1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_
18 #define ART_COMPILER_OPTIMIZING_SCHEDULER_H_
19 
20 #include <fstream>
21 
22 #include "base/macros.h"
23 #include "base/scoped_arena_allocator.h"
24 #include "base/scoped_arena_containers.h"
25 #include "base/stl_util.h"
26 #include "base/time_utils.h"
27 #include "code_generator.h"
28 #include "load_store_analysis.h"
29 #include "nodes.h"
30 #include "optimization.h"
31 
32 namespace art HIDDEN {
33 
34 // General description of instruction scheduling.
35 //
36 // This pass tries to improve the quality of the generated code by reordering
37 // instructions in the graph to avoid execution delays caused by execution
38 // dependencies.
39 // Currently, scheduling is performed at the block level, so no `HInstruction`
40 // ever leaves its block in this pass.
41 //
42 // The scheduling process iterates through blocks in the graph. For blocks that
43 // we can and want to schedule:
44 // 1) Build a dependency graph for instructions.
45 //    It includes data dependencies (inputs/uses), but also environment
46 //    dependencies and side-effect dependencies.
47 // 2) Schedule the dependency graph.
48 //    This is a topological sort of the dependency graph, using heuristics to
49 //    decide what node to scheduler first when there are multiple candidates.
50 //
51 // A few factors impacting the quality of the scheduling are:
52 // - The heuristics used to decide what node to schedule in the topological sort
53 //   when there are multiple valid candidates. There is a wide range of
54 //   complexity possible here, going from a simple model only considering
55 //   latencies, to a super detailed CPU pipeline model.
56 // - Fewer dependencies in the dependency graph give more freedom for the
57 //   scheduling heuristics. For example de-aliasing can allow possibilities for
58 //   reordering of memory accesses.
59 // - The level of abstraction of the IR. It is easier to evaluate scheduling for
60 //   IRs that translate to a single assembly instruction than for IRs
61 //   that generate multiple assembly instructions or generate different code
62 //   depending on properties of the IR.
63 // - Scheduling is performed before register allocation, it is not aware of the
64 //   impact of moving instructions on register allocation.
65 //
66 //
67 // The scheduling code uses the terms predecessors, successors, and dependencies.
68 // This can be confusing at times, so here are clarifications.
69 // These terms are used from the point of view of the program dependency graph. So
70 // the inputs of an instruction are part of its dependencies, and hence part its
71 // predecessors. So the uses of an instruction are (part of) its successors.
72 // (Side-effect dependencies can yield predecessors or successors that are not
73 // inputs or uses.)
74 //
75 // Here is a trivial example. For the Java code:
76 //
77 //    int a = 1 + 2;
78 //
79 // we would have the instructions
80 //
81 //    i1 HIntConstant 1
82 //    i2 HIntConstant 2
83 //    i3 HAdd [i1,i2]
84 //
85 // `i1` and `i2` are predecessors of `i3`.
86 // `i3` is a successor of `i1` and a successor of `i2`.
87 // In a scheduling graph for this code we would have three nodes `n1`, `n2`,
88 // and `n3` (respectively for instructions `i1`, `i1`, and `i3`).
89 // Conceptually the program dependency graph for this would contain two edges
90 //
91 //    n1 -> n3
92 //    n2 -> n3
93 //
94 // Since we schedule backwards (starting from the last instruction in each basic
95 // block), the implementation of nodes keeps a list of pointers their
96 // predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`.
97 //
98 // Node dependencies are also referred to from the program dependency graph
99 // point of view: we say that node `B` immediately depends on `A` if there is an
100 // edge from `A` to `B` in the program dependency graph. `A` is a predecessor of
101 // `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and
102 // `n2`.
103 // Since nodes in the scheduling graph keep a list of their predecessors, node
104 // `B` will have a pointer to its predecessor `A`.
105 // As we schedule backwards, `B` will be selected for scheduling before `A` is.
106 //
107 // So the scheduling for the example above could happen as follow
108 //
109 //    |---------------------------+------------------------|
110 //    | candidates for scheduling | instructions scheduled |
111 //    | --------------------------+------------------------|
112 //
113 // The only node without successors is `n3`, so it is the only initial
114 // candidate.
115 //
116 //    | n3                        | (none)                 |
117 //
118 // We schedule `n3` as the last (and only) instruction. All its predecessors
119 // that do not have any unscheduled successors become candidate. That is, `n1`
120 // and `n2` become candidates.
121 //
122 //    | n1, n2                    | n3                     |
123 //
124 // One of the candidates is selected. In practice this is where scheduling
125 // heuristics kick in, to decide which of the candidates should be selected.
126 // In this example, let it be `n1`. It is scheduled before previously scheduled
127 // nodes (in program order). There are no other nodes to add to the list of
128 // candidates.
129 //
130 //    | n2                        | n1                     |
131 //    |                           | n3                     |
132 //
133 // The only candidate available for scheduling is `n2`. Schedule it before
134 // (in program order) the previously scheduled nodes.
135 //
136 //    | (none)                    | n2                     |
137 //    |                           | n1                     |
138 //    |                           | n3                     |
139 //    |---------------------------+------------------------|
140 //
141 // So finally the instructions will be executed in the order `i2`, `i1`, and `i3`.
142 // In this trivial example, it does not matter which of `i1` and `i2` is
143 // scheduled first since they are constants. However the same process would
144 // apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`).
145 
146 // Set to true to have instruction scheduling dump scheduling graphs to the file
147 // `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`.
148 static constexpr bool kDumpDotSchedulingGraphs = false;
149 
150 // Typically used as a default instruction latency.
151 static constexpr uint32_t kGenericInstructionLatency = 1;
152 
153 class HScheduler;
154 
155 /**
156  * A node representing an `HInstruction` in the `SchedulingGraph`.
157  */
158 class SchedulingNode : public DeletableArenaObject<kArenaAllocScheduler> {
159  public:
SchedulingNode(HInstruction * instr,ScopedArenaAllocator * allocator,bool is_scheduling_barrier)160   SchedulingNode(HInstruction* instr, ScopedArenaAllocator* allocator, bool is_scheduling_barrier)
161       : latency_(0),
162         internal_latency_(0),
163         critical_path_(0),
164         instruction_(instr),
165         is_scheduling_barrier_(is_scheduling_barrier),
166         data_predecessors_(allocator->Adapter(kArenaAllocScheduler)),
167         other_predecessors_(allocator->Adapter(kArenaAllocScheduler)),
168         num_unscheduled_successors_(0) {
169     data_predecessors_.reserve(kPreallocatedPredecessors);
170   }
171 
AddDataPredecessor(SchedulingNode * predecessor)172   void AddDataPredecessor(SchedulingNode* predecessor) {
173     // Check whether the predecessor has been added earlier.
174     if (HasDataDependency(predecessor)) {
175       return;
176     }
177     data_predecessors_.push_back(predecessor);
178     predecessor->num_unscheduled_successors_++;
179   }
180 
GetDataPredecessors()181   const ScopedArenaVector<SchedulingNode*>& GetDataPredecessors() const {
182     return data_predecessors_;
183   }
184 
AddOtherPredecessor(SchedulingNode * predecessor)185   void AddOtherPredecessor(SchedulingNode* predecessor) {
186     // Check whether the predecessor has been added earlier.
187     // As an optimization of the scheduling graph, we don't need to create another dependency if
188     // there is a data dependency between scheduling nodes.
189     if (HasOtherDependency(predecessor) || HasDataDependency(predecessor)) {
190       return;
191     }
192     other_predecessors_.push_back(predecessor);
193     predecessor->num_unscheduled_successors_++;
194   }
195 
GetOtherPredecessors()196   const ScopedArenaVector<SchedulingNode*>& GetOtherPredecessors() const {
197     return other_predecessors_;
198   }
199 
DecrementNumberOfUnscheduledSuccessors()200   void DecrementNumberOfUnscheduledSuccessors() {
201     num_unscheduled_successors_--;
202   }
203 
MaybeUpdateCriticalPath(uint32_t other_critical_path)204   void MaybeUpdateCriticalPath(uint32_t other_critical_path) {
205     critical_path_ = std::max(critical_path_, other_critical_path);
206   }
207 
HasUnscheduledSuccessors()208   bool HasUnscheduledSuccessors() const {
209     return num_unscheduled_successors_ != 0;
210   }
211 
GetInstruction()212   HInstruction* GetInstruction() const { return instruction_; }
GetLatency()213   uint32_t GetLatency() const { return latency_; }
SetLatency(uint32_t latency)214   void SetLatency(uint32_t latency) { latency_ = latency; }
GetInternalLatency()215   uint32_t GetInternalLatency() const { return internal_latency_; }
SetInternalLatency(uint32_t internal_latency)216   void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; }
GetCriticalPath()217   uint32_t GetCriticalPath() const { return critical_path_; }
IsSchedulingBarrier()218   bool IsSchedulingBarrier() const { return is_scheduling_barrier_; }
219 
HasDataDependency(const SchedulingNode * node)220   bool HasDataDependency(const SchedulingNode* node) const {
221     return ContainsElement(data_predecessors_, node);
222   }
223 
HasOtherDependency(const SchedulingNode * node)224   bool HasOtherDependency(const SchedulingNode* node) const {
225     return ContainsElement(other_predecessors_, node);
226   }
227 
228  private:
229   // The latency of this node. It represents the latency between the moment the
230   // last instruction for this node has executed to the moment the result
231   // produced by this node is available to users.
232   uint32_t latency_;
233   // This represents the time spent *within* the generated code for this node.
234   // It should be zero for nodes that only generate a single instruction.
235   uint32_t internal_latency_;
236 
237   // The critical path from this instruction to the end of scheduling. It is
238   // used by the scheduling heuristics to measure the priority of this instruction.
239   // It is defined as
240   //     critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses)
241   // (Note that here 'uses' is equivalent to 'data successors'. Also see comments in
242   // `HScheduler::Schedule(SchedulingNode* scheduling_node)`).
243   uint32_t critical_path_;
244 
245   // The instruction that this node represents.
246   HInstruction* const instruction_;
247 
248   // If a node is scheduling barrier, other nodes cannot be scheduled before it.
249   const bool is_scheduling_barrier_;
250 
251   // The lists of predecessors. They cannot be scheduled before this node. Once
252   // this node is scheduled, we check whether any of its predecessors has become a
253   // valid candidate for scheduling.
254   // Predecessors in `data_predecessors_` are data dependencies. Those in
255   // `other_predecessors_` contain side-effect dependencies, environment
256   // dependencies, and scheduling barrier dependencies.
257   ScopedArenaVector<SchedulingNode*> data_predecessors_;
258   ScopedArenaVector<SchedulingNode*> other_predecessors_;
259 
260   // The number of unscheduled successors for this node. This number is
261   // decremented as successors are scheduled. When it reaches zero this node
262   // becomes a valid candidate to schedule.
263   uint32_t num_unscheduled_successors_;
264 
265   static constexpr size_t kPreallocatedPredecessors = 4;
266 };
267 
268 /*
269  * Provide analysis of instruction dependencies (side effects) which are not in a form of explicit
270  * def-use data dependencies.
271  */
272 class SideEffectDependencyAnalysis {
273  public:
SideEffectDependencyAnalysis(const HeapLocationCollector * heap_location_collector)274   explicit SideEffectDependencyAnalysis(const HeapLocationCollector* heap_location_collector)
275       : memory_dependency_analysis_(heap_location_collector) {}
276 
HasSideEffectDependency(HInstruction * instr1,HInstruction * instr2)277   bool HasSideEffectDependency(HInstruction* instr1, HInstruction* instr2) const {
278     if (memory_dependency_analysis_.HasMemoryDependency(instr1, instr2)) {
279       return true;
280     }
281 
282     // Even if above memory dependency check has passed, it is still necessary to
283     // check dependencies between instructions that can throw and instructions
284     // that write to memory.
285     if (HasExceptionDependency(instr1, instr2)) {
286       return true;
287     }
288 
289     return false;
290   }
291 
292  private:
293   static bool HasExceptionDependency(const HInstruction* instr1, const HInstruction* instr2);
294   static bool HasReorderingDependency(const HInstruction* instr1, const HInstruction* instr2);
295 
296   /*
297    * Memory dependency analysis of instructions based on their memory side effects
298    * and heap location information from the LCA pass if it is provided.
299    */
300   class MemoryDependencyAnalysis {
301    public:
MemoryDependencyAnalysis(const HeapLocationCollector * heap_location_collector)302     explicit MemoryDependencyAnalysis(const HeapLocationCollector* heap_location_collector)
303         : heap_location_collector_(heap_location_collector) {}
304 
305     bool HasMemoryDependency(HInstruction* instr1, HInstruction* instr2) const;
306 
307    private:
308     bool ArrayAccessMayAlias(HInstruction* instr1, HInstruction* instr2) const;
309     bool FieldAccessMayAlias(const HInstruction* instr1, const HInstruction* instr2) const;
310     size_t ArrayAccessHeapLocation(HInstruction* instruction) const;
311     size_t FieldAccessHeapLocation(const HInstruction* instruction) const;
312 
313     const HeapLocationCollector* const heap_location_collector_;
314   };
315 
316   MemoryDependencyAnalysis memory_dependency_analysis_;
317 };
318 
319 /*
320  * Directed acyclic graph for scheduling.
321  */
322 class SchedulingGraph : public ValueObject {
323  public:
SchedulingGraph(ScopedArenaAllocator * allocator,const HeapLocationCollector * heap_location_collector)324   SchedulingGraph(ScopedArenaAllocator* allocator,
325                   const HeapLocationCollector* heap_location_collector)
326       : allocator_(allocator),
327         contains_scheduling_barrier_(false),
328         nodes_map_(allocator_->Adapter(kArenaAllocScheduler)),
329         side_effect_dependency_analysis_(heap_location_collector) {}
330 
331   SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) {
332     std::unique_ptr<SchedulingNode> node(
333         new (allocator_) SchedulingNode(instr, allocator_, is_scheduling_barrier));
334     SchedulingNode* result = node.get();
335     nodes_map_.insert(std::make_pair(instr, std::move(node)));
336     contains_scheduling_barrier_ |= is_scheduling_barrier;
337     AddDependencies(result, is_scheduling_barrier);
338     return result;
339   }
340 
GetNode(const HInstruction * instr)341   SchedulingNode* GetNode(const HInstruction* instr) const {
342     auto it = nodes_map_.find(instr);
343     if (it == nodes_map_.end()) {
344       return nullptr;
345     } else {
346       return it->second.get();
347     }
348   }
349 
Size()350   size_t Size() const {
351     return nodes_map_.size();
352   }
353 
354   // Dump the scheduling graph, in dot file format, appending it to the file
355   // `scheduling_graphs.dot`.
356   void DumpAsDotGraph(const std::string& description,
357                       const ScopedArenaVector<SchedulingNode*>& initial_candidates);
358 
359  protected:
360   void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency);
AddDataDependency(SchedulingNode * node,SchedulingNode * dependency)361   void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) {
362     AddDependency(node, dependency, /*is_data_dependency*/true);
363   }
AddOtherDependency(SchedulingNode * node,SchedulingNode * dependency)364   void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) {
365     AddDependency(node, dependency, /*is_data_dependency*/false);
366   }
367 
368   // Analyze whether the scheduling node has cross-iteration dependencies which mean it uses
369   // values defined on the previous iteration.
370   //
371   // Supported cases:
372   //
373   //   L:
374   //     v2 = loop_head_phi(v1)
375   //     instr1(v2)
376   //     v1 = instr2
377   //     goto L
378   //
379   // In such cases moving instr2 before instr1 creates intersecting live ranges
380   // of v1 and v2. As a result a separate register is needed to keep the value
381   // defined by instr2 which is only used on the next iteration.
382   // If instr2 is not moved, no additional register is needed. The register
383   // used by instr1 is reused.
384   // To prevent such a situation a "other" dependency between instr1 and instr2 must be set.
385   void AddCrossIterationDependencies(SchedulingNode* node);
386 
387   // Add dependencies nodes for the given `SchedulingNode`: inputs, environments, and side-effects.
388   void AddDependencies(SchedulingNode* node, bool is_scheduling_barrier = false);
389 
390   ScopedArenaAllocator* const allocator_;
391   bool contains_scheduling_barrier_;
392   ScopedArenaHashMap<const HInstruction*, std::unique_ptr<SchedulingNode>> nodes_map_;
393   SideEffectDependencyAnalysis side_effect_dependency_analysis_;
394 };
395 
396 /*
397  * The visitors derived from this base class are used by schedulers to evaluate
398  * the latencies of `HInstruction`s.
399  */
400 class SchedulingLatencyVisitor : public HGraphDelegateVisitor {
401  public:
402   // This class and its sub-classes will never be used to drive a visit of an
403   // `HGraph` but only to visit `HInstructions` one at a time, so we do not need
404   // to pass a valid graph to `HGraphDelegateVisitor()`.
SchedulingLatencyVisitor()405   SchedulingLatencyVisitor()
406       : HGraphDelegateVisitor(nullptr),
407         last_visited_latency_(0),
408         last_visited_internal_latency_(0) {}
409 
VisitInstruction(HInstruction * instruction)410   void VisitInstruction(HInstruction* instruction) override {
411     LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". "
412         "Architecture-specific scheduling latency visitors must handle all instructions"
413         " (potentially by overriding the generic `VisitInstruction()`.";
414     UNREACHABLE();
415   }
416 
Visit(HInstruction * instruction)417   void Visit(HInstruction* instruction) {
418     instruction->Accept(this);
419   }
420 
CalculateLatency(SchedulingNode * node)421   void CalculateLatency(SchedulingNode* node) {
422     // By default nodes have no internal latency.
423     last_visited_internal_latency_ = 0;
424     Visit(node->GetInstruction());
425   }
426 
GetLastVisitedLatency()427   uint32_t GetLastVisitedLatency() const { return last_visited_latency_; }
GetLastVisitedInternalLatency()428   uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; }
429 
430  protected:
431   // The latency of the most recent visited SchedulingNode.
432   // This is for reporting the latency value to the user of this visitor.
433   uint32_t last_visited_latency_;
434   // This represents the time spent *within* the generated code for the most recent visited
435   // SchedulingNode. This is for reporting the internal latency value to the user of this visitor.
436   uint32_t last_visited_internal_latency_;
437 };
438 
439 class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> {
440  public:
Reset()441   virtual void Reset() {}
442   virtual SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
443                                                  const SchedulingGraph& graph) = 0;
~SchedulingNodeSelector()444   virtual ~SchedulingNodeSelector() {}
445  protected:
DeleteNodeAtIndex(ScopedArenaVector<SchedulingNode * > * nodes,size_t index)446   static void DeleteNodeAtIndex(ScopedArenaVector<SchedulingNode*>* nodes, size_t index) {
447     (*nodes)[index] = nodes->back();
448     nodes->pop_back();
449   }
450 };
451 
452 /*
453  * Select a `SchedulingNode` at random within the candidates.
454  */
455 class RandomSchedulingNodeSelector : public SchedulingNodeSelector {
456  public:
RandomSchedulingNodeSelector()457   RandomSchedulingNodeSelector() : seed_(0) {
458     seed_  = static_cast<uint32_t>(NanoTime());
459     srand(seed_);
460   }
461 
PopHighestPriorityNode(ScopedArenaVector<SchedulingNode * > * nodes,const SchedulingGraph & graph)462   SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
463                                          const SchedulingGraph& graph) override {
464     UNUSED(graph);
465     DCHECK(!nodes->empty());
466     size_t select = rand_r(&seed_) % nodes->size();
467     SchedulingNode* select_node = (*nodes)[select];
468     DeleteNodeAtIndex(nodes, select);
469     return select_node;
470   }
471 
472   uint32_t seed_;
473 };
474 
475 /*
476  * Select a `SchedulingNode` according to critical path information,
477  * with heuristics to favor certain instruction patterns like materialized condition.
478  */
479 class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector {
480  public:
CriticalPathSchedulingNodeSelector()481   CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {}
482 
Reset()483   void Reset() override { prev_select_ = nullptr; }
484   SchedulingNode* PopHighestPriorityNode(ScopedArenaVector<SchedulingNode*>* nodes,
485                                          const SchedulingGraph& graph) override;
486 
487  protected:
488   SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate,
489                                                   SchedulingNode* check) const;
490 
491   SchedulingNode* SelectMaterializedCondition(ScopedArenaVector<SchedulingNode*>* nodes,
492                                               const SchedulingGraph& graph) const;
493 
494  private:
495   const SchedulingNode* prev_select_;
496 };
497 
498 class HScheduler {
499  public:
HScheduler(SchedulingNodeSelector * selector)500   explicit HScheduler(SchedulingNodeSelector* selector)
501       : selector_(selector),
502         only_optimize_loop_blocks_(true),
503         cursor_(nullptr) {}
~HScheduler()504   virtual ~HScheduler() {}
505 
506   void Schedule(HGraph* graph);
507 
SetOnlyOptimizeLoopBlocks(bool loop_only)508   void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; }
509 
510   // Instructions can not be rescheduled across a scheduling barrier.
511   virtual bool IsSchedulingBarrier(const HInstruction* instruction) const;
512 
513  protected:
514   virtual std::pair<SchedulingGraph, ScopedArenaVector<SchedulingNode*>> BuildSchedulingGraph(
515       HBasicBlock* block,
516       ScopedArenaAllocator* allocator,
517       const HeapLocationCollector* heap_location_collector) = 0;
518 
519   template <typename LatencyVisitor>
BuildSchedulingGraph(HBasicBlock * block,ScopedArenaAllocator * allocator,const HeapLocationCollector * heap_location_collector,LatencyVisitor * latency_visitor)520   std::pair<SchedulingGraph, ScopedArenaVector<SchedulingNode*>> BuildSchedulingGraph(
521       HBasicBlock* block,
522       ScopedArenaAllocator* allocator,
523       const HeapLocationCollector* heap_location_collector,
524       LatencyVisitor* latency_visitor) ALWAYS_INLINE {
525     SchedulingGraph scheduling_graph(allocator, heap_location_collector);
526     ScopedArenaVector<SchedulingNode*> scheduling_nodes(allocator->Adapter(kArenaAllocScheduler));
527     for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
528       HInstruction* instruction = it.Current();
529       CHECK_EQ(instruction->GetBlock(), block)
530           << instruction->DebugName()
531           << " is in block " << instruction->GetBlock()->GetBlockId()
532           << ", and expected in block " << block->GetBlockId();
533       SchedulingNode* node =
534           scheduling_graph.AddNode(instruction, IsSchedulingBarrier(instruction));
535       latency_visitor->CalculateLatency(node);
536       node->SetLatency(latency_visitor->GetLastVisitedLatency());
537       node->SetInternalLatency(latency_visitor->GetLastVisitedInternalLatency());
538       scheduling_nodes.push_back(node);
539     }
540     return {std::move(scheduling_graph), std::move(scheduling_nodes)};
541   }
542 
543   void Schedule(HBasicBlock* block, const HeapLocationCollector* heap_location_collector);
544   void Schedule(SchedulingNode* scheduling_node,
545                 /*inout*/ ScopedArenaVector<SchedulingNode*>* candidates);
546   void Schedule(HInstruction* instruction);
547 
548   // Any instruction returning `false` via this method will prevent its
549   // containing basic block from being scheduled.
550   // This method is used to restrict scheduling to instructions that we know are
551   // safe to handle.
552   //
553   // For newly introduced instructions by default HScheduler::IsSchedulable returns false.
554   // HScheduler${ARCH}::IsSchedulable can be overridden to return true for an instruction (see
555   // scheduler_arm64.h for example) if it is safe to schedule it; in this case one *must* also
556   // look at/update HScheduler${ARCH}::IsSchedulingBarrier for this instruction.
557   virtual bool IsSchedulable(const HInstruction* instruction) const;
558   bool IsSchedulable(const HBasicBlock* block) const;
559 
560   SchedulingNodeSelector* const selector_;
561   bool only_optimize_loop_blocks_;
562 
563   // A pointer indicating where the next instruction to be scheduled will be inserted.
564   HInstruction* cursor_;
565 
566  private:
567   DISALLOW_COPY_AND_ASSIGN(HScheduler);
568 };
569 
570 class HInstructionScheduling : public HOptimization {
571  public:
572   HInstructionScheduling(HGraph* graph,
573                          InstructionSet instruction_set,
574                          CodeGenerator* cg = nullptr,
575                          const char* name = kInstructionSchedulingPassName)
HOptimization(graph,name)576       : HOptimization(graph, name),
577         codegen_(cg),
578         instruction_set_(instruction_set) {}
579 
Run()580   bool Run() override {
581     return Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false);
582   }
583 
584   bool Run(bool only_optimize_loop_blocks, bool schedule_randomly);
585 
586   static constexpr const char* kInstructionSchedulingPassName = "scheduler";
587 
588  private:
589   CodeGenerator* const codegen_;
590   const InstructionSet instruction_set_;
591   DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling);
592 };
593 
594 }  // namespace art
595 
596 #endif  // ART_COMPILER_OPTIMIZING_SCHEDULER_H_
597