1 /*
2  * Copyright © 2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 #ifndef VK_UTIL_H
24 #define VK_UTIL_H
25 
26 /* common inlines and macros for vulkan drivers */
27 
28 #include <inttypes.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <vulkan/vulkan.h>
32 
33 #include <chrono>
34 #include <functional>
35 #include <memory>
36 #include <optional>
37 #include <string>
38 #include <thread>
39 #include <tuple>
40 #include <type_traits>
41 #include <vector>
42 
43 #include "VkDecoderContext.h"
44 #include "VulkanDispatch.h"
45 #include "aemu/base/synchronization/Lock.h"
46 #include "host-common/GfxstreamFatalError.h"
47 #include "host-common/logging.h"
48 #include "vk_fn_info.h"
49 #include "vk_struct_id.h"
50 
51 namespace gfxstream {
52 namespace vk {
53 
54 struct vk_struct_common {
55     VkStructureType sType;
56     struct vk_struct_common* pNext;
57 };
58 
59 struct vk_struct_chain_iterator {
60     vk_struct_common* value;
61 };
62 
63 #define vk_foreach_struct(__iter, __start)                                              \
64     for (struct vk_struct_common* __iter = (struct vk_struct_common*)(__start); __iter; \
65          __iter = __iter->pNext)
66 
67 #define vk_foreach_struct_const(__iter, __start)                                            \
68     for (const struct vk_struct_common* __iter = (const struct vk_struct_common*)(__start); \
69          __iter; __iter = __iter->pNext)
70 
71 /**
72  * A wrapper for a Vulkan output array. A Vulkan output array is one that
73  * follows the convention of the parameters to
74  * vkGetPhysicalDeviceQueueFamilyProperties().
75  *
76  * Example Usage:
77  *
78  *    VkResult
79  *    vkGetPhysicalDeviceQueueFamilyProperties(
80  *       VkPhysicalDevice           physicalDevice,
81  *       uint32_t*                  pQueueFamilyPropertyCount,
82  *       VkQueueFamilyProperties*   pQueueFamilyProperties)
83  *    {
84  *       VK_OUTARRAY_MAKE(props, pQueueFamilyProperties,
85  *                         pQueueFamilyPropertyCount);
86  *
87  *       vk_outarray_append(&props, p) {
88  *          p->queueFlags = ...;
89  *          p->queueCount = ...;
90  *       }
91  *
92  *       vk_outarray_append(&props, p) {
93  *          p->queueFlags = ...;
94  *          p->queueCount = ...;
95  *       }
96  *
97  *       return vk_outarray_status(&props);
98  *    }
99  */
100 struct __vk_outarray {
101     /** May be null. */
102     void* data;
103 
104     /**
105      * Capacity, in number of elements. Capacity is unlimited (UINT32_MAX) if
106      * data is null.
107      */
108     uint32_t cap;
109 
110     /**
111      * Count of elements successfully written to the array. Every write is
112      * considered successful if data is null.
113      */
114     uint32_t* filled_len;
115 
116     /**
117      * Count of elements that would have been written to the array if its
118      * capacity were sufficient. Vulkan functions often return VK_INCOMPLETE
119      * when `*filled_len < wanted_len`.
120      */
121     uint32_t wanted_len;
122 };
123 
__vk_outarray_init(struct __vk_outarray * a,void * data,uint32_t * len)124 static inline void __vk_outarray_init(struct __vk_outarray* a, void* data, uint32_t* len) {
125     a->data = data;
126     a->cap = *len;
127     a->filled_len = len;
128     *a->filled_len = 0;
129     a->wanted_len = 0;
130 
131     if (a->data == NULL) a->cap = UINT32_MAX;
132 }
133 
__vk_outarray_status(const struct __vk_outarray * a)134 static inline VkResult __vk_outarray_status(const struct __vk_outarray* a) {
135     if (*a->filled_len < a->wanted_len)
136         return VK_INCOMPLETE;
137     else
138         return VK_SUCCESS;
139 }
140 
__vk_outarray_next(struct __vk_outarray * a,size_t elem_size)141 static inline void* __vk_outarray_next(struct __vk_outarray* a, size_t elem_size) {
142     void* p = NULL;
143 
144     a->wanted_len += 1;
145 
146     if (*a->filled_len >= a->cap) return NULL;
147 
148     if (a->data != NULL) p = ((uint8_t*)a->data) + (*a->filled_len) * elem_size;
149 
150     *a->filled_len += 1;
151 
152     return p;
153 }
154 
155 #define vk_outarray(elem_t)        \
156     struct {                       \
157         struct __vk_outarray base; \
158         elem_t meta[];             \
159     }
160 
161 #define vk_outarray_typeof_elem(a) __typeof__((a)->meta[0])
162 #define vk_outarray_sizeof_elem(a) sizeof((a)->meta[0])
163 
164 #define vk_outarray_init(a, data, len) __vk_outarray_init(&(a)->base, (data), (len))
165 
166 #define VK_OUTARRAY_MAKE(name, data, len)    \
167     vk_outarray(__typeof__((data)[0])) name; \
168     vk_outarray_init(&name, (data), (len))
169 
170 #define vk_outarray_status(a) __vk_outarray_status(&(a)->base)
171 
172 #define vk_outarray_next(a) \
173     ((vk_outarray_typeof_elem(a)*)__vk_outarray_next(&(a)->base, vk_outarray_sizeof_elem(a)))
174 
175 /**
176  * Append to a Vulkan output array.
177  *
178  * This is a block-based macro. For example:
179  *
180  *    vk_outarray_append(&a, elem) {
181  *       elem->foo = ...;
182  *       elem->bar = ...;
183  *    }
184  *
185  * The array `a` has type `vk_outarray(elem_t) *`. It is usually declared with
186  * VK_OUTARRAY_MAKE(). The variable `elem` is block-scoped and has type
187  * `elem_t *`.
188  *
189  * The macro unconditionally increments the array's `wanted_len`. If the array
190  * is not full, then the macro also increment its `filled_len` and then
191  * executes the block. When the block is executed, `elem` is non-null and
192  * points to the newly appended element.
193  */
194 #define vk_outarray_append(a, elem) \
195     for (vk_outarray_typeof_elem(a)* elem = vk_outarray_next(a); elem != NULL; elem = NULL)
196 
__vk_find_struct(void * start,VkStructureType sType)197 static inline void* __vk_find_struct(void* start, VkStructureType sType) {
198     vk_foreach_struct(s, start) {
199         if (s->sType == sType) return s;
200     }
201 
202     return NULL;
203 }
204 
205 template <class T, class H>
vk_find_struct(H * head)206 T* vk_find_struct(H* head) {
207     (void)vk_get_vk_struct_id<H>::id;
208     return static_cast<T*>(__vk_find_struct(static_cast<void*>(head), vk_get_vk_struct_id<T>::id));
209 }
210 
211 template <class T, class H>
vk_find_struct(const H * head)212 const T* vk_find_struct(const H* head) {
213     (void)vk_get_vk_struct_id<H>::id;
214     return static_cast<const T*>(__vk_find_struct(const_cast<void*>(static_cast<const void*>(head)),
215                                                   vk_get_vk_struct_id<T>::id));
216 }
217 
218 uint32_t vk_get_driver_version(void);
219 
220 uint32_t vk_get_version_override(void);
221 
222 #define VK_EXT_OFFSET (1000000000UL)
223 #define VK_ENUM_EXTENSION(__enum) \
224     ((__enum) >= VK_EXT_OFFSET ? ((((__enum)-VK_EXT_OFFSET) / 1000UL) + 1) : 0)
225 #define VK_ENUM_OFFSET(__enum) ((__enum) >= VK_EXT_OFFSET ? ((__enum) % 1000) : (__enum))
226 
227 template <class T>
vk_make_orphan_copy(const T & vk_struct)228 T vk_make_orphan_copy(const T& vk_struct) {
229     T copy = vk_struct;
230     copy.pNext = NULL;
231     return copy;
232 }
233 
234 template <class T>
vk_make_chain_iterator(T * vk_struct)235 vk_struct_chain_iterator vk_make_chain_iterator(T* vk_struct) {
236     (void)vk_get_vk_struct_id<T>::id;
237     vk_struct_chain_iterator result = {reinterpret_cast<vk_struct_common*>(vk_struct)};
238     return result;
239 }
240 
241 template <class T>
vk_append_struct(vk_struct_chain_iterator * i,T * vk_struct)242 void vk_append_struct(vk_struct_chain_iterator* i, T* vk_struct) {
243     (void)vk_get_vk_struct_id<T>::id;
244 
245     vk_struct_common* p = i->value;
246     if (p->pNext) {
247         ::abort();
248     }
249 
250     p->pNext = reinterpret_cast<vk_struct_common*>(vk_struct);
251     vk_struct->pNext = NULL;
252 
253     *i = vk_make_chain_iterator(vk_struct);
254 }
255 
256 // The caller should guarantee that all the pNext structs in the chain starting at nextChain is not
257 // a const object to avoid unexpected undefined behavior.
258 template <class T, class U, typename = std::enable_if_t<!std::is_const_v<T> && !std::is_const_v<U>>>
vk_insert_struct(T & pos,U & nextChain)259 void vk_insert_struct(T& pos, U& nextChain) {
260     vk_struct_common* nextChainTail = reinterpret_cast<vk_struct_common*>(&nextChain);
261     for (; nextChainTail->pNext; nextChainTail = nextChainTail->pNext) {}
262 
263     nextChainTail->pNext = reinterpret_cast<vk_struct_common*>(const_cast<void*>(pos.pNext));
264     pos.pNext = &nextChain;
265 }
266 
267 template <class S, class T>
vk_struct_chain_remove(S * unwanted,T * vk_struct)268 void vk_struct_chain_remove(S* unwanted, T* vk_struct) {
269     if (!unwanted) return;
270 
271     vk_foreach_struct(current, vk_struct) {
272         if ((void*)unwanted == current->pNext) {
273             const vk_struct_common* unwanted_as_common =
274                 reinterpret_cast<const vk_struct_common*>(unwanted);
275             current->pNext = unwanted_as_common->pNext;
276         }
277     }
278 }
279 
280 template <class TypeToFilter, class H>
vk_struct_chain_filter(H * head)281 void vk_struct_chain_filter(H* head) {
282     (void)vk_get_vk_struct_id<H>::id;
283 
284     auto* curr = reinterpret_cast<vk_struct_common*>(head);
285     while (curr != nullptr) {
286         if (curr->pNext != nullptr && curr->pNext->sType == vk_get_vk_struct_id<TypeToFilter>::id) {
287             curr->pNext = curr->pNext->pNext;
288         }
289         curr = curr->pNext;
290     }
291 }
292 
293 #define VK_CHECK(x)                                                                             \
294     do {                                                                                        \
295         VkResult err = x;                                                                       \
296         if (err != VK_SUCCESS) {                                                                \
297             if (err == VK_ERROR_DEVICE_LOST) {                                                  \
298                 vk_util::getVkCheckCallbacks().callIfExists(                                    \
299                     &vk_util::VkCheckCallbacks::onVkErrorDeviceLost);                           \
300             }                                                                                   \
301             if (err == VK_ERROR_OUT_OF_HOST_MEMORY || err == VK_ERROR_OUT_OF_DEVICE_MEMORY ||   \
302                 err == VK_ERROR_OUT_OF_POOL_MEMORY) {                                           \
303                 vk_util::getVkCheckCallbacks().callIfExists(                                    \
304                     &vk_util::VkCheckCallbacks::onVkErrorOutOfMemory, err, __func__, __LINE__); \
305             }                                                                                   \
306             GFXSTREAM_ABORT(::emugl::FatalError(err));                                          \
307         }                                                                                       \
308     } while (0)
309 
310 #define VK_CHECK_MEMALLOC(x, allocateInfo)                                                       \
311     do {                                                                                         \
312         VkResult err = x;                                                                        \
313         if (err != VK_SUCCESS) {                                                                 \
314             if (err == VK_ERROR_OUT_OF_HOST_MEMORY || err == VK_ERROR_OUT_OF_DEVICE_MEMORY) {    \
315                 vk_util::getVkCheckCallbacks().callIfExists(                                     \
316                     &vk_util::VkCheckCallbacks::onVkErrorOutOfMemoryOnAllocation, err, __func__, \
317                     __LINE__, allocateInfo.allocationSize);                                      \
318             }                                                                                    \
319             GFXSTREAM_ABORT(::emugl::FatalError(err));                                           \
320         }                                                                                        \
321     } while (0)
322 
323 typedef void* MTLTextureRef;
324 typedef void* MTLBufferRef;
325 
326 namespace vk_util {
327 
waitForVkQueueIdleWithRetry(const VulkanDispatch & vk,VkQueue queue)328 inline VkResult waitForVkQueueIdleWithRetry(const VulkanDispatch& vk, VkQueue queue) {
329     using namespace std::chrono_literals;
330     constexpr uint32_t retryLimit = 5;
331     constexpr std::chrono::duration waitInterval = 4ms;
332     VkResult res = vk.vkQueueWaitIdle(queue);
333     for (uint32_t retryTimes = 1; retryTimes < retryLimit && res == VK_TIMEOUT; retryTimes++) {
334         INFO("VK_TIMEOUT returned from vkQueueWaitIdle with %" PRIu32 " attempt. Wait for %" PRIu32
335              "ms before another attempt.",
336              retryTimes,
337              static_cast<uint32_t>(
338                  std::chrono::duration_cast<std::chrono::milliseconds>(waitInterval).count()));
339         std::this_thread::sleep_for(waitInterval);
340         res = vk.vkQueueWaitIdle(queue);
341     }
342     return res;
343 }
344 
345 typedef struct {
346     std::function<void()> onVkErrorDeviceLost;
347     std::function<void(VkResult, const char*, int)> onVkErrorOutOfMemory;
348     std::function<void(VkResult, const char*, int, uint64_t)> onVkErrorOutOfMemoryOnAllocation;
349 } VkCheckCallbacks;
350 
351 template <class T>
352 class CallbacksWrapper {
353    public:
CallbacksWrapper(std::unique_ptr<T> callbacks)354     CallbacksWrapper(std::unique_ptr<T> callbacks) : mCallbacks(std::move(callbacks)) {}
355     // function should be a member function pointer to T.
356     template <class U, class... Args>
callIfExists(U function,Args &&...args)357     void callIfExists(U function, Args&&... args) const {
358         if (mCallbacks && (*mCallbacks.*function)) {
359             (*mCallbacks.*function)(std::forward<Args>(args)...);
360         }
361     }
362 
get()363     T* get() const { return mCallbacks.get(); }
364 
365    private:
366     std::unique_ptr<T> mCallbacks;
367 };
368 
369 std::optional<uint32_t> findMemoryType(const VulkanDispatch* ivk, VkPhysicalDevice physicalDevice,
370                                        uint32_t typeFilter, VkMemoryPropertyFlags properties);
371 
372 void setVkCheckCallbacks(std::unique_ptr<VkCheckCallbacks>);
373 const CallbacksWrapper<VkCheckCallbacks>& getVkCheckCallbacks();
374 
375 class CrtpBase {};
376 
377 // Utility class to make chaining inheritance of multiple CRTP classes more
378 // readable by allowing one to replace
379 //
380 //    class MyClass
381 //        : public vk_util::Crtp1<MyClass,
382 //                                vk_util::Crtp2<MyClass,
383 //                                               vk_util::Crtp3<MyClass>>> {};
384 //
385 // with
386 //
387 //    class MyClass :
388 //        : public vk_util::MultiCrtp<MyClass,
389 //                                    vk_util::Crtp1,
390 //                                    vk_util::Crtp2,
391 //                                    vk_util::Ctrp3> {};
392 namespace vk_util_internal {
393 
394 // For the template "recursion", this is the base case where the list is empty
395 // and which just inherits from the last type.
396 template <typename T,  //
397           typename U,  //
398           template <typename, typename> class... CrtpClasses>
399 class MultiCrtpChainHelper : public U {};
400 
401 // For the template "recursion", this is the case where the list is not empty
402 // and which uses the "current" CRTP class as the "U" type and passes the
403 // resulting type to the next step in the template "recursion".
404 template <typename T,                                //
405           typename U,                                //
406           template <typename, typename> class Crtp,  //
407           template <typename, typename> class... Crtps>
408 class MultiCrtpChainHelper<T, U, Crtp, Crtps...>
409     : public MultiCrtpChainHelper<T, Crtp<T, U>, Crtps...> {};
410 
411 }  // namespace vk_util_internal
412 
413 template <typename T,  //
414           template <typename, typename> class... CrtpClasses>
415 class MultiCrtp : public vk_util_internal::MultiCrtpChainHelper<T, CrtpBase, CrtpClasses...> {};
416 
417 template <class T, class U = CrtpBase>
418 class FindMemoryType : public U {
419    protected:
findMemoryType(uint32_t typeFilter,VkMemoryPropertyFlags properties)420     std::optional<uint32_t> findMemoryType(uint32_t typeFilter,
421                                            VkMemoryPropertyFlags properties) const {
422         const T& self = static_cast<const T&>(*this);
423         return vk_util::findMemoryType(&self.m_vk, self.m_vkPhysicalDevice, typeFilter, properties);
424     }
425 };
426 
427 template <class T, class U = CrtpBase>
428 class RunSingleTimeCommand : public U {
429    protected:
runSingleTimeCommands(VkQueue queue,std::shared_ptr<android::base::Lock> queueLock,std::function<void (const VkCommandBuffer & commandBuffer)> f)430     void runSingleTimeCommands(VkQueue queue, std::shared_ptr<android::base::Lock> queueLock,
431                                std::function<void(const VkCommandBuffer& commandBuffer)> f) const {
432         const T& self = static_cast<const T&>(*this);
433         VkCommandBuffer cmdBuff;
434         VkCommandBufferAllocateInfo cmdBuffAllocInfo = {
435             .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
436             .commandPool = self.m_vkCommandPool,
437             .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
438             .commandBufferCount = 1};
439         VK_CHECK(self.m_vk.vkAllocateCommandBuffers(self.m_vkDevice, &cmdBuffAllocInfo, &cmdBuff));
440         VkCommandBufferBeginInfo beginInfo = {.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
441                                               .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT};
442         VK_CHECK(self.m_vk.vkBeginCommandBuffer(cmdBuff, &beginInfo));
443         f(cmdBuff);
444         VK_CHECK(self.m_vk.vkEndCommandBuffer(cmdBuff));
445         VkSubmitInfo submitInfo = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
446                                    .commandBufferCount = 1,
447                                    .pCommandBuffers = &cmdBuff};
448         {
449             std::unique_ptr<android::base::AutoLock> lock = nullptr;
450             if (queueLock) {
451                 lock = std::make_unique<android::base::AutoLock>(*queueLock);
452             }
453             VK_CHECK(self.m_vk.vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
454             VK_CHECK(self.m_vk.vkQueueWaitIdle(queue));
455         }
456         self.m_vk.vkFreeCommandBuffers(self.m_vkDevice, self.m_vkCommandPool, 1, &cmdBuff);
457     }
458 };
459 template <class T, class U = CrtpBase>
460 class RecordImageLayoutTransformCommands : public U {
461    protected:
recordImageLayoutTransformCommands(VkCommandBuffer cmdBuff,VkImage image,VkImageLayout oldLayout,VkImageLayout newLayout)462     void recordImageLayoutTransformCommands(VkCommandBuffer cmdBuff, VkImage image,
463                                             VkImageLayout oldLayout,
464                                             VkImageLayout newLayout) const {
465         const T& self = static_cast<const T&>(*this);
466         VkImageMemoryBarrier imageBarrier = {
467             .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
468             .srcAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
469             .dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
470             .oldLayout = oldLayout,
471             .newLayout = newLayout,
472             .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
473             .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
474             .image = image,
475             .subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
476                                  .baseMipLevel = 0,
477                                  .levelCount = 1,
478                                  .baseArrayLayer = 0,
479                                  .layerCount = 1}};
480         self.m_vk.vkCmdPipelineBarrier(cmdBuff, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
481                                        VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0, 0, nullptr, 0,
482                                        nullptr, 1, &imageBarrier);
483     }
484 };
485 
486 template <class T>
getVkInstanceProcAddrWithFallback(const std::vector<std::function<std::remove_pointer_t<PFN_vkGetInstanceProcAddr>>> & vkGetInstanceProcAddrs,VkInstance instance)487 typename vk_fn_info::GetVkFnInfo<T>::type getVkInstanceProcAddrWithFallback(
488     const std::vector<std::function<std::remove_pointer_t<PFN_vkGetInstanceProcAddr>>>&
489         vkGetInstanceProcAddrs,
490     VkInstance instance) {
491     for (const auto& vkGetInstanceProcAddr : vkGetInstanceProcAddrs) {
492         if (!vkGetInstanceProcAddr) {
493             continue;
494         }
495         PFN_vkVoidFunction resWithCurrentVkGetInstanceProcAddr = std::apply(
496             [&vkGetInstanceProcAddr, instance](auto&&... names) -> PFN_vkVoidFunction {
497                 for (const char* name : {names...}) {
498                     if (PFN_vkVoidFunction resWithCurrentName =
499                             vkGetInstanceProcAddr(instance, name)) {
500                         return resWithCurrentName;
501                     }
502                 }
503                 return nullptr;
504             },
505             vk_fn_info::GetVkFnInfo<T>::names);
506         if (resWithCurrentVkGetInstanceProcAddr) {
507             return reinterpret_cast<typename vk_fn_info::GetVkFnInfo<T>::type>(
508                 resWithCurrentVkGetInstanceProcAddr);
509         }
510     }
511     return nullptr;
512 }
513 
vk_descriptor_type_has_image_view(VkDescriptorType type)514 static inline bool vk_descriptor_type_has_image_view(VkDescriptorType type) {
515     switch (type) {
516         case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
517         case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
518         case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
519         case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
520             return true;
521         default:
522             return false;
523     }
524 }
525 
526 }  // namespace vk_util
527 }  // namespace vk
528 }  // namespace gfxstream
529 
530 #endif /* VK_UTIL_H */
531