1 #include "blake3_impl.h"
2
3 #include <arm_neon.h>
4
5 #ifdef __ARM_BIG_ENDIAN
6 #error "This implementation only supports little-endian ARM."
7 // It might be that all we need for big-endian support here is to get the loads
8 // and stores right, but step zero would be finding a way to test it in CI.
9 #endif
10
loadu_128(const uint8_t src[16])11 INLINE uint32x4_t loadu_128(const uint8_t src[16]) {
12 // vld1q_u32 has alignment requirements. Don't use it.
13 uint32x4_t x;
14 memcpy(&x, src, 16);
15 return x;
16 }
17
storeu_128(uint32x4_t src,uint8_t dest[16])18 INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) {
19 // vst1q_u32 has alignment requirements. Don't use it.
20 memcpy(dest, &src, 16);
21 }
22
add_128(uint32x4_t a,uint32x4_t b)23 INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) {
24 return vaddq_u32(a, b);
25 }
26
xor_128(uint32x4_t a,uint32x4_t b)27 INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) {
28 return veorq_u32(a, b);
29 }
30
set1_128(uint32_t x)31 INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); }
32
set4(uint32_t a,uint32_t b,uint32_t c,uint32_t d)33 INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
34 uint32_t array[4] = {a, b, c, d};
35 return vld1q_u32(array);
36 }
37
rot16_128(uint32x4_t x)38 INLINE uint32x4_t rot16_128(uint32x4_t x) {
39 return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16));
40 }
41
rot12_128(uint32x4_t x)42 INLINE uint32x4_t rot12_128(uint32x4_t x) {
43 return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12));
44 }
45
rot8_128(uint32x4_t x)46 INLINE uint32x4_t rot8_128(uint32x4_t x) {
47 return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8));
48 }
49
rot7_128(uint32x4_t x)50 INLINE uint32x4_t rot7_128(uint32x4_t x) {
51 return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7));
52 }
53
54 // TODO: compress_neon
55
56 // TODO: hash2_neon
57
58 /*
59 * ----------------------------------------------------------------------------
60 * hash4_neon
61 * ----------------------------------------------------------------------------
62 */
63
round_fn4(uint32x4_t v[16],uint32x4_t m[16],size_t r)64 INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) {
65 v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
66 v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
67 v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
68 v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
69 v[0] = add_128(v[0], v[4]);
70 v[1] = add_128(v[1], v[5]);
71 v[2] = add_128(v[2], v[6]);
72 v[3] = add_128(v[3], v[7]);
73 v[12] = xor_128(v[12], v[0]);
74 v[13] = xor_128(v[13], v[1]);
75 v[14] = xor_128(v[14], v[2]);
76 v[15] = xor_128(v[15], v[3]);
77 v[12] = rot16_128(v[12]);
78 v[13] = rot16_128(v[13]);
79 v[14] = rot16_128(v[14]);
80 v[15] = rot16_128(v[15]);
81 v[8] = add_128(v[8], v[12]);
82 v[9] = add_128(v[9], v[13]);
83 v[10] = add_128(v[10], v[14]);
84 v[11] = add_128(v[11], v[15]);
85 v[4] = xor_128(v[4], v[8]);
86 v[5] = xor_128(v[5], v[9]);
87 v[6] = xor_128(v[6], v[10]);
88 v[7] = xor_128(v[7], v[11]);
89 v[4] = rot12_128(v[4]);
90 v[5] = rot12_128(v[5]);
91 v[6] = rot12_128(v[6]);
92 v[7] = rot12_128(v[7]);
93 v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
94 v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
95 v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
96 v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
97 v[0] = add_128(v[0], v[4]);
98 v[1] = add_128(v[1], v[5]);
99 v[2] = add_128(v[2], v[6]);
100 v[3] = add_128(v[3], v[7]);
101 v[12] = xor_128(v[12], v[0]);
102 v[13] = xor_128(v[13], v[1]);
103 v[14] = xor_128(v[14], v[2]);
104 v[15] = xor_128(v[15], v[3]);
105 v[12] = rot8_128(v[12]);
106 v[13] = rot8_128(v[13]);
107 v[14] = rot8_128(v[14]);
108 v[15] = rot8_128(v[15]);
109 v[8] = add_128(v[8], v[12]);
110 v[9] = add_128(v[9], v[13]);
111 v[10] = add_128(v[10], v[14]);
112 v[11] = add_128(v[11], v[15]);
113 v[4] = xor_128(v[4], v[8]);
114 v[5] = xor_128(v[5], v[9]);
115 v[6] = xor_128(v[6], v[10]);
116 v[7] = xor_128(v[7], v[11]);
117 v[4] = rot7_128(v[4]);
118 v[5] = rot7_128(v[5]);
119 v[6] = rot7_128(v[6]);
120 v[7] = rot7_128(v[7]);
121
122 v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
123 v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
124 v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
125 v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
126 v[0] = add_128(v[0], v[5]);
127 v[1] = add_128(v[1], v[6]);
128 v[2] = add_128(v[2], v[7]);
129 v[3] = add_128(v[3], v[4]);
130 v[15] = xor_128(v[15], v[0]);
131 v[12] = xor_128(v[12], v[1]);
132 v[13] = xor_128(v[13], v[2]);
133 v[14] = xor_128(v[14], v[3]);
134 v[15] = rot16_128(v[15]);
135 v[12] = rot16_128(v[12]);
136 v[13] = rot16_128(v[13]);
137 v[14] = rot16_128(v[14]);
138 v[10] = add_128(v[10], v[15]);
139 v[11] = add_128(v[11], v[12]);
140 v[8] = add_128(v[8], v[13]);
141 v[9] = add_128(v[9], v[14]);
142 v[5] = xor_128(v[5], v[10]);
143 v[6] = xor_128(v[6], v[11]);
144 v[7] = xor_128(v[7], v[8]);
145 v[4] = xor_128(v[4], v[9]);
146 v[5] = rot12_128(v[5]);
147 v[6] = rot12_128(v[6]);
148 v[7] = rot12_128(v[7]);
149 v[4] = rot12_128(v[4]);
150 v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
151 v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
152 v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
153 v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
154 v[0] = add_128(v[0], v[5]);
155 v[1] = add_128(v[1], v[6]);
156 v[2] = add_128(v[2], v[7]);
157 v[3] = add_128(v[3], v[4]);
158 v[15] = xor_128(v[15], v[0]);
159 v[12] = xor_128(v[12], v[1]);
160 v[13] = xor_128(v[13], v[2]);
161 v[14] = xor_128(v[14], v[3]);
162 v[15] = rot8_128(v[15]);
163 v[12] = rot8_128(v[12]);
164 v[13] = rot8_128(v[13]);
165 v[14] = rot8_128(v[14]);
166 v[10] = add_128(v[10], v[15]);
167 v[11] = add_128(v[11], v[12]);
168 v[8] = add_128(v[8], v[13]);
169 v[9] = add_128(v[9], v[14]);
170 v[5] = xor_128(v[5], v[10]);
171 v[6] = xor_128(v[6], v[11]);
172 v[7] = xor_128(v[7], v[8]);
173 v[4] = xor_128(v[4], v[9]);
174 v[5] = rot7_128(v[5]);
175 v[6] = rot7_128(v[6]);
176 v[7] = rot7_128(v[7]);
177 v[4] = rot7_128(v[4]);
178 }
179
transpose_vecs_128(uint32x4_t vecs[4])180 INLINE void transpose_vecs_128(uint32x4_t vecs[4]) {
181 // Individually transpose the four 2x2 sub-matrices in each corner.
182 uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]);
183 uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]);
184
185 // Swap the top-right and bottom-left 2x2s (which just got transposed).
186 vecs[0] =
187 vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0]));
188 vecs[1] =
189 vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1]));
190 vecs[2] =
191 vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0]));
192 vecs[3] =
193 vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1]));
194 }
195
transpose_msg_vecs4(const uint8_t * const * inputs,size_t block_offset,uint32x4_t out[16])196 INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
197 size_t block_offset, uint32x4_t out[16]) {
198 out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]);
199 out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]);
200 out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]);
201 out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]);
202 out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]);
203 out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]);
204 out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]);
205 out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]);
206 out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]);
207 out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]);
208 out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]);
209 out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]);
210 out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]);
211 out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]);
212 out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]);
213 out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]);
214 transpose_vecs_128(&out[0]);
215 transpose_vecs_128(&out[4]);
216 transpose_vecs_128(&out[8]);
217 transpose_vecs_128(&out[12]);
218 }
219
load_counters4(uint64_t counter,bool increment_counter,uint32x4_t * out_low,uint32x4_t * out_high)220 INLINE void load_counters4(uint64_t counter, bool increment_counter,
221 uint32x4_t *out_low, uint32x4_t *out_high) {
222 uint64_t mask = (increment_counter ? ~0 : 0);
223 *out_low = set4(
224 counter_low(counter + (mask & 0)), counter_low(counter + (mask & 1)),
225 counter_low(counter + (mask & 2)), counter_low(counter + (mask & 3)));
226 *out_high = set4(
227 counter_high(counter + (mask & 0)), counter_high(counter + (mask & 1)),
228 counter_high(counter + (mask & 2)), counter_high(counter + (mask & 3)));
229 }
230
blake3_hash4_neon(const uint8_t * const * inputs,size_t blocks,const uint32_t key[8],uint64_t counter,bool increment_counter,uint8_t flags,uint8_t flags_start,uint8_t flags_end,uint8_t * out)231 static void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks,
232 const uint32_t key[8], uint64_t counter,
233 bool increment_counter, uint8_t flags,
234 uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
235 uint32x4_t h_vecs[8] = {
236 set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]),
237 set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]),
238 };
239 uint32x4_t counter_low_vec, counter_high_vec;
240 load_counters4(counter, increment_counter, &counter_low_vec,
241 &counter_high_vec);
242 uint8_t block_flags = flags | flags_start;
243
244 for (size_t block = 0; block < blocks; block++) {
245 if (block + 1 == blocks) {
246 block_flags |= flags_end;
247 }
248 uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
249 uint32x4_t block_flags_vec = set1_128(block_flags);
250 uint32x4_t msg_vecs[16];
251 transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
252
253 uint32x4_t v[16] = {
254 h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
255 h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
256 set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]),
257 counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
258 };
259 round_fn4(v, msg_vecs, 0);
260 round_fn4(v, msg_vecs, 1);
261 round_fn4(v, msg_vecs, 2);
262 round_fn4(v, msg_vecs, 3);
263 round_fn4(v, msg_vecs, 4);
264 round_fn4(v, msg_vecs, 5);
265 round_fn4(v, msg_vecs, 6);
266 h_vecs[0] = xor_128(v[0], v[8]);
267 h_vecs[1] = xor_128(v[1], v[9]);
268 h_vecs[2] = xor_128(v[2], v[10]);
269 h_vecs[3] = xor_128(v[3], v[11]);
270 h_vecs[4] = xor_128(v[4], v[12]);
271 h_vecs[5] = xor_128(v[5], v[13]);
272 h_vecs[6] = xor_128(v[6], v[14]);
273 h_vecs[7] = xor_128(v[7], v[15]);
274
275 block_flags = flags;
276 }
277
278 transpose_vecs_128(&h_vecs[0]);
279 transpose_vecs_128(&h_vecs[4]);
280 // The first four vecs now contain the first half of each output, and the
281 // second four vecs contain the second half of each output.
282 storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]);
283 storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]);
284 storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]);
285 storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]);
286 storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]);
287 storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]);
288 storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]);
289 storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]);
290 }
291
292 /*
293 * ----------------------------------------------------------------------------
294 * hash_many_neon
295 * ----------------------------------------------------------------------------
296 */
297
298 void blake3_compress_in_place_portable(uint32_t cv[8],
299 const uint8_t block[BLAKE3_BLOCK_LEN],
300 uint8_t block_len, uint64_t counter,
301 uint8_t flags);
302
hash_one_neon(const uint8_t * input,size_t blocks,const uint32_t key[8],uint64_t counter,uint8_t flags,uint8_t flags_start,uint8_t flags_end,uint8_t out[BLAKE3_OUT_LEN])303 INLINE void hash_one_neon(const uint8_t *input, size_t blocks,
304 const uint32_t key[8], uint64_t counter,
305 uint8_t flags, uint8_t flags_start, uint8_t flags_end,
306 uint8_t out[BLAKE3_OUT_LEN]) {
307 uint32_t cv[8];
308 memcpy(cv, key, BLAKE3_KEY_LEN);
309 uint8_t block_flags = flags | flags_start;
310 while (blocks > 0) {
311 if (blocks == 1) {
312 block_flags |= flags_end;
313 }
314 // TODO: Implement compress_neon. However note that according to
315 // https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227,
316 // compress_neon might not be any faster than compress_portable.
317 blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter,
318 block_flags);
319 input = &input[BLAKE3_BLOCK_LEN];
320 blocks -= 1;
321 block_flags = flags;
322 }
323 memcpy(out, cv, BLAKE3_OUT_LEN);
324 }
325
blake3_hash_many_neon(const uint8_t * const * inputs,size_t num_inputs,size_t blocks,const uint32_t key[8],uint64_t counter,bool increment_counter,uint8_t flags,uint8_t flags_start,uint8_t flags_end,uint8_t * out)326 void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
327 size_t blocks, const uint32_t key[8],
328 uint64_t counter, bool increment_counter,
329 uint8_t flags, uint8_t flags_start,
330 uint8_t flags_end, uint8_t *out) {
331 while (num_inputs >= 4) {
332 blake3_hash4_neon(inputs, blocks, key, counter, increment_counter, flags,
333 flags_start, flags_end, out);
334 if (increment_counter) {
335 counter += 4;
336 }
337 inputs += 4;
338 num_inputs -= 4;
339 out = &out[4 * BLAKE3_OUT_LEN];
340 }
341 while (num_inputs > 0) {
342 hash_one_neon(inputs[0], blocks, key, counter, flags, flags_start,
343 flags_end, out);
344 if (increment_counter) {
345 counter += 1;
346 }
347 inputs += 1;
348 num_inputs -= 1;
349 out = &out[BLAKE3_OUT_LEN];
350 }
351 }
352