1 // Copyright 2022, The Android Open Source Project
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 //! Iterators over cells, and various layers on top of them.
16
17 use crate::Fdt;
18 use crate::FdtError;
19 use crate::FdtNode;
20 use crate::FdtProperty;
21 use crate::{AddrCells, SizeCells};
22 use core::ffi::CStr;
23 use core::marker::PhantomData;
24 use core::{mem::size_of, ops::Range, slice::ChunksExact};
25
26 use zerocopy::transmute;
27
28 /// Iterator over nodes sharing a same compatible string.
29 pub struct CompatibleIterator<'a> {
30 node: FdtNode<'a>,
31 compatible: &'a CStr,
32 }
33
34 impl<'a> CompatibleIterator<'a> {
new(fdt: &'a Fdt, compatible: &'a CStr) -> Result<Self, FdtError>35 pub(crate) fn new(fdt: &'a Fdt, compatible: &'a CStr) -> Result<Self, FdtError> {
36 let node = fdt.root();
37 Ok(Self { node, compatible })
38 }
39 }
40
41 impl<'a> Iterator for CompatibleIterator<'a> {
42 type Item = FdtNode<'a>;
43
next(&mut self) -> Option<Self::Item>44 fn next(&mut self) -> Option<Self::Item> {
45 let next = self.node.next_compatible(self.compatible).ok()?;
46
47 if let Some(node) = next {
48 self.node = node;
49 }
50
51 next
52 }
53 }
54
55 /// Iterator over cells of a DT property.
56 #[derive(Debug)]
57 pub struct CellIterator<'a> {
58 chunks: ChunksExact<'a, u8>,
59 }
60
61 impl<'a> CellIterator<'a> {
new(bytes: &'a [u8]) -> Self62 pub(crate) fn new(bytes: &'a [u8]) -> Self {
63 const CHUNK_SIZE: usize = size_of::<<CellIterator as Iterator>::Item>();
64
65 Self { chunks: bytes.chunks_exact(CHUNK_SIZE) }
66 }
67 }
68
69 impl<'a> Iterator for CellIterator<'a> {
70 type Item = u32;
71
next(&mut self) -> Option<Self::Item>72 fn next(&mut self) -> Option<Self::Item> {
73 Some(Self::Item::from_be_bytes(self.chunks.next()?.try_into().ok()?))
74 }
75 }
76
77 /// Iterator over a 'reg' property of a DT node.
78 #[derive(Debug)]
79 pub struct RegIterator<'a> {
80 cells: CellIterator<'a>,
81 addr_cells: AddrCells,
82 size_cells: SizeCells,
83 }
84
85 /// Represents a contiguous region within the address space defined by the parent bus.
86 /// Commonly means the offsets and lengths of MMIO blocks, but may have a different meaning on some
87 /// bus types. Addresses in the address space defined by the root node are CPU real addresses.
88 #[derive(Copy, Clone, Debug)]
89 pub struct Reg<T> {
90 /// Base address of the region.
91 pub addr: T,
92 /// Size of the region (optional).
93 pub size: Option<T>,
94 }
95
96 impl<T: TryInto<usize>> TryFrom<Reg<T>> for Range<usize> {
97 type Error = FdtError;
98
try_from(reg: Reg<T>) -> Result<Self, Self::Error>99 fn try_from(reg: Reg<T>) -> Result<Self, Self::Error> {
100 let addr = to_usize(reg.addr)?;
101 let size = to_usize(reg.size.ok_or(FdtError::NotFound)?)?;
102 let end = addr.checked_add(size).ok_or(FdtError::BadValue)?;
103 Ok(addr..end)
104 }
105 }
106
to_usize<T: TryInto<usize>>(num: T) -> Result<usize, FdtError>107 fn to_usize<T: TryInto<usize>>(num: T) -> Result<usize, FdtError> {
108 num.try_into().map_err(|_| FdtError::BadValue)
109 }
110
111 impl<'a> RegIterator<'a> {
new( cells: CellIterator<'a>, addr_cells: AddrCells, size_cells: SizeCells, ) -> Self112 pub(crate) fn new(
113 cells: CellIterator<'a>,
114 addr_cells: AddrCells,
115 size_cells: SizeCells,
116 ) -> Self {
117 Self { cells, addr_cells, size_cells }
118 }
119 }
120
121 impl<'a> Iterator for RegIterator<'a> {
122 type Item = Reg<u64>;
123
next(&mut self) -> Option<Self::Item>124 fn next(&mut self) -> Option<Self::Item> {
125 let addr = FromAddrCells::from_addr_cells(&mut self.cells, self.addr_cells)?;
126 // If the parent node specifies a value of 0 for #size-cells, 'size' shall be omitted.
127 let size = if self.size_cells == SizeCells::None {
128 None
129 } else {
130 Some(FromSizeCells::from_size_cells(&mut self.cells, self.size_cells)?)
131 };
132
133 Some(Self::Item { addr, size })
134 }
135 }
136
137 impl Reg<u64> {
138 const NUM_CELLS: usize = 2;
139 /// Converts addr and (optional) size to the format that is consumable by libfdt.
to_cells( &self, ) -> ([u8; Self::NUM_CELLS * size_of::<u32>()], Option<[u8; Self::NUM_CELLS * size_of::<u32>()]>)140 pub fn to_cells(
141 &self,
142 ) -> ([u8; Self::NUM_CELLS * size_of::<u32>()], Option<[u8; Self::NUM_CELLS * size_of::<u32>()]>)
143 {
144 let addr = transmute!([((self.addr >> 32) as u32).to_be(), (self.addr as u32).to_be()]);
145 let size =
146 self.size.map(|sz| transmute!([((sz >> 32) as u32).to_be(), (sz as u32).to_be()]));
147
148 (addr, size)
149 }
150 }
151
152 /// Iterator over the address ranges defined by the /memory/ node.
153 #[derive(Debug)]
154 pub struct MemRegIterator<'a> {
155 reg: RegIterator<'a>,
156 }
157
158 impl<'a> MemRegIterator<'a> {
new(reg: RegIterator<'a>) -> Self159 pub(crate) fn new(reg: RegIterator<'a>) -> Self {
160 Self { reg }
161 }
162 }
163
164 impl<'a> Iterator for MemRegIterator<'a> {
165 type Item = Range<usize>;
166
next(&mut self) -> Option<Self::Item>167 fn next(&mut self) -> Option<Self::Item> {
168 let next = self.reg.next()?;
169 let addr = usize::try_from(next.addr).ok()?;
170 let size = usize::try_from(next.size?).ok()?;
171
172 Some(addr..addr.checked_add(size)?)
173 }
174 }
175
176 /// Iterator over the 'ranges' property of a DT node.
177 #[derive(Debug)]
178 pub struct RangesIterator<'a, A, P, S> {
179 cells: CellIterator<'a>,
180 addr_cells: AddrCells,
181 parent_addr_cells: AddrCells,
182 size_cells: SizeCells,
183 _addr: PhantomData<A>,
184 _parent_addr: PhantomData<P>,
185 _size: PhantomData<S>,
186 }
187
188 /// An address range from the 'ranges' property of a DT node.
189 #[derive(Clone, Debug, Default)]
190 pub struct AddressRange<A, P, S> {
191 /// The physical address of the range within the child bus's address space.
192 pub addr: A,
193 /// The physical address of the range in the parent bus's address space.
194 pub parent_addr: P,
195 /// The size of the range in the child's address space.
196 pub size: S,
197 }
198
199 impl<'a, A, P, S> RangesIterator<'a, A, P, S> {
new( cells: CellIterator<'a>, addr_cells: AddrCells, parent_addr_cells: AddrCells, size_cells: SizeCells, ) -> Self200 pub(crate) fn new(
201 cells: CellIterator<'a>,
202 addr_cells: AddrCells,
203 parent_addr_cells: AddrCells,
204 size_cells: SizeCells,
205 ) -> Self {
206 Self {
207 cells,
208 addr_cells,
209 parent_addr_cells,
210 size_cells,
211 _addr: Default::default(),
212 _parent_addr: Default::default(),
213 _size: Default::default(),
214 }
215 }
216 }
217
218 impl<'a, A: FromAddrCells, P: FromAddrCells, S: FromSizeCells> Iterator
219 for RangesIterator<'a, A, P, S>
220 {
221 type Item = AddressRange<A, P, S>;
222
next(&mut self) -> Option<Self::Item>223 fn next(&mut self) -> Option<Self::Item> {
224 let addr = FromAddrCells::from_addr_cells(&mut self.cells, self.addr_cells)?;
225 let parent_addr = FromAddrCells::from_addr_cells(&mut self.cells, self.parent_addr_cells)?;
226 let size = FromSizeCells::from_size_cells(&mut self.cells, self.size_cells)?;
227 Some(AddressRange { addr, parent_addr, size })
228 }
229 }
230
231 trait FromAddrCells: Sized {
from_addr_cells(cells: &mut CellIterator, cell_count: AddrCells) -> Option<Self>232 fn from_addr_cells(cells: &mut CellIterator, cell_count: AddrCells) -> Option<Self>;
233 }
234
235 impl FromAddrCells for u64 {
from_addr_cells(cells: &mut CellIterator, cell_count: AddrCells) -> Option<Self>236 fn from_addr_cells(cells: &mut CellIterator, cell_count: AddrCells) -> Option<Self> {
237 Some(match cell_count {
238 AddrCells::Single => cells.next()?.into(),
239 AddrCells::Double => (cells.next()? as Self) << 32 | cells.next()? as Self,
240 _ => panic!("Invalid addr_cells {:?} for u64", cell_count),
241 })
242 }
243 }
244
245 impl FromAddrCells for (u32, u64) {
from_addr_cells(cells: &mut CellIterator, cell_count: AddrCells) -> Option<Self>246 fn from_addr_cells(cells: &mut CellIterator, cell_count: AddrCells) -> Option<Self> {
247 Some(match cell_count {
248 AddrCells::Triple => {
249 (cells.next()?, (cells.next()? as u64) << 32 | cells.next()? as u64)
250 }
251 _ => panic!("Invalid addr_cells {:?} for (u32, u64)", cell_count),
252 })
253 }
254 }
255
256 trait FromSizeCells: Sized {
from_size_cells(cells: &mut CellIterator, cell_count: SizeCells) -> Option<Self>257 fn from_size_cells(cells: &mut CellIterator, cell_count: SizeCells) -> Option<Self>;
258 }
259
260 impl FromSizeCells for u64 {
from_size_cells(cells: &mut CellIterator, cell_count: SizeCells) -> Option<Self>261 fn from_size_cells(cells: &mut CellIterator, cell_count: SizeCells) -> Option<Self> {
262 Some(match cell_count {
263 SizeCells::Single => cells.next()?.into(),
264 SizeCells::Double => (cells.next()? as Self) << 32 | cells.next()? as Self,
265 _ => panic!("Invalid size_cells {:?} for u64", cell_count),
266 })
267 }
268 }
269
270 impl AddressRange<(u32, u64), u64, u64> {
271 const SIZE_CELLS: usize = 7;
272 /// Converts to the format that is consumable by libfdt
to_cells(&self) -> [u8; Self::SIZE_CELLS * size_of::<u32>()]273 pub fn to_cells(&self) -> [u8; Self::SIZE_CELLS * size_of::<u32>()] {
274 let buf = [
275 self.addr.0.to_be(),
276 ((self.addr.1 >> 32) as u32).to_be(),
277 (self.addr.1 as u32).to_be(),
278 ((self.parent_addr >> 32) as u32).to_be(),
279 (self.parent_addr as u32).to_be(),
280 ((self.size >> 32) as u32).to_be(),
281 (self.size as u32).to_be(),
282 ];
283
284 transmute!(buf)
285 }
286 }
287
288 /// Iterator over subnodes
289 #[derive(Debug)]
290 pub struct SubnodeIterator<'a> {
291 subnode: Option<FdtNode<'a>>,
292 }
293
294 impl<'a> SubnodeIterator<'a> {
new(node: &FdtNode<'a>) -> Result<Self, FdtError>295 pub(crate) fn new(node: &FdtNode<'a>) -> Result<Self, FdtError> {
296 let subnode = node.first_subnode()?;
297
298 Ok(Self { subnode })
299 }
300 }
301
302 impl<'a> Iterator for SubnodeIterator<'a> {
303 type Item = FdtNode<'a>;
304
next(&mut self) -> Option<Self::Item>305 fn next(&mut self) -> Option<Self::Item> {
306 let res = self.subnode;
307
308 self.subnode = self.subnode.and_then(|node| node.next_subnode().ok()?);
309
310 res
311 }
312 }
313
314 /// Iterator over descendants
315 #[derive(Debug)]
316 pub struct DescendantsIterator<'a> {
317 node: Option<(FdtNode<'a>, usize)>,
318 }
319
320 impl<'a> DescendantsIterator<'a> {
new(node: &FdtNode<'a>) -> Self321 pub(crate) fn new(node: &FdtNode<'a>) -> Self {
322 Self { node: Some((*node, 0)) }
323 }
324 }
325
326 impl<'a> Iterator for DescendantsIterator<'a> {
327 type Item = (FdtNode<'a>, usize);
328
next(&mut self) -> Option<Self::Item>329 fn next(&mut self) -> Option<Self::Item> {
330 let (node, depth) = self.node?;
331 self.node = node.next_node(depth).ok().flatten().filter(|(_, depth)| *depth > 0);
332
333 self.node
334 }
335 }
336
337 /// Iterator over properties
338 #[derive(Debug)]
339 pub struct PropertyIterator<'a> {
340 prop: Option<FdtProperty<'a>>,
341 }
342
343 impl<'a> PropertyIterator<'a> {
new(node: &'a FdtNode) -> Result<Self, FdtError>344 pub(crate) fn new(node: &'a FdtNode) -> Result<Self, FdtError> {
345 let prop = node.first_property()?;
346
347 Ok(Self { prop })
348 }
349 }
350
351 impl<'a> Iterator for PropertyIterator<'a> {
352 type Item = FdtProperty<'a>;
353
next(&mut self) -> Option<Self::Item>354 fn next(&mut self) -> Option<Self::Item> {
355 let res = self.prop;
356
357 self.prop = res?.next_property().ok()?;
358
359 res
360 }
361 }
362