1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_BASE_MUTEX_H_ 18 #define ART_RUNTIME_BASE_MUTEX_H_ 19 20 #include <limits.h> // for INT_MAX 21 #include <pthread.h> 22 #include <stdint.h> 23 #include <unistd.h> // for pid_t 24 25 #include <iosfwd> 26 #include <string> 27 28 #include <android-base/logging.h> 29 30 #include "base/aborting.h" 31 #include "base/atomic.h" 32 #include "runtime_globals.h" 33 #include "base/macros.h" 34 #include "locks.h" 35 36 #if defined(__linux__) 37 #define ART_USE_FUTEXES 1 38 #else 39 #define ART_USE_FUTEXES 0 40 #endif 41 42 // Currently Darwin doesn't support locks with timeouts. 43 #if !defined(__APPLE__) 44 #define HAVE_TIMED_RWLOCK 1 45 #else 46 #define HAVE_TIMED_RWLOCK 0 47 #endif 48 49 namespace art HIDDEN { 50 51 class SHARED_LOCKABLE ReaderWriterMutex; 52 class SHARED_LOCKABLE MutatorMutex; 53 class ScopedContentionRecorder; 54 class Thread; 55 class LOCKABLE Mutex; 56 57 constexpr bool kDebugLocking = kIsDebugBuild; 58 59 // Record Log contention information, dumpable via SIGQUIT. 60 #if ART_USE_FUTEXES 61 // To enable lock contention logging, set this to true. 62 constexpr bool kLogLockContentions = false; 63 // FUTEX_WAKE first argument: 64 constexpr int kWakeOne = 1; 65 constexpr int kWakeAll = INT_MAX; 66 #else 67 // Keep this false as lock contention logging is supported only with 68 // futex. 69 constexpr bool kLogLockContentions = false; 70 #endif 71 constexpr size_t kContentionLogSize = 4; 72 constexpr size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0; 73 constexpr size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0; 74 75 // Base class for all Mutex implementations 76 class BaseMutex { 77 public: GetName()78 const char* GetName() const { 79 return name_; 80 } 81 IsMutex()82 virtual bool IsMutex() const { return false; } IsReaderWriterMutex()83 virtual bool IsReaderWriterMutex() const { return false; } IsMutatorMutex()84 virtual bool IsMutatorMutex() const { return false; } 85 86 virtual void Dump(std::ostream& os) const = 0; 87 88 static void DumpAll(std::ostream& os); 89 ShouldRespondToEmptyCheckpointRequest()90 bool ShouldRespondToEmptyCheckpointRequest() const { 91 return should_respond_to_empty_checkpoint_request_; 92 } 93 SetShouldRespondToEmptyCheckpointRequest(bool value)94 void SetShouldRespondToEmptyCheckpointRequest(bool value) { 95 should_respond_to_empty_checkpoint_request_ = value; 96 } 97 98 virtual void WakeupToRespondToEmptyCheckpoint() = 0; 99 100 protected: 101 friend class ConditionVariable; 102 103 BaseMutex(const char* name, LockLevel level); 104 virtual ~BaseMutex(); 105 106 // Add this mutex to those owned by self, and optionally perform lock order checking. Caller 107 // may wish to disable checking for trylock calls that cannot result in deadlock. For this call 108 // only, self may also be another suspended thread. 109 void RegisterAsLocked(Thread* self, bool check = kDebugLocking); 110 void RegisterAsLockedImpl(Thread* self, LockLevel level, bool check); 111 112 void RegisterAsUnlocked(Thread* self); 113 void RegisterAsUnlockedImpl(Thread* self, LockLevel level); 114 115 void CheckSafeToWait(Thread* self); 116 117 friend class ScopedContentionRecorder; 118 119 void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked); 120 void DumpContention(std::ostream& os) const; 121 122 const char* const name_; 123 124 // A log entry that records contention but makes no guarantee that either tid will be held live. 125 struct ContentionLogEntry { ContentionLogEntryContentionLogEntry126 ContentionLogEntry() : blocked_tid(0), owner_tid(0) {} 127 uint64_t blocked_tid; 128 uint64_t owner_tid; 129 AtomicInteger count; 130 }; 131 struct ContentionLogData { 132 ContentionLogEntry contention_log[kContentionLogSize]; 133 // The next entry in the contention log to be updated. Value ranges from 0 to 134 // kContentionLogSize - 1. 135 AtomicInteger cur_content_log_entry; 136 // Number of times the Mutex has been contended. 137 AtomicInteger contention_count; 138 // Sum of time waited by all contenders in ns. 139 Atomic<uint64_t> wait_time; 140 void AddToWaitTime(uint64_t value); ContentionLogDataContentionLogData141 ContentionLogData() : wait_time(0) {} 142 }; 143 ContentionLogData contention_log_data_[kContentionLogDataSize]; 144 145 const LockLevel level_; // Support for lock hierarchy. 146 bool should_respond_to_empty_checkpoint_request_; 147 148 public: HasEverContended()149 bool HasEverContended() const { 150 if (kLogLockContentions) { 151 return contention_log_data_->contention_count.load(std::memory_order_seq_cst) > 0; 152 } 153 return false; 154 } 155 }; 156 157 // A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain 158 // exclusive access to what it guards. A Mutex can be in one of two states: 159 // - Free - not owned by any thread, 160 // - Exclusive - owned by a single thread. 161 // 162 // The effect of locking and unlocking operations on the state is: 163 // State | ExclusiveLock | ExclusiveUnlock 164 // ------------------------------------------- 165 // Free | Exclusive | error 166 // Exclusive | Block* | Free 167 // * Mutex is not reentrant unless recursive is true. An attempt to ExclusiveLock on a 168 // recursive=false Mutex on a thread already owning the Mutex results in an error. 169 // 170 // TODO(b/140590186): Remove support for recursive == true. 171 // 172 // Some mutexes, including those associated with Java monitors may be accessed (in particular 173 // acquired) by a thread in suspended state. Suspending all threads does NOT prevent mutex state 174 // from changing. 175 std::ostream& operator<<(std::ostream& os, const Mutex& mu); 176 class EXPORT LOCKABLE Mutex : public BaseMutex { 177 public: 178 explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false); 179 ~Mutex(); 180 IsMutex()181 bool IsMutex() const override { return true; } 182 183 // Block until mutex is free then acquire exclusive access. 184 void ExclusiveLock(Thread* self) ACQUIRE(); Lock(Thread * self)185 void Lock(Thread* self) ACQUIRE() { ExclusiveLock(self); } 186 187 // Returns true if acquires exclusive access, false otherwise. The `check` argument specifies 188 // whether lock level checking should be performed. Should be defaulted unless we are using 189 // TryLock instead of Lock for deadlock avoidance. 190 template <bool kCheck = kDebugLocking> 191 bool ExclusiveTryLock(Thread* self) TRY_ACQUIRE(true); TryLock(Thread * self)192 bool TryLock(Thread* self) TRY_ACQUIRE(true) { return ExclusiveTryLock(self); } 193 // Equivalent to ExclusiveTryLock, but retry for a short period before giving up. 194 bool ExclusiveTryLockWithSpinning(Thread* self) TRY_ACQUIRE(true); 195 196 // Release exclusive access. 197 void ExclusiveUnlock(Thread* self) RELEASE(); Unlock(Thread * self)198 void Unlock(Thread* self) RELEASE() { ExclusiveUnlock(self); } 199 200 // Is the current thread the exclusive holder of the Mutex. 201 ALWAYS_INLINE bool IsExclusiveHeld(const Thread* self) const; 202 203 // Assert that the Mutex is exclusively held by the current thread. 204 ALWAYS_INLINE void AssertExclusiveHeld(const Thread* self) const ASSERT_CAPABILITY(this); 205 ALWAYS_INLINE void AssertHeld(const Thread* self) const ASSERT_CAPABILITY(this); 206 207 // Assert that the Mutex is not held by the current thread. AssertNotHeldExclusive(const Thread * self)208 void AssertNotHeldExclusive(const Thread* self) ASSERT_CAPABILITY(!*this) { 209 if (kDebugLocking && (gAborting == 0)) { 210 CHECK(!IsExclusiveHeld(self)) << *this; 211 } 212 } AssertNotHeld(const Thread * self)213 void AssertNotHeld(const Thread* self) ASSERT_CAPABILITY(!*this) { 214 AssertNotHeldExclusive(self); 215 } 216 217 // Id associated with exclusive owner. No memory ordering semantics if called from a thread 218 // other than the owner. GetTid() == GetExclusiveOwnerTid() is a reliable way to determine 219 // whether we hold the lock; any other information may be invalidated before we return. 220 pid_t GetExclusiveOwnerTid() const; 221 222 // Returns how many times this Mutex has been locked, it is typically better to use 223 // AssertHeld/NotHeld. For a simply held mutex this method returns 1. Should only be called 224 // while holding the mutex or threads are suspended. GetDepth()225 unsigned int GetDepth() const { 226 return recursion_count_; 227 } 228 229 void Dump(std::ostream& os) const override; 230 231 void DumpStack(Thread *self, uint64_t wait_start_ms, uint64_t try_times = 1); 232 233 static bool IsDumpFrequent(Thread *self, uint64_t try_times = 1); 234 setEnableMonitorTimeout()235 void setEnableMonitorTimeout() { 236 enable_monitor_timeout_ = true; 237 } 238 setMonitorId(uint32_t monitorId)239 void setMonitorId(uint32_t monitorId) { 240 monitor_id_ = monitorId; 241 } 242 243 // For negative capabilities in clang annotations. 244 const Mutex& operator!() const { return *this; } 245 246 void WakeupToRespondToEmptyCheckpoint() override; 247 248 #if ART_USE_FUTEXES 249 // Acquire the mutex, possibly on behalf of another thread. Acquisition must be 250 // uncontended. New_owner must be current thread or suspended. 251 // Mutex must be at level kMonitorLock. 252 // Not implementable for the pthreads version, so we must avoid calling it there. 253 void ExclusiveLockUncontendedFor(Thread* new_owner); 254 255 // Undo the effect of the previous calling, setting the mutex back to unheld. 256 // Still assumes no concurrent access. 257 void ExclusiveUnlockUncontended(); 258 #endif // ART_USE_FUTEXES 259 260 private: 261 #if ART_USE_FUTEXES 262 // Low order bit: 0 is unheld, 1 is held. 263 // High order bits: Number of waiting contenders. 264 AtomicInteger state_and_contenders_; 265 266 static constexpr int32_t kHeldMask = 1; 267 268 static constexpr int32_t kContenderShift = 1; 269 270 static constexpr int32_t kContenderIncrement = 1 << kContenderShift; 271 increment_contenders()272 void increment_contenders() { 273 state_and_contenders_.fetch_add(kContenderIncrement); 274 } 275 decrement_contenders()276 void decrement_contenders() { 277 state_and_contenders_.fetch_sub(kContenderIncrement); 278 } 279 get_contenders()280 int32_t get_contenders() { 281 // Result is guaranteed to include any contention added by this thread; otherwise approximate. 282 // Treat contenders as unsigned because we're concerned about overflow; should never matter. 283 return static_cast<uint32_t>(state_and_contenders_.load(std::memory_order_relaxed)) 284 >> kContenderShift; 285 } 286 287 // Exclusive owner. 288 Atomic<pid_t> exclusive_owner_; 289 #else 290 pthread_mutex_t mutex_; 291 Atomic<pid_t> exclusive_owner_; // Guarded by mutex_. Asynchronous reads are OK. 292 #endif 293 294 unsigned int recursion_count_; 295 const bool recursive_; // Can the lock be recursively held? 296 297 bool enable_monitor_timeout_ = false; 298 299 uint32_t monitor_id_; 300 301 friend class ConditionVariable; 302 DISALLOW_COPY_AND_ASSIGN(Mutex); 303 }; 304 305 // A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex. 306 // Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader) 307 // access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a 308 // condition variable. A ReaderWriterMutex can be in one of three states: 309 // - Free - not owned by any thread, 310 // - Exclusive - owned by a single thread, 311 // - Shared(n) - shared amongst n threads. 312 // 313 // The effect of locking and unlocking operations on the state is: 314 // 315 // State | ExclusiveLock | ExclusiveUnlock | SharedLock | SharedUnlock 316 // ---------------------------------------------------------------------------- 317 // Free | Exclusive | error | SharedLock(1) | error 318 // Exclusive | Block | Free | Block | error 319 // Shared(n) | Block | error | SharedLock(n+1)* | Shared(n-1) or Free 320 // * for large values of n the SharedLock may block. 321 EXPORT std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu); 322 class EXPORT SHARED_LOCKABLE ReaderWriterMutex : public BaseMutex { 323 public: 324 explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel); 325 ~ReaderWriterMutex(); 326 IsReaderWriterMutex()327 bool IsReaderWriterMutex() const override { return true; } 328 329 // Block until ReaderWriterMutex is free then acquire exclusive access. 330 void ExclusiveLock(Thread* self) ACQUIRE(); WriterLock(Thread * self)331 void WriterLock(Thread* self) ACQUIRE() { ExclusiveLock(self); } 332 333 // Release exclusive access. 334 void ExclusiveUnlock(Thread* self) RELEASE(); WriterUnlock(Thread * self)335 void WriterUnlock(Thread* self) RELEASE() { ExclusiveUnlock(self); } 336 337 // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success 338 // or false if timeout is reached. 339 #if HAVE_TIMED_RWLOCK 340 bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) 341 EXCLUSIVE_TRYLOCK_FUNCTION(true); 342 #endif 343 344 // Block until ReaderWriterMutex is shared or free then acquire a share on the access. 345 void SharedLock(Thread* self) ACQUIRE_SHARED() ALWAYS_INLINE; ReaderLock(Thread * self)346 void ReaderLock(Thread* self) ACQUIRE_SHARED() { SharedLock(self); } 347 348 // Try to acquire share of ReaderWriterMutex. 349 bool SharedTryLock(Thread* self, bool check = kDebugLocking) SHARED_TRYLOCK_FUNCTION(true); 350 351 // Release a share of the access. 352 void SharedUnlock(Thread* self) RELEASE_SHARED() ALWAYS_INLINE; ReaderUnlock(Thread * self)353 void ReaderUnlock(Thread* self) RELEASE_SHARED() { SharedUnlock(self); } 354 355 // Is the current thread the exclusive holder of the ReaderWriterMutex. 356 ALWAYS_INLINE bool IsExclusiveHeld(const Thread* self) const; 357 358 // Assert the current thread has exclusive access to the ReaderWriterMutex. 359 ALWAYS_INLINE void AssertExclusiveHeld(const Thread* self) const ASSERT_CAPABILITY(this); 360 ALWAYS_INLINE void AssertWriterHeld(const Thread* self) const ASSERT_CAPABILITY(this); 361 362 // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex. AssertNotExclusiveHeld(const Thread * self)363 void AssertNotExclusiveHeld(const Thread* self) ASSERT_CAPABILITY(!this) { 364 if (kDebugLocking && (gAborting == 0)) { 365 CHECK(!IsExclusiveHeld(self)) << *this; 366 } 367 } AssertNotWriterHeld(const Thread * self)368 void AssertNotWriterHeld(const Thread* self) ASSERT_CAPABILITY(!this) { 369 AssertNotExclusiveHeld(self); 370 } 371 372 // Is the current thread a shared holder of the ReaderWriterMutex. 373 bool IsSharedHeld(const Thread* self) const; 374 375 // Assert the current thread has shared access to the ReaderWriterMutex. AssertSharedHeld(const Thread * self)376 ALWAYS_INLINE void AssertSharedHeld(const Thread* self) ASSERT_SHARED_CAPABILITY(this) { 377 if (kDebugLocking && (gAborting == 0)) { 378 // TODO: we can only assert this well when self != null. 379 CHECK(IsSharedHeld(self) || self == nullptr) << *this; 380 } 381 } AssertReaderHeld(const Thread * self)382 ALWAYS_INLINE void AssertReaderHeld(const Thread* self) ASSERT_SHARED_CAPABILITY(this) { 383 AssertSharedHeld(self); 384 } 385 386 // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive 387 // mode. AssertNotHeld(const Thread * self)388 ALWAYS_INLINE void AssertNotHeld(const Thread* self) ASSERT_CAPABILITY(!this) { 389 if (kDebugLocking && (gAborting == 0)) { 390 CHECK(!IsExclusiveHeld(self)) << *this; 391 CHECK(!IsSharedHeld(self)) << *this; 392 } 393 } 394 395 // Id associated with exclusive owner. No memory ordering semantics if called from a thread other 396 // than the owner. Returns 0 if the lock is not held. Returns either 0 or -1 if it is held by 397 // one or more readers. 398 pid_t GetExclusiveOwnerTid() const; 399 400 void Dump(std::ostream& os) const override; 401 402 // For negative capabilities in clang annotations. 403 const ReaderWriterMutex& operator!() const { return *this; } 404 405 void WakeupToRespondToEmptyCheckpoint() override; 406 407 private: 408 #if ART_USE_FUTEXES 409 // Out-of-inline path for handling contention for a SharedLock. 410 void HandleSharedLockContention(Thread* self, int32_t cur_state); 411 412 // -1 implies held exclusive, >= 0: shared held by state_ many owners. 413 AtomicInteger state_; 414 // Exclusive owner. Modification guarded by this mutex. 415 Atomic<pid_t> exclusive_owner_; 416 // Number of contenders waiting for either a reader share or exclusive access. We only maintain 417 // the sum, since we would otherwise need to read both in all unlock operations. 418 // We keep this separate from the state, since futexes are limited to 32 bits, and obvious 419 // approaches to combining with state_ risk overflow. 420 AtomicInteger num_contenders_; 421 #else 422 pthread_rwlock_t rwlock_; 423 Atomic<pid_t> exclusive_owner_; // Writes guarded by rwlock_. Asynchronous reads are OK. 424 #endif 425 DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex); 426 }; 427 428 // MutatorMutex is a special kind of ReaderWriterMutex created specifically for the 429 // Locks::mutator_lock_ mutex. The behaviour is identical to the ReaderWriterMutex except that 430 // thread state changes also play a part in lock ownership. The mutator_lock_ will not be truly 431 // held by any mutator threads. However, a thread in the kRunnable state is considered to have 432 // shared ownership of the mutator lock and therefore transitions in and out of the kRunnable 433 // state have associated implications on lock ownership. Extra methods to handle the state 434 // transitions have been added to the interface but are only accessible to the methods dealing 435 // with state transitions. The thread state and flags attributes are used to ensure thread state 436 // transitions are consistent with the permitted behaviour of the mutex. 437 // 438 // *) The most important consequence of this behaviour is that all threads must be in one of the 439 // suspended states before exclusive ownership of the mutator mutex is sought. 440 // 441 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu); 442 class SHARED_LOCKABLE MutatorMutex : public ReaderWriterMutex { 443 public: 444 explicit MutatorMutex(const char* name, LockLevel level = kDefaultMutexLevel) ReaderWriterMutex(name,level)445 : ReaderWriterMutex(name, level) {} ~MutatorMutex()446 ~MutatorMutex() {} 447 IsMutatorMutex()448 virtual bool IsMutatorMutex() const { return true; } 449 450 // For negative capabilities in clang annotations. 451 const MutatorMutex& operator!() const { return *this; } 452 453 private: 454 friend class Thread; 455 void TransitionFromRunnableToSuspended(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE; 456 void TransitionFromSuspendedToRunnable(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE; 457 458 DISALLOW_COPY_AND_ASSIGN(MutatorMutex); 459 }; 460 461 // ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually 462 // (Signal) or all at once (Broadcast). 463 class EXPORT ConditionVariable { 464 public: 465 ConditionVariable(const char* name, Mutex& mutex); 466 ~ConditionVariable(); 467 468 // Requires the mutex to be held. 469 void Broadcast(Thread* self); 470 // Requires the mutex to be held. 471 void Signal(Thread* self); 472 // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their 473 // pointer copy, thereby defeating annotalysis. 474 void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS; 475 bool TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS; 476 // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held 477 // when waiting. 478 // TODO: remove this. 479 void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS; 480 CheckSafeToWait(Thread * self)481 void CheckSafeToWait(Thread* self) NO_THREAD_SAFETY_ANALYSIS { 482 if (kDebugLocking) { 483 guard_.CheckSafeToWait(self); 484 } 485 } 486 487 private: 488 const char* const name_; 489 // The Mutex being used by waiters. It is an error to mix condition variables between different 490 // Mutexes. 491 Mutex& guard_; 492 #if ART_USE_FUTEXES 493 // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up 494 // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_ 495 // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait 496 // without guard_ held. 497 AtomicInteger sequence_; 498 // Number of threads that have come into to wait, not the length of the waiters on the futex as 499 // waiters may have been requeued onto guard_. Guarded by guard_. 500 int32_t num_waiters_; 501 502 void RequeueWaiters(int32_t count); 503 #else 504 pthread_cond_t cond_; 505 #endif 506 DISALLOW_COPY_AND_ASSIGN(ConditionVariable); 507 }; 508 509 // Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it 510 // upon destruction. 511 class SCOPED_CAPABILITY MutexLock { 512 public: MutexLock(Thread * self,Mutex & mu)513 MutexLock(Thread* self, Mutex& mu) ACQUIRE(mu) : self_(self), mu_(mu) { 514 mu_.ExclusiveLock(self_); 515 } 516 RELEASE()517 ~MutexLock() RELEASE() { 518 mu_.ExclusiveUnlock(self_); 519 } 520 521 private: 522 Thread* const self_; 523 Mutex& mu_; 524 DISALLOW_COPY_AND_ASSIGN(MutexLock); 525 }; 526 527 // Pretend to acquire a mutex for checking purposes, without actually doing so. Use with 528 // extreme caution when it is known the condition that the mutex would guard against cannot arise. 529 class SCOPED_CAPABILITY FakeMutexLock { 530 public: FakeMutexLock(Mutex & mu)531 explicit FakeMutexLock(Mutex& mu) ACQUIRE(mu) NO_THREAD_SAFETY_ANALYSIS {} 532 RELEASE()533 ~FakeMutexLock() RELEASE() NO_THREAD_SAFETY_ANALYSIS {} 534 535 private: 536 DISALLOW_COPY_AND_ASSIGN(FakeMutexLock); 537 }; 538 539 // Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon 540 // construction and releases it upon destruction. 541 class SCOPED_CAPABILITY ReaderMutexLock { 542 public: 543 ALWAYS_INLINE ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) ACQUIRE(mu); 544 545 ALWAYS_INLINE ~ReaderMutexLock() RELEASE(); 546 547 private: 548 Thread* const self_; 549 ReaderWriterMutex& mu_; 550 DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock); 551 }; 552 553 // Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon 554 // construction and releases it upon destruction. 555 class SCOPED_CAPABILITY WriterMutexLock { 556 public: WriterMutexLock(Thread * self,ReaderWriterMutex & mu)557 WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : 558 self_(self), mu_(mu) { 559 mu_.ExclusiveLock(self_); 560 } 561 UNLOCK_FUNCTION()562 ~WriterMutexLock() UNLOCK_FUNCTION() { 563 mu_.ExclusiveUnlock(self_); 564 } 565 566 private: 567 Thread* const self_; 568 ReaderWriterMutex& mu_; 569 DISALLOW_COPY_AND_ASSIGN(WriterMutexLock); 570 }; 571 572 } // namespace art 573 574 #endif // ART_RUNTIME_BASE_MUTEX_H_ 575