1 /*
2  * Copyright 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <SurfaceFlingerProperties.sysprop.h>
18 #include <android-base/stringprintf.h>
19 #include <common/FlagManager.h>
20 #include <compositionengine/CompositionEngine.h>
21 #include <compositionengine/CompositionRefreshArgs.h>
22 #include <compositionengine/DisplayColorProfile.h>
23 #include <compositionengine/LayerFE.h>
24 #include <compositionengine/LayerFECompositionState.h>
25 #include <compositionengine/RenderSurface.h>
26 #include <compositionengine/impl/HwcAsyncWorker.h>
27 #include <compositionengine/impl/Output.h>
28 #include <compositionengine/impl/OutputCompositionState.h>
29 #include <compositionengine/impl/OutputLayer.h>
30 #include <compositionengine/impl/OutputLayerCompositionState.h>
31 #include <compositionengine/impl/planner/Planner.h>
32 #include <ftl/algorithm.h>
33 #include <ftl/future.h>
34 #include <gui/TraceUtils.h>
35 #include <scheduler/FrameTargeter.h>
36 #include <scheduler/Time.h>
37 
38 #include <optional>
39 #include <thread>
40 
41 #include "renderengine/ExternalTexture.h"
42 
43 // TODO(b/129481165): remove the #pragma below and fix conversion issues
44 #pragma clang diagnostic push
45 #pragma clang diagnostic ignored "-Wconversion"
46 
47 #include <renderengine/DisplaySettings.h>
48 #include <renderengine/RenderEngine.h>
49 
50 // TODO(b/129481165): remove the #pragma below and fix conversion issues
51 #pragma clang diagnostic pop // ignored "-Wconversion"
52 
53 #include <android-base/properties.h>
54 #include <ui/DebugUtils.h>
55 #include <ui/HdrCapabilities.h>
56 #include <utils/Trace.h>
57 
58 #include "TracedOrdinal.h"
59 
60 using aidl::android::hardware::graphics::composer3::Composition;
61 
62 namespace android::compositionengine {
63 
64 Output::~Output() = default;
65 
66 namespace impl {
67 using CompositionStrategyPredictionState =
68         OutputCompositionState::CompositionStrategyPredictionState;
69 namespace {
70 
71 template <typename T>
72 class Reversed {
73 public:
Reversed(const T & container)74     explicit Reversed(const T& container) : mContainer(container) {}
begin()75     auto begin() { return mContainer.rbegin(); }
end()76     auto end() { return mContainer.rend(); }
77 
78 private:
79     const T& mContainer;
80 };
81 
82 // Helper for enumerating over a container in reverse order
83 template <typename T>
reversed(const T & c)84 Reversed<T> reversed(const T& c) {
85     return Reversed<T>(c);
86 }
87 
88 struct ScaleVector {
89     float x;
90     float y;
91 };
92 
93 // Returns a ScaleVector (x, y) such that from.scale(x, y) = to',
94 // where to' will have the same size as "to". In the case where "from" and "to"
95 // start at the origin to'=to.
getScale(const Rect & from,const Rect & to)96 ScaleVector getScale(const Rect& from, const Rect& to) {
97     return {.x = static_cast<float>(to.width()) / from.width(),
98             .y = static_cast<float>(to.height()) / from.height()};
99 }
100 
101 } // namespace
102 
createOutput(const compositionengine::CompositionEngine & compositionEngine)103 std::shared_ptr<Output> createOutput(
104         const compositionengine::CompositionEngine& compositionEngine) {
105     return createOutputTemplated<Output>(compositionEngine);
106 }
107 
108 Output::~Output() = default;
109 
isValid() const110 bool Output::isValid() const {
111     return mDisplayColorProfile && mDisplayColorProfile->isValid() && mRenderSurface &&
112             mRenderSurface->isValid();
113 }
114 
getDisplayId() const115 std::optional<DisplayId> Output::getDisplayId() const {
116     return {};
117 }
118 
getName() const119 const std::string& Output::getName() const {
120     return mName;
121 }
122 
setName(const std::string & name)123 void Output::setName(const std::string& name) {
124     mName = name;
125     auto displayIdOpt = getDisplayId();
126     mNamePlusId = displayIdOpt ? base::StringPrintf("%s (%s)", mName.c_str(),
127                                      to_string(*displayIdOpt).c_str())
128                                : mName;
129 }
130 
setCompositionEnabled(bool enabled)131 void Output::setCompositionEnabled(bool enabled) {
132     auto& outputState = editState();
133     if (outputState.isEnabled == enabled) {
134         return;
135     }
136 
137     outputState.isEnabled = enabled;
138     dirtyEntireOutput();
139 }
140 
setLayerCachingEnabled(bool enabled)141 void Output::setLayerCachingEnabled(bool enabled) {
142     if (enabled == (mPlanner != nullptr)) {
143         return;
144     }
145 
146     if (enabled) {
147         mPlanner = std::make_unique<planner::Planner>(getCompositionEngine().getRenderEngine());
148         if (mRenderSurface) {
149             mPlanner->setDisplaySize(mRenderSurface->getSize());
150         }
151     } else {
152         mPlanner.reset();
153     }
154 
155     for (auto* outputLayer : getOutputLayersOrderedByZ()) {
156         if (!outputLayer) {
157             continue;
158         }
159 
160         outputLayer->editState().overrideInfo = {};
161     }
162 }
163 
setLayerCachingTexturePoolEnabled(bool enabled)164 void Output::setLayerCachingTexturePoolEnabled(bool enabled) {
165     if (mPlanner) {
166         mPlanner->setTexturePoolEnabled(enabled);
167     }
168 }
169 
setProjection(ui::Rotation orientation,const Rect & layerStackSpaceRect,const Rect & orientedDisplaySpaceRect)170 void Output::setProjection(ui::Rotation orientation, const Rect& layerStackSpaceRect,
171                            const Rect& orientedDisplaySpaceRect) {
172     auto& outputState = editState();
173 
174     outputState.displaySpace.setOrientation(orientation);
175     LOG_FATAL_IF(outputState.displaySpace.getBoundsAsRect() == Rect::INVALID_RECT,
176                  "The display bounds are unknown.");
177 
178     // Compute orientedDisplaySpace
179     ui::Size orientedSize = outputState.displaySpace.getBounds();
180     if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
181         std::swap(orientedSize.width, orientedSize.height);
182     }
183     outputState.orientedDisplaySpace.setBounds(orientedSize);
184     outputState.orientedDisplaySpace.setContent(orientedDisplaySpaceRect);
185 
186     // Compute displaySpace.content
187     const uint32_t transformOrientationFlags = ui::Transform::toRotationFlags(orientation);
188     ui::Transform rotation;
189     if (transformOrientationFlags != ui::Transform::ROT_INVALID) {
190         const auto displaySize = outputState.displaySpace.getBoundsAsRect();
191         rotation.set(transformOrientationFlags, displaySize.width(), displaySize.height());
192     }
193     outputState.displaySpace.setContent(rotation.transform(orientedDisplaySpaceRect));
194 
195     // Compute framebufferSpace
196     outputState.framebufferSpace.setOrientation(orientation);
197     LOG_FATAL_IF(outputState.framebufferSpace.getBoundsAsRect() == Rect::INVALID_RECT,
198                  "The framebuffer bounds are unknown.");
199     const auto scale = getScale(outputState.displaySpace.getBoundsAsRect(),
200                                 outputState.framebufferSpace.getBoundsAsRect());
201     outputState.framebufferSpace.setContent(
202             outputState.displaySpace.getContent().scale(scale.x, scale.y));
203 
204     // Compute layerStackSpace
205     outputState.layerStackSpace.setContent(layerStackSpaceRect);
206     outputState.layerStackSpace.setBounds(
207             ui::Size(layerStackSpaceRect.getWidth(), layerStackSpaceRect.getHeight()));
208 
209     outputState.transform = outputState.layerStackSpace.getTransform(outputState.displaySpace);
210     outputState.needsFiltering = outputState.transform.needsBilinearFiltering();
211     dirtyEntireOutput();
212 }
213 
setNextBrightness(float brightness)214 void Output::setNextBrightness(float brightness) {
215     editState().displayBrightness = brightness;
216 }
217 
setDisplaySize(const ui::Size & size)218 void Output::setDisplaySize(const ui::Size& size) {
219     mRenderSurface->setDisplaySize(size);
220 
221     auto& state = editState();
222 
223     // Update framebuffer space
224     const ui::Size newBounds(size);
225     state.framebufferSpace.setBounds(newBounds);
226 
227     // Update display space
228     state.displaySpace.setBounds(newBounds);
229     state.transform = state.layerStackSpace.getTransform(state.displaySpace);
230 
231     // Update oriented display space
232     const auto orientation = state.displaySpace.getOrientation();
233     ui::Size orientedSize = size;
234     if (orientation == ui::ROTATION_90 || orientation == ui::ROTATION_270) {
235         std::swap(orientedSize.width, orientedSize.height);
236     }
237     const ui::Size newOrientedBounds(orientedSize);
238     state.orientedDisplaySpace.setBounds(newOrientedBounds);
239 
240     if (mPlanner) {
241         mPlanner->setDisplaySize(size);
242     }
243 
244     dirtyEntireOutput();
245 }
246 
getTransformHint() const247 ui::Transform::RotationFlags Output::getTransformHint() const {
248     return static_cast<ui::Transform::RotationFlags>(getState().transform.getOrientation());
249 }
250 
setLayerFilter(ui::LayerFilter filter)251 void Output::setLayerFilter(ui::LayerFilter filter) {
252     editState().layerFilter = filter;
253     dirtyEntireOutput();
254 }
255 
setColorTransform(const compositionengine::CompositionRefreshArgs & args)256 void Output::setColorTransform(const compositionengine::CompositionRefreshArgs& args) {
257     auto& colorTransformMatrix = editState().colorTransformMatrix;
258     if (!args.colorTransformMatrix || colorTransformMatrix == args.colorTransformMatrix) {
259         return;
260     }
261 
262     colorTransformMatrix = *args.colorTransformMatrix;
263 
264     dirtyEntireOutput();
265 }
266 
setColorProfile(const ColorProfile & colorProfile)267 void Output::setColorProfile(const ColorProfile& colorProfile) {
268     auto& outputState = editState();
269     if (outputState.colorMode == colorProfile.mode &&
270         outputState.dataspace == colorProfile.dataspace &&
271         outputState.renderIntent == colorProfile.renderIntent) {
272         return;
273     }
274 
275     outputState.colorMode = colorProfile.mode;
276     outputState.dataspace = colorProfile.dataspace;
277     outputState.renderIntent = colorProfile.renderIntent;
278 
279     mRenderSurface->setBufferDataspace(colorProfile.dataspace);
280 
281     ALOGV("Set active color mode: %s (%d), active render intent: %s (%d)",
282           decodeColorMode(colorProfile.mode).c_str(), colorProfile.mode,
283           decodeRenderIntent(colorProfile.renderIntent).c_str(), colorProfile.renderIntent);
284 
285     dirtyEntireOutput();
286 }
287 
setDisplayBrightness(float sdrWhitePointNits,float displayBrightnessNits)288 void Output::setDisplayBrightness(float sdrWhitePointNits, float displayBrightnessNits) {
289     auto& outputState = editState();
290     if (outputState.sdrWhitePointNits == sdrWhitePointNits &&
291         outputState.displayBrightnessNits == displayBrightnessNits) {
292         // Nothing changed
293         return;
294     }
295     outputState.sdrWhitePointNits = sdrWhitePointNits;
296     outputState.displayBrightnessNits = displayBrightnessNits;
297     dirtyEntireOutput();
298 }
299 
dump(std::string & out) const300 void Output::dump(std::string& out) const {
301     base::StringAppendF(&out, "Output \"%s\"", mName.c_str());
302     out.append("\n   Composition Output State:\n");
303 
304     dumpBase(out);
305 }
306 
dumpBase(std::string & out) const307 void Output::dumpBase(std::string& out) const {
308     dumpState(out);
309     out += '\n';
310 
311     if (mDisplayColorProfile) {
312         mDisplayColorProfile->dump(out);
313     } else {
314         out.append("    No display color profile!\n");
315     }
316 
317     out += '\n';
318 
319     if (mRenderSurface) {
320         mRenderSurface->dump(out);
321     } else {
322         out.append("    No render surface!\n");
323     }
324 
325     base::StringAppendF(&out, "\n   %zu Layers\n", getOutputLayerCount());
326     for (const auto* outputLayer : getOutputLayersOrderedByZ()) {
327         if (!outputLayer) {
328             continue;
329         }
330         outputLayer->dump(out);
331     }
332 }
333 
dumpPlannerInfo(const Vector<String16> & args,std::string & out) const334 void Output::dumpPlannerInfo(const Vector<String16>& args, std::string& out) const {
335     if (!mPlanner) {
336         out.append("Planner is disabled\n");
337         return;
338     }
339     base::StringAppendF(&out, "Planner info for display [%s]\n", mName.c_str());
340     mPlanner->dump(args, out);
341 }
342 
getDisplayColorProfile() const343 compositionengine::DisplayColorProfile* Output::getDisplayColorProfile() const {
344     return mDisplayColorProfile.get();
345 }
346 
setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode)347 void Output::setDisplayColorProfile(std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
348     mDisplayColorProfile = std::move(mode);
349 }
350 
getReleasedLayersForTest() const351 const Output::ReleasedLayers& Output::getReleasedLayersForTest() const {
352     return mReleasedLayers;
353 }
354 
setDisplayColorProfileForTest(std::unique_ptr<compositionengine::DisplayColorProfile> mode)355 void Output::setDisplayColorProfileForTest(
356         std::unique_ptr<compositionengine::DisplayColorProfile> mode) {
357     mDisplayColorProfile = std::move(mode);
358 }
359 
getRenderSurface() const360 compositionengine::RenderSurface* Output::getRenderSurface() const {
361     return mRenderSurface.get();
362 }
363 
setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface)364 void Output::setRenderSurface(std::unique_ptr<compositionengine::RenderSurface> surface) {
365     mRenderSurface = std::move(surface);
366     const auto size = mRenderSurface->getSize();
367     editState().framebufferSpace.setBounds(size);
368     if (mPlanner) {
369         mPlanner->setDisplaySize(size);
370     }
371     dirtyEntireOutput();
372 }
373 
cacheClientCompositionRequests(uint32_t cacheSize)374 void Output::cacheClientCompositionRequests(uint32_t cacheSize) {
375     if (cacheSize == 0) {
376         mClientCompositionRequestCache.reset();
377     } else {
378         mClientCompositionRequestCache = std::make_unique<ClientCompositionRequestCache>(cacheSize);
379     }
380 };
381 
setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface)382 void Output::setRenderSurfaceForTest(std::unique_ptr<compositionengine::RenderSurface> surface) {
383     mRenderSurface = std::move(surface);
384 }
385 
getDirtyRegion() const386 Region Output::getDirtyRegion() const {
387     const auto& outputState = getState();
388     return outputState.dirtyRegion.intersect(outputState.layerStackSpace.getContent());
389 }
390 
includesLayer(ui::LayerFilter filter) const391 bool Output::includesLayer(ui::LayerFilter filter) const {
392     return getState().layerFilter.includes(filter);
393 }
394 
includesLayer(const sp<LayerFE> & layerFE) const395 bool Output::includesLayer(const sp<LayerFE>& layerFE) const {
396     const auto* layerFEState = layerFE->getCompositionState();
397     return layerFEState && includesLayer(layerFEState->outputFilter);
398 }
399 
createOutputLayer(const sp<LayerFE> & layerFE) const400 std::unique_ptr<compositionengine::OutputLayer> Output::createOutputLayer(
401         const sp<LayerFE>& layerFE) const {
402     return impl::createOutputLayer(*this, layerFE);
403 }
404 
getOutputLayerForLayer(const sp<LayerFE> & layerFE) const405 compositionengine::OutputLayer* Output::getOutputLayerForLayer(const sp<LayerFE>& layerFE) const {
406     auto index = findCurrentOutputLayerForLayer(layerFE);
407     return index ? getOutputLayerOrderedByZByIndex(*index) : nullptr;
408 }
409 
findCurrentOutputLayerForLayer(const sp<compositionengine::LayerFE> & layer) const410 std::optional<size_t> Output::findCurrentOutputLayerForLayer(
411         const sp<compositionengine::LayerFE>& layer) const {
412     for (size_t i = 0; i < getOutputLayerCount(); i++) {
413         auto outputLayer = getOutputLayerOrderedByZByIndex(i);
414         if (outputLayer && &outputLayer->getLayerFE() == layer.get()) {
415             return i;
416         }
417     }
418     return std::nullopt;
419 }
420 
setReleasedLayers(Output::ReleasedLayers && layers)421 void Output::setReleasedLayers(Output::ReleasedLayers&& layers) {
422     mReleasedLayers = std::move(layers);
423 }
424 
prepare(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & geomSnapshots)425 void Output::prepare(const compositionengine::CompositionRefreshArgs& refreshArgs,
426                      LayerFESet& geomSnapshots) {
427     ATRACE_CALL();
428     ALOGV(__FUNCTION__);
429 
430     rebuildLayerStacks(refreshArgs, geomSnapshots);
431     uncacheBuffers(refreshArgs.bufferIdsToUncache);
432 }
433 
present(const compositionengine::CompositionRefreshArgs & refreshArgs)434 ftl::Future<std::monostate> Output::present(
435         const compositionengine::CompositionRefreshArgs& refreshArgs) {
436     const auto stringifyExpectedPresentTime = [this, &refreshArgs]() -> std::string {
437         return ftl::Optional(getDisplayId())
438                 .and_then(PhysicalDisplayId::tryCast)
439                 .and_then([&refreshArgs](PhysicalDisplayId id) {
440                     return refreshArgs.frameTargets.get(id);
441                 })
442                 .transform([](const auto& frameTargetPtr) {
443                     return frameTargetPtr.get()->expectedPresentTime();
444                 })
445                 .transform([](TimePoint expectedPresentTime) {
446                     return base::StringPrintf(" vsyncIn %.2fms",
447                                               ticks<std::milli, float>(expectedPresentTime -
448                                                                        TimePoint::now()));
449                 })
450                 .or_else([] {
451                     // There is no vsync for this output.
452                     return std::make_optional(std::string());
453                 })
454                 .value();
455     };
456     ATRACE_FORMAT("%s for %s%s", __func__, mNamePlusId.c_str(),
457                   stringifyExpectedPresentTime().c_str());
458     ALOGV(__FUNCTION__);
459 
460     updateColorProfile(refreshArgs);
461     updateCompositionState(refreshArgs);
462     planComposition();
463     writeCompositionState(refreshArgs);
464     setColorTransform(refreshArgs);
465     beginFrame();
466 
467     if (isPowerHintSessionEnabled()) {
468         // always reset the flag before the composition prediction
469         setHintSessionRequiresRenderEngine(false);
470     }
471     GpuCompositionResult result;
472     const bool predictCompositionStrategy = canPredictCompositionStrategy(refreshArgs);
473     if (predictCompositionStrategy) {
474         result = prepareFrameAsync();
475     } else {
476         prepareFrame();
477     }
478 
479     devOptRepaintFlash(refreshArgs);
480     finishFrame(std::move(result));
481     ftl::Future<std::monostate> future;
482     const bool flushEvenWhenDisabled = !refreshArgs.bufferIdsToUncache.empty();
483     if (mOffloadPresent) {
484         future = presentFrameAndReleaseLayersAsync(flushEvenWhenDisabled);
485 
486         // Only offload for this frame. The next frame will determine whether it
487         // needs to be offloaded. Leave the HwcAsyncWorker in place. For one thing,
488         // it is currently presenting. Further, it may be needed next frame, and
489         // we don't want to churn.
490         mOffloadPresent = false;
491     } else {
492         presentFrameAndReleaseLayers(flushEvenWhenDisabled);
493         future = ftl::yield<std::monostate>({});
494     }
495     renderCachedSets(refreshArgs);
496     return future;
497 }
498 
offloadPresentNextFrame()499 void Output::offloadPresentNextFrame() {
500     mOffloadPresent = true;
501     updateHwcAsyncWorker();
502 }
503 
uncacheBuffers(std::vector<uint64_t> const & bufferIdsToUncache)504 void Output::uncacheBuffers(std::vector<uint64_t> const& bufferIdsToUncache) {
505     if (bufferIdsToUncache.empty()) {
506         return;
507     }
508     for (auto outputLayer : getOutputLayersOrderedByZ()) {
509         outputLayer->uncacheBuffers(bufferIdsToUncache);
510     }
511 }
512 
rebuildLayerStacks(const compositionengine::CompositionRefreshArgs & refreshArgs,LayerFESet & layerFESet)513 void Output::rebuildLayerStacks(const compositionengine::CompositionRefreshArgs& refreshArgs,
514                                 LayerFESet& layerFESet) {
515     auto& outputState = editState();
516 
517     // Do nothing if this output is not enabled or there is no need to perform this update
518     if (!outputState.isEnabled || CC_LIKELY(!refreshArgs.updatingOutputGeometryThisFrame)) {
519         return;
520     }
521     ATRACE_CALL();
522     ALOGV(__FUNCTION__);
523 
524     // Process the layers to determine visibility and coverage
525     compositionengine::Output::CoverageState coverage{layerFESet};
526     coverage.aboveCoveredLayersExcludingOverlays = refreshArgs.hasTrustedPresentationListener
527             ? std::make_optional<Region>()
528             : std::nullopt;
529     collectVisibleLayers(refreshArgs, coverage);
530 
531     // Compute the resulting coverage for this output, and store it for later
532     const ui::Transform& tr = outputState.transform;
533     Region undefinedRegion{outputState.displaySpace.getBoundsAsRect()};
534     undefinedRegion.subtractSelf(tr.transform(coverage.aboveOpaqueLayers));
535 
536     outputState.undefinedRegion = undefinedRegion;
537     outputState.dirtyRegion.orSelf(coverage.dirtyRegion);
538 }
539 
collectVisibleLayers(const compositionengine::CompositionRefreshArgs & refreshArgs,compositionengine::Output::CoverageState & coverage)540 void Output::collectVisibleLayers(const compositionengine::CompositionRefreshArgs& refreshArgs,
541                                   compositionengine::Output::CoverageState& coverage) {
542     // Evaluate the layers from front to back to determine what is visible. This
543     // also incrementally calculates the coverage information for each layer as
544     // well as the entire output.
545     for (auto layer : reversed(refreshArgs.layers)) {
546         // Incrementally process the coverage for each layer
547         ensureOutputLayerIfVisible(layer, coverage);
548 
549         // TODO(b/121291683): Stop early if the output is completely covered and
550         // no more layers could even be visible underneath the ones on top.
551     }
552 
553     setReleasedLayers(refreshArgs);
554 
555     finalizePendingOutputLayers();
556 }
557 
ensureOutputLayerIfVisible(sp<compositionengine::LayerFE> & layerFE,compositionengine::Output::CoverageState & coverage)558 void Output::ensureOutputLayerIfVisible(sp<compositionengine::LayerFE>& layerFE,
559                                         compositionengine::Output::CoverageState& coverage) {
560     // Ensure we have a snapshot of the basic geometry layer state. Limit the
561     // snapshots to once per frame for each candidate layer, as layers may
562     // appear on multiple outputs.
563     if (!coverage.latchedLayers.count(layerFE)) {
564         coverage.latchedLayers.insert(layerFE);
565     }
566 
567     // Only consider the layers on this output
568     if (!includesLayer(layerFE)) {
569         return;
570     }
571 
572     // Obtain a read-only pointer to the front-end layer state
573     const auto* layerFEState = layerFE->getCompositionState();
574     if (CC_UNLIKELY(!layerFEState)) {
575         return;
576     }
577 
578     // handle hidden surfaces by setting the visible region to empty
579     if (CC_UNLIKELY(!layerFEState->isVisible)) {
580         return;
581     }
582 
583     bool computeAboveCoveredExcludingOverlays = coverage.aboveCoveredLayersExcludingOverlays &&
584             !layerFEState->outputFilter.toInternalDisplay;
585 
586     /*
587      * opaqueRegion: area of a surface that is fully opaque.
588      */
589     Region opaqueRegion;
590 
591     /*
592      * visibleRegion: area of a surface that is visible on screen and not fully
593      * transparent. This is essentially the layer's footprint minus the opaque
594      * regions above it. Areas covered by a translucent surface are considered
595      * visible.
596      */
597     Region visibleRegion;
598 
599     /*
600      * coveredRegion: area of a surface that is covered by all visible regions
601      * above it (which includes the translucent areas).
602      */
603     Region coveredRegion;
604 
605     /*
606      * transparentRegion: area of a surface that is hinted to be completely
607      * transparent.
608      * This is used to tell when the layer has no visible non-transparent
609      * regions and can be removed from the layer list. It does not affect the
610      * visibleRegion of this layer or any layers beneath it. The hint may not
611      * be correct if apps don't respect the SurfaceView restrictions (which,
612      * sadly, some don't).
613      *
614      * In addition, it is used on DISPLAY_DECORATION layers to specify the
615      * blockingRegion, allowing the DPU to skip it to save power. Once we have
616      * hardware that supports a blockingRegion on frames with AFBC, it may be
617      * useful to use this for other layers, too, so long as we can prevent
618      * regressions on b/7179570.
619      */
620     Region transparentRegion;
621 
622     /*
623      * shadowRegion: Region cast by the layer's shadow.
624      */
625     Region shadowRegion;
626 
627     /**
628      * covered region above excluding internal display overlay layers
629      */
630     std::optional<Region> coveredRegionExcludingDisplayOverlays = std::nullopt;
631 
632     const ui::Transform& tr = layerFEState->geomLayerTransform;
633 
634     // Get the visible region
635     // TODO(b/121291683): Is it worth creating helper methods on LayerFEState
636     // for computations like this?
637     const Rect visibleRect(tr.transform(layerFEState->geomLayerBounds));
638     visibleRegion.set(visibleRect);
639 
640     if (layerFEState->shadowSettings.length > 0.0f) {
641         // if the layer casts a shadow, offset the layers visible region and
642         // calculate the shadow region.
643         const auto inset = static_cast<int32_t>(ceilf(layerFEState->shadowSettings.length) * -1.0f);
644         Rect visibleRectWithShadows(visibleRect);
645         visibleRectWithShadows.inset(inset, inset, inset, inset);
646         visibleRegion.set(visibleRectWithShadows);
647         shadowRegion = visibleRegion.subtract(visibleRect);
648     }
649 
650     if (visibleRegion.isEmpty()) {
651         return;
652     }
653 
654     // Remove the transparent area from the visible region
655     if (!layerFEState->isOpaque) {
656         if (tr.preserveRects()) {
657             // Clip the transparent region to geomLayerBounds first
658             // The transparent region may be influenced by applications, for
659             // instance, by overriding ViewGroup#gatherTransparentRegion with a
660             // custom view. Once the layer stack -> display mapping is known, we
661             // must guard against very wrong inputs to prevent underflow or
662             // overflow errors. We do this here by constraining the transparent
663             // region to be within the pre-transform layer bounds, since the
664             // layer bounds are expected to play nicely with the full
665             // transform.
666             const Region clippedTransparentRegionHint =
667                     layerFEState->transparentRegionHint.intersect(
668                             Rect(layerFEState->geomLayerBounds));
669 
670             if (clippedTransparentRegionHint.isEmpty()) {
671                 if (!layerFEState->transparentRegionHint.isEmpty()) {
672                     ALOGD("Layer: %s had an out of bounds transparent region",
673                           layerFE->getDebugName());
674                     layerFEState->transparentRegionHint.dump("transparentRegionHint");
675                 }
676                 transparentRegion.clear();
677             } else {
678                 transparentRegion = tr.transform(clippedTransparentRegionHint);
679             }
680         } else {
681             // transformation too complex, can't do the
682             // transparent region optimization.
683             transparentRegion.clear();
684         }
685     }
686 
687     // compute the opaque region
688     const auto layerOrientation = tr.getOrientation();
689     if (layerFEState->isOpaque && ((layerOrientation & ui::Transform::ROT_INVALID) == 0)) {
690         // If we one of the simple category of transforms (0/90/180/270 rotation
691         // + any flip), then the opaque region is the layer's footprint.
692         // Otherwise we don't try and compute the opaque region since there may
693         // be errors at the edges, and we treat the entire layer as
694         // translucent.
695         opaqueRegion.set(visibleRect);
696     }
697 
698     // Clip the covered region to the visible region
699     coveredRegion = coverage.aboveCoveredLayers.intersect(visibleRegion);
700 
701     // Update accumAboveCoveredLayers for next (lower) layer
702     coverage.aboveCoveredLayers.orSelf(visibleRegion);
703 
704     if (CC_UNLIKELY(computeAboveCoveredExcludingOverlays)) {
705         coveredRegionExcludingDisplayOverlays =
706                 coverage.aboveCoveredLayersExcludingOverlays->intersect(visibleRegion);
707         coverage.aboveCoveredLayersExcludingOverlays->orSelf(visibleRegion);
708     }
709 
710     // subtract the opaque region covered by the layers above us
711     visibleRegion.subtractSelf(coverage.aboveOpaqueLayers);
712 
713     if (visibleRegion.isEmpty()) {
714         return;
715     }
716 
717     // Get coverage information for the layer as previously displayed,
718     // also taking over ownership from mOutputLayersorderedByZ.
719     auto prevOutputLayerIndex = findCurrentOutputLayerForLayer(layerFE);
720     auto prevOutputLayer =
721             prevOutputLayerIndex ? getOutputLayerOrderedByZByIndex(*prevOutputLayerIndex) : nullptr;
722 
723     //  Get coverage information for the layer as previously displayed
724     // TODO(b/121291683): Define kEmptyRegion as a constant in Region.h
725     const Region kEmptyRegion;
726     const Region& oldVisibleRegion =
727             prevOutputLayer ? prevOutputLayer->getState().visibleRegion : kEmptyRegion;
728     const Region& oldCoveredRegion =
729             prevOutputLayer ? prevOutputLayer->getState().coveredRegion : kEmptyRegion;
730 
731     // compute this layer's dirty region
732     Region dirty;
733     if (layerFEState->contentDirty) {
734         // we need to invalidate the whole region
735         dirty = visibleRegion;
736         // as well, as the old visible region
737         dirty.orSelf(oldVisibleRegion);
738     } else {
739         /* compute the exposed region:
740          *   the exposed region consists of two components:
741          *   1) what's VISIBLE now and was COVERED before
742          *   2) what's EXPOSED now less what was EXPOSED before
743          *
744          * note that (1) is conservative, we start with the whole visible region
745          * but only keep what used to be covered by something -- which mean it
746          * may have been exposed.
747          *
748          * (2) handles areas that were not covered by anything but got exposed
749          * because of a resize.
750          *
751          */
752         const Region newExposed = visibleRegion - coveredRegion;
753         const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
754         dirty = (visibleRegion & oldCoveredRegion) | (newExposed - oldExposed);
755     }
756     dirty.subtractSelf(coverage.aboveOpaqueLayers);
757 
758     // accumulate to the screen dirty region
759     coverage.dirtyRegion.orSelf(dirty);
760 
761     // Update accumAboveOpaqueLayers for next (lower) layer
762     coverage.aboveOpaqueLayers.orSelf(opaqueRegion);
763 
764     // Compute the visible non-transparent region
765     Region visibleNonTransparentRegion = visibleRegion.subtract(transparentRegion);
766 
767     // Perform the final check to see if this layer is visible on this output
768     // TODO(b/121291683): Why does this not use visibleRegion? (see outputSpaceVisibleRegion below)
769     const auto& outputState = getState();
770     Region drawRegion(outputState.transform.transform(visibleNonTransparentRegion));
771     drawRegion.andSelf(outputState.displaySpace.getBoundsAsRect());
772     if (drawRegion.isEmpty()) {
773         return;
774     }
775 
776     Region visibleNonShadowRegion = visibleRegion.subtract(shadowRegion);
777 
778     // The layer is visible. Either reuse the existing outputLayer if we have
779     // one, or create a new one if we do not.
780     auto result = ensureOutputLayer(prevOutputLayerIndex, layerFE);
781 
782     // Store the layer coverage information into the layer state as some of it
783     // is useful later.
784     auto& outputLayerState = result->editState();
785     outputLayerState.visibleRegion = visibleRegion;
786     outputLayerState.visibleNonTransparentRegion = visibleNonTransparentRegion;
787     outputLayerState.coveredRegion = coveredRegion;
788     outputLayerState.outputSpaceVisibleRegion = outputState.transform.transform(
789             visibleNonShadowRegion.intersect(outputState.layerStackSpace.getContent()));
790     outputLayerState.shadowRegion = shadowRegion;
791     outputLayerState.outputSpaceBlockingRegionHint =
792             layerFEState->compositionType == Composition::DISPLAY_DECORATION
793             ? outputState.transform.transform(
794                       transparentRegion.intersect(outputState.layerStackSpace.getContent()))
795             : Region();
796     if (CC_UNLIKELY(computeAboveCoveredExcludingOverlays)) {
797         outputLayerState.coveredRegionExcludingDisplayOverlays =
798                 std::move(coveredRegionExcludingDisplayOverlays);
799     }
800 }
801 
setReleasedLayers(const compositionengine::CompositionRefreshArgs &)802 void Output::setReleasedLayers(const compositionengine::CompositionRefreshArgs&) {
803     // The base class does nothing with this call.
804 }
805 
updateCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)806 void Output::updateCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
807     ATRACE_CALL();
808     ALOGV(__FUNCTION__);
809 
810     if (!getState().isEnabled) {
811         return;
812     }
813 
814     mLayerRequestingBackgroundBlur = findLayerRequestingBackgroundComposition();
815     bool forceClientComposition = mLayerRequestingBackgroundBlur != nullptr;
816 
817     for (auto* layer : getOutputLayersOrderedByZ()) {
818         layer->updateCompositionState(refreshArgs.updatingGeometryThisFrame,
819                                       refreshArgs.devOptForceClientComposition ||
820                                               forceClientComposition,
821                                       refreshArgs.internalDisplayRotationFlags);
822 
823         if (mLayerRequestingBackgroundBlur == layer) {
824             forceClientComposition = false;
825         }
826     }
827 }
828 
planComposition()829 void Output::planComposition() {
830     if (!mPlanner || !getState().isEnabled) {
831         return;
832     }
833 
834     ATRACE_CALL();
835     ALOGV(__FUNCTION__);
836 
837     mPlanner->plan(getOutputLayersOrderedByZ());
838 }
839 
writeCompositionState(const compositionengine::CompositionRefreshArgs & refreshArgs)840 void Output::writeCompositionState(const compositionengine::CompositionRefreshArgs& refreshArgs) {
841     ATRACE_CALL();
842     ALOGV(__FUNCTION__);
843 
844     if (!getState().isEnabled) {
845         return;
846     }
847 
848     if (auto frameTargetPtrOpt = ftl::Optional(getDisplayId())
849                                          .and_then(PhysicalDisplayId::tryCast)
850                                          .and_then([&refreshArgs](PhysicalDisplayId id) {
851                                              return refreshArgs.frameTargets.get(id);
852                                          })) {
853         editState().earliestPresentTime = frameTargetPtrOpt->get()->earliestPresentTime();
854         editState().expectedPresentTime = frameTargetPtrOpt->get()->expectedPresentTime().ns();
855     }
856     editState().frameInterval = refreshArgs.frameInterval;
857     editState().powerCallback = refreshArgs.powerCallback;
858 
859     compositionengine::OutputLayer* peekThroughLayer = nullptr;
860     sp<GraphicBuffer> previousOverride = nullptr;
861     bool includeGeometry = refreshArgs.updatingGeometryThisFrame;
862     uint32_t z = 0;
863     bool overrideZ = false;
864     uint64_t outputLayerHash = 0;
865     for (auto* layer : getOutputLayersOrderedByZ()) {
866         if (layer == peekThroughLayer) {
867             // No longer needed, although it should not show up again, so
868             // resetting it is not truly needed either.
869             peekThroughLayer = nullptr;
870 
871             // peekThroughLayer was already drawn ahead of its z order.
872             continue;
873         }
874         bool skipLayer = false;
875         const auto& overrideInfo = layer->getState().overrideInfo;
876         if (overrideInfo.buffer != nullptr) {
877             if (previousOverride && overrideInfo.buffer->getBuffer() == previousOverride) {
878                 ALOGV("Skipping redundant buffer");
879                 skipLayer = true;
880             } else {
881                 // First layer with the override buffer.
882                 if (overrideInfo.peekThroughLayer) {
883                     peekThroughLayer = overrideInfo.peekThroughLayer;
884 
885                     // Draw peekThroughLayer first.
886                     overrideZ = true;
887                     includeGeometry = true;
888                     constexpr bool isPeekingThrough = true;
889                     peekThroughLayer->writeStateToHWC(includeGeometry, false, z++, overrideZ,
890                                                       isPeekingThrough);
891                     outputLayerHash ^= android::hashCombine(
892                             reinterpret_cast<uint64_t>(&peekThroughLayer->getLayerFE()),
893                             z, includeGeometry, overrideZ, isPeekingThrough,
894                             peekThroughLayer->requiresClientComposition());
895                 }
896 
897                 previousOverride = overrideInfo.buffer->getBuffer();
898             }
899         }
900 
901         constexpr bool isPeekingThrough = false;
902         layer->writeStateToHWC(includeGeometry, skipLayer, z++, overrideZ, isPeekingThrough);
903         if (!skipLayer) {
904             outputLayerHash ^= android::hashCombine(
905                     reinterpret_cast<uint64_t>(&layer->getLayerFE()),
906                     z, includeGeometry, overrideZ, isPeekingThrough,
907                     layer->requiresClientComposition());
908         }
909     }
910     editState().outputLayerHash = outputLayerHash;
911 }
912 
findLayerRequestingBackgroundComposition() const913 compositionengine::OutputLayer* Output::findLayerRequestingBackgroundComposition() const {
914     compositionengine::OutputLayer* layerRequestingBgComposition = nullptr;
915     for (auto* layer : getOutputLayersOrderedByZ()) {
916         const auto* compState = layer->getLayerFE().getCompositionState();
917 
918         // If any layer has a sideband stream, we will disable blurs. In that case, we don't
919         // want to force client composition because of the blur.
920         if (compState->sidebandStream != nullptr) {
921             return nullptr;
922         }
923 
924         // If RenderEngine cannot render protected content, we cannot blur.
925         if (compState->hasProtectedContent &&
926             !getCompositionEngine().getRenderEngine().supportsProtectedContent()) {
927             return nullptr;
928         }
929         if (compState->isOpaque) {
930             continue;
931         }
932         if (compState->backgroundBlurRadius > 0 || compState->blurRegions.size() > 0) {
933             layerRequestingBgComposition = layer;
934         }
935     }
936     return layerRequestingBgComposition;
937 }
938 
updateColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs)939 void Output::updateColorProfile(const compositionengine::CompositionRefreshArgs& refreshArgs) {
940     setColorProfile(pickColorProfile(refreshArgs));
941 }
942 
943 // Returns a data space that fits all visible layers.  The returned data space
944 // can only be one of
945 //  - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced)
946 //  - Dataspace::DISPLAY_P3
947 //  - Dataspace::DISPLAY_BT2020
948 // The returned HDR data space is one of
949 //  - Dataspace::UNKNOWN
950 //  - Dataspace::BT2020_HLG
951 //  - Dataspace::BT2020_PQ
getBestDataspace(ui::Dataspace * outHdrDataSpace,bool * outIsHdrClientComposition) const952 ui::Dataspace Output::getBestDataspace(ui::Dataspace* outHdrDataSpace,
953                                        bool* outIsHdrClientComposition) const {
954     ui::Dataspace bestDataSpace = ui::Dataspace::V0_SRGB;
955     *outHdrDataSpace = ui::Dataspace::UNKNOWN;
956 
957     // An Output's layers may be stale when it is disabled. As a consequence, the layers returned by
958     // getOutputLayersOrderedByZ may not be in a valid state and it is not safe to access their
959     // properties. Return a default dataspace value in this case.
960     if (!getState().isEnabled) {
961         return ui::Dataspace::V0_SRGB;
962     }
963 
964     for (const auto* layer : getOutputLayersOrderedByZ()) {
965         switch (layer->getLayerFE().getCompositionState()->dataspace) {
966             case ui::Dataspace::V0_SCRGB:
967             case ui::Dataspace::V0_SCRGB_LINEAR:
968             case ui::Dataspace::BT2020:
969             case ui::Dataspace::BT2020_ITU:
970             case ui::Dataspace::BT2020_LINEAR:
971             case ui::Dataspace::DISPLAY_BT2020:
972                 bestDataSpace = ui::Dataspace::DISPLAY_BT2020;
973                 break;
974             case ui::Dataspace::DISPLAY_P3:
975                 bestDataSpace = ui::Dataspace::DISPLAY_P3;
976                 break;
977             case ui::Dataspace::BT2020_PQ:
978             case ui::Dataspace::BT2020_ITU_PQ:
979                 bestDataSpace = ui::Dataspace::DISPLAY_P3;
980                 *outHdrDataSpace = ui::Dataspace::BT2020_PQ;
981                 *outIsHdrClientComposition =
982                         layer->getLayerFE().getCompositionState()->forceClientComposition;
983                 break;
984             case ui::Dataspace::BT2020_HLG:
985             case ui::Dataspace::BT2020_ITU_HLG:
986                 bestDataSpace = ui::Dataspace::DISPLAY_P3;
987                 // When there's mixed PQ content and HLG content, we set the HDR
988                 // data space to be BT2020_HLG and convert PQ to HLG.
989                 if (*outHdrDataSpace == ui::Dataspace::UNKNOWN) {
990                     *outHdrDataSpace = ui::Dataspace::BT2020_HLG;
991                 }
992                 break;
993             default:
994                 break;
995         }
996     }
997 
998     return bestDataSpace;
999 }
1000 
pickColorProfile(const compositionengine::CompositionRefreshArgs & refreshArgs) const1001 compositionengine::Output::ColorProfile Output::pickColorProfile(
1002         const compositionengine::CompositionRefreshArgs& refreshArgs) const {
1003     if (refreshArgs.outputColorSetting == OutputColorSetting::kUnmanaged) {
1004         return ColorProfile{ui::ColorMode::NATIVE, ui::Dataspace::UNKNOWN,
1005                             ui::RenderIntent::COLORIMETRIC};
1006     }
1007 
1008     ui::Dataspace hdrDataSpace;
1009     bool isHdrClientComposition = false;
1010     ui::Dataspace bestDataSpace = getBestDataspace(&hdrDataSpace, &isHdrClientComposition);
1011 
1012     switch (refreshArgs.forceOutputColorMode) {
1013         case ui::ColorMode::SRGB:
1014             bestDataSpace = ui::Dataspace::V0_SRGB;
1015             break;
1016         case ui::ColorMode::DISPLAY_P3:
1017             bestDataSpace = ui::Dataspace::DISPLAY_P3;
1018             break;
1019         default:
1020             break;
1021     }
1022 
1023     // respect hdrDataSpace only when there is no legacy HDR support
1024     const bool isHdr = hdrDataSpace != ui::Dataspace::UNKNOWN &&
1025             !mDisplayColorProfile->hasLegacyHdrSupport(hdrDataSpace) && !isHdrClientComposition;
1026     if (isHdr) {
1027         bestDataSpace = hdrDataSpace;
1028     }
1029 
1030     ui::RenderIntent intent;
1031     switch (refreshArgs.outputColorSetting) {
1032         case OutputColorSetting::kManaged:
1033         case OutputColorSetting::kUnmanaged:
1034             intent = isHdr ? ui::RenderIntent::TONE_MAP_COLORIMETRIC
1035                            : ui::RenderIntent::COLORIMETRIC;
1036             break;
1037         case OutputColorSetting::kEnhanced:
1038             intent = isHdr ? ui::RenderIntent::TONE_MAP_ENHANCE : ui::RenderIntent::ENHANCE;
1039             break;
1040         default: // vendor display color setting
1041             intent = static_cast<ui::RenderIntent>(refreshArgs.outputColorSetting);
1042             break;
1043     }
1044 
1045     ui::ColorMode outMode;
1046     ui::Dataspace outDataSpace;
1047     ui::RenderIntent outRenderIntent;
1048     mDisplayColorProfile->getBestColorMode(bestDataSpace, intent, &outDataSpace, &outMode,
1049                                            &outRenderIntent);
1050 
1051     return ColorProfile{outMode, outDataSpace, outRenderIntent};
1052 }
1053 
beginFrame()1054 void Output::beginFrame() {
1055     auto& outputState = editState();
1056     const bool dirty = !getDirtyRegion().isEmpty();
1057     const bool empty = getOutputLayerCount() == 0;
1058     const bool wasEmpty = !outputState.lastCompositionHadVisibleLayers;
1059 
1060     // If nothing has changed (!dirty), don't recompose.
1061     // If something changed, but we don't currently have any visible layers,
1062     //   and didn't when we last did a composition, then skip it this time.
1063     // The second rule does two things:
1064     // - When all layers are removed from a display, we'll emit one black
1065     //   frame, then nothing more until we get new layers.
1066     // - When a display is created with a private layer stack, we won't
1067     //   emit any black frames until a layer is added to the layer stack.
1068     mMustRecompose = dirty && !(empty && wasEmpty);
1069 
1070     const char flagPrefix[] = {'-', '+'};
1071     static_cast<void>(flagPrefix);
1072     ALOGV("%s: %s composition for %s (%cdirty %cempty %cwasEmpty)", __func__,
1073           mMustRecompose ? "doing" : "skipping", getName().c_str(), flagPrefix[dirty],
1074           flagPrefix[empty], flagPrefix[wasEmpty]);
1075 
1076     mRenderSurface->beginFrame(mMustRecompose);
1077 
1078     if (mMustRecompose) {
1079         outputState.lastCompositionHadVisibleLayers = !empty;
1080     }
1081 }
1082 
prepareFrame()1083 void Output::prepareFrame() {
1084     ATRACE_CALL();
1085     ALOGV(__FUNCTION__);
1086 
1087     auto& outputState = editState();
1088     if (!outputState.isEnabled) {
1089         return;
1090     }
1091 
1092     std::optional<android::HWComposer::DeviceRequestedChanges> changes;
1093     bool success = chooseCompositionStrategy(&changes);
1094     resetCompositionStrategy();
1095     outputState.strategyPrediction = CompositionStrategyPredictionState::DISABLED;
1096     outputState.previousDeviceRequestedChanges = changes;
1097     outputState.previousDeviceRequestedSuccess = success;
1098     if (success) {
1099         applyCompositionStrategy(changes);
1100     }
1101     finishPrepareFrame();
1102 }
1103 
presentFrameAndReleaseLayersAsync(bool flushEvenWhenDisabled)1104 ftl::Future<std::monostate> Output::presentFrameAndReleaseLayersAsync(bool flushEvenWhenDisabled) {
1105     return ftl::Future<bool>(std::move(mHwComposerAsyncWorker->send([this, flushEvenWhenDisabled]() {
1106                presentFrameAndReleaseLayers(flushEvenWhenDisabled);
1107                return true;
1108            })))
1109             .then([](bool) { return std::monostate{}; });
1110 }
1111 
chooseCompositionStrategyAsync(std::optional<android::HWComposer::DeviceRequestedChanges> * changes)1112 std::future<bool> Output::chooseCompositionStrategyAsync(
1113         std::optional<android::HWComposer::DeviceRequestedChanges>* changes) {
1114     return mHwComposerAsyncWorker->send(
1115             [&, changes]() { return chooseCompositionStrategy(changes); });
1116 }
1117 
prepareFrameAsync()1118 GpuCompositionResult Output::prepareFrameAsync() {
1119     ATRACE_CALL();
1120     ALOGV(__FUNCTION__);
1121     auto& state = editState();
1122     const auto& previousChanges = state.previousDeviceRequestedChanges;
1123     std::optional<android::HWComposer::DeviceRequestedChanges> changes;
1124     resetCompositionStrategy();
1125     auto hwcResult = chooseCompositionStrategyAsync(&changes);
1126     if (state.previousDeviceRequestedSuccess) {
1127         applyCompositionStrategy(previousChanges);
1128     }
1129     finishPrepareFrame();
1130 
1131     base::unique_fd bufferFence;
1132     std::shared_ptr<renderengine::ExternalTexture> buffer;
1133     updateProtectedContentState();
1134     const bool dequeueSucceeded = dequeueRenderBuffer(&bufferFence, &buffer);
1135     GpuCompositionResult compositionResult;
1136     if (dequeueSucceeded) {
1137         std::optional<base::unique_fd> optFd =
1138                 composeSurfaces(Region::INVALID_REGION, buffer, bufferFence);
1139         if (optFd) {
1140             compositionResult.fence = std::move(*optFd);
1141         }
1142     }
1143 
1144     auto chooseCompositionSuccess = hwcResult.get();
1145     const bool predictionSucceeded = dequeueSucceeded && changes == previousChanges;
1146     state.strategyPrediction = predictionSucceeded ? CompositionStrategyPredictionState::SUCCESS
1147                                                    : CompositionStrategyPredictionState::FAIL;
1148     if (!predictionSucceeded) {
1149         ATRACE_NAME("CompositionStrategyPredictionMiss");
1150         resetCompositionStrategy();
1151         if (chooseCompositionSuccess) {
1152             applyCompositionStrategy(changes);
1153         }
1154         finishPrepareFrame();
1155         // Track the dequeued buffer to reuse so we don't need to dequeue another one.
1156         compositionResult.buffer = buffer;
1157     } else {
1158         ATRACE_NAME("CompositionStrategyPredictionHit");
1159     }
1160     state.previousDeviceRequestedChanges = std::move(changes);
1161     state.previousDeviceRequestedSuccess = chooseCompositionSuccess;
1162     return compositionResult;
1163 }
1164 
devOptRepaintFlash(const compositionengine::CompositionRefreshArgs & refreshArgs)1165 void Output::devOptRepaintFlash(const compositionengine::CompositionRefreshArgs& refreshArgs) {
1166     if (CC_LIKELY(!refreshArgs.devOptFlashDirtyRegionsDelay)) {
1167         return;
1168     }
1169 
1170     if (getState().isEnabled) {
1171         if (const auto dirtyRegion = getDirtyRegion(); !dirtyRegion.isEmpty()) {
1172             base::unique_fd bufferFence;
1173             std::shared_ptr<renderengine::ExternalTexture> buffer;
1174             updateProtectedContentState();
1175             dequeueRenderBuffer(&bufferFence, &buffer);
1176             static_cast<void>(composeSurfaces(dirtyRegion, buffer, bufferFence));
1177             mRenderSurface->queueBuffer(base::unique_fd(), getHdrSdrRatio(buffer));
1178         }
1179     }
1180 
1181     constexpr bool kFlushEvenWhenDisabled = false;
1182     presentFrameAndReleaseLayers(kFlushEvenWhenDisabled);
1183 
1184     std::this_thread::sleep_for(*refreshArgs.devOptFlashDirtyRegionsDelay);
1185 
1186     prepareFrame();
1187 }
1188 
finishFrame(GpuCompositionResult && result)1189 void Output::finishFrame(GpuCompositionResult&& result) {
1190     ATRACE_CALL();
1191     ALOGV(__FUNCTION__);
1192     const auto& outputState = getState();
1193     if (!outputState.isEnabled) {
1194         return;
1195     }
1196 
1197     std::optional<base::unique_fd> optReadyFence;
1198     std::shared_ptr<renderengine::ExternalTexture> buffer;
1199     base::unique_fd bufferFence;
1200     if (outputState.strategyPrediction == CompositionStrategyPredictionState::SUCCESS) {
1201         optReadyFence = std::move(result.fence);
1202     } else {
1203         if (result.bufferAvailable()) {
1204             buffer = std::move(result.buffer);
1205             bufferFence = std::move(result.fence);
1206         } else {
1207             updateProtectedContentState();
1208             if (!dequeueRenderBuffer(&bufferFence, &buffer)) {
1209                 return;
1210             }
1211         }
1212         // Repaint the framebuffer (if needed), getting the optional fence for when
1213         // the composition completes.
1214         optReadyFence = composeSurfaces(Region::INVALID_REGION, buffer, bufferFence);
1215     }
1216     if (!optReadyFence) {
1217         return;
1218     }
1219     if (isPowerHintSessionEnabled() && !isPowerHintSessionGpuReportingEnabled()) {
1220         // get fence end time to know when gpu is complete in display
1221         setHintSessionGpuFence(
1222                 std::make_unique<FenceTime>(sp<Fence>::make(dup(optReadyFence->get()))));
1223     }
1224     // swap buffers (presentation)
1225     mRenderSurface->queueBuffer(std::move(*optReadyFence), getHdrSdrRatio(buffer));
1226 }
1227 
updateProtectedContentState()1228 void Output::updateProtectedContentState() {
1229     const auto& outputState = getState();
1230     auto& renderEngine = getCompositionEngine().getRenderEngine();
1231     const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
1232 
1233     bool isProtected;
1234     if (FlagManager::getInstance().display_protected()) {
1235         isProtected = outputState.isProtected;
1236     } else {
1237         isProtected = outputState.isSecure;
1238     }
1239 
1240     // We need to set the render surface as protected (DRM) if all the following conditions are met:
1241     // 1. The display is protected (in legacy, check if the display is secure)
1242     // 2. Protected content is supported
1243     // 3. At least one layer has protected content.
1244     if (isProtected && supportsProtectedContent) {
1245         auto layers = getOutputLayersOrderedByZ();
1246         bool needsProtected = std::any_of(layers.begin(), layers.end(), [](auto* layer) {
1247             return layer->getLayerFE().getCompositionState()->hasProtectedContent &&
1248                     (!FlagManager::getInstance().protected_if_client() ||
1249                      layer->requiresClientComposition());
1250         });
1251         if (needsProtected != mRenderSurface->isProtected()) {
1252             mRenderSurface->setProtected(needsProtected);
1253         }
1254     }
1255 }
1256 
dequeueRenderBuffer(base::unique_fd * bufferFence,std::shared_ptr<renderengine::ExternalTexture> * tex)1257 bool Output::dequeueRenderBuffer(base::unique_fd* bufferFence,
1258                                  std::shared_ptr<renderengine::ExternalTexture>* tex) {
1259     const auto& outputState = getState();
1260 
1261     // If we aren't doing client composition on this output, but do have a
1262     // flipClientTarget request for this frame on this output, we still need to
1263     // dequeue a buffer.
1264     if (outputState.usesClientComposition || outputState.flipClientTarget) {
1265         *tex = mRenderSurface->dequeueBuffer(bufferFence);
1266         if (*tex == nullptr) {
1267             ALOGW("Dequeuing buffer for display [%s] failed, bailing out of "
1268                   "client composition for this frame",
1269                   mName.c_str());
1270             return false;
1271         }
1272     }
1273     return true;
1274 }
1275 
composeSurfaces(const Region & debugRegion,std::shared_ptr<renderengine::ExternalTexture> tex,base::unique_fd & fd)1276 std::optional<base::unique_fd> Output::composeSurfaces(
1277         const Region& debugRegion, std::shared_ptr<renderengine::ExternalTexture> tex,
1278         base::unique_fd& fd) {
1279     ATRACE_CALL();
1280     ALOGV(__FUNCTION__);
1281 
1282     const auto& outputState = getState();
1283     const TracedOrdinal<bool> hasClientComposition = {
1284         base::StringPrintf("hasClientComposition %s", mNamePlusId.c_str()),
1285         outputState.usesClientComposition};
1286     if (!hasClientComposition) {
1287         setExpensiveRenderingExpected(false);
1288         return base::unique_fd();
1289     }
1290 
1291     if (tex == nullptr) {
1292         ALOGW("Buffer not valid for display [%s], bailing out of "
1293               "client composition for this frame",
1294               mName.c_str());
1295         return {};
1296     }
1297 
1298     ALOGV("hasClientComposition");
1299 
1300     renderengine::DisplaySettings clientCompositionDisplay =
1301             generateClientCompositionDisplaySettings(tex);
1302 
1303     // Generate the client composition requests for the layers on this output.
1304     auto& renderEngine = getCompositionEngine().getRenderEngine();
1305     const bool supportsProtectedContent = renderEngine.supportsProtectedContent();
1306     std::vector<LayerFE*> clientCompositionLayersFE;
1307     std::vector<LayerFE::LayerSettings> clientCompositionLayers =
1308             generateClientCompositionRequests(supportsProtectedContent,
1309                                               clientCompositionDisplay.outputDataspace,
1310                                               clientCompositionLayersFE);
1311     appendRegionFlashRequests(debugRegion, clientCompositionLayers);
1312 
1313     OutputCompositionState& outputCompositionState = editState();
1314     // Check if the client composition requests were rendered into the provided graphic buffer. If
1315     // so, we can reuse the buffer and avoid client composition.
1316     if (mClientCompositionRequestCache) {
1317         if (mClientCompositionRequestCache->exists(tex->getBuffer()->getId(),
1318                                                    clientCompositionDisplay,
1319                                                    clientCompositionLayers)) {
1320             ATRACE_NAME("ClientCompositionCacheHit");
1321             outputCompositionState.reusedClientComposition = true;
1322             setExpensiveRenderingExpected(false);
1323             // b/239944175 pass the fence associated with the buffer.
1324             return base::unique_fd(std::move(fd));
1325         }
1326         ATRACE_NAME("ClientCompositionCacheMiss");
1327         mClientCompositionRequestCache->add(tex->getBuffer()->getId(), clientCompositionDisplay,
1328                                             clientCompositionLayers);
1329     }
1330 
1331     // We boost GPU frequency here because there will be color spaces conversion
1332     // or complex GPU shaders and it's expensive. We boost the GPU frequency so that
1333     // GPU composition can finish in time. We must reset GPU frequency afterwards,
1334     // because high frequency consumes extra battery.
1335     const bool expensiveRenderingExpected =
1336             std::any_of(clientCompositionLayers.begin(), clientCompositionLayers.end(),
1337                         [outputDataspace =
1338                                  clientCompositionDisplay.outputDataspace](const auto& layer) {
1339                             return layer.sourceDataspace != outputDataspace;
1340                         });
1341     if (expensiveRenderingExpected) {
1342         setExpensiveRenderingExpected(true);
1343     }
1344 
1345     std::vector<renderengine::LayerSettings> clientRenderEngineLayers;
1346     clientRenderEngineLayers.reserve(clientCompositionLayers.size());
1347     std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
1348                    std::back_inserter(clientRenderEngineLayers),
1349                    [](LayerFE::LayerSettings& settings) -> renderengine::LayerSettings {
1350                        return settings;
1351                    });
1352 
1353     const nsecs_t renderEngineStart = systemTime();
1354     auto fenceResult = renderEngine
1355                                .drawLayers(clientCompositionDisplay, clientRenderEngineLayers, tex,
1356                                            std::move(fd))
1357                                .get();
1358 
1359     if (mClientCompositionRequestCache && fenceStatus(fenceResult) != NO_ERROR) {
1360         // If rendering was not successful, remove the request from the cache.
1361         mClientCompositionRequestCache->remove(tex->getBuffer()->getId());
1362     }
1363     const auto fence = std::move(fenceResult).value_or(Fence::NO_FENCE);
1364     if (isPowerHintSessionEnabled()) {
1365         if (fence != Fence::NO_FENCE && fence->isValid() &&
1366             !outputCompositionState.reusedClientComposition) {
1367             setHintSessionRequiresRenderEngine(true);
1368             if (isPowerHintSessionGpuReportingEnabled()) {
1369                 // the order of the two calls here matters as we should check if the previously
1370                 // tracked fence has signaled first and archive the previous start time
1371                 setHintSessionGpuStart(TimePoint::now());
1372                 setHintSessionGpuFence(
1373                         std::make_unique<FenceTime>(sp<Fence>::make(dup(fence->get()))));
1374             }
1375         }
1376     }
1377 
1378     if (auto timeStats = getCompositionEngine().getTimeStats()) {
1379         if (fence->isValid()) {
1380             timeStats->recordRenderEngineDuration(renderEngineStart,
1381                                                   std::make_shared<FenceTime>(fence));
1382         } else {
1383             timeStats->recordRenderEngineDuration(renderEngineStart, systemTime());
1384         }
1385     }
1386 
1387     for (auto* clientComposedLayer : clientCompositionLayersFE) {
1388         clientComposedLayer->setWasClientComposed(fence);
1389     }
1390 
1391     return base::unique_fd(fence->dup());
1392 }
1393 
generateClientCompositionDisplaySettings(const std::shared_ptr<renderengine::ExternalTexture> & buffer) const1394 renderengine::DisplaySettings Output::generateClientCompositionDisplaySettings(
1395         const std::shared_ptr<renderengine::ExternalTexture>& buffer) const {
1396     const auto& outputState = getState();
1397 
1398     renderengine::DisplaySettings clientCompositionDisplay;
1399     clientCompositionDisplay.namePlusId = mNamePlusId;
1400     clientCompositionDisplay.physicalDisplay = outputState.framebufferSpace.getContent();
1401     clientCompositionDisplay.clip = outputState.layerStackSpace.getContent();
1402     clientCompositionDisplay.orientation =
1403             ui::Transform::toRotationFlags(outputState.displaySpace.getOrientation());
1404     clientCompositionDisplay.outputDataspace = mDisplayColorProfile->hasWideColorGamut()
1405             ? outputState.dataspace
1406             : ui::Dataspace::UNKNOWN;
1407 
1408     // If we have a valid current display brightness use that, otherwise fall back to the
1409     // display's max desired
1410     clientCompositionDisplay.currentLuminanceNits = outputState.displayBrightnessNits > 0.f
1411             ? outputState.displayBrightnessNits
1412             : mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
1413     clientCompositionDisplay.maxLuminance =
1414             mDisplayColorProfile->getHdrCapabilities().getDesiredMaxLuminance();
1415 
1416     float hdrSdrRatioMultiplier = 1.0f / getHdrSdrRatio(buffer);
1417     clientCompositionDisplay.targetLuminanceNits = outputState.clientTargetBrightness *
1418             outputState.displayBrightnessNits * hdrSdrRatioMultiplier;
1419     clientCompositionDisplay.dimmingStage = outputState.clientTargetDimmingStage;
1420     clientCompositionDisplay.renderIntent =
1421             static_cast<aidl::android::hardware::graphics::composer3::RenderIntent>(
1422                     outputState.renderIntent);
1423 
1424     // Compute the global color transform matrix.
1425     clientCompositionDisplay.colorTransform = outputState.colorTransformMatrix;
1426     clientCompositionDisplay.deviceHandlesColorTransform =
1427             outputState.usesDeviceComposition || getSkipColorTransform();
1428     return clientCompositionDisplay;
1429 }
1430 
generateClientCompositionRequests(bool supportsProtectedContent,ui::Dataspace outputDataspace,std::vector<LayerFE * > & outLayerFEs)1431 std::vector<LayerFE::LayerSettings> Output::generateClientCompositionRequests(
1432       bool supportsProtectedContent, ui::Dataspace outputDataspace, std::vector<LayerFE*>& outLayerFEs) {
1433     std::vector<LayerFE::LayerSettings> clientCompositionLayers;
1434     ALOGV("Rendering client layers");
1435 
1436     const auto& outputState = getState();
1437     const Region viewportRegion(outputState.layerStackSpace.getContent());
1438     bool firstLayer = true;
1439 
1440     bool disableBlurs = false;
1441     uint64_t previousOverrideBufferId = 0;
1442 
1443     for (auto* layer : getOutputLayersOrderedByZ()) {
1444         const auto& layerState = layer->getState();
1445         const auto* layerFEState = layer->getLayerFE().getCompositionState();
1446         auto& layerFE = layer->getLayerFE();
1447         layerFE.setWasClientComposed(nullptr);
1448 
1449         const Region clip(viewportRegion.intersect(layerState.visibleRegion));
1450         ALOGV("Layer: %s", layerFE.getDebugName());
1451         if (clip.isEmpty()) {
1452             ALOGV("  Skipping for empty clip");
1453             firstLayer = false;
1454             continue;
1455         }
1456 
1457         disableBlurs |= layerFEState->sidebandStream != nullptr;
1458 
1459         const bool clientComposition = layer->requiresClientComposition();
1460 
1461         // We clear the client target for non-client composed layers if
1462         // requested by the HWC. We skip this if the layer is not an opaque
1463         // rectangle, as by definition the layer must blend with whatever is
1464         // underneath. We also skip the first layer as the buffer target is
1465         // guaranteed to start out cleared.
1466         const bool clearClientComposition =
1467                 layerState.clearClientTarget && layerFEState->isOpaque && !firstLayer;
1468 
1469         ALOGV("  Composition type: client %d clear %d", clientComposition, clearClientComposition);
1470 
1471         // If the layer casts a shadow but the content casting the shadow is occluded, skip
1472         // composing the non-shadow content and only draw the shadows.
1473         const bool realContentIsVisible = clientComposition &&
1474                 !layerState.visibleRegion.subtract(layerState.shadowRegion).isEmpty();
1475 
1476         if (clientComposition || clearClientComposition) {
1477             if (auto overrideSettings = layer->getOverrideCompositionSettings()) {
1478                 if (overrideSettings->bufferId != previousOverrideBufferId) {
1479                     previousOverrideBufferId = overrideSettings->bufferId;
1480                     clientCompositionLayers.push_back(std::move(*overrideSettings));
1481                     ALOGV("Replacing [%s] with override in RE", layer->getLayerFE().getDebugName());
1482                 } else {
1483                     ALOGV("Skipping redundant override buffer for [%s] in RE",
1484                           layer->getLayerFE().getDebugName());
1485                 }
1486             } else {
1487                 LayerFE::ClientCompositionTargetSettings::BlurSetting blurSetting = disableBlurs
1488                         ? LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled
1489                         : (layer->getState().overrideInfo.disableBackgroundBlur
1490                                    ? LayerFE::ClientCompositionTargetSettings::BlurSetting::
1491                                              BlurRegionsOnly
1492                                    : LayerFE::ClientCompositionTargetSettings::BlurSetting::
1493                                              Enabled);
1494                 bool isProtected = supportsProtectedContent;
1495                 if (FlagManager::getInstance().display_protected()) {
1496                     isProtected = outputState.isProtected && supportsProtectedContent;
1497                 }
1498                 compositionengine::LayerFE::ClientCompositionTargetSettings
1499                         targetSettings{.clip = clip,
1500                                        .needsFiltering = layer->needsFiltering() ||
1501                                                outputState.needsFiltering,
1502                                        .isSecure = outputState.isSecure,
1503                                        .isProtected = isProtected,
1504                                        .viewport = outputState.layerStackSpace.getContent(),
1505                                        .dataspace = outputDataspace,
1506                                        .realContentIsVisible = realContentIsVisible,
1507                                        .clearContent = !clientComposition,
1508                                        .blurSetting = blurSetting,
1509                                        .whitePointNits = layerState.whitePointNits,
1510                                        .treat170mAsSrgb = outputState.treat170mAsSrgb};
1511                 if (auto clientCompositionSettings =
1512                             layerFE.prepareClientComposition(targetSettings)) {
1513                     clientCompositionLayers.push_back(std::move(*clientCompositionSettings));
1514                     if (realContentIsVisible) {
1515                         layer->editState().clientCompositionTimestamp = systemTime();
1516                     }
1517                 }
1518             }
1519 
1520             if (clientComposition) {
1521                 outLayerFEs.push_back(&layerFE);
1522             }
1523         }
1524 
1525         firstLayer = false;
1526     }
1527 
1528     return clientCompositionLayers;
1529 }
1530 
appendRegionFlashRequests(const Region & flashRegion,std::vector<LayerFE::LayerSettings> & clientCompositionLayers)1531 void Output::appendRegionFlashRequests(
1532         const Region& flashRegion, std::vector<LayerFE::LayerSettings>& clientCompositionLayers) {
1533     if (flashRegion.isEmpty()) {
1534         return;
1535     }
1536 
1537     LayerFE::LayerSettings layerSettings;
1538     layerSettings.source.buffer.buffer = nullptr;
1539     layerSettings.source.solidColor = half3(1.0, 0.0, 1.0);
1540     layerSettings.alpha = half(1.0);
1541 
1542     for (const auto& rect : flashRegion) {
1543         layerSettings.geometry.boundaries = rect.toFloatRect();
1544         clientCompositionLayers.push_back(layerSettings);
1545     }
1546 }
1547 
setExpensiveRenderingExpected(bool)1548 void Output::setExpensiveRenderingExpected(bool) {
1549     // The base class does nothing with this call.
1550 }
1551 
setHintSessionGpuStart(TimePoint)1552 void Output::setHintSessionGpuStart(TimePoint) {
1553     // The base class does nothing with this call.
1554 }
1555 
setHintSessionGpuFence(std::unique_ptr<FenceTime> &&)1556 void Output::setHintSessionGpuFence(std::unique_ptr<FenceTime>&&) {
1557     // The base class does nothing with this call.
1558 }
1559 
setHintSessionRequiresRenderEngine(bool)1560 void Output::setHintSessionRequiresRenderEngine(bool) {
1561     // The base class does nothing with this call.
1562 }
1563 
isPowerHintSessionEnabled()1564 bool Output::isPowerHintSessionEnabled() {
1565     return false;
1566 }
1567 
isPowerHintSessionGpuReportingEnabled()1568 bool Output::isPowerHintSessionGpuReportingEnabled() {
1569     return false;
1570 }
1571 
presentFrameAndReleaseLayers(bool flushEvenWhenDisabled)1572 void Output::presentFrameAndReleaseLayers(bool flushEvenWhenDisabled) {
1573     ATRACE_FORMAT("%s for %s", __func__, mNamePlusId.c_str());
1574     ALOGV(__FUNCTION__);
1575 
1576     if (!getState().isEnabled) {
1577         if (flushEvenWhenDisabled && FlagManager::getInstance().flush_buffer_slots_to_uncache()) {
1578             // Some commands, like clearing buffer slots, should still be executed
1579             // even if the display is not enabled.
1580             executeCommands();
1581         }
1582         return;
1583     }
1584 
1585     auto& outputState = editState();
1586     outputState.dirtyRegion.clear();
1587 
1588     auto frame = presentFrame();
1589 
1590     mRenderSurface->onPresentDisplayCompleted();
1591 
1592     for (auto* layer : getOutputLayersOrderedByZ()) {
1593         // The layer buffer from the previous frame (if any) is released
1594         // by HWC only when the release fence from this frame (if any) is
1595         // signaled.  Always get the release fence from HWC first.
1596         sp<Fence> releaseFence = Fence::NO_FENCE;
1597 
1598         if (auto hwcLayer = layer->getHwcLayer()) {
1599             if (auto f = frame.layerFences.find(hwcLayer); f != frame.layerFences.end()) {
1600                 releaseFence = f->second;
1601             }
1602         }
1603 
1604         // If the layer was client composited in the previous frame, we
1605         // need to merge with the previous client target acquire fence.
1606         // Since we do not track that, always merge with the current
1607         // client target acquire fence when it is available, even though
1608         // this is suboptimal.
1609         // TODO(b/121291683): Track previous frame client target acquire fence.
1610         if (outputState.usesClientComposition) {
1611             releaseFence =
1612                     Fence::merge("LayerRelease", releaseFence, frame.clientTargetAcquireFence);
1613         }
1614         if (FlagManager::getInstance().ce_fence_promise()) {
1615             layer->getLayerFE().setReleaseFence(releaseFence);
1616         } else {
1617             layer->getLayerFE()
1618                     .onLayerDisplayed(ftl::yield<FenceResult>(std::move(releaseFence)).share(),
1619                                       outputState.layerFilter.layerStack);
1620         }
1621     }
1622 
1623     // We've got a list of layers needing fences, that are disjoint with
1624     // OutputLayersOrderedByZ.  The best we can do is to
1625     // supply them with the present fence.
1626     for (auto& weakLayer : mReleasedLayers) {
1627         if (const auto layer = weakLayer.promote()) {
1628             if (FlagManager::getInstance().ce_fence_promise()) {
1629                 layer->setReleaseFence(frame.presentFence);
1630             } else {
1631                 layer->onLayerDisplayed(ftl::yield<FenceResult>(frame.presentFence).share(),
1632                                         outputState.layerFilter.layerStack);
1633             }
1634         }
1635     }
1636 
1637     // Clear out the released layers now that we're done with them.
1638     mReleasedLayers.clear();
1639 }
1640 
renderCachedSets(const CompositionRefreshArgs & refreshArgs)1641 void Output::renderCachedSets(const CompositionRefreshArgs& refreshArgs) {
1642     const auto& outputState = getState();
1643     if (mPlanner && outputState.isEnabled) {
1644         mPlanner->renderCachedSets(outputState, refreshArgs.scheduledFrameTime,
1645                                    outputState.usesDeviceComposition || getSkipColorTransform());
1646     }
1647 }
1648 
dirtyEntireOutput()1649 void Output::dirtyEntireOutput() {
1650     auto& outputState = editState();
1651     outputState.dirtyRegion.set(outputState.displaySpace.getBoundsAsRect());
1652 }
1653 
resetCompositionStrategy()1654 void Output::resetCompositionStrategy() {
1655     // The base output implementation can only do client composition
1656     auto& outputState = editState();
1657     outputState.usesClientComposition = true;
1658     outputState.usesDeviceComposition = false;
1659     outputState.reusedClientComposition = false;
1660 }
1661 
getSkipColorTransform() const1662 bool Output::getSkipColorTransform() const {
1663     return true;
1664 }
1665 
presentFrame()1666 compositionengine::Output::FrameFences Output::presentFrame() {
1667     compositionengine::Output::FrameFences result;
1668     if (getState().usesClientComposition) {
1669         result.clientTargetAcquireFence = mRenderSurface->getClientTargetAcquireFence();
1670     }
1671     return result;
1672 }
1673 
setPredictCompositionStrategy(bool predict)1674 void Output::setPredictCompositionStrategy(bool predict) {
1675     mPredictCompositionStrategy = predict;
1676     updateHwcAsyncWorker();
1677 }
1678 
updateHwcAsyncWorker()1679 void Output::updateHwcAsyncWorker() {
1680     if (mPredictCompositionStrategy || mOffloadPresent) {
1681         if (!mHwComposerAsyncWorker) {
1682             mHwComposerAsyncWorker = std::make_unique<HwcAsyncWorker>();
1683         }
1684     } else {
1685         mHwComposerAsyncWorker.reset(nullptr);
1686     }
1687 }
1688 
setTreat170mAsSrgb(bool enable)1689 void Output::setTreat170mAsSrgb(bool enable) {
1690     editState().treat170mAsSrgb = enable;
1691 }
1692 
canPredictCompositionStrategy(const CompositionRefreshArgs & refreshArgs)1693 bool Output::canPredictCompositionStrategy(const CompositionRefreshArgs& refreshArgs) {
1694     uint64_t lastOutputLayerHash = getState().lastOutputLayerHash;
1695     uint64_t outputLayerHash = getState().outputLayerHash;
1696     editState().lastOutputLayerHash = outputLayerHash;
1697 
1698     if (!getState().isEnabled || !mPredictCompositionStrategy) {
1699         ALOGV("canPredictCompositionStrategy disabled");
1700         return false;
1701     }
1702 
1703     if (!getState().previousDeviceRequestedChanges) {
1704         ALOGV("canPredictCompositionStrategy previous changes not available");
1705         return false;
1706     }
1707 
1708     if (!mRenderSurface->supportsCompositionStrategyPrediction()) {
1709         ALOGV("canPredictCompositionStrategy surface does not support");
1710         return false;
1711     }
1712 
1713     if (refreshArgs.devOptFlashDirtyRegionsDelay) {
1714         ALOGV("canPredictCompositionStrategy devOptFlashDirtyRegionsDelay");
1715         return false;
1716     }
1717 
1718     if (lastOutputLayerHash != outputLayerHash) {
1719         ALOGV("canPredictCompositionStrategy output layers changed");
1720         return false;
1721     }
1722 
1723     // If no layer uses clientComposition, then don't predict composition strategy
1724     // because we have less work to do in parallel.
1725     if (!anyLayersRequireClientComposition()) {
1726         ALOGV("canPredictCompositionStrategy no layer uses clientComposition");
1727         return false;
1728     }
1729 
1730     return true;
1731 }
1732 
anyLayersRequireClientComposition() const1733 bool Output::anyLayersRequireClientComposition() const {
1734     const auto layers = getOutputLayersOrderedByZ();
1735     return std::any_of(layers.begin(), layers.end(),
1736                        [](const auto& layer) { return layer->requiresClientComposition(); });
1737 }
1738 
finishPrepareFrame()1739 void Output::finishPrepareFrame() {
1740     const auto& state = getState();
1741     if (mPlanner) {
1742         mPlanner->reportFinalPlan(getOutputLayersOrderedByZ());
1743     }
1744     mRenderSurface->prepareFrame(state.usesClientComposition, state.usesDeviceComposition);
1745 }
1746 
mustRecompose() const1747 bool Output::mustRecompose() const {
1748     return mMustRecompose;
1749 }
1750 
getHdrSdrRatio(const std::shared_ptr<renderengine::ExternalTexture> & buffer) const1751 float Output::getHdrSdrRatio(const std::shared_ptr<renderengine::ExternalTexture>& buffer) const {
1752     if (buffer == nullptr) {
1753         return 1.0f;
1754     }
1755 
1756     if (!FlagManager::getInstance().fp16_client_target()) {
1757         return 1.0f;
1758     }
1759 
1760     if (getState().displayBrightnessNits < 0.0f || getState().sdrWhitePointNits <= 0.0f ||
1761         buffer->getPixelFormat() != PIXEL_FORMAT_RGBA_FP16 ||
1762         (static_cast<int32_t>(getState().dataspace) &
1763          static_cast<int32_t>(ui::Dataspace::RANGE_MASK)) !=
1764                 static_cast<int32_t>(ui::Dataspace::RANGE_EXTENDED)) {
1765         return 1.0f;
1766     }
1767 
1768     return getState().displayBrightnessNits / getState().sdrWhitePointNits;
1769 }
1770 
1771 } // namespace impl
1772 } // namespace android::compositionengine
1773