_.size() ?
1769 ArrayRef<File>(boot_class_path_files_).SubArray(bcp_index, component_count) :
1770 ArrayRef<File>();
1771 // We open the oat file here only for validating that it's up-to-date. We don't open it as
1772 // executable or mmap it to a reserved space. This `OatFile` object will be dropped after
1773 // validation, and will not go into the `ImageSpace`.
1774 std::unique_ptr<OatFile> oat_file;
1775 DCHECK_EQ(oat_fd >= 0, vdex_fd >= 0);
1776 if (oat_fd >= 0) {
1777 oat_file.reset(OatFile::Open(
1778 /*zip_fd=*/ -1,
1779 vdex_fd,
1780 oat_fd,
1781 oat_location,
1782 /*executable=*/ false,
1783 /*low_4gb=*/ false,
1784 dex_filenames,
1785 dex_files,
1786 /*reservation=*/ nullptr,
1787 error_msg));
1788 } else {
1789 oat_file.reset(OatFile::Open(
1790 /*zip_fd=*/ -1,
1791 oat_filename,
1792 oat_location,
1793 /*executable=*/ false,
1794 /*low_4gb=*/ false,
1795 dex_filenames,
1796 dex_files,
1797 /*reservation=*/ nullptr,
1798 error_msg));
1799 }
1800 if (oat_file == nullptr) {
1801 *error_msg = StringPrintf("Failed to open oat file '%s' when validating it for image '%s': %s",
1802 oat_filename.c_str(),
1803 art_location.c_str(),
1804 error_msg->c_str());
1805 return false;
1806 }
1807 if (!ImageSpace::ValidateOatFile(
1808 *oat_file, error_msg, dex_filenames, dex_files, apex_versions_)) {
1809 return false;
1810 }
1811 return true;
1812 }
1813
ReadHeader(const std::string & base_location,const std::string & base_filename,size_t bcp_index,std::string * error_msg)1814 bool ImageSpace::BootImageLayout::ReadHeader(const std::string& base_location,
1815 const std::string& base_filename,
1816 size_t bcp_index,
1817 /*out*/std::string* error_msg) {
1818 DCHECK_LE(next_bcp_index_, bcp_index);
1819 DCHECK_LT(bcp_index, boot_class_path_.size());
1820
1821 std::string actual_filename = ExpandLocation(base_filename, bcp_index);
1822 int bcp_image_fd = bcp_index < boot_class_path_image_files_.size() ?
1823 boot_class_path_image_files_[bcp_index].Fd() :
1824 -1;
1825 ImageHeader header;
1826 // When BCP image is provided as FD, it needs to be dup'ed (since it's stored in unique_fd) so
1827 // that it can later be used in LoadComponents.
1828 auto image_file = bcp_image_fd >= 0
1829 ? std::make_unique<File>(DupCloexec(bcp_image_fd), actual_filename, /*check_usage=*/ false)
1830 : std::unique_ptr<File>(OS::OpenFileForReading(actual_filename.c_str()));
1831 if (!image_file || !image_file->IsOpened()) {
1832 *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header",
1833 actual_filename.c_str());
1834 return false;
1835 }
1836 if (!ReadSpecificImageHeader(image_file.get(), actual_filename.c_str(), &header, error_msg)) {
1837 return false;
1838 }
1839 const char* file_description = actual_filename.c_str();
1840 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
1841 return false;
1842 }
1843
1844 // Validate oat files. We do it here so that the boot image will be re-compiled in memory if it's
1845 // outdated.
1846 size_t component_count = (header.GetImageSpaceCount() == 1u) ? header.GetComponentCount() : 1u;
1847 for (size_t i = 0; i < header.GetImageSpaceCount(); i++) {
1848 if (!ValidateOatFile(base_location, base_filename, bcp_index + i, component_count, error_msg)) {
1849 return false;
1850 }
1851 }
1852
1853 if (chunks_.empty()) {
1854 base_address_ = reinterpret_cast32<uint32_t>(header.GetImageBegin());
1855 }
1856 ImageChunk chunk;
1857 chunk.base_location = base_location;
1858 chunk.base_filename = base_filename;
1859 chunk.start_index = bcp_index;
1860 chunk.component_count = header.GetComponentCount();
1861 chunk.image_space_count = header.GetImageSpaceCount();
1862 chunk.reservation_size = header.GetImageReservationSize();
1863 chunk.checksum = header.GetImageChecksum();
1864 chunk.boot_image_component_count = header.GetBootImageComponentCount();
1865 chunk.boot_image_checksum = header.GetBootImageChecksum();
1866 chunk.boot_image_size = header.GetBootImageSize();
1867 chunks_.push_back(std::move(chunk));
1868 next_bcp_index_ = bcp_index + header.GetComponentCount();
1869 total_component_count_ += header.GetComponentCount();
1870 total_reservation_size_ += header.GetImageReservationSize();
1871 return true;
1872 }
1873
CompileBootclasspathElements(const std::string & base_location,const std::string & base_filename,size_t bcp_index,const std::vector<std::string> & profile_filenames,ArrayRef<const std::string> dependencies,std::string * error_msg)1874 bool ImageSpace::BootImageLayout::CompileBootclasspathElements(
1875 const std::string& base_location,
1876 const std::string& base_filename,
1877 size_t bcp_index,
1878 const std::vector<std::string>& profile_filenames,
1879 ArrayRef<const std::string> dependencies,
1880 /*out*/std::string* error_msg) {
1881 DCHECK_LE(total_component_count_, next_bcp_index_);
1882 DCHECK_LE(next_bcp_index_, bcp_index);
1883 size_t bcp_component_count = boot_class_path_.size();
1884 DCHECK_LT(bcp_index, bcp_component_count);
1885 DCHECK(!profile_filenames.empty());
1886 if (total_component_count_ != bcp_index) {
1887 // We require all previous BCP components to have a boot image space (primary or extension).
1888 *error_msg = "Cannot compile extension because of missing dependencies.";
1889 return false;
1890 }
1891 Runtime* runtime = Runtime::Current();
1892 if (!runtime->IsImageDex2OatEnabled()) {
1893 *error_msg = "Cannot compile bootclasspath because dex2oat for image compilation is disabled.";
1894 return false;
1895 }
1896
1897 // Check dependencies.
1898 DCHECK_EQ(dependencies.empty(), bcp_index == 0);
1899 size_t dependency_component_count = 0;
1900 for (size_t i = 0, size = dependencies.size(); i != size; ++i) {
1901 if (chunks_.size() == i || chunks_[i].start_index != dependency_component_count) {
1902 *error_msg = StringPrintf("Missing extension dependency \"%s\"", dependencies[i].c_str());
1903 return false;
1904 }
1905 dependency_component_count += chunks_[i].component_count;
1906 }
1907
1908 // Collect locations from the profile.
1909 std::set<std::string> dex_locations;
1910 for (const std::string& profile_filename : profile_filenames) {
1911 std::unique_ptr<File> profile_file(OS::OpenFileForReading(profile_filename.c_str()));
1912 if (profile_file == nullptr) {
1913 *error_msg = StringPrintf("Failed to open profile file \"%s\" for reading, error: %s",
1914 profile_filename.c_str(),
1915 strerror(errno));
1916 return false;
1917 }
1918
1919 // TODO: Rewrite ProfileCompilationInfo to provide a better interface and
1920 // to store the dex locations in uncompressed section of the file.
1921 auto collect_fn = [&dex_locations](const std::string& dex_location,
1922 [[maybe_unused]] uint32_t checksum) {
1923 dex_locations.insert(dex_location); // Just collect locations.
1924 return false; // Do not read the profile data.
1925 };
1926 ProfileCompilationInfo info(/*for_boot_image=*/ true);
1927 if (!info.Load(profile_file->Fd(), /*merge_classes=*/ true, collect_fn)) {
1928 *error_msg = StringPrintf("Failed to scan profile from %s", profile_filename.c_str());
1929 return false;
1930 }
1931 }
1932
1933 // Match boot class path components to locations from profile.
1934 // Note that the profile records only filenames without paths.
1935 size_t bcp_end = bcp_index;
1936 for (; bcp_end != bcp_component_count; ++bcp_end) {
1937 const std::string& bcp_component = boot_class_path_locations_[bcp_end];
1938 size_t slash_pos = bcp_component.rfind('/');
1939 DCHECK_NE(slash_pos, std::string::npos);
1940 std::string bcp_component_name = bcp_component.substr(slash_pos + 1u);
1941 if (dex_locations.count(bcp_component_name) == 0u) {
1942 break; // Did not find the current location in dex file.
1943 }
1944 }
1945
1946 if (bcp_end == bcp_index) {
1947 // No data for the first (requested) component.
1948 *error_msg = StringPrintf("The profile does not contain data for %s",
1949 boot_class_path_locations_[bcp_index].c_str());
1950 return false;
1951 }
1952
1953 // Create in-memory files.
1954 std::string art_filename = ExpandLocation(base_filename, bcp_index);
1955 std::string vdex_filename = ImageHeader::GetVdexLocationFromImageLocation(art_filename);
1956 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename);
1957 android::base::unique_fd art_fd(memfd_create_compat(art_filename.c_str(), /*flags=*/ 0));
1958 android::base::unique_fd vdex_fd(memfd_create_compat(vdex_filename.c_str(), /*flags=*/ 0));
1959 android::base::unique_fd oat_fd(memfd_create_compat(oat_filename.c_str(), /*flags=*/ 0));
1960 if (art_fd.get() == -1 || vdex_fd.get() == -1 || oat_fd.get() == -1) {
1961 *error_msg = StringPrintf("Failed to create memfd handles for compiling bootclasspath for %s",
1962 boot_class_path_locations_[bcp_index].c_str());
1963 return false;
1964 }
1965
1966 // Construct the dex2oat command line.
1967 std::string dex2oat = runtime->GetCompilerExecutable();
1968 ArrayRef<const std::string> head_bcp =
1969 boot_class_path_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
1970 ArrayRef<const std::string> head_bcp_locations =
1971 boot_class_path_locations_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
1972 ArrayRef<const std::string> bcp_to_compile =
1973 boot_class_path_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
1974 ArrayRef<const std::string> bcp_to_compile_locations =
1975 boot_class_path_locations_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
1976 std::string boot_class_path = head_bcp.empty() ?
1977 Join(bcp_to_compile, ':') :
1978 Join(head_bcp, ':') + ':' + Join(bcp_to_compile, ':');
1979 std::string boot_class_path_locations =
1980 head_bcp_locations.empty() ?
1981 Join(bcp_to_compile_locations, ':') :
1982 Join(head_bcp_locations, ':') + ':' + Join(bcp_to_compile_locations, ':');
1983
1984 std::vector<std::string> args;
1985 args.push_back(dex2oat);
1986 args.push_back("--runtime-arg");
1987 args.push_back("-Xbootclasspath:" + boot_class_path);
1988 args.push_back("--runtime-arg");
1989 args.push_back("-Xbootclasspath-locations:" + boot_class_path_locations);
1990 if (dependencies.empty()) {
1991 args.push_back(android::base::StringPrintf("--base=0x%08x", ART_BASE_ADDRESS));
1992 } else {
1993 args.push_back("--boot-image=" + Join(dependencies, kComponentSeparator));
1994 }
1995 for (size_t i = bcp_index; i != bcp_end; ++i) {
1996 args.push_back("--dex-file=" + boot_class_path_[i]);
1997 args.push_back("--dex-location=" + boot_class_path_locations_[i]);
1998 }
1999 args.push_back("--image-fd=" + std::to_string(art_fd.get()));
2000 args.push_back("--output-vdex-fd=" + std::to_string(vdex_fd.get()));
2001 args.push_back("--oat-fd=" + std::to_string(oat_fd.get()));
2002 args.push_back("--oat-location=" + ImageHeader::GetOatLocationFromImageLocation(base_filename));
2003 args.push_back("--single-image");
2004 args.push_back("--image-format=uncompressed");
2005
2006 // We currently cannot guarantee that the boot class path has no verification failures.
2007 // And we do not want to compile anything, compilation should be done by JIT in zygote.
2008 args.push_back("--compiler-filter=verify");
2009
2010 // Pass the profiles.
2011 for (const std::string& profile_filename : profile_filenames) {
2012 args.push_back("--profile-file=" + profile_filename);
2013 }
2014
2015 // Do not let the file descriptor numbers change the compilation output.
2016 args.push_back("--avoid-storing-invocation");
2017
2018 runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(&args);
2019
2020 if (!kIsTargetBuild) {
2021 args.push_back("--host");
2022 }
2023
2024 // Image compiler options go last to allow overriding above args, such as --compiler-filter.
2025 for (const std::string& compiler_option : runtime->GetImageCompilerOptions()) {
2026 args.push_back(compiler_option);
2027 }
2028
2029 // Compile.
2030 VLOG(image) << "Compiling boot bootclasspath for " << (bcp_end - bcp_index)
2031 << " components, starting from " << boot_class_path_locations_[bcp_index];
2032 if (!Exec(args, error_msg)) {
2033 return false;
2034 }
2035
2036 // Read and validate the image header.
2037 ImageHeader header;
2038 {
2039 File image_file(art_fd.release(), /*check_usage=*/ false);
2040 if (!ReadSpecificImageHeader(&image_file, "compiled image file", &header, error_msg)) {
2041 return false;
2042 }
2043 art_fd.reset(image_file.Release());
2044 }
2045 const char* file_description = "compiled image file";
2046 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
2047 return false;
2048 }
2049
2050 DCHECK_EQ(chunks_.empty(), dependencies.empty());
2051 ImageChunk chunk;
2052 chunk.base_location = base_location;
2053 chunk.base_filename = base_filename;
2054 chunk.profile_files = profile_filenames;
2055 chunk.start_index = bcp_index;
2056 chunk.component_count = header.GetComponentCount();
2057 chunk.image_space_count = header.GetImageSpaceCount();
2058 chunk.reservation_size = header.GetImageReservationSize();
2059 chunk.checksum = header.GetImageChecksum();
2060 chunk.boot_image_component_count = header.GetBootImageComponentCount();
2061 chunk.boot_image_checksum = header.GetBootImageChecksum();
2062 chunk.boot_image_size = header.GetBootImageSize();
2063 chunk.art_fd.reset(art_fd.release());
2064 chunk.vdex_fd.reset(vdex_fd.release());
2065 chunk.oat_fd.reset(oat_fd.release());
2066 chunks_.push_back(std::move(chunk));
2067 next_bcp_index_ = bcp_index + header.GetComponentCount();
2068 total_component_count_ += header.GetComponentCount();
2069 total_reservation_size_ += header.GetImageReservationSize();
2070 return true;
2071 }
2072
2073 template <typename FilenameFn>
Load(FilenameFn && filename_fn,bool allow_in_memory_compilation,std::string * error_msg)2074 bool ImageSpace::BootImageLayout::Load(FilenameFn&& filename_fn,
2075 bool allow_in_memory_compilation,
2076 /*out*/ std::string* error_msg) {
2077 DCHECK(GetChunks().empty());
2078 DCHECK_EQ(GetBaseAddress(), 0u);
2079
2080 ArrayRef<const std::string> components = image_locations_;
2081 size_t named_components_count = 0u;
2082 if (!VerifyImageLocation(components, &named_components_count, error_msg)) {
2083 return false;
2084 }
2085
2086 ArrayRef<const std::string> named_components =
2087 ArrayRef<const std::string>(components).SubArray(/*pos=*/ 0u, named_components_count);
2088
2089 std::vector<NamedComponentLocation> named_component_locations;
2090 if (!MatchNamedComponents(named_components, &named_component_locations, error_msg)) {
2091 return false;
2092 }
2093
2094 // Load the image headers of named components.
2095 DCHECK_EQ(named_component_locations.size(), named_components.size());
2096 const size_t bcp_component_count = boot_class_path_.size();
2097 size_t bcp_pos = 0u;
2098 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
2099 const std::string& base_location = named_component_locations[i].base_location;
2100 size_t bcp_index = named_component_locations[i].bcp_index;
2101 const std::vector<std::string>& profile_filenames =
2102 named_component_locations[i].profile_filenames;
2103 DCHECK_EQ(i == 0, bcp_index == 0);
2104 if (bcp_index < bcp_pos) {
2105 DCHECK_NE(i, 0u);
2106 LOG(ERROR) << "Named image component already covered by previous image: " << base_location;
2107 continue;
2108 }
2109 std::string local_error_msg;
2110 std::string base_filename;
2111 if (!filename_fn(base_location, &base_filename, &local_error_msg) ||
2112 !ReadHeader(base_location, base_filename, bcp_index, &local_error_msg)) {
2113 LOG(ERROR) << "Error reading named image component header for " << base_location
2114 << ", error: " << local_error_msg;
2115 // If the primary boot image is invalid, we generate a single full image. This is faster than
2116 // generating the primary boot image and the extension separately.
2117 if (bcp_index == 0) {
2118 if (!allow_in_memory_compilation) {
2119 // The boot image is unusable and we can't continue by generating a boot image in memory.
2120 // All we can do is to return.
2121 *error_msg = std::move(local_error_msg);
2122 return false;
2123 }
2124 // We must at least have profiles for the core libraries.
2125 if (profile_filenames.empty()) {
2126 *error_msg = "Full boot image cannot be compiled because no profile is provided.";
2127 return false;
2128 }
2129 std::vector<std::string> all_profiles;
2130 for (const NamedComponentLocation& named_component_location : named_component_locations) {
2131 const std::vector<std::string>& profiles = named_component_location.profile_filenames;
2132 all_profiles.insert(all_profiles.end(), profiles.begin(), profiles.end());
2133 }
2134 if (!CompileBootclasspathElements(base_location,
2135 base_filename,
2136 /*bcp_index=*/ 0,
2137 all_profiles,
2138 /*dependencies=*/ ArrayRef<const std::string>{},
2139 &local_error_msg)) {
2140 *error_msg =
2141 StringPrintf("Full boot image cannot be compiled: %s", local_error_msg.c_str());
2142 return false;
2143 }
2144 // No extensions are needed.
2145 return true;
2146 }
2147 bool should_compile_extension = allow_in_memory_compilation && !profile_filenames.empty();
2148 if (!should_compile_extension ||
2149 !CompileBootclasspathElements(base_location,
2150 base_filename,
2151 bcp_index,
2152 profile_filenames,
2153 components.SubArray(/*pos=*/ 0, /*length=*/ 1),
2154 &local_error_msg)) {
2155 if (should_compile_extension) {
2156 LOG(ERROR) << "Error compiling boot image extension for " << boot_class_path_[bcp_index]
2157 << ", error: " << local_error_msg;
2158 }
2159 bcp_pos = bcp_index + 1u; // Skip at least this component.
2160 DCHECK_GT(bcp_pos, GetNextBcpIndex());
2161 continue;
2162 }
2163 }
2164 bcp_pos = GetNextBcpIndex();
2165 }
2166
2167 // Look for remaining components if there are any wildcard specifications.
2168 ArrayRef<const std::string> search_paths = components.SubArray(/*pos=*/ named_components_count);
2169 if (!search_paths.empty()) {
2170 const std::string& primary_base_location = named_component_locations[0].base_location;
2171 size_t base_slash_pos = primary_base_location.rfind('/');
2172 DCHECK_NE(base_slash_pos, std::string::npos);
2173 std::string base_name = primary_base_location.substr(base_slash_pos + 1u);
2174 DCHECK(!base_name.empty());
2175 while (bcp_pos != bcp_component_count) {
2176 const std::string& bcp_component = boot_class_path_[bcp_pos];
2177 bool found = false;
2178 for (const std::string& path : search_paths) {
2179 std::string base_location;
2180 if (path.size() == 1u) {
2181 DCHECK_EQ(path, "*");
2182 size_t slash_pos = bcp_component.rfind('/');
2183 DCHECK_NE(slash_pos, std::string::npos);
2184 base_location = bcp_component.substr(0u, slash_pos + 1u) + base_name;
2185 } else {
2186 DCHECK(path.ends_with("/*"));
2187 base_location = path.substr(0u, path.size() - 1u) + base_name;
2188 }
2189 std::string err_msg; // Ignored.
2190 std::string base_filename;
2191 if (filename_fn(base_location, &base_filename, &err_msg) &&
2192 ReadHeader(base_location, base_filename, bcp_pos, &err_msg)) {
2193 VLOG(image) << "Found image extension for " << ExpandLocation(base_location, bcp_pos);
2194 bcp_pos = GetNextBcpIndex();
2195 found = true;
2196 break;
2197 }
2198 }
2199 if (!found) {
2200 ++bcp_pos;
2201 }
2202 }
2203 }
2204
2205 return true;
2206 }
2207
LoadFromSystem(InstructionSet image_isa,bool allow_in_memory_compilation,std::string * error_msg)2208 bool ImageSpace::BootImageLayout::LoadFromSystem(InstructionSet image_isa,
2209 bool allow_in_memory_compilation,
2210 /*out*/ std::string* error_msg) {
2211 auto filename_fn = [image_isa](const std::string& location,
2212 /*out*/ std::string* filename,
2213 [[maybe_unused]] /*out*/ std::string* err_msg) {
2214 *filename = GetSystemImageFilename(location.c_str(), image_isa);
2215 return true;
2216 };
2217 return Load(filename_fn, allow_in_memory_compilation, error_msg);
2218 }
2219
2220 class ImageSpace::BootImageLoader {
2221 public:
2222 // Creates an instance.
2223 // `apex_versions` is created from `Runtime::GetApexVersions` and must outlive this instance.
BootImageLoader(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,ArrayRef<File> boot_class_path_files,ArrayRef<File> boot_class_path_image_files,ArrayRef<File> boot_class_path_vdex_files,ArrayRef<File> boot_class_path_oat_files,const std::vector<std::string> & image_locations,InstructionSet image_isa,bool relocate,bool executable,const std::string * apex_versions)2224 BootImageLoader(const std::vector<std::string>& boot_class_path,
2225 const std::vector<std::string>& boot_class_path_locations,
2226 ArrayRef<File> boot_class_path_files,
2227 ArrayRef<File> boot_class_path_image_files,
2228 ArrayRef<File> boot_class_path_vdex_files,
2229 ArrayRef<File> boot_class_path_oat_files,
2230 const std::vector<std::string>& image_locations,
2231 InstructionSet image_isa,
2232 bool relocate,
2233 bool executable,
2234 const std::string* apex_versions)
2235 : boot_class_path_(boot_class_path),
2236 boot_class_path_locations_(boot_class_path_locations),
2237 boot_class_path_files_(boot_class_path_files),
2238 boot_class_path_image_files_(boot_class_path_image_files),
2239 boot_class_path_vdex_files_(boot_class_path_vdex_files),
2240 boot_class_path_oat_files_(boot_class_path_oat_files),
2241 image_locations_(image_locations),
2242 image_isa_(image_isa),
2243 relocate_(relocate),
2244 executable_(executable),
2245 has_system_(false),
2246 apex_versions_(apex_versions) {}
2247
FindImageFiles()2248 void FindImageFiles() {
2249 BootImageLayout layout(image_locations_,
2250 boot_class_path_,
2251 boot_class_path_locations_,
2252 boot_class_path_files_,
2253 boot_class_path_image_files_,
2254 boot_class_path_vdex_files_,
2255 boot_class_path_oat_files_,
2256 apex_versions_);
2257 std::string image_location = layout.GetPrimaryImageLocation();
2258 std::string system_filename;
2259 bool found_image = FindImageFilenameImpl(image_location.c_str(),
2260 image_isa_,
2261 &has_system_,
2262 &system_filename);
2263 DCHECK_EQ(found_image, has_system_);
2264 }
2265
HasSystem() const2266 bool HasSystem() const { return has_system_; }
2267
2268 bool LoadFromSystem(size_t extra_reservation_size,
2269 bool allow_in_memory_compilation,
2270 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2271 /*out*/MemMap* extra_reservation,
2272 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_);
2273
2274 private:
LoadImage(const BootImageLayout & layout,bool validate_oat_file,size_t extra_reservation_size,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)2275 bool LoadImage(
2276 const BootImageLayout& layout,
2277 bool validate_oat_file,
2278 size_t extra_reservation_size,
2279 TimingLogger* logger,
2280 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2281 /*out*/MemMap* extra_reservation,
2282 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
2283 ArrayRef<const BootImageLayout::ImageChunk> chunks = layout.GetChunks();
2284 DCHECK(!chunks.empty());
2285 const uint32_t base_address = layout.GetBaseAddress();
2286 const size_t image_component_count = layout.GetTotalComponentCount();
2287 const size_t image_reservation_size = layout.GetTotalReservationSize();
2288
2289 DCHECK_LE(image_reservation_size, kMaxTotalImageReservationSize);
2290 static_assert(kMaxTotalImageReservationSize < std::numeric_limits<uint32_t>::max());
2291 if (extra_reservation_size > std::numeric_limits<uint32_t>::max() - image_reservation_size) {
2292 // Since the `image_reservation_size` is limited to kMaxTotalImageReservationSize,
2293 // the `extra_reservation_size` would have to be really excessive to fail this check.
2294 *error_msg = StringPrintf("Excessive extra reservation size: %zu", extra_reservation_size);
2295 return false;
2296 }
2297
2298 // Reserve address space. If relocating, choose a random address for ALSR.
2299 uint8_t* addr = reinterpret_cast<uint8_t*>(
2300 relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : base_address);
2301 MemMap image_reservation =
2302 ReserveBootImageMemory(addr, image_reservation_size + extra_reservation_size, error_msg);
2303 if (!image_reservation.IsValid()) {
2304 return false;
2305 }
2306
2307 // Load components.
2308 std::vector<std::unique_ptr<ImageSpace>> spaces;
2309 spaces.reserve(image_component_count);
2310 size_t max_image_space_dependencies = 0u;
2311 for (size_t i = 0, num_chunks = chunks.size(); i != num_chunks; ++i) {
2312 const BootImageLayout::ImageChunk& chunk = chunks[i];
2313 std::string extension_error_msg;
2314 uint8_t* old_reservation_begin = image_reservation.Begin();
2315 size_t old_reservation_size = image_reservation.Size();
2316 DCHECK_LE(chunk.reservation_size, old_reservation_size);
2317 if (!LoadComponents(chunk,
2318 validate_oat_file,
2319 max_image_space_dependencies,
2320 logger,
2321 &spaces,
2322 &image_reservation,
2323 (i == 0) ? error_msg : &extension_error_msg)) {
2324 // Failed to load the chunk. If this is the primary boot image, report the error.
2325 if (i == 0) {
2326 return false;
2327 }
2328 // For extension, shrink the reservation (and remap if needed, see below).
2329 size_t new_reservation_size = old_reservation_size - chunk.reservation_size;
2330 if (new_reservation_size == 0u) {
2331 DCHECK_EQ(extra_reservation_size, 0u);
2332 DCHECK_EQ(i + 1u, num_chunks);
2333 image_reservation.Reset();
2334 } else if (old_reservation_begin != image_reservation.Begin()) {
2335 // Part of the image reservation has been used and then unmapped when
2336 // rollling back the partial boot image extension load. Try to remap
2337 // the image reservation. As this should be running single-threaded,
2338 // the address range should still be available to mmap().
2339 image_reservation.Reset();
2340 std::string remap_error_msg;
2341 image_reservation = ReserveBootImageMemory(old_reservation_begin,
2342 new_reservation_size,
2343 &remap_error_msg);
2344 if (!image_reservation.IsValid()) {
2345 *error_msg = StringPrintf("Failed to remap boot image reservation after failing "
2346 "to load boot image extension (%s: %s): %s",
2347 boot_class_path_locations_[chunk.start_index].c_str(),
2348 extension_error_msg.c_str(),
2349 remap_error_msg.c_str());
2350 return false;
2351 }
2352 } else {
2353 DCHECK_EQ(old_reservation_size, image_reservation.Size());
2354 image_reservation.SetSize(new_reservation_size);
2355 }
2356 LOG(ERROR) << "Failed to load boot image extension "
2357 << boot_class_path_locations_[chunk.start_index] << ": " << extension_error_msg;
2358 }
2359 // Update `max_image_space_dependencies` if all previous BCP components
2360 // were covered and loading the current chunk succeeded.
2361 size_t total_component_count = 0;
2362 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2363 total_component_count += space->GetComponentCount();
2364 }
2365 if (max_image_space_dependencies == chunk.start_index &&
2366 total_component_count == chunk.start_index + chunk.component_count) {
2367 max_image_space_dependencies = chunk.start_index + chunk.component_count;
2368 }
2369 }
2370
2371 MemMap local_extra_reservation;
2372 if (!RemapExtraReservation(extra_reservation_size,
2373 &image_reservation,
2374 &local_extra_reservation,
2375 error_msg)) {
2376 return false;
2377 }
2378
2379 MaybeRelocateSpaces(spaces, logger);
2380 DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>>(spaces), logger);
2381 boot_image_spaces->swap(spaces);
2382 *extra_reservation = std::move(local_extra_reservation);
2383 return true;
2384 }
2385
2386 private:
2387 class SimpleRelocateVisitor {
2388 public:
SimpleRelocateVisitor(uint32_t diff,uint32_t begin,uint32_t size)2389 SimpleRelocateVisitor(uint32_t diff, uint32_t begin, uint32_t size)
2390 : diff_(diff), begin_(begin), size_(size) {}
2391
2392 // Adapter taking the same arguments as SplitRangeRelocateVisitor
2393 // to simplify constructing the various visitors in DoRelocateSpaces().
SimpleRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2394 SimpleRelocateVisitor(uint32_t base_diff,
2395 uint32_t current_diff,
2396 uint32_t bound,
2397 uint32_t begin,
2398 uint32_t size)
2399 : SimpleRelocateVisitor(base_diff, begin, size) {
2400 // Check arguments unused by this class.
2401 DCHECK_EQ(base_diff, current_diff);
2402 DCHECK_EQ(bound, begin);
2403 }
2404
2405 template <typename T>
operator ()(T * src) const2406 ALWAYS_INLINE T* operator()(T* src) const {
2407 DCHECK(InSource(src));
2408 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2409 return reinterpret_cast32<T*>(raw_src + diff_);
2410 }
2411
2412 template <typename T>
InSource(T * ptr) const2413 ALWAYS_INLINE bool InSource(T* ptr) const {
2414 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2415 return raw_ptr - begin_ < size_;
2416 }
2417
2418 template <typename T>
InDest(T * ptr) const2419 ALWAYS_INLINE bool InDest(T* ptr) const {
2420 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2421 uint32_t src_ptr = raw_ptr - diff_;
2422 return src_ptr - begin_ < size_;
2423 }
2424
2425 private:
2426 const uint32_t diff_;
2427 const uint32_t begin_;
2428 const uint32_t size_;
2429 };
2430
2431 class SplitRangeRelocateVisitor {
2432 public:
SplitRangeRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2433 SplitRangeRelocateVisitor(uint32_t base_diff,
2434 uint32_t current_diff,
2435 uint32_t bound,
2436 uint32_t begin,
2437 uint32_t size)
2438 : base_diff_(base_diff),
2439 current_diff_(current_diff),
2440 bound_(bound),
2441 begin_(begin),
2442 size_(size) {
2443 DCHECK_NE(begin_, bound_);
2444 // The bound separates the boot image range and the extension range.
2445 DCHECK_LT(bound_ - begin_, size_);
2446 }
2447
2448 template <typename T>
operator ()(T * src) const2449 ALWAYS_INLINE T* operator()(T* src) const {
2450 DCHECK(InSource(src));
2451 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2452 uint32_t diff = (raw_src < bound_) ? base_diff_ : current_diff_;
2453 return reinterpret_cast32<T*>(raw_src + diff);
2454 }
2455
2456 template <typename T>
InSource(T * ptr) const2457 ALWAYS_INLINE bool InSource(T* ptr) const {
2458 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2459 return raw_ptr - begin_ < size_;
2460 }
2461
2462 private:
2463 const uint32_t base_diff_;
2464 const uint32_t current_diff_;
2465 const uint32_t bound_;
2466 const uint32_t begin_;
2467 const uint32_t size_;
2468 };
2469
PointerAddress(ArtMethod * method,MemberOffset offset)2470 static void** PointerAddress(ArtMethod* method, MemberOffset offset) {
2471 return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value());
2472 }
2473
2474 template <PointerSize kPointerSize>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> & spaces,int64_t base_diff64)2475 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>>& spaces,
2476 int64_t base_diff64) REQUIRES_SHARED(Locks::mutator_lock_) {
2477 DCHECK(!spaces.empty());
2478 gc::accounting::ContinuousSpaceBitmap patched_objects(
2479 gc::accounting::ContinuousSpaceBitmap::Create(
2480 "Marked objects",
2481 spaces.front()->Begin(),
2482 spaces.back()->End() - spaces.front()->Begin()));
2483 const ImageHeader& base_header = spaces[0]->GetImageHeader();
2484 size_t base_image_space_count = base_header.GetImageSpaceCount();
2485 DCHECK_LE(base_image_space_count, spaces.size());
2486 DoRelocateSpaces<kPointerSize, /*kExtension=*/ false>(
2487 spaces.SubArray(/*pos=*/ 0u, base_image_space_count),
2488 base_diff64,
2489 &patched_objects);
2490
2491 for (size_t i = base_image_space_count, size = spaces.size(); i != size; ) {
2492 const ImageHeader& ext_header = spaces[i]->GetImageHeader();
2493 size_t ext_image_space_count = ext_header.GetImageSpaceCount();
2494 DCHECK_LE(ext_image_space_count, size - i);
2495 DoRelocateSpaces<kPointerSize, /*kExtension=*/ true>(
2496 spaces.SubArray(/*pos=*/ i, ext_image_space_count),
2497 base_diff64,
2498 &patched_objects);
2499 i += ext_image_space_count;
2500 }
2501 }
2502
2503 template <PointerSize kPointerSize, bool kExtension>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,int64_t base_diff64,gc::accounting::ContinuousSpaceBitmap * patched_objects)2504 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
2505 int64_t base_diff64,
2506 gc::accounting::ContinuousSpaceBitmap* patched_objects)
2507 REQUIRES_SHARED(Locks::mutator_lock_) {
2508 DCHECK(!spaces.empty());
2509 const ImageHeader& first_header = spaces.front()->GetImageHeader();
2510 uint32_t image_begin = reinterpret_cast32<uint32_t>(first_header.GetImageBegin());
2511 uint32_t image_size = first_header.GetImageReservationSize();
2512 DCHECK_NE(image_size, 0u);
2513 uint32_t source_begin = kExtension ? first_header.GetBootImageBegin() : image_begin;
2514 uint32_t source_size = kExtension ? first_header.GetBootImageSize() + image_size : image_size;
2515 if (kExtension) {
2516 DCHECK_EQ(first_header.GetBootImageBegin() + first_header.GetBootImageSize(), image_begin);
2517 }
2518 int64_t current_diff64 = kExtension
2519 ? static_cast<int64_t>(reinterpret_cast32<uint32_t>(spaces.front()->Begin())) -
2520 static_cast<int64_t>(image_begin)
2521 : base_diff64;
2522 if (base_diff64 == 0 && current_diff64 == 0) {
2523 return;
2524 }
2525 uint32_t base_diff = static_cast<uint32_t>(base_diff64);
2526 uint32_t current_diff = static_cast<uint32_t>(current_diff64);
2527
2528 // For boot image the main visitor is a SimpleRelocateVisitor. For the boot image extension we
2529 // mostly use a SplitRelocationVisitor but some work can still use the SimpleRelocationVisitor.
2530 using MainRelocateVisitor = typename std::conditional<
2531 kExtension, SplitRangeRelocateVisitor, SimpleRelocateVisitor>::type;
2532 SimpleRelocateVisitor simple_relocate_visitor(current_diff, image_begin, image_size);
2533 MainRelocateVisitor main_relocate_visitor(
2534 base_diff, current_diff, /*bound=*/ image_begin, source_begin, source_size);
2535
2536 using MainPatchRelocateVisitor =
2537 PatchObjectVisitor<kPointerSize, MainRelocateVisitor, MainRelocateVisitor>;
2538 using SimplePatchRelocateVisitor =
2539 PatchObjectVisitor<kPointerSize, SimpleRelocateVisitor, SimpleRelocateVisitor>;
2540 MainPatchRelocateVisitor main_patch_object_visitor(main_relocate_visitor,
2541 main_relocate_visitor);
2542 SimplePatchRelocateVisitor simple_patch_object_visitor(simple_relocate_visitor,
2543 simple_relocate_visitor);
2544
2545 // Retrieve the Class.class, Method.class and Constructor.class needed in the loops below.
2546 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots;
2547 ObjPtr<mirror::Class> class_class;
2548 ObjPtr<mirror::Class> method_class;
2549 ObjPtr<mirror::Class> constructor_class;
2550 ObjPtr<mirror::Class> field_var_handle_class;
2551 ObjPtr<mirror::Class> static_field_var_handle_class;
2552 {
2553 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots =
2554 simple_relocate_visitor(first_header.GetImageRoots<kWithoutReadBarrier>().Ptr());
2555 DCHECK(!patched_objects->Test(image_roots.Ptr()));
2556
2557 SimpleRelocateVisitor base_relocate_visitor(
2558 base_diff,
2559 source_begin,
2560 kExtension ? source_size - image_size : image_size);
2561 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
2562 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
2563 class_roots = ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(base_relocate_visitor(
2564 image_roots->GetWithoutChecks<kVerifyNone,
2565 kWithoutReadBarrier>(class_roots_index).Ptr()));
2566 if (kExtension) {
2567 // Class roots must have been visited if we relocated the primary boot image.
2568 DCHECK(base_diff == 0 || patched_objects->Test(class_roots.Ptr()));
2569 class_class = GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
2570 method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots);
2571 constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots);
2572 field_var_handle_class =
2573 GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots);
2574 static_field_var_handle_class =
2575 GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots);
2576 } else {
2577 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2578 class_class = simple_relocate_visitor(
2579 GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots).Ptr());
2580 method_class = simple_relocate_visitor(
2581 GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots).Ptr());
2582 constructor_class = simple_relocate_visitor(
2583 GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots).Ptr());
2584 field_var_handle_class = simple_relocate_visitor(
2585 GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots).Ptr());
2586 static_field_var_handle_class = simple_relocate_visitor(
2587 GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots).Ptr());
2588 }
2589 }
2590
2591 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2592 // First patch the image header.
2593 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImageReferences(current_diff64);
2594 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateBootImageReferences(base_diff64);
2595
2596 // Patch fields and methods.
2597 const ImageHeader& image_header = space->GetImageHeader();
2598 image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) {
2599 // Fields always reference class in the current image.
2600 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
2601 &field.DeclaringClassRoot());
2602 }, space->Begin());
2603 image_header.VisitPackedArtMethods([&](ArtMethod& method)
2604 REQUIRES_SHARED(Locks::mutator_lock_) {
2605 main_patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
2606 if (!method.HasCodeItem()) {
2607 void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize));
2608 main_patch_object_visitor.PatchNativePointer(data_address);
2609 }
2610 void** entrypoint_address =
2611 PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize));
2612 main_patch_object_visitor.PatchNativePointer(entrypoint_address);
2613 }, space->Begin(), kPointerSize);
2614 auto method_table_visitor = [&](ArtMethod* method) {
2615 DCHECK(method != nullptr);
2616 return main_relocate_visitor(method);
2617 };
2618 image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize);
2619 image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize);
2620 image_header.VisitJniStubMethods</*kUpdate=*/ true>(method_table_visitor,
2621 space->Begin(),
2622 kPointerSize);
2623
2624 // Patch the intern table.
2625 if (image_header.GetInternedStringsSection().Size() != 0u) {
2626 const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset();
2627 size_t read_count;
2628 InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2629 for (GcRoot<mirror::String>& slot : temp_set) {
2630 // The intern table contains only strings in the current image.
2631 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot);
2632 }
2633 }
2634
2635 // Patch the class table and classes, so that we can traverse class hierarchy to
2636 // determine the types of other objects when we visit them later.
2637 if (image_header.GetClassTableSection().Size() != 0u) {
2638 uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset();
2639 size_t read_count;
2640 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2641 DCHECK(!temp_set.empty());
2642 // The class table contains only classes in the current image.
2643 ClassTableVisitor class_table_visitor(simple_relocate_visitor);
2644 for (ClassTable::TableSlot& slot : temp_set) {
2645 slot.VisitRoot(class_table_visitor);
2646 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
2647 DCHECK(klass != nullptr);
2648 DCHECK(!patched_objects->Test(klass.Ptr()));
2649 patched_objects->Set(klass.Ptr());
2650 main_patch_object_visitor.VisitClass(klass, class_class);
2651 // Then patch the non-embedded vtable and iftable.
2652 ObjPtr<mirror::PointerArray> vtable =
2653 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
2654 if ((kExtension ? simple_relocate_visitor.InDest(vtable.Ptr()) : vtable != nullptr) &&
2655 !patched_objects->Set(vtable.Ptr())) {
2656 main_patch_object_visitor.VisitPointerArray(vtable);
2657 }
2658 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
2659 if (kExtension ? simple_relocate_visitor.InDest(iftable.Ptr()) : iftable != nullptr) {
2660 int32_t ifcount = iftable->Count<kVerifyNone>();
2661 for (int32_t i = 0; i != ifcount; ++i) {
2662 ObjPtr<mirror::PointerArray> unpatched_ifarray =
2663 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
2664 if (kExtension ? simple_relocate_visitor.InSource(unpatched_ifarray.Ptr())
2665 : unpatched_ifarray != nullptr) {
2666 // The iftable has not been patched, so we need to explicitly adjust the pointer.
2667 ObjPtr<mirror::PointerArray> ifarray =
2668 simple_relocate_visitor(unpatched_ifarray.Ptr());
2669 if (!patched_objects->Set(ifarray.Ptr())) {
2670 main_patch_object_visitor.VisitPointerArray(ifarray);
2671 }
2672 }
2673 }
2674 }
2675 }
2676 }
2677 }
2678
2679 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2680 const ImageHeader& image_header = space->GetImageHeader();
2681
2682 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
2683 uint32_t objects_end = image_header.GetObjectsSection().Size();
2684 DCHECK_ALIGNED(objects_end, kObjectAlignment);
2685 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
2686 mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos);
2687 // Note: use Test() rather than Set() as this is the last time we're checking this object.
2688 if (!patched_objects->Test(object)) {
2689 // This is the last pass over objects, so we do not need to Set().
2690 main_patch_object_visitor.VisitObject(object);
2691 ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
2692 if (klass == method_class || klass == constructor_class) {
2693 // Patch the ArtMethod* in the mirror::Executable subobject.
2694 ObjPtr<mirror::Executable> as_executable =
2695 ObjPtr<mirror::Executable>::DownCast(object);
2696 ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>();
2697 ArtMethod* patched_method = main_relocate_visitor(unpatched_method);
2698 as_executable->SetArtMethod</*kTransactionActive=*/ false,
2699 /*kCheckTransaction=*/ true,
2700 kVerifyNone>(patched_method);
2701 } else if (klass == field_var_handle_class || klass == static_field_var_handle_class) {
2702 // Patch the ArtField* in the mirror::FieldVarHandle subobject.
2703 ObjPtr<mirror::FieldVarHandle> as_field_var_handle =
2704 ObjPtr<mirror::FieldVarHandle>::DownCast(object);
2705 ArtField* unpatched_field = as_field_var_handle->GetArtField<kVerifyNone>();
2706 ArtField* patched_field = main_relocate_visitor(unpatched_field);
2707 as_field_var_handle->SetArtField<kVerifyNone>(patched_field);
2708 }
2709 }
2710 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2711 }
2712 }
2713 if (kIsDebugBuild && !kExtension) {
2714 // We used just Test() instead of Set() above but we need to use Set()
2715 // for class roots to satisfy a DCHECK() for extensions.
2716 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2717 patched_objects->Set(class_roots.Ptr());
2718 }
2719 }
2720
MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>> & spaces,TimingLogger * logger)2721 void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
2722 TimingLogger* logger)
2723 REQUIRES_SHARED(Locks::mutator_lock_) {
2724 TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger);
2725 ImageSpace* first_space = spaces.front().get();
2726 const ImageHeader& first_space_header = first_space->GetImageHeader();
2727 int64_t base_diff64 =
2728 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space->Begin())) -
2729 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space_header.GetImageBegin()));
2730 if (!relocate_) {
2731 DCHECK_EQ(base_diff64, 0);
2732 }
2733
2734 // While `Thread::Current()` is null, the `ScopedDebugDisallowReadBarriers`
2735 // cannot be used but the class `ReadBarrier` shall not allow read barriers anyway.
2736 // For some gtests we actually have an initialized `Thread:Current()`.
2737 std::optional<ScopedDebugDisallowReadBarriers> sddrb(std::nullopt);
2738 if (kCheckDebugDisallowReadBarrierCount && Thread::Current() != nullptr) {
2739 sddrb.emplace(Thread::Current());
2740 }
2741
2742 ArrayRef<const std::unique_ptr<ImageSpace>> spaces_ref(spaces);
2743 PointerSize pointer_size = first_space_header.GetPointerSize();
2744 if (pointer_size == PointerSize::k64) {
2745 DoRelocateSpaces<PointerSize::k64>(spaces_ref, base_diff64);
2746 } else {
2747 DoRelocateSpaces<PointerSize::k32>(spaces_ref, base_diff64);
2748 }
2749 }
2750
DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,TimingLogger * logger)2751 void DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
2752 TimingLogger* logger) REQUIRES_SHARED(Locks::mutator_lock_) {
2753 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", logger);
2754 DCHECK(!spaces.empty());
2755 size_t num_spaces = spaces.size();
2756 const ImageHeader& primary_header = spaces.front()->GetImageHeader();
2757 size_t primary_image_count = primary_header.GetImageSpaceCount();
2758 size_t primary_image_component_count = primary_header.GetComponentCount();
2759 DCHECK_LE(primary_image_count, num_spaces);
2760 // The primary boot image can be generated with `--single-image` on device, when generated
2761 // in-memory or with odrefresh.
2762 DCHECK(primary_image_count == primary_image_component_count || primary_image_count == 1);
2763 size_t component_count = primary_image_component_count;
2764 size_t space_pos = primary_image_count;
2765 while (space_pos != num_spaces) {
2766 const ImageHeader& current_header = spaces[space_pos]->GetImageHeader();
2767 size_t image_space_count = current_header.GetImageSpaceCount();
2768 DCHECK_LE(image_space_count, num_spaces - space_pos);
2769 size_t dependency_component_count = current_header.GetBootImageComponentCount();
2770 DCHECK_LE(dependency_component_count, component_count);
2771 if (dependency_component_count < component_count) {
2772 // There shall be no duplicate strings with the components that this space depends on.
2773 // Find the end of the dependencies, i.e. start of non-dependency images.
2774 size_t start_component_count = primary_image_component_count;
2775 size_t start_pos = primary_image_count;
2776 while (start_component_count != dependency_component_count) {
2777 const ImageHeader& dependency_header = spaces[start_pos]->GetImageHeader();
2778 DCHECK_LE(dependency_header.GetComponentCount(),
2779 dependency_component_count - start_component_count);
2780 start_component_count += dependency_header.GetComponentCount();
2781 start_pos += dependency_header.GetImageSpaceCount();
2782 }
2783 // Remove duplicates from all intern tables belonging to the chunk.
2784 ArrayRef<const std::unique_ptr<ImageSpace>> old_spaces =
2785 spaces.SubArray(/*pos=*/ start_pos, space_pos - start_pos);
2786 SafeMap<mirror::String*, mirror::String*> intern_remap;
2787 for (size_t i = 0; i != image_space_count; ++i) {
2788 ImageSpace* new_space = spaces[space_pos + i].get();
2789 Loader::RemoveInternTableDuplicates(old_spaces, new_space, &intern_remap);
2790 }
2791 // Remap string for all spaces belonging to the chunk.
2792 if (!intern_remap.empty()) {
2793 for (size_t i = 0; i != image_space_count; ++i) {
2794 ImageSpace* new_space = spaces[space_pos + i].get();
2795 Loader::RemapInternedStringDuplicates(intern_remap, new_space);
2796 }
2797 }
2798 }
2799 component_count += current_header.GetComponentCount();
2800 space_pos += image_space_count;
2801 }
2802 }
2803
Load(const std::string & image_location,const std::string & image_filename,const std::vector<std::string> & profile_files,android::base::unique_fd art_fd,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)2804 std::unique_ptr<ImageSpace> Load(const std::string& image_location,
2805 const std::string& image_filename,
2806 const std::vector<std::string>& profile_files,
2807 android::base::unique_fd art_fd,
2808 TimingLogger* logger,
2809 /*inout*/MemMap* image_reservation,
2810 /*out*/std::string* error_msg)
2811 REQUIRES_SHARED(Locks::mutator_lock_) {
2812 if (art_fd.get() != -1) {
2813 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
2814 << image_location << " for compiled extension";
2815
2816 File image_file(art_fd.release(), image_filename, /*check_usage=*/ false);
2817 std::unique_ptr<ImageSpace> result = Loader::Init(&image_file,
2818 image_filename.c_str(),
2819 image_location.c_str(),
2820 profile_files,
2821 /*allow_direct_mapping=*/ false,
2822 logger,
2823 image_reservation,
2824 error_msg);
2825 // Note: We're closing the image file descriptor here when we destroy
2826 // the `image_file` as we no longer need it.
2827 return result;
2828 }
2829
2830 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
2831 << image_location;
2832
2833 // If we are in /system we can assume the image is good. We can also
2834 // assume this if we are using a relocated image (i.e. image checksum
2835 // matches) since this is only different by the offset. We need this to
2836 // make sure that host tests continue to work.
2837 // Since we are the boot image, pass null since we load the oat file from the boot image oat
2838 // file name.
2839 return Loader::Init(image_filename.c_str(),
2840 image_location.c_str(),
2841 logger,
2842 image_reservation,
2843 error_msg);
2844 }
2845
OpenOatFile(ImageSpace * space,android::base::unique_fd vdex_fd,android::base::unique_fd oat_fd,ArrayRef<const std::string> dex_filenames,ArrayRef<File> dex_files,bool validate_oat_file,ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)2846 bool OpenOatFile(ImageSpace* space,
2847 android::base::unique_fd vdex_fd,
2848 android::base::unique_fd oat_fd,
2849 ArrayRef<const std::string> dex_filenames,
2850 ArrayRef<File> dex_files,
2851 bool validate_oat_file,
2852 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,
2853 TimingLogger* logger,
2854 /*inout*/ MemMap* image_reservation,
2855 /*out*/ std::string* error_msg) {
2856 // VerifyImageAllocations() will be called later in Runtime::Init()
2857 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
2858 // and ArtField::java_lang_reflect_ArtField_, which are used from
2859 // Object::SizeOf() which VerifyImageAllocations() calls, are not
2860 // set yet at this point.
2861 DCHECK(image_reservation != nullptr);
2862 std::unique_ptr<OatFile> oat_file;
2863 {
2864 TimingLogger::ScopedTiming timing("OpenOatFile", logger);
2865 std::string oat_filename =
2866 ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename());
2867 std::string oat_location =
2868 ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation());
2869
2870 DCHECK_EQ(vdex_fd.get() != -1, oat_fd.get() != -1);
2871 if (vdex_fd.get() == -1) {
2872 oat_file.reset(OatFile::Open(/*zip_fd=*/-1,
2873 oat_filename,
2874 oat_location,
2875 executable_,
2876 /*low_4gb=*/false,
2877 dex_filenames,
2878 dex_files,
2879 image_reservation,
2880 error_msg));
2881 } else {
2882 oat_file.reset(OatFile::Open(/*zip_fd=*/-1,
2883 vdex_fd.get(),
2884 oat_fd.get(),
2885 oat_location,
2886 executable_,
2887 /*low_4gb=*/false,
2888 dex_filenames,
2889 dex_files,
2890 image_reservation,
2891 error_msg));
2892 // We no longer need the file descriptors and they will be closed by
2893 // the unique_fd destructor when we leave this function.
2894 }
2895
2896 if (oat_file == nullptr) {
2897 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
2898 oat_filename.c_str(),
2899 space->GetName(),
2900 error_msg->c_str());
2901 return false;
2902 }
2903 const ImageHeader& image_header = space->GetImageHeader();
2904 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
2905 uint32_t image_oat_checksum = image_header.GetOatChecksum();
2906 if (oat_checksum != image_oat_checksum) {
2907 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum"
2908 " 0x%x in image %s",
2909 oat_checksum,
2910 image_oat_checksum,
2911 space->GetName());
2912 return false;
2913 }
2914 const char* oat_boot_class_path =
2915 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey);
2916 oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : "";
2917 const char* oat_boot_class_path_checksums =
2918 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
2919 oat_boot_class_path_checksums =
2920 (oat_boot_class_path_checksums != nullptr) ? oat_boot_class_path_checksums : "";
2921 size_t component_count = image_header.GetComponentCount();
2922 if (component_count == 0u) {
2923 if (oat_boot_class_path[0] != 0 || oat_boot_class_path_checksums[0] != 0) {
2924 *error_msg = StringPrintf("Unexpected non-empty boot class path %s and/or checksums %s"
2925 " in image %s",
2926 oat_boot_class_path,
2927 oat_boot_class_path_checksums,
2928 space->GetName());
2929 return false;
2930 }
2931 } else if (dependencies.empty()) {
2932 std::string expected_boot_class_path = Join(ArrayRef<const std::string>(
2933 boot_class_path_locations_).SubArray(0u, component_count), ':');
2934 if (expected_boot_class_path != oat_boot_class_path) {
2935 *error_msg = StringPrintf("Failed to match oat boot class path %s to expected "
2936 "boot class path %s in image %s",
2937 oat_boot_class_path,
2938 expected_boot_class_path.c_str(),
2939 space->GetName());
2940 return false;
2941 }
2942 } else {
2943 std::string local_error_msg;
2944 if (!VerifyBootClassPathChecksums(
2945 oat_boot_class_path_checksums,
2946 oat_boot_class_path,
2947 dependencies,
2948 ArrayRef<const std::string>(boot_class_path_locations_),
2949 ArrayRef<const std::string>(boot_class_path_),
2950 &local_error_msg)) {
2951 *error_msg = StringPrintf("Failed to verify BCP %s with checksums %s in image %s: %s",
2952 oat_boot_class_path,
2953 oat_boot_class_path_checksums,
2954 space->GetName(),
2955 local_error_msg.c_str());
2956 return false;
2957 }
2958 }
2959 ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin();
2960 CHECK(image_header.GetOatDataBegin() != nullptr);
2961 uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff;
2962 if (oat_file->Begin() != oat_data_begin) {
2963 *error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin"
2964 " %p v. %p",
2965 oat_filename.c_str(),
2966 space->GetName(),
2967 oat_file->Begin(),
2968 oat_data_begin);
2969 return false;
2970 }
2971 }
2972 if (validate_oat_file) {
2973 TimingLogger::ScopedTiming timing("ValidateOatFile", logger);
2974 if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) {
2975 DCHECK(!error_msg->empty());
2976 return false;
2977 }
2978 }
2979
2980 // As an optimization, madvise the oat file into memory if it's being used
2981 // for execution with an active runtime. This can significantly improve
2982 // ZygoteInit class preload performance.
2983 if (executable_) {
2984 Runtime* runtime = Runtime::Current();
2985 if (runtime != nullptr) {
2986 Runtime::MadviseFileForRange(runtime->GetMadviseWillNeedSizeOdex(),
2987 oat_file->Size(),
2988 oat_file->Begin(),
2989 oat_file->End(),
2990 oat_file->GetLocation());
2991 }
2992 }
2993
2994 space->oat_file_ = std::move(oat_file);
2995 space->oat_file_non_owned_ = space->oat_file_.get();
2996
2997 return true;
2998 }
2999
LoadComponents(const BootImageLayout::ImageChunk & chunk,bool validate_oat_file,size_t max_image_space_dependencies,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * spaces,MemMap * image_reservation,std::string * error_msg)3000 bool LoadComponents(const BootImageLayout::ImageChunk& chunk,
3001 bool validate_oat_file,
3002 size_t max_image_space_dependencies,
3003 TimingLogger* logger,
3004 /*inout*/std::vector<std::unique_ptr<ImageSpace>>* spaces,
3005 /*inout*/MemMap* image_reservation,
3006 /*out*/std::string* error_msg)
3007 REQUIRES_SHARED(Locks::mutator_lock_) {
3008 // Make sure we destroy the spaces we created if we're returning an error.
3009 // Note that this can unmap part of the original `image_reservation`.
3010 class Guard {
3011 public:
3012 explicit Guard(std::vector<std::unique_ptr<ImageSpace>>* spaces_in)
3013 : spaces_(spaces_in), committed_(spaces_->size()) {}
3014 void Commit() {
3015 DCHECK_LT(committed_, spaces_->size());
3016 committed_ = spaces_->size();
3017 }
3018 ~Guard() {
3019 DCHECK_LE(committed_, spaces_->size());
3020 spaces_->resize(committed_);
3021 }
3022 private:
3023 std::vector<std::unique_ptr<ImageSpace>>* const spaces_;
3024 size_t committed_;
3025 };
3026 Guard guard(spaces);
3027
3028 bool is_extension = (chunk.start_index != 0u);
3029 DCHECK_NE(spaces->empty(), is_extension);
3030 if (max_image_space_dependencies < chunk.boot_image_component_count) {
3031 DCHECK(is_extension);
3032 *error_msg = StringPrintf("Missing dependencies for extension component %s, %zu < %u",
3033 boot_class_path_locations_[chunk.start_index].c_str(),
3034 max_image_space_dependencies,
3035 chunk.boot_image_component_count);
3036 return false;
3037 }
3038 ArrayRef<const std::string> requested_bcp_locations =
3039 ArrayRef<const std::string>(boot_class_path_locations_).SubArray(
3040 chunk.start_index, chunk.image_space_count);
3041 std::vector<std::string> locations =
3042 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_location, is_extension);
3043 std::vector<std::string> filenames =
3044 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_filename, is_extension);
3045 DCHECK_EQ(locations.size(), filenames.size());
3046 size_t max_dependency_count = spaces->size();
3047 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
3048 android::base::unique_fd image_fd;
3049 if (chunk.art_fd.get() >= 0) {
3050 DCHECK_EQ(locations.size(), 1u);
3051 image_fd = std::move(chunk.art_fd);
3052 } else {
3053 size_t pos = chunk.start_index + i;
3054 int arg_image_fd =
3055 pos < boot_class_path_image_files_.size() ? boot_class_path_image_files_[pos].Fd() : -1;
3056 if (arg_image_fd >= 0) {
3057 image_fd.reset(DupCloexec(arg_image_fd));
3058 }
3059 }
3060 spaces->push_back(Load(locations[i],
3061 filenames[i],
3062 chunk.profile_files,
3063 std::move(image_fd),
3064 logger,
3065 image_reservation,
3066 error_msg));
3067 const ImageSpace* space = spaces->back().get();
3068 if (space == nullptr) {
3069 return false;
3070 }
3071 uint32_t expected_component_count = (i == 0u) ? chunk.component_count : 0u;
3072 uint32_t expected_reservation_size = (i == 0u) ? chunk.reservation_size : 0u;
3073 if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
3074 !Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) {
3075 return false;
3076 }
3077 const ImageHeader& header = space->GetImageHeader();
3078 if (i == 0 && (chunk.checksum != header.GetImageChecksum() ||
3079 chunk.image_space_count != header.GetImageSpaceCount() ||
3080 chunk.boot_image_component_count != header.GetBootImageComponentCount() ||
3081 chunk.boot_image_checksum != header.GetBootImageChecksum() ||
3082 chunk.boot_image_size != header.GetBootImageSize())) {
3083 *error_msg = StringPrintf("Image header modified since previously read from %s; "
3084 "checksum: 0x%08x -> 0x%08x,"
3085 "image_space_count: %u -> %u"
3086 "boot_image_component_count: %u -> %u, "
3087 "boot_image_checksum: 0x%08x -> 0x%08x"
3088 "boot_image_size: 0x%08x -> 0x%08x",
3089 space->GetImageFilename().c_str(),
3090 chunk.checksum,
3091 chunk.image_space_count,
3092 header.GetImageSpaceCount(),
3093 header.GetImageChecksum(),
3094 chunk.boot_image_component_count,
3095 header.GetBootImageComponentCount(),
3096 chunk.boot_image_checksum,
3097 header.GetBootImageChecksum(),
3098 chunk.boot_image_size,
3099 header.GetBootImageSize());
3100 return false;
3101 }
3102 }
3103 DCHECK_GE(max_image_space_dependencies, chunk.boot_image_component_count);
3104 size_t dependency_count = 0;
3105 size_t dependency_component_count = 0;
3106 while (dependency_component_count < chunk.boot_image_component_count &&
3107 dependency_count < max_dependency_count) {
3108 const ImageHeader& current_header = (*spaces)[dependency_count]->GetImageHeader();
3109 dependency_component_count += current_header.GetComponentCount();
3110 dependency_count += current_header.GetImageSpaceCount();
3111 }
3112 if (dependency_component_count != chunk.boot_image_component_count) {
3113 *error_msg = StringPrintf(
3114 "Unable to find dependencies from image spaces; boot_image_component_count: %u",
3115 chunk.boot_image_component_count);
3116 return false;
3117 }
3118 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies =
3119 ArrayRef<const std::unique_ptr<ImageSpace>>(*spaces).SubArray(
3120 /*pos=*/ 0u, dependency_count);
3121 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
3122 ImageSpace* space = (*spaces)[spaces->size() - chunk.image_space_count + i].get();
3123 size_t bcp_chunk_size = (chunk.image_space_count == 1u) ? chunk.component_count : 1u;
3124
3125 size_t pos = chunk.start_index + i;
3126 ArrayRef<File> boot_class_path_files =
3127 boot_class_path_files_.empty() ?
3128 ArrayRef<File>() :
3129 boot_class_path_files_.SubArray(/*pos=*/pos, bcp_chunk_size);
3130
3131 // Select vdex and oat FD if any exists.
3132 android::base::unique_fd vdex_fd;
3133 android::base::unique_fd oat_fd;
3134 if (chunk.vdex_fd.get() >= 0) {
3135 DCHECK_EQ(locations.size(), 1u);
3136 vdex_fd = std::move(chunk.vdex_fd);
3137 } else {
3138 int arg_vdex_fd =
3139 pos < boot_class_path_vdex_files_.size() ? boot_class_path_vdex_files_[pos].Fd() : -1;
3140 if (arg_vdex_fd >= 0) {
3141 vdex_fd.reset(DupCloexec(arg_vdex_fd));
3142 }
3143 }
3144 if (chunk.oat_fd.get() >= 0) {
3145 DCHECK_EQ(locations.size(), 1u);
3146 oat_fd = std::move(chunk.oat_fd);
3147 } else {
3148 int arg_oat_fd =
3149 pos < boot_class_path_oat_files_.size() ? boot_class_path_oat_files_[pos].Fd() : -1;
3150 if (arg_oat_fd >= 0) {
3151 oat_fd.reset(DupCloexec(arg_oat_fd));
3152 }
3153 }
3154
3155 if (!OpenOatFile(space,
3156 std::move(vdex_fd),
3157 std::move(oat_fd),
3158 boot_class_path_.SubArray(/*pos=*/pos, bcp_chunk_size),
3159 boot_class_path_files,
3160 validate_oat_file,
3161 dependencies,
3162 logger,
3163 image_reservation,
3164 error_msg)) {
3165 return false;
3166 }
3167 }
3168
3169 guard.Commit();
3170 return true;
3171 }
3172
ReserveBootImageMemory(uint8_t * addr,uint32_t reservation_size,std::string * error_msg)3173 MemMap ReserveBootImageMemory(uint8_t* addr,
3174 uint32_t reservation_size,
3175 /*out*/std::string* error_msg) {
3176 DCHECK_ALIGNED(reservation_size, kElfSegmentAlignment);
3177 DCHECK_ALIGNED(addr, kElfSegmentAlignment);
3178 return MemMap::MapAnonymous("Boot image reservation",
3179 addr,
3180 reservation_size,
3181 PROT_NONE,
3182 /*low_4gb=*/ true,
3183 /*reuse=*/ false,
3184 /*reservation=*/ nullptr,
3185 error_msg);
3186 }
3187
RemapExtraReservation(size_t extra_reservation_size,MemMap * image_reservation,MemMap * extra_reservation,std::string * error_msg)3188 bool RemapExtraReservation(size_t extra_reservation_size,
3189 /*inout*/MemMap* image_reservation,
3190 /*out*/MemMap* extra_reservation,
3191 /*out*/std::string* error_msg) {
3192 DCHECK_ALIGNED(extra_reservation_size, kElfSegmentAlignment);
3193 DCHECK(!extra_reservation->IsValid());
3194 size_t expected_size = image_reservation->IsValid() ? image_reservation->Size() : 0u;
3195 if (extra_reservation_size != expected_size) {
3196 *error_msg = StringPrintf("Image reservation mismatch after loading boot image: %zu != %zu",
3197 extra_reservation_size,
3198 expected_size);
3199 return false;
3200 }
3201 if (extra_reservation_size != 0u) {
3202 DCHECK(image_reservation->IsValid());
3203 DCHECK_EQ(extra_reservation_size, image_reservation->Size());
3204 *extra_reservation = image_reservation->RemapAtEnd(image_reservation->Begin(),
3205 "Boot image extra reservation",
3206 PROT_NONE,
3207 error_msg);
3208 if (!extra_reservation->IsValid()) {
3209 return false;
3210 }
3211 }
3212 DCHECK(!image_reservation->IsValid());
3213 return true;
3214 }
3215
3216 const ArrayRef<const std::string> boot_class_path_;
3217 const ArrayRef<const std::string> boot_class_path_locations_;
3218 ArrayRef<File> boot_class_path_files_;
3219 ArrayRef<File> boot_class_path_image_files_;
3220 ArrayRef<File> boot_class_path_vdex_files_;
3221 ArrayRef<File> boot_class_path_oat_files_;
3222 const ArrayRef<const std::string> image_locations_;
3223 const InstructionSet image_isa_;
3224 const bool relocate_;
3225 const bool executable_;
3226 bool has_system_;
3227 const std::string* apex_versions_;
3228 };
3229
LoadFromSystem(size_t extra_reservation_size,bool allow_in_memory_compilation,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)3230 bool ImageSpace::BootImageLoader::LoadFromSystem(
3231 size_t extra_reservation_size,
3232 bool allow_in_memory_compilation,
3233 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3234 /*out*/MemMap* extra_reservation,
3235 /*out*/std::string* error_msg) {
3236 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
3237
3238 BootImageLayout layout(image_locations_,
3239 boot_class_path_,
3240 boot_class_path_locations_,
3241 boot_class_path_files_,
3242 boot_class_path_image_files_,
3243 boot_class_path_vdex_files_,
3244 boot_class_path_oat_files_,
3245 apex_versions_);
3246 if (!layout.LoadFromSystem(image_isa_, allow_in_memory_compilation, error_msg)) {
3247 return false;
3248 }
3249
3250 // Load the image. We don't validate oat files in this stage because they have been validated
3251 // before.
3252 if (!LoadImage(layout,
3253 /*validate_oat_file=*/ false,
3254 extra_reservation_size,
3255 &logger,
3256 boot_image_spaces,
3257 extra_reservation,
3258 error_msg)) {
3259 return false;
3260 }
3261
3262 if (VLOG_IS_ON(image)) {
3263 LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting "
3264 << *boot_image_spaces->front();
3265 logger.Dump(LOG_STREAM(INFO));
3266 }
3267 return true;
3268 }
3269
IsBootClassPathOnDisk(InstructionSet image_isa)3270 bool ImageSpace::IsBootClassPathOnDisk(InstructionSet image_isa) {
3271 Runtime* runtime = Runtime::Current();
3272 BootImageLayout layout(ArrayRef<const std::string>(runtime->GetImageLocations()),
3273 ArrayRef<const std::string>(runtime->GetBootClassPath()),
3274 ArrayRef<const std::string>(runtime->GetBootClassPathLocations()),
3275 runtime->GetBootClassPathFiles(),
3276 runtime->GetBootClassPathImageFiles(),
3277 runtime->GetBootClassPathVdexFiles(),
3278 runtime->GetBootClassPathOatFiles(),
3279 &runtime->GetApexVersions());
3280 const std::string image_location = layout.GetPrimaryImageLocation();
3281 std::unique_ptr<ImageHeader> image_header;
3282 std::string error_msg;
3283
3284 std::string system_filename;
3285 bool has_system = false;
3286
3287 if (FindImageFilename(image_location.c_str(),
3288 image_isa,
3289 &system_filename,
3290 &has_system)) {
3291 DCHECK(has_system);
3292 image_header = ReadSpecificImageHeader(system_filename.c_str(), &error_msg);
3293 }
3294
3295 return image_header != nullptr;
3296 }
3297
LoadBootImage(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,ArrayRef<File> boot_class_path_files,ArrayRef<File> boot_class_path_image_files,ArrayRef<File> boot_class_path_vdex_files,ArrayRef<File> boot_class_path_odex_files,const std::vector<std::string> & image_locations,const InstructionSet image_isa,bool relocate,bool executable,size_t extra_reservation_size,bool allow_in_memory_compilation,const std::string & apex_versions,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation)3298 bool ImageSpace::LoadBootImage(const std::vector<std::string>& boot_class_path,
3299 const std::vector<std::string>& boot_class_path_locations,
3300 ArrayRef<File> boot_class_path_files,
3301 ArrayRef<File> boot_class_path_image_files,
3302 ArrayRef<File> boot_class_path_vdex_files,
3303 ArrayRef<File> boot_class_path_odex_files,
3304 const std::vector<std::string>& image_locations,
3305 const InstructionSet image_isa,
3306 bool relocate,
3307 bool executable,
3308 size_t extra_reservation_size,
3309 bool allow_in_memory_compilation,
3310 const std::string& apex_versions,
3311 /*out*/ std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3312 /*out*/ MemMap* extra_reservation) {
3313 ScopedTrace trace(__FUNCTION__);
3314
3315 DCHECK(boot_image_spaces != nullptr);
3316 DCHECK(boot_image_spaces->empty());
3317 DCHECK_ALIGNED(extra_reservation_size, kElfSegmentAlignment);
3318 DCHECK(extra_reservation != nullptr);
3319 DCHECK_NE(image_isa, InstructionSet::kNone);
3320
3321 if (image_locations.empty()) {
3322 return false;
3323 }
3324
3325 BootImageLoader loader(boot_class_path,
3326 boot_class_path_locations,
3327 boot_class_path_files,
3328 boot_class_path_image_files,
3329 boot_class_path_vdex_files,
3330 boot_class_path_odex_files,
3331 image_locations,
3332 image_isa,
3333 relocate,
3334 executable,
3335 &apex_versions);
3336 loader.FindImageFiles();
3337
3338 std::string error_msg;
3339 if (loader.LoadFromSystem(extra_reservation_size,
3340 allow_in_memory_compilation,
3341 boot_image_spaces,
3342 extra_reservation,
3343 &error_msg)) {
3344 return true;
3345 }
3346 LOG(ERROR) << "Could not create image space with image file '"
3347 << Join(image_locations, kComponentSeparator)
3348 << "'. Attempting to fall back to imageless running. Error was: "
3349 << error_msg;
3350
3351 return false;
3352 }
3353
~ImageSpace()3354 ImageSpace::~ImageSpace() {
3355 // Everything done by member destructors. Classes forward-declared in header are now defined.
3356 }
3357
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)3358 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
3359 const OatFile* oat_file,
3360 std::string* error_msg) {
3361 // Note: The oat file has already been validated.
3362 const std::vector<ImageSpace*>& boot_image_spaces =
3363 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3364 return CreateFromAppImage(image,
3365 oat_file,
3366 ArrayRef<ImageSpace* const>(boot_image_spaces),
3367 error_msg);
3368 }
3369
CreateFromAppImage(const char * image,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)3370 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(
3371 const char* image,
3372 const OatFile* oat_file,
3373 ArrayRef<ImageSpace* const> boot_image_spaces,
3374 std::string* error_msg) {
3375 return Loader::InitAppImage(image,
3376 image,
3377 oat_file,
3378 boot_image_spaces,
3379 error_msg);
3380 }
3381
GetOatFile() const3382 const OatFile* ImageSpace::GetOatFile() const {
3383 return oat_file_non_owned_;
3384 }
3385
ReleaseOatFile()3386 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
3387 CHECK(oat_file_ != nullptr);
3388 return std::move(oat_file_);
3389 }
3390
Dump(std::ostream & os) const3391 void ImageSpace::Dump(std::ostream& os) const {
3392 os << GetType()
3393 << " begin=" << reinterpret_cast<void*>(Begin())
3394 << ",end=" << reinterpret_cast<void*>(End())
3395 << ",size=" << PrettySize(Size())
3396 << ",name=\"" << GetName() << "\"]";
3397 }
3398
ValidateApexVersions(const OatHeader & oat_header,const std::string & apex_versions,const std::string & file_location,std::string * error_msg)3399 bool ImageSpace::ValidateApexVersions(const OatHeader& oat_header,
3400 const std::string& apex_versions,
3401 const std::string& file_location,
3402 std::string* error_msg) {
3403 // For a boot image, the key value store only exists in the first OAT file. Skip other OAT files.
3404 if (oat_header.GetKeyValueStoreSize() == 0) {
3405 return true;
3406 }
3407
3408 const char* oat_apex_versions = oat_header.GetStoreValueByKey(OatHeader::kApexVersionsKey);
3409 if (oat_apex_versions == nullptr) {
3410 *error_msg = StringPrintf("ValidateApexVersions failed to get APEX versions from oat file '%s'",
3411 file_location.c_str());
3412 return false;
3413 }
3414 // For a boot image, it can be generated from a subset of the bootclasspath.
3415 // For an app image, some dex files get compiled with a subset of the bootclasspath.
3416 // For such cases, the OAT APEX versions will be a prefix of the runtime APEX versions.
3417 if (!apex_versions.starts_with(oat_apex_versions)) {
3418 *error_msg = StringPrintf(
3419 "ValidateApexVersions found APEX versions mismatch between oat file '%s' and the runtime "
3420 "(Oat file: '%s', Runtime: '%s')",
3421 file_location.c_str(),
3422 oat_apex_versions,
3423 apex_versions.c_str());
3424 return false;
3425 }
3426 return true;
3427 }
3428
ValidateOatFile(const OatFile & oat_file,std::string * error_msg)3429 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
3430 DCHECK(Runtime::Current() != nullptr);
3431 return ValidateOatFile(oat_file, error_msg, {}, {}, Runtime::Current()->GetApexVersions());
3432 }
3433
ValidateOatFile(const OatFile & oat_file,std::string * error_msg,ArrayRef<const std::string> dex_filenames,ArrayRef<File> dex_files,const std::string & apex_versions)3434 bool ImageSpace::ValidateOatFile(const OatFile& oat_file,
3435 std::string* error_msg,
3436 ArrayRef<const std::string> dex_filenames,
3437 ArrayRef<File> dex_files,
3438 const std::string& apex_versions) {
3439 if (!ValidateApexVersions(oat_file.GetOatHeader(),
3440 apex_versions,
3441 oat_file.GetLocation(),
3442 error_msg)) {
3443 return false;
3444 }
3445
3446 // For a boot image, the key value store only exists in the first OAT file. Skip other OAT files.
3447 if (oat_file.GetOatHeader().GetKeyValueStoreSize() != 0 &&
3448 oat_file.GetOatHeader().IsConcurrentCopying() != gUseReadBarrier) {
3449 *error_msg =
3450 ART_FORMAT("ValidateOatFile found read barrier state mismatch (oat file: {}, runtime: {})",
3451 oat_file.GetOatHeader().IsConcurrentCopying(),
3452 gUseReadBarrier);
3453 return false;
3454 }
3455
3456 size_t dex_file_index = 0; // Counts only primary dex files.
3457 const std::vector<const OatDexFile*>& oat_dex_files = oat_file.GetOatDexFiles();
3458 for (size_t i = 0; i < oat_dex_files.size();) {
3459 DCHECK(dex_filenames.empty() || dex_file_index < dex_filenames.size());
3460 const std::string& dex_file_location = dex_filenames.empty() ?
3461 oat_dex_files[i]->GetDexFileLocation() :
3462 dex_filenames[dex_file_index];
3463 File no_file; // Invalid object.
3464 File& dex_file = dex_file_index < dex_files.size() ? dex_files[dex_file_index] : no_file;
3465 dex_file_index++;
3466
3467 if (DexFileLoader::IsMultiDexLocation(oat_dex_files[i]->GetDexFileLocation())) {
3468 return false; // Expected primary dex file.
3469 }
3470 uint32_t oat_checksum = DexFileLoader::GetMultiDexChecksum(oat_dex_files, &i);
3471
3472 // Original checksum.
3473 std::optional<uint32_t> dex_checksum;
3474 ArtDexFileLoader dex_loader(&dex_file, dex_file_location);
3475 bool ok = dex_loader.GetMultiDexChecksum(&dex_checksum, error_msg);
3476 if (!ok) {
3477 *error_msg = StringPrintf(
3478 "ValidateOatFile failed to get checksum of dex file '%s' "
3479 "referenced by oat file %s: %s",
3480 dex_file_location.c_str(),
3481 oat_file.GetLocation().c_str(),
3482 error_msg->c_str());
3483 return false;
3484 }
3485 CHECK(dex_checksum.has_value());
3486
3487 if (oat_checksum != dex_checksum) {
3488 *error_msg = StringPrintf(
3489 "ValidateOatFile found checksum mismatch between oat file "
3490 "'%s' and dex file '%s' (0x%x != 0x%x)",
3491 oat_file.GetLocation().c_str(),
3492 dex_file_location.c_str(),
3493 oat_checksum,
3494 dex_checksum.value());
3495 return false;
3496 }
3497 }
3498 return true;
3499 }
3500
GetBootClassPathChecksums(ArrayRef<ImageSpace * const> image_spaces,ArrayRef<const DexFile * const> boot_class_path)3501 std::string ImageSpace::GetBootClassPathChecksums(
3502 ArrayRef<ImageSpace* const> image_spaces,
3503 ArrayRef<const DexFile* const> boot_class_path) {
3504 DCHECK(!boot_class_path.empty());
3505 size_t bcp_pos = 0u;
3506 std::string boot_image_checksum;
3507
3508 for (size_t image_pos = 0u, size = image_spaces.size(); image_pos != size; ) {
3509 const ImageSpace* main_space = image_spaces[image_pos];
3510 // Caller must make sure that the image spaces correspond to the head of the BCP.
3511 DCHECK_NE(main_space->oat_file_non_owned_->GetOatDexFiles().size(), 0u);
3512 DCHECK_EQ(main_space->oat_file_non_owned_->GetOatDexFiles()[0]->GetDexFileLocation(),
3513 boot_class_path[bcp_pos]->GetLocation());
3514 const ImageHeader& current_header = main_space->GetImageHeader();
3515 uint32_t image_space_count = current_header.GetImageSpaceCount();
3516 DCHECK_NE(image_space_count, 0u);
3517 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
3518 if (image_pos != 0u) {
3519 boot_image_checksum += ':';
3520 }
3521 uint32_t component_count = current_header.GetComponentCount();
3522 AppendImageChecksum(component_count, current_header.GetImageChecksum(), &boot_image_checksum);
3523 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
3524 const ImageSpace* space = image_spaces[image_pos + space_index];
3525 const OatFile* oat_file = space->oat_file_non_owned_;
3526 size_t num_dex_files = oat_file->GetOatDexFiles().size();
3527 if (kIsDebugBuild) {
3528 CHECK_NE(num_dex_files, 0u);
3529 CHECK_LE(oat_file->GetOatDexFiles().size(), boot_class_path.size() - bcp_pos);
3530 for (size_t i = 0; i != num_dex_files; ++i) {
3531 CHECK_EQ(oat_file->GetOatDexFiles()[i]->GetDexFileLocation(),
3532 boot_class_path[bcp_pos + i]->GetLocation());
3533 }
3534 }
3535 bcp_pos += num_dex_files;
3536 }
3537 image_pos += image_space_count;
3538 }
3539
3540 ArrayRef<const DexFile* const> boot_class_path_tail =
3541 ArrayRef<const DexFile* const>(boot_class_path).SubArray(bcp_pos);
3542 DCHECK(boot_class_path_tail.empty() ||
3543 !DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation()));
3544 for (size_t i = 0; i < boot_class_path_tail.size();) {
3545 uint32_t checksum = DexFileLoader::GetMultiDexChecksum(boot_class_path_tail, &i);
3546 if (!boot_image_checksum.empty()) {
3547 boot_image_checksum += ':';
3548 }
3549 boot_image_checksum += kDexFileChecksumPrefix;
3550 StringAppendF(&boot_image_checksum, "/%08x", checksum);
3551 }
3552 return boot_image_checksum;
3553 }
3554
GetNumberOfComponents(ArrayRef<ImageSpace * const> image_spaces)3555 size_t ImageSpace::GetNumberOfComponents(ArrayRef<ImageSpace* const> image_spaces) {
3556 size_t n = 0;
3557 for (auto&& is : image_spaces) {
3558 n += is->GetComponentCount();
3559 }
3560 return n;
3561 }
3562
CheckAndCountBCPComponents(std::string_view oat_boot_class_path,ArrayRef<const std::string> boot_class_path,std::string * error_msg)3563 size_t ImageSpace::CheckAndCountBCPComponents(std::string_view oat_boot_class_path,
3564 ArrayRef<const std::string> boot_class_path,
3565 /*out*/std::string* error_msg) {
3566 // Check that the oat BCP is a prefix of current BCP locations and count components.
3567 size_t component_count = 0u;
3568 std::string_view remaining_bcp(oat_boot_class_path);
3569 bool bcp_ok = false;
3570 for (const std::string& location : boot_class_path) {
3571 if (!remaining_bcp.starts_with(location)) {
3572 break;
3573 }
3574 remaining_bcp.remove_prefix(location.size());
3575 ++component_count;
3576 if (remaining_bcp.empty()) {
3577 bcp_ok = true;
3578 break;
3579 }
3580 if (!remaining_bcp.starts_with(":")) {
3581 break;
3582 }
3583 remaining_bcp.remove_prefix(1u);
3584 }
3585 if (!bcp_ok) {
3586 *error_msg = StringPrintf("Oat boot class path (%s) is not a prefix of"
3587 " runtime boot class path (%s)",
3588 std::string(oat_boot_class_path).c_str(),
3589 Join(boot_class_path, ':').c_str());
3590 return static_cast<size_t>(-1);
3591 }
3592 return component_count;
3593 }
3594
VerifyBootClassPathChecksums(std::string_view oat_checksums,std::string_view oat_boot_class_path,ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,ArrayRef<const std::string> boot_class_path_locations,ArrayRef<const std::string> boot_class_path,std::string * error_msg)3595 bool ImageSpace::VerifyBootClassPathChecksums(
3596 std::string_view oat_checksums,
3597 std::string_view oat_boot_class_path,
3598 ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,
3599 ArrayRef<const std::string> boot_class_path_locations,
3600 ArrayRef<const std::string> boot_class_path,
3601 /*out*/std::string* error_msg) {
3602 DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size());
3603 DCHECK_GE(boot_class_path_locations.size(), image_spaces.size());
3604 if (oat_checksums.empty() || oat_boot_class_path.empty()) {
3605 *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path.";
3606 return false;
3607 }
3608
3609 size_t oat_bcp_size =
3610 CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg);
3611 if (oat_bcp_size == static_cast<size_t>(-1)) {
3612 DCHECK(!error_msg->empty());
3613 return false;
3614 }
3615 const size_t num_image_spaces = image_spaces.size();
3616 size_t dependency_component_count = 0;
3617 for (const std::unique_ptr<ImageSpace>& space : image_spaces) {
3618 dependency_component_count += space->GetComponentCount();
3619 }
3620 if (dependency_component_count != oat_bcp_size) {
3621 *error_msg = StringPrintf("Image header records %s dependencies (%zu) than BCP (%zu)",
3622 dependency_component_count < oat_bcp_size ? "less" : "more",
3623 dependency_component_count,
3624 oat_bcp_size);
3625 return false;
3626 }
3627
3628 // Verify image checksums.
3629 size_t bcp_pos = 0u;
3630 size_t image_pos = 0u;
3631 while (image_pos != num_image_spaces && oat_checksums.starts_with("i")) {
3632 // Verify the current image checksum.
3633 const ImageHeader& current_header = image_spaces[image_pos]->GetImageHeader();
3634 uint32_t image_space_count = current_header.GetImageSpaceCount();
3635 DCHECK_NE(image_space_count, 0u);
3636 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
3637 uint32_t component_count = current_header.GetComponentCount();
3638 uint32_t checksum = current_header.GetImageChecksum();
3639 if (!CheckAndRemoveImageChecksum(component_count, checksum, &oat_checksums, error_msg)) {
3640 DCHECK(!error_msg->empty());
3641 return false;
3642 }
3643
3644 if (kIsDebugBuild) {
3645 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
3646 const OatFile* oat_file = image_spaces[image_pos + space_index]->oat_file_non_owned_;
3647 size_t num_dex_files = oat_file->GetOatDexFiles().size();
3648 CHECK_NE(num_dex_files, 0u);
3649 const std::string main_location = oat_file->GetOatDexFiles()[0]->GetDexFileLocation();
3650 CHECK_EQ(main_location, boot_class_path_locations[bcp_pos + space_index]);
3651 CHECK(!DexFileLoader::IsMultiDexLocation(main_location));
3652 size_t num_base_locations = 1u;
3653 for (size_t i = 1u; i != num_dex_files; ++i) {
3654 if (!DexFileLoader::IsMultiDexLocation(
3655 oat_file->GetOatDexFiles()[i]->GetDexFileLocation())) {
3656 CHECK_EQ(image_space_count, 1u); // We can find base locations only for --single-image.
3657 ++num_base_locations;
3658 }
3659 }
3660 if (image_space_count == 1u) {
3661 CHECK_EQ(num_base_locations, component_count);
3662 }
3663 }
3664 }
3665
3666 image_pos += image_space_count;
3667 bcp_pos += component_count;
3668
3669 if (!oat_checksums.starts_with(":")) {
3670 // Check that we've reached the end of checksums and BCP.
3671 if (!oat_checksums.empty()) {
3672 *error_msg = StringPrintf("Expected ':' separator or end of checksums, remaining %s.",
3673 std::string(oat_checksums).c_str());
3674 return false;
3675 }
3676 if (bcp_pos != oat_bcp_size) {
3677 *error_msg = StringPrintf("Component count mismatch between checksums (%zu) and BCP (%zu)",
3678 bcp_pos,
3679 oat_bcp_size);
3680 return false;
3681 }
3682 return true;
3683 }
3684 oat_checksums.remove_prefix(1u);
3685 }
3686
3687 // We do not allow dependencies of extensions on dex files. That would require
3688 // interleaving the loading of the images with opening the other BCP dex files.
3689 return false;
3690 }
3691
ExpandMultiImageLocations(ArrayRef<const std::string> dex_locations,const std::string & image_location,bool boot_image_extension)3692 std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
3693 ArrayRef<const std::string> dex_locations,
3694 const std::string& image_location,
3695 bool boot_image_extension) {
3696 DCHECK(!dex_locations.empty());
3697
3698 // Find the path.
3699 size_t last_slash = image_location.rfind('/');
3700 CHECK_NE(last_slash, std::string::npos);
3701
3702 // We also need to honor path components that were encoded through '@'. Otherwise the loading
3703 // code won't be able to find the images.
3704 if (image_location.find('@', last_slash) != std::string::npos) {
3705 last_slash = image_location.rfind('@');
3706 }
3707
3708 // Find the dot separating the primary image name from the extension.
3709 size_t last_dot = image_location.rfind('.');
3710 // Extract the extension and base (the path and primary image name).
3711 std::string extension;
3712 std::string base = image_location;
3713 if (last_dot != std::string::npos && last_dot > last_slash) {
3714 extension = image_location.substr(last_dot); // Including the dot.
3715 base.resize(last_dot);
3716 }
3717 // For non-empty primary image name, add '-' to the `base`.
3718 if (last_slash + 1u != base.size()) {
3719 base += '-';
3720 }
3721
3722 std::vector<std::string> locations;
3723 locations.reserve(dex_locations.size());
3724 size_t start_index = 0u;
3725 if (!boot_image_extension) {
3726 start_index = 1u;
3727 locations.push_back(image_location);
3728 }
3729
3730 // Now create the other names. Use a counted loop to skip the first one if needed.
3731 for (size_t i = start_index; i < dex_locations.size(); ++i) {
3732 // Replace path with `base` (i.e. image path and prefix) and replace the original
3733 // extension (if any) with `extension`.
3734 std::string name = dex_locations[i];
3735 size_t last_dex_slash = name.rfind('/');
3736 if (last_dex_slash != std::string::npos) {
3737 name = name.substr(last_dex_slash + 1);
3738 }
3739 size_t last_dex_dot = name.rfind('.');
3740 if (last_dex_dot != std::string::npos) {
3741 name.resize(last_dex_dot);
3742 }
3743 locations.push_back(ART_FORMAT("{}{}{}", base, name, extension));
3744 }
3745 return locations;
3746 }
3747
DumpSections(std::ostream & os) const3748 void ImageSpace::DumpSections(std::ostream& os) const {
3749 const uint8_t* base = Begin();
3750 const ImageHeader& header = GetImageHeader();
3751 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
3752 auto section_type = static_cast<ImageHeader::ImageSections>(i);
3753 const ImageSection& section = header.GetImageSection(section_type);
3754 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
3755 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
3756 }
3757 }
3758
ReleaseMetadata()3759 void ImageSpace::ReleaseMetadata() {
3760 const ImageSection& metadata = GetImageHeader().GetMetadataSection();
3761 VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes";
3762 // Avoid using ZeroAndReleasePages since the zero fill might not be word atomic.
3763 uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), gPageSize);
3764 uint8_t* const page_end = AlignDown(Begin() + metadata.End(), gPageSize);
3765 if (page_begin < page_end) {
3766 CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
3767 }
3768 }
3769
3770 } // namespace space
3771 } // namespace gc
3772 } // namespace art
3773