1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <assert.h>
18 #include <inttypes.h>
19 #include <limits.h>
20 #include <lk/reflist.h>
21 #include <stdbool.h>
22 #include <stdint.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <string.h>
26
27 #include <openssl/crypto.h>
28 #include <openssl/rand.h>
29
30 #include "block_cache.h"
31 #include "block_cache_priv.h"
32 #include "crypt.h"
33 #include "debug.h"
34 #include "debug_stats.h"
35 #include "error_reporting.h"
36 #include "transaction.h"
37
38 static bool print_cache_lookup = false;
39 static bool print_cache_lookup_verbose = false;
40 static bool print_block_ops = false;
41 static bool print_block_load = false;
42 static bool print_block_store = false;
43 static bool print_block_move = false;
44 static bool print_block_decrypt_encrypt = false;
45 static bool print_clean_transaction = false;
46 static bool print_mac_update = false;
47 static bool print_cache_get_ref_block_count = true;
48
49 #define BLOCK_CACHE_GUARD_1 (0xdead0001dead0003)
50 #define BLOCK_CACHE_GUARD_2 (0xdead0005dead0007)
51
52 static struct list_node block_cache_lru = LIST_INITIAL_VALUE(block_cache_lru);
53 static struct block_cache_entry block_cache_entries[BLOCK_CACHE_SIZE];
54 static bool block_cache_init_called = false;
55
block_cache_entry_data_is_valid(const struct block_cache_entry * entry)56 static bool block_cache_entry_data_is_valid(
57 const struct block_cache_entry* entry) {
58 return entry->state == BLOCK_ENTRY_DATA_CLEAN_DECRYPTED ||
59 entry->state == BLOCK_ENTRY_DATA_CLEAN_ENCRYPTED ||
60 entry->state == BLOCK_ENTRY_DATA_DIRTY_DECRYPTED ||
61 entry->state == BLOCK_ENTRY_DATA_DIRTY_ENCRYPTED;
62 }
63
block_cache_entry_data_is_dirty(const struct block_cache_entry * entry)64 static bool block_cache_entry_data_is_dirty(
65 const struct block_cache_entry* entry) {
66 return entry->state == BLOCK_ENTRY_DATA_DIRTY_DECRYPTED ||
67 entry->state == BLOCK_ENTRY_DATA_DIRTY_ENCRYPTED;
68 }
69
block_cache_entry_data_is_encrypted(const struct block_cache_entry * entry)70 static bool block_cache_entry_data_is_encrypted(
71 const struct block_cache_entry* entry) {
72 return entry->state == BLOCK_ENTRY_DATA_CLEAN_ENCRYPTED ||
73 entry->state == BLOCK_ENTRY_DATA_DIRTY_ENCRYPTED;
74 }
75
block_cache_entry_data_is_decrypted(const struct block_cache_entry * entry)76 static bool block_cache_entry_data_is_decrypted(
77 const struct block_cache_entry* entry) {
78 return entry->state == BLOCK_ENTRY_DATA_CLEAN_DECRYPTED ||
79 entry->state == BLOCK_ENTRY_DATA_DIRTY_DECRYPTED;
80 }
81
block_cache_entry_data_state_name(enum block_cache_entry_data_state state)82 static const char* block_cache_entry_data_state_name(
83 enum block_cache_entry_data_state state) {
84 switch (state) {
85 case BLOCK_ENTRY_DATA_INVALID:
86 return "BLOCK_ENTRY_DATA_INVALID";
87 case BLOCK_ENTRY_DATA_LOADING:
88 return "BLOCK_ENTRY_DATA_LOADING";
89 case BLOCK_ENTRY_DATA_LOAD_FAILED:
90 return "BLOCK_ENTRY_DATA_LOAD_FAILED";
91 case BLOCK_ENTRY_DATA_NOT_FOUND:
92 return "BLOCK_ENTRY_DATA_NOT_FOUND";
93 case BLOCK_ENTRY_DATA_CLEAN_DECRYPTED:
94 return "BLOCK_ENTRY_DATA_CLEAN_DECRYPTED";
95 case BLOCK_ENTRY_DATA_CLEAN_ENCRYPTED:
96 return "BLOCK_ENTRY_DATA_CLEAN_ENCRYPTED";
97 case BLOCK_ENTRY_DATA_DIRTY_DECRYPTED:
98 return "BLOCK_ENTRY_DATA_DIRTY_DECRYPTED";
99 case BLOCK_ENTRY_DATA_DIRTY_ENCRYPTED:
100 return "BLOCK_ENTRY_DATA_DIRTY_ENCRYPTED";
101 }
102 }
103
104 /**
105 * block_cache_queue_io_op - Helper function to start a read or write operation
106 * @entry: Cache entry.
107 * @io_op: BLOCK_CACHE_IO_OP_READ or BLOCK_CACHE_IO_OP_WRITE.
108 *
109 * Set io_op for cache entry and add it to the tail of the io_ops for the
110 * block device that the cache entry belongs to.
111 */
block_cache_queue_io_op(struct block_cache_entry * entry,int io_op)112 static void block_cache_queue_io_op(struct block_cache_entry* entry,
113 int io_op) {
114 assert(io_op == BLOCK_CACHE_IO_OP_READ || io_op == BLOCK_CACHE_IO_OP_WRITE);
115 assert(entry->io_op == BLOCK_CACHE_IO_OP_NONE);
116 assert(entry->dev);
117 assert(!list_in_list(&entry->io_op_node));
118
119 entry->io_op = io_op;
120 list_add_tail(&entry->dev->io_ops, &entry->io_op_node);
121 }
122
123 /**
124 * block_cache_queue_read - Start a read operation
125 * @entry: Cache entry.
126 */
block_cache_queue_read(struct block_cache_entry * entry)127 static void block_cache_queue_read(struct block_cache_entry* entry) {
128 assert(!block_cache_entry_data_is_dirty(entry));
129 entry->state = BLOCK_ENTRY_DATA_LOADING;
130 block_cache_queue_io_op(entry, BLOCK_CACHE_IO_OP_READ);
131 stats_timer_start(STATS_CACHE_START_READ);
132 entry->dev->start_read(entry->dev, entry->block);
133 stats_timer_stop(STATS_CACHE_START_READ);
134 }
135
136 /**
137 * block_cache_queue_write - Start a write operation
138 * @entry: Cache entry.
139 */
block_cache_queue_write(struct block_cache_entry * entry,const void * encrypted_data)140 static void block_cache_queue_write(struct block_cache_entry* entry,
141 const void* encrypted_data) {
142 block_cache_queue_io_op(entry, BLOCK_CACHE_IO_OP_WRITE);
143 stats_timer_start(STATS_CACHE_START_WRITE);
144 entry->dev->start_write(entry->dev, entry->block, encrypted_data,
145 entry->block_size, entry->is_superblock);
146 stats_timer_stop(STATS_CACHE_START_WRITE);
147 }
148
149 /**
150 * block_cache_complete_io - Wait for io operation on block device to complete
151 * @dev: Block device to wait for
152 */
block_cache_complete_io(struct block_device * dev)153 static void block_cache_complete_io(struct block_device* dev) {
154 while (!list_is_empty(&dev->io_ops)) {
155 assert(dev->wait_for_io);
156 dev->wait_for_io(dev);
157 }
158 }
159
160 /**
161 * block_cache_pop_io_op - Get cache entry for completed read or write operation
162 * @dev: Block device
163 * @block: Block number
164 * @io_op: BLOCK_CACHE_IO_OP_READ or BLOCK_CACHE_IO_OP_WRITE.
165 *
166 * Finds block cache entry that matches @dev and @block and remove it from
167 * the io_ops queue of the block device.
168 *
169 * This is a helper function for block_cache_complete_read and
170 * block_cache_complete_write.
171 *
172 * Return: Matching block cache entry.
173 */
block_cache_pop_io_op(struct block_device * dev,data_block_t block,unsigned int io_op)174 static struct block_cache_entry* block_cache_pop_io_op(struct block_device* dev,
175 data_block_t block,
176 unsigned int io_op) {
177 struct block_cache_entry* entry;
178
179 list_for_every_entry(&dev->io_ops, entry, struct block_cache_entry,
180 io_op_node) {
181 if (entry->block == block) {
182 assert(entry->dev == dev);
183 assert(entry->io_op == io_op);
184 entry->io_op = BLOCK_CACHE_IO_OP_NONE;
185 list_delete(&entry->io_op_node);
186 return entry;
187 }
188 assert(false); /* Out of order completion not expected */
189 }
190 assert(false); /* No matching entry found */
191
192 return NULL;
193 }
194
195 /**
196 * block_cache_complete_read - Read complete callback from block device
197 * @dev: Block device
198 * @block: Block number
199 * @data: Pointer to encrypted data, only valid if @res is
200 * &block_read_error.BLOCK_READ_SUCCESS
201 * @data_size: Data size, must match block size of device.
202 * @res: &block_read_error.BLOCK_READ_SUCCESS if read operation was
203 * successful, otherwise describes the error.
204 *
205 * Calculates mac and decrypts data into cache entry. Does not validate mac.
206 */
block_cache_complete_read(struct block_device * dev,data_block_t block,const void * data,size_t data_size,enum block_read_error res)207 void block_cache_complete_read(struct block_device* dev,
208 data_block_t block,
209 const void* data,
210 size_t data_size,
211 enum block_read_error res) {
212 int ret;
213 struct block_cache_entry* entry;
214
215 assert(data_size <= sizeof(entry->data));
216 assert(data_size == dev->block_size);
217
218 entry = block_cache_pop_io_op(dev, block, BLOCK_CACHE_IO_OP_READ);
219 assert(entry->state == BLOCK_ENTRY_DATA_LOADING);
220 switch (res) {
221 case BLOCK_READ_SUCCESS:
222 /* handled below */
223 break;
224 case BLOCK_READ_IO_ERROR:
225 printf("%s: load block %" PRIu64 " failed\n", __func__, entry->block);
226 entry->state = BLOCK_ENTRY_DATA_LOAD_FAILED;
227 return;
228 case BLOCK_READ_NO_DATA:
229 printf("%s: load block %" PRIu64 " failed, no data\n", __func__,
230 entry->block);
231 entry->state = BLOCK_ENTRY_DATA_NOT_FOUND;
232 return;
233 }
234 assert(res == BLOCK_READ_SUCCESS);
235
236 entry->block_size = data_size;
237 /* TODO: change decrypt function to take separate in/out buffers */
238 memcpy(entry->data, data, data_size);
239
240 stats_timer_start(STATS_FS_READ_BLOCK_CALC_MAC);
241 ret = calculate_mac(entry->key, &entry->mac, entry->data,
242 entry->block_size);
243 stats_timer_stop(STATS_FS_READ_BLOCK_CALC_MAC);
244 assert(!ret);
245
246 /* TODO: check mac here instead of when getting data from the cache? */
247 if (print_block_load) {
248 printf("%s: load/decrypt block %" PRIu64 " complete\n", __func__,
249 entry->block);
250 }
251
252 entry->state = BLOCK_ENTRY_DATA_CLEAN_ENCRYPTED;
253 }
254
255 /**
256 * block_cache_complete_write - Write complete callback from block device
257 * @dev: Block device
258 * @block: Block number
259 * @failed: true if write operation failed, and data is not on disc. If
260 * block device has tamper detection, e.g. rpmb, passing false here
261 * means that the secure side block device code has verified that
262 * the data was written to disk.
263 */
block_cache_complete_write(struct block_device * dev,data_block_t block,enum block_write_error res)264 void block_cache_complete_write(struct block_device* dev,
265 data_block_t block,
266 enum block_write_error res) {
267 struct block_cache_entry* entry;
268
269 entry = block_cache_pop_io_op(dev, block, BLOCK_CACHE_IO_OP_WRITE);
270 if (print_block_store) {
271 printf("%s: write block %" PRIu64 " complete\n", __func__,
272 entry->block);
273 }
274 assert(entry->dirty_tr);
275 if (res == BLOCK_WRITE_SUCCESS) {
276 entry->dirty_tr = NULL;
277 entry->pinned = false;
278 } else {
279 pr_err("write block %" PRIu64 " failed, fail transaction\n",
280 entry->block);
281 transaction_fail(entry->dirty_tr);
282
283 if (res == BLOCK_WRITE_SYNC_FAILED) {
284 /*
285 * We have to fail ALL pending transactions here because an fsync
286 * failed and we don't know which write caused that failure.
287 *
288 * TODO: Should we fail only transactions that write to non-secure
289 * devices? I.e. not fail TP transactions?
290 *
291 * TODO: storageproxy could track which file failed to sync and
292 * communicate this back so we only have to fail transactions that
293 * touched that backing file.
294 */
295 pr_err("An fsync failed, fail all pending transactions\n");
296 fs_fail_all_transactions();
297 }
298
299 /*
300 * Failing the transaction must not clear the block number, as we rely
301 * on the block number + pinned flag to reserve and reuse the block
302 * cache entry when reinitializing a special transaction.
303 */
304 assert(block == entry->block);
305
306 if (res == BLOCK_WRITE_FAILED_UNKNOWN_STATE) {
307 /*
308 * We don't know what was written, force superblock to be rewritten.
309 * This must be done after we have failed the transaction in case we
310 * need to reuse block that was part of this transaction.
311 */
312 fs_unknown_super_block_state_all();
313 }
314 }
315 }
316
317 /**
318 * block_cache_entry_has_refs - Check if cache entry is referenced
319 * @entry: Cache entry
320 *
321 * Return: true if there are no references to @entry.
322 */
block_cache_entry_has_refs(struct block_cache_entry * entry)323 static bool block_cache_entry_has_refs(struct block_cache_entry* entry) {
324 return !list_is_empty(&entry->obj.ref_list);
325 }
326
327 /**
328 * block_cache_entry_has_one_ref - Check if cache entry is referenced once
329 * @entry: Cache entry
330 *
331 * Return: true if there is a single reference to @entry.
332 */
block_cache_entry_has_one_ref(struct block_cache_entry * entry)333 static bool block_cache_entry_has_one_ref(struct block_cache_entry* entry) {
334 return list_length(&entry->obj.ref_list) == 1;
335 }
336
337 /**
338 * block_cache_entry_decrypt - Decrypt cache entry
339 * @entry: Cache entry
340 */
block_cache_entry_decrypt(struct block_cache_entry * entry)341 static void block_cache_entry_decrypt(struct block_cache_entry* entry) {
342 int ret;
343 const struct iv* iv = NULL; /* TODO: support external iv */
344 void* decrypt_data;
345 size_t decrypt_size;
346
347 assert(block_cache_entry_data_is_encrypted(entry));
348
349 decrypt_data = entry->data;
350 decrypt_size = entry->block_size;
351 if (!iv) {
352 iv = (void*)entry->data;
353 assert(decrypt_size > sizeof(*iv));
354 decrypt_data += sizeof(*iv);
355 decrypt_size -= sizeof(*iv);
356 }
357 stats_timer_start(STATS_FS_READ_BLOCK_DECRYPT);
358 ret = storage_decrypt(entry->key, decrypt_data, decrypt_size, iv);
359 stats_timer_stop(STATS_FS_READ_BLOCK_DECRYPT);
360 assert(!ret);
361
362 if (print_block_decrypt_encrypt) {
363 printf("%s: decrypt block %" PRIu64 " complete\n", __func__,
364 entry->block);
365 }
366
367 if (entry->state == BLOCK_ENTRY_DATA_CLEAN_ENCRYPTED) {
368 entry->state = BLOCK_ENTRY_DATA_CLEAN_DECRYPTED;
369 } else if (entry->state == BLOCK_ENTRY_DATA_DIRTY_ENCRYPTED) {
370 /*
371 * We leave blocks in DIRTY_ENCRYPTED state after computing a MAC but
372 * before flushing the block from the cache. We may decrypt a block
373 * again to read it before write back, which is fine as it will be
374 * re-encrypted (with the same IV) when flushed for write back.
375 */
376 entry->state = BLOCK_ENTRY_DATA_DIRTY_DECRYPTED;
377 } else {
378 /* Covered by assert that the entry was encrypted above. */
379 assert(false);
380 }
381 }
382
383 /**
384 * block_cache_entry_encrypt - Encrypt cache entry and update mac
385 * @entry: Cache entry
386 */
block_cache_entry_encrypt(struct block_cache_entry * entry)387 static void block_cache_entry_encrypt(struct block_cache_entry* entry) {
388 int ret;
389 void* encrypt_data;
390 size_t encrypt_size;
391 struct mac mac;
392 struct iv* iv = NULL; /* TODO: support external iv */
393
394 assert(entry->state == BLOCK_ENTRY_DATA_DIRTY_DECRYPTED);
395 assert(!block_cache_entry_has_refs(entry));
396
397 encrypt_data = entry->data;
398 encrypt_size = entry->block_size;
399 if (!iv) {
400 iv = (void*)entry->data;
401 assert(encrypt_size > sizeof(*iv));
402 encrypt_data += sizeof(*iv);
403 encrypt_size -= sizeof(*iv);
404 }
405
406 stats_timer_start(STATS_FS_WRITE_BLOCK_ENCRYPT);
407 ret = storage_encrypt(entry->key, encrypt_data, encrypt_size, iv);
408 stats_timer_stop(STATS_FS_WRITE_BLOCK_ENCRYPT);
409 assert(!ret);
410 entry->state = BLOCK_ENTRY_DATA_DIRTY_ENCRYPTED;
411 if (print_block_decrypt_encrypt) {
412 printf("%s: encrypt block %" PRIu64 " complete\n", __func__,
413 entry->block);
414 }
415
416 if (!entry->dirty_mac) {
417 mac = entry->mac;
418 }
419
420 stats_timer_start(STATS_FS_WRITE_BLOCK_CALC_MAC);
421 ret = calculate_mac(entry->key, &entry->mac, entry->data,
422 entry->block_size);
423 stats_timer_stop(STATS_FS_WRITE_BLOCK_CALC_MAC);
424 assert(!ret);
425
426 if (!entry->dirty_mac) {
427 assert(!CRYPTO_memcmp(&mac, &entry->mac, sizeof(mac)));
428 }
429 entry->dirty_mac = false;
430 // assert(!entry->parent || entry->parent->ref_count);
431 // assert(!entry->parent || entry->parent->dirty_ref);
432 }
433
434 /**
435 * block_cache_entry_clean - Write dirty cache entry to disc
436 * @entry: Cache entry
437 *
438 * Does not wait for write to complete.
439 */
block_cache_entry_clean(struct block_cache_entry * entry)440 static void block_cache_entry_clean(struct block_cache_entry* entry) {
441 if (!block_cache_entry_data_is_dirty(entry)) {
442 return;
443 }
444
445 if (print_block_store) {
446 printf("%s: encrypt block %" PRIu64 "\n", __func__, entry->block);
447 }
448
449 assert(entry->block_size <= sizeof(entry->data));
450 if (entry->state == BLOCK_ENTRY_DATA_DIRTY_DECRYPTED) {
451 block_cache_entry_encrypt(entry);
452 }
453 assert(entry->state == BLOCK_ENTRY_DATA_DIRTY_ENCRYPTED);
454 /* TODO: release ref to parent */
455
456 assert(entry->dirty_tr);
457 /*
458 * We have to save the current transaction for this entry because we need it
459 * to check for transaction failure after queueing the write. Transactions
460 * are managed by the storage client layer, and thus will outlive this
461 * function, which is internal to the block cache.
462 */
463 struct transaction* tr = entry->dirty_tr;
464
465 assert(entry->dirty_tr->fs);
466 struct transaction* itr = entry->dirty_tr->fs->initial_super_block_tr;
467 /*
468 * Block(s) in fs->initial_super_block_tr must be written before any other
469 * blocks to the same filesystem.
470 */
471 if (itr && itr != entry->dirty_tr) {
472 printf("%s: write initial superblock before block %" PRIu64 "\n",
473 __func__, entry->block);
474 transaction_initial_super_block_complete(itr);
475
476 /*
477 * Check that initial_super_block_tr was cleared. If it was not, it must
478 * have failed to write the initial super block and the transaction
479 * that entry belongs to must also fail.
480 */
481 if (entry->dirty_tr->fs->initial_super_block_tr) {
482 /*
483 * transaction_initial_super_block_complete() always reinitialize
484 * initial_super_block_tr if the write failed.
485 */
486 assert(!entry->dirty_tr->fs->initial_super_block_tr->failed);
487 transaction_fail(entry->dirty_tr);
488 assert(entry->state == BLOCK_ENTRY_DATA_INVALID);
489 return;
490 }
491 }
492
493 block_cache_queue_write(entry, entry->data);
494
495 /*
496 * If we fail the transaction in block_cache_complete_write(), which is
497 * currently called during block_cache_queue_write(), we will clear the
498 * dirty flag on all cache entries associate with the transaction, including
499 * the one we're currently trying to clean.
500 *
501 * We can't redundantly clear the flag again here if the transaction has
502 * failed, because the write failure may have forced us to trigger
503 * fs_unknown_super_block_state_all(). Triggering this function creates
504 * writes for the current superblock state of each filesystem, and this may
505 * have reused the (now) clean entry we are trying to clean. If so,
506 * entry->dirty must stay set.
507 */
508 if (!tr->failed) {
509 assert(entry->state == BLOCK_ENTRY_DATA_DIRTY_ENCRYPTED);
510 entry->state = BLOCK_ENTRY_DATA_CLEAN_ENCRYPTED;
511 }
512 }
513
514 /**
515 * block_cache_entry_score - Get a keep score
516 * @entry: Block cache entry to check
517 * @index: Number of available entries before @entry in lru.
518 *
519 * Return: A score value indicating in what order entries that are close in the
520 * lru should be replaced.
521 */
block_cache_entry_score(struct block_cache_entry * entry,unsigned int index)522 static unsigned int block_cache_entry_score(struct block_cache_entry* entry,
523 unsigned int index) {
524 if (!entry->dev) {
525 return UINT_MAX;
526 }
527 return index * (block_cache_entry_data_is_dirty(entry)
528 ? (entry->dirty_tmp ? 1 : 2)
529 : 4);
530 }
531
532 /**
533 * block_cache_entry_discard_dirty - Discard cache entry (can be dirty).
534 * @entry: Block cache entry to discard
535 */
block_cache_entry_discard_dirty(struct block_cache_entry * entry)536 static void block_cache_entry_discard_dirty(struct block_cache_entry* entry) {
537 assert(!entry->dirty_ref);
538 assert(!list_in_list(&entry->io_op_node));
539 entry->state = BLOCK_ENTRY_DATA_INVALID;
540 entry->dev = NULL;
541 entry->block = DATA_BLOCK_INVALID;
542 entry->dirty_tr = NULL;
543 /* We have to unpin here because we're clearing the block number */
544 entry->pinned = false;
545 entry->is_superblock = false;
546
547 entry->dirty_mac = false;
548 }
549
550 /**
551 * block_cache_entry_discard - Discard cache entry (must be clean and unused).
552 * @entry: Block cache entry to discard
553 */
block_cache_entry_discard(struct block_cache_entry * entry)554 static void block_cache_entry_discard(struct block_cache_entry* entry) {
555 assert(!block_cache_entry_has_refs(entry));
556 assert(!entry->dirty_ref);
557 assert(!entry->dirty_tr);
558 assert(!list_in_list(&entry->io_op_node));
559 block_cache_entry_discard_dirty(entry);
560 }
561
562 /**
563 * block_cache_lookup - Get cache entry for a specific block
564 * @fs: File system state object, or %NULL is @allocate is %false.
565 * @dev: Block device object.
566 * @block: Block number
567 * @allocate: If true, assign an unused entry to the specified @dev,@block
568 * if no matching entry is found.
569 *
570 * Return: cache entry matching @dev and @block. If no matching entry is found,
571 * and @allocate is true, pick an unused entry and update it to match. If no
572 * entry can be used, return NULL.
573 */
574
block_cache_lookup(struct fs * fs,struct block_device * dev,data_block_t block,bool allocate)575 static struct block_cache_entry* block_cache_lookup(struct fs* fs,
576 struct block_device* dev,
577 data_block_t block,
578 bool allocate) {
579 struct block_cache_entry* entry;
580 struct block_cache_entry* unused_entry = NULL;
581 unsigned int unused_entry_score = 0;
582 unsigned int score;
583 unsigned int available = 0;
584 unsigned int in_use = 0;
585
586 assert(dev);
587 assert(fs || !allocate);
588
589 stats_timer_start(STATS_CACHE_LOOKUP);
590 /*
591 * We may need to attempt to find and flush a cache entry multiple times
592 * before finding one that we could successfully use that was not reused
593 * during the clean. This relies on the block cache being large enough to
594 * hold a super block for each filesystem plus all currently referenced
595 * blocks (which is less than the maximum block path length). We cap the
596 * number of retries here to avoid an infinite loop, but we should only need
597 * one retry attempt since the block cache is LRU and the fresh super block
598 * will be the most recently used entry.
599 */
600 for (int retry = 0; retry < BLOCK_CACHE_SIZE; ++retry) {
601 unused_entry = NULL;
602 unused_entry_score = 0;
603 available = 0;
604 in_use = 0;
605
606 list_for_every_entry(&block_cache_lru, entry, struct block_cache_entry,
607 lru_node) {
608 assert(entry->guard1 == BLOCK_CACHE_GUARD_1);
609 assert(entry->guard2 == BLOCK_CACHE_GUARD_2);
610 if (entry->dev == dev && entry->block == block) {
611 if (print_cache_lookup) {
612 printf("%s: block %" PRIu64
613 ", found cache entry %zd, state %s\n",
614 __func__, block, entry - block_cache_entries,
615 block_cache_entry_data_state_name(entry->state));
616 }
617 stats_timer_start(STATS_CACHE_LOOKUP_FOUND);
618 stats_timer_stop(STATS_CACHE_LOOKUP_FOUND);
619 goto done;
620 }
621 /*
622 * Do not select any cache entries that have active references as
623 * they aren't ready to flush, and do not select any pinned entries.
624 * Pinned entries can only be flushed by
625 * transaction_initial_super_block_complete() and may not be flushed
626 * by another transaction. We need to keep special superblock writes
627 * pinned in the cache because otherwise we might fill the cache up
628 * with other data, flushing the special superblock, which might
629 * fail to write. In this case we would leave no room to recreate
630 * the write later, since the cache is full of data which can't be
631 * flushed until the initial superblock write is completed.
632 */
633 if (!block_cache_entry_has_refs(entry) && !entry->pinned) {
634 score = block_cache_entry_score(entry, available);
635 available++;
636 if (score >= unused_entry_score) {
637 unused_entry = entry;
638 unused_entry_score = score;
639 }
640 if (print_cache_lookup_verbose) {
641 printf("%s: block %" PRIu64
642 ", cache entry %zd available last used for %" PRIu64
643 "\n",
644 __func__, block, entry - block_cache_entries,
645 entry->block);
646 }
647 } else {
648 /*
649 * Pinned entries must have a valid block number so they can be
650 * reused.
651 */
652 if (entry->pinned) {
653 assert(entry->block != DATA_BLOCK_INVALID);
654 }
655 if (print_cache_lookup_verbose) {
656 printf("%s: block %" PRIu64
657 ", cache entry %zd in use for %" PRIu64 "\n",
658 __func__, block, entry - block_cache_entries,
659 entry->block);
660 }
661 in_use++;
662 }
663 }
664 entry = unused_entry;
665
666 if (!entry || !allocate) {
667 if (print_cache_lookup) {
668 printf("%s: block %" PRIu64
669 ", no available entries, %u in use, allocate %d\n",
670 __func__, block, in_use, allocate);
671 }
672 entry = NULL;
673 goto done;
674 }
675
676 if (print_cache_lookup) {
677 printf("%s: block %" PRIu64
678 ", use cache entry %zd, state %s, %u available, %u in_use\n",
679 __func__, block, entry - block_cache_entries,
680 block_cache_entry_data_state_name(entry->state), available,
681 in_use);
682 }
683
684 assert(!entry->dirty_ref);
685
686 if (block_cache_entry_data_is_dirty(entry)) {
687 stats_timer_start(STATS_CACHE_LOOKUP_CLEAN);
688 block_cache_entry_clean(entry);
689 block_cache_complete_io(entry->dev);
690 stats_timer_stop(STATS_CACHE_LOOKUP_CLEAN);
691 }
692
693 /*
694 * The chosen entry we are flushing can't have been a special superblock
695 * write because we do not select pinned entries, however, any RPMB data
696 * write may create a new pinned superblock entry if the RPMB write
697 * failed but the write counter was incremented. In this case
698 * block_cache_entry_clean() will create a new superblock write by
699 * calling fs_unknown_super_block_state_all(). This new write may reuse
700 * the block cache entry we just chose and cleaned, resulting in our
701 * chosen entry now being pinned for a different transaction. In this
702 * case we restart the search for a cache entry and try to pick (and if
703 * needed clean) a new entry.
704 */
705
706 if (!entry->pinned) {
707 /* We found a clean entry to use */
708 break;
709 }
710
711 pr_warn("%s: Retrying attempt to lookup and (if needed) free a block cache entry. "
712 "Entry block %" PRIu64 " was reused during cleaning.\n",
713 __func__, entry->block);
714 }
715 assert(!block_cache_entry_data_is_dirty(entry));
716 assert(!entry->dirty_mac);
717 assert(!entry->dirty_tr);
718
719 entry->dev = dev;
720 entry->block = block;
721 assert(dev->block_size <= sizeof(entry->data));
722 entry->block_size = dev->block_size;
723 entry->key = fs->key;
724 entry->state = BLOCK_ENTRY_DATA_INVALID;
725 entry->is_superblock = false;
726
727 done:
728 stats_timer_stop(STATS_CACHE_LOOKUP);
729
730 return entry;
731 }
732
733 enum cache_load_result {
734 CACHE_LOAD_SUCCESS = 0,
735 CACHE_LOAD_IO_FAILED,
736 CACHE_LOAD_NO_DATA,
737 CACHE_LOAD_MAC_MISMATCH,
738 };
739
740 /**
741 * block_cache_load_entry - Get cache entry for a specific block
742 * @entry: Block cache entry to load.
743 * @mac: Optional mac.
744 * @mac_size: Size of @mac.
745 *
746 * If entry is not already loaded, attempt to load the block and optionally
747 * compare with the expected @mac, if provided.
748 *
749 * Return: &cache_load_result.CACHE_LOAD_SUCCESS if the block (matching @mac, if
750 * provided) was already in cache or was loaded successfully. Otherwise return a
751 * relevant error.
752 */
block_cache_load_entry(struct block_cache_entry * entry,const void * mac,size_t mac_size)753 static enum cache_load_result block_cache_load_entry(
754 struct block_cache_entry* entry,
755 const void* mac,
756 size_t mac_size) {
757 if (!block_cache_entry_data_is_valid(entry)) {
758 assert(!block_cache_entry_has_refs(entry));
759 if (print_block_load) {
760 printf("%s: request load block %" PRIu64 "\n", __func__,
761 entry->block);
762 }
763 block_cache_queue_read(entry);
764 block_cache_complete_io(entry->dev);
765 }
766 if (!block_cache_entry_data_is_valid(entry)) {
767 printf("%s: failed to load block %" PRIu64 ", state: %d\n", __func__,
768 entry->block, entry->state);
769 switch (entry->state) {
770 case BLOCK_ENTRY_DATA_LOAD_FAILED:
771 return CACHE_LOAD_IO_FAILED;
772 case BLOCK_ENTRY_DATA_NOT_FOUND:
773 return CACHE_LOAD_NO_DATA;
774 default:
775 assert(false && "Unexpected entry state");
776 }
777 }
778 if (mac) {
779 if (CRYPTO_memcmp(&entry->mac, mac, mac_size)) {
780 printf("%s: block %" PRIu64 ", mac mismatch\n", __func__,
781 entry->block);
782 return CACHE_LOAD_MAC_MISMATCH;
783 }
784 }
785 /*
786 * We eagerly encrypt a block when releasing it so that we can compute the
787 * block's mac. If we re-load the same block before flushing it from the
788 * cache, we may end up decrypting a dirty block here, so we want to allow
789 * decryption of both clean and dirty blocks.
790 */
791 if (block_cache_entry_data_is_encrypted(entry)) {
792 block_cache_entry_decrypt(entry);
793 }
794 assert(block_cache_entry_data_is_decrypted(entry));
795
796 return CACHE_LOAD_SUCCESS;
797 }
798
799 /**
800 * block_cache_get - Get cache entry for a specific block and add a reference
801 * @fs: File system state object.
802 * @dev: Block device object.
803 * @block: Block number.
804 * @load: If true, load data if needed.
805 * @mac: Optional mac. Unused if @load is false.
806 * @mac_size: Size of @mac.
807 * @ref: Pointer to store reference in.
808 * @load_result: Optional output pointer to store load result in. May be %NULL.
809 * If not %NULL, @load must be %true.
810 *
811 * Find cache entry, optionally load then add a reference to it.
812 *
813 * Return: cache entry matching dev in @tr and @block. Can return NULL if @load
814 * is true and entry could not be loaded or does not match provided mac.
815 */
block_cache_get(struct fs * fs,struct block_device * dev,data_block_t block,bool load,const void * mac,size_t mac_size,struct obj_ref * ref,enum cache_load_result * load_result)816 static struct block_cache_entry* block_cache_get(
817 struct fs* fs,
818 struct block_device* dev,
819 data_block_t block,
820 bool load,
821 const void* mac,
822 size_t mac_size,
823 struct obj_ref* ref,
824 enum cache_load_result* load_result) {
825 enum cache_load_result res;
826 struct block_cache_entry* entry;
827
828 assert(dev);
829 assert(!load_result || load);
830
831 if (block >= dev->block_count) {
832 printf("%s: bad block num %" PRIu64 " >= %" PRIu64 "\n", __func__,
833 block, dev->block_count);
834 if (load_result) {
835 *load_result = CACHE_LOAD_NO_DATA;
836 }
837 return NULL;
838 }
839 assert(block < dev->block_count);
840
841 entry = block_cache_lookup(fs, dev, block, true);
842 assert(entry);
843
844 if (load) {
845 res = block_cache_load_entry(entry, mac, mac_size);
846 if (res == CACHE_LOAD_MAC_MISMATCH) {
847 error_report_block_mac_mismatch(fs->name, TRUSTY_BLOCKTYPE_UNKNOWN);
848 }
849 if (load_result) {
850 *load_result = res;
851 }
852 if (res != CACHE_LOAD_SUCCESS) {
853 return NULL;
854 }
855 }
856
857 assert(!entry->dirty_ref);
858 obj_add_ref_allow_unreferenced_obj(&entry->obj, ref);
859 if (print_block_ops) {
860 printf("%s: block %" PRIu64 ", cache entry %zd, state %s\n", __func__,
861 block, entry - block_cache_entries,
862 block_cache_entry_data_state_name(entry->state));
863 }
864 return entry;
865 }
866
867 /**
868 * block_cache_get_data - Call block_cache_get and return data pointer
869 * @fs: File system state object.
870 * @dev: Block device object.
871 * @block: Block number.
872 * @load: If true, load data if needed.
873 * @mac: Optional mac. Unused if @load is false.
874 * @mac_size: Size of @mac.
875 * @ref: Pointer to store reference in.
876 * @load_result: Optional output pointer to store load result in. May be %NULL.
877 * Only updated if @load is %true.
878 *
879 * Return: block data pointer, or NULL if block_cache_get returned NULL.
880 */
block_cache_get_data(struct fs * fs,struct block_device * dev,data_block_t block,bool load,const void * mac,size_t mac_size,struct obj_ref * ref,enum cache_load_result * load_result)881 static void* block_cache_get_data(struct fs* fs,
882 struct block_device* dev,
883 data_block_t block,
884 bool load,
885 const void* mac,
886 size_t mac_size,
887 struct obj_ref* ref,
888 enum cache_load_result* load_result) {
889 struct block_cache_entry* entry;
890 entry = block_cache_get(fs, dev, block, load, mac, mac_size, ref,
891 load_result);
892 if (!entry) {
893 return NULL;
894 }
895 return entry->data;
896 }
897
898 /**
899 * data_to_block_cache_entry - Get cache entry from data pointer
900 * @data: Pointer to data member of cache entry.
901 *
902 * Return: cache entry matching @data.
903 */
data_to_block_cache_entry(const void * data)904 static struct block_cache_entry* data_to_block_cache_entry(const void* data) {
905 struct block_cache_entry* entry;
906
907 assert(data);
908 entry = containerof(data, struct block_cache_entry, data);
909 assert(entry >= block_cache_entries);
910 assert(entry < &block_cache_entries[BLOCK_CACHE_SIZE]);
911 assert(((uintptr_t)entry - (uintptr_t)entry) % sizeof(entry[0]) == 0);
912 return entry;
913 }
914
915 /**
916 * data_to_block_cache_entry_or_null - Get cache entry or NULL from data pointer
917 * @data: Pointer to data member of cache entry or NULL.
918 *
919 * Return: cache entry matching @data, or NULL is data is NULL.
920 */
data_to_block_cache_entry_or_null(const void * data)921 static struct block_cache_entry* data_to_block_cache_entry_or_null(
922 const void* data) {
923 return data ? data_to_block_cache_entry(data) : NULL;
924 }
925
926 /**
927 * block_cache_entry_destroy - Callback function for obj_del_ref
928 * @obj: Pointer to obj member of cache entry.
929 *
930 * Callback called by reference tracking code when the last reference to a
931 * cache entry has been released. Since this is a cache, and not a normal heap
932 * allocated object, the cache entry is not destroyed here. It is instead left
933 * in a state where block_cache_lookup can reuse it.
934 */
block_cache_entry_destroy(struct obj * obj)935 static void block_cache_entry_destroy(struct obj* obj) {
936 struct block_cache_entry* entry =
937 containerof(obj, struct block_cache_entry, obj);
938
939 list_delete(&entry->lru_node);
940 list_add_head(&block_cache_lru, &entry->lru_node);
941
942 if (entry->dirty_mac) {
943 block_cache_entry_encrypt(entry);
944 }
945 }
946
947 /**
948 * block_cache_init - Allocate and initialize block cache
949 */
block_cache_init(void)950 void block_cache_init(void) {
951 int i;
952 struct obj_ref ref;
953
954 assert(!block_cache_init_called);
955
956 block_cache_init_called = true;
957
958 full_assert(memset(block_cache_entries, 1, sizeof(block_cache_entries)));
959
960 for (i = 0; i < BLOCK_CACHE_SIZE; i++) {
961 block_cache_entries[i].guard1 = BLOCK_CACHE_GUARD_1;
962 block_cache_entries[i].guard2 = BLOCK_CACHE_GUARD_2;
963 block_cache_entries[i].dev = NULL;
964 block_cache_entries[i].block = DATA_BLOCK_INVALID;
965 block_cache_entries[i].state = BLOCK_ENTRY_DATA_INVALID;
966 block_cache_entries[i].dirty_ref = false;
967 block_cache_entries[i].dirty_mac = false;
968 block_cache_entries[i].pinned = false;
969 block_cache_entries[i].is_superblock = false;
970 block_cache_entries[i].dirty_tr = NULL;
971 block_cache_entries[i].io_op = BLOCK_CACHE_IO_OP_NONE;
972 obj_init(&block_cache_entries[i].obj, &ref);
973 list_clear_node(&block_cache_entries[i].io_op_node);
974 list_add_head(&block_cache_lru, &block_cache_entries[i].lru_node);
975 obj_del_ref(&block_cache_entries[i].obj, &ref,
976 block_cache_entry_destroy);
977 }
978 }
979
980 /**
981 * block_cache_dev_destroy - Discard all blocks associated with device
982 * @dev: Block device to remove
983 */
block_cache_dev_destroy(struct block_device * dev)984 void block_cache_dev_destroy(struct block_device* dev) {
985 int i;
986 for (i = 0; i < BLOCK_CACHE_SIZE; i++) {
987 if (block_cache_entries[i].dev == dev) {
988 block_cache_entry_discard(&block_cache_entries[i]);
989 }
990 }
991 }
992
993 /**
994 * block_cache_clean_transaction - Clean blocks modified by transaction
995 * @tr: Transaction
996 */
block_cache_clean_transaction(struct transaction * tr)997 void block_cache_clean_transaction(struct transaction* tr) {
998 struct block_cache_entry* entry;
999 struct block_device* dev = NULL;
1000
1001 stats_timer_start(STATS_CACHE_CLEAN_TRANSACTION);
1002
1003 list_for_every_entry(&block_cache_lru, entry, struct block_cache_entry,
1004 lru_node) {
1005 assert(entry->guard1 == BLOCK_CACHE_GUARD_1);
1006 assert(entry->guard2 == BLOCK_CACHE_GUARD_2);
1007 if (entry->dirty_tr != tr) {
1008 continue;
1009 }
1010
1011 assert(block_cache_entry_data_is_dirty(entry));
1012
1013 assert(!entry->dirty_ref);
1014
1015 if (entry->dirty_tmp) {
1016 continue;
1017 }
1018
1019 if (!dev) {
1020 dev = entry->dev;
1021 assert(dev == tr->fs->dev || dev == tr->fs->super_dev);
1022 }
1023
1024 assert(entry->dev == dev);
1025
1026 if (print_clean_transaction) {
1027 #if TLOG_LVL >= TLOG_LVL_DEBUG
1028 printf("%s: tr %p, block %" PRIu64 "\n", __func__, tr,
1029 entry->block);
1030 #else
1031 printf("%s: transaction block %" PRIu64 "\n", __func__,
1032 entry->block);
1033 #endif
1034 }
1035
1036 assert(!block_cache_entry_has_refs(entry));
1037 stats_timer_start(STATS_CACHE_CLEAN_TRANSACTION_ENT_CLN);
1038 block_cache_entry_clean(entry);
1039 stats_timer_stop(STATS_CACHE_CLEAN_TRANSACTION_ENT_CLN);
1040 assert(entry->dirty_tr != tr);
1041 if (!tr->failed) {
1042 /*
1043 * If the write failed we may have reused this block cache entry for
1044 * a super block write and it therefore might not be clean.
1045 */
1046 assert(!block_cache_entry_data_is_dirty(entry));
1047 assert(!entry->dirty_tr);
1048 }
1049 }
1050
1051 if (dev) {
1052 stats_timer_start(STATS_CACHE_CLEAN_TRANSACTION_WAIT_IO);
1053 block_cache_complete_io(dev);
1054 stats_timer_stop(STATS_CACHE_CLEAN_TRANSACTION_WAIT_IO);
1055 }
1056 stats_timer_stop(STATS_CACHE_CLEAN_TRANSACTION);
1057 }
1058
1059 /**
1060 * block_cache_discard_transaction - Discard blocks modified by transaction
1061 * @tr: Transaction
1062 * @discard_all: If true, discard all dirty blocks modified by @tr. If false,
1063 * discard tmp dirty blocks modified by @tr.
1064 *
1065 * If @discard_all is %false, only tmp blocks should be dirty. @discard_all
1066 * therefore only affects errors checks.
1067 */
block_cache_discard_transaction(struct transaction * tr,bool discard_all)1068 void block_cache_discard_transaction(struct transaction* tr, bool discard_all) {
1069 struct block_cache_entry* entry;
1070 struct block_device* dev = NULL;
1071
1072 list_for_every_entry(&block_cache_lru, entry, struct block_cache_entry,
1073 lru_node) {
1074 assert(entry->guard1 == BLOCK_CACHE_GUARD_1);
1075 assert(entry->guard2 == BLOCK_CACHE_GUARD_2);
1076 if (entry->dirty_tr != tr) {
1077 continue;
1078 }
1079
1080 if (entry->dirty_tmp) {
1081 /* tmp blocks should never be on the superblock device */
1082 assert(entry->dev == tr->fs->dev);
1083 } else {
1084 /*
1085 * An transaction should never have dirty non-tmp blocks both
1086 * devices at the same time.
1087 */
1088 if (!dev) {
1089 dev = entry->dev;
1090 assert(dev == tr->fs->dev || dev == tr->fs->super_dev);
1091 }
1092 assert(entry->dev == dev);
1093 }
1094 assert(block_cache_entry_data_is_dirty(entry));
1095
1096 if (print_clean_transaction) {
1097 #if TLOG_LVL >= TLOG_LVL_DEBUG
1098 printf("%s: tr %p, block %" PRIu64 ", tmp %d\n", __func__, tr,
1099 entry->block, entry->dirty_tmp);
1100 #else
1101 printf("%s: transaction block %" PRIu64 ", tmp %d\n", __func__,
1102 entry->block, entry->dirty_tmp);
1103 #endif
1104 }
1105
1106 if (block_cache_entry_has_refs(entry)) {
1107 #if TLOG_LVL >= TLOG_LVL_DEBUG
1108 pr_warn("tr %p, block %" PRIu64 " has ref (dirty_ref %d)\n", tr,
1109 entry->block, entry->dirty_ref);
1110 #else
1111 pr_warn("transaction block %" PRIu64 " has ref (dirty_ref %d)\n",
1112 entry->block, entry->dirty_ref);
1113 #endif
1114 } else {
1115 assert(!entry->dirty_ref);
1116 }
1117 if (!discard_all) {
1118 assert(!block_cache_entry_has_refs(entry));
1119 assert(entry->dirty_tmp);
1120 }
1121 entry->dirty_tr = NULL;
1122 entry->state = BLOCK_ENTRY_DATA_INVALID;
1123 assert(!entry->dirty_tr);
1124 }
1125 }
1126
1127 /**
1128 * block_get_no_read - Get block data without read
1129 * @tr: Transaction to get device from
1130 * @block: Block number
1131 * @ref: Pointer to store reference in.
1132 *
1133 * Return: Const block data pointer.
1134 *
1135 * This is only useful if followed by block_dirty.
1136 */
block_get_no_read(struct transaction * tr,data_block_t block,struct obj_ref * ref)1137 const void* block_get_no_read(struct transaction* tr,
1138 data_block_t block,
1139 struct obj_ref* ref) {
1140 assert(tr);
1141 assert(tr->fs);
1142
1143 return block_cache_get_data(tr->fs, tr->fs->dev, block, false, NULL, 0, ref,
1144 NULL);
1145 }
1146
1147 /**
1148 * block_get_super - Get super block data without checking mac
1149 * @fs: File system state object.
1150 * @block: Block number.
1151 * @ref: Pointer to store reference in.
1152 *
1153 * Return: Const block data pointer.
1154 */
block_get_super(struct fs * fs,data_block_t block,struct obj_ref * ref)1155 const void* block_get_super(struct fs* fs,
1156 data_block_t block,
1157 struct obj_ref* ref) {
1158 assert(fs);
1159 assert(fs->super_dev);
1160 assert((fs->allow_tampering && !fs->super_dev->tamper_detecting) ||
1161 (!fs->allow_tampering && fs->super_dev->tamper_detecting));
1162
1163 return block_cache_get_data(fs, fs->super_dev, block, true, NULL, 0, ref,
1164 NULL);
1165 }
1166
1167 /**
1168 * block_get_no_tr_fail - Get block data
1169 * @tr: Transaction to get device from
1170 * @block_mac: Block number and mac
1171 * @iv: Initial vector used to decrypt block, or NULL. If NULL, the
1172 * start of the loaded block data is used as the iv.
1173 * Only NULL is currently supported.
1174 * @ref: Pointer to store reference in.
1175 *
1176 * Return: Const block data pointer, or NULL if mac of loaded data does not mac
1177 * in @block_mac or a read error was reported by the block device when loading
1178 * the data.
1179 */
block_get_no_tr_fail(struct transaction * tr,const struct block_mac * block_mac,const struct iv * iv,struct obj_ref * ref)1180 const void* block_get_no_tr_fail(struct transaction* tr,
1181 const struct block_mac* block_mac,
1182 const struct iv* iv,
1183 struct obj_ref* ref) {
1184 data_block_t block;
1185 void* data;
1186 enum cache_load_result load_result = CACHE_LOAD_NO_DATA;
1187
1188 assert(tr);
1189 assert(tr->fs);
1190 assert(block_mac);
1191
1192 block = block_mac_to_block(tr, block_mac);
1193 assert(block);
1194
1195 data = block_cache_get_data(tr->fs, tr->fs->dev, block, true,
1196 block_mac_to_mac(tr, block_mac),
1197 tr->fs->mac_size, ref, &load_result);
1198 if (load_result == CACHE_LOAD_MAC_MISMATCH ||
1199 load_result == CACHE_LOAD_NO_DATA) {
1200 tr->invalid_block_found = true;
1201 }
1202 return data;
1203 }
1204
1205 /**
1206 * block_get - Get block data
1207 * @tr: Transaction to get device from
1208 * @block_mac: Block number and mac
1209 * @iv: Initial vector used to decrypt block, or NULL. If NULL, the
1210 * start of the loaded block data is used as the iv.
1211 * Only NULL is currently supported.
1212 * @ref: Pointer to store reference in.
1213 *
1214 * Return: Const block data pointer, or NULL if the transaction has failed. A
1215 * transaction failure is triggered if mac of loaded data does not mac in
1216 * @block_mac or a read error was reported by the block device when loading the
1217 * data.
1218 */
block_get(struct transaction * tr,const struct block_mac * block_mac,const struct iv * iv,struct obj_ref * ref)1219 const void* block_get(struct transaction* tr,
1220 const struct block_mac* block_mac,
1221 const struct iv* iv,
1222 struct obj_ref* ref) {
1223 const void* data;
1224
1225 assert(tr);
1226
1227 if (tr->failed) {
1228 pr_warn("transaction already failed\n");
1229 return NULL;
1230 }
1231
1232 data = block_get_no_tr_fail(tr, block_mac, iv, ref);
1233 if (!data && !tr->failed) {
1234 pr_warn("transaction failed\n");
1235 transaction_fail(tr);
1236 if (tr->invalid_block_found) {
1237 fs_mark_scan_required(tr->fs);
1238 }
1239 }
1240 return data;
1241 }
1242
1243 /**
1244 * block_dirty - Mark cache entry dirty and return non-const block data pointer.
1245 * @tr: Transaction
1246 * @data: Const block data pointer
1247 * @is_tmp: If true, data is only needed until @tr is commited.
1248 *
1249 * Return: Non-const block data pointer.
1250 */
block_dirty(struct transaction * tr,const void * data,bool is_tmp)1251 void* block_dirty(struct transaction* tr, const void* data, bool is_tmp) {
1252 struct block_cache_entry* entry = data_to_block_cache_entry(data);
1253
1254 assert(tr);
1255 assert(list_in_list(&tr->node)); /* transaction must be active */
1256 assert(!entry->dirty_tr || entry->dirty_tr == tr);
1257 assert(!entry->dirty_ref);
1258 assert(fs_is_writable(tr->fs));
1259
1260 if (block_cache_entry_data_is_encrypted(entry)) {
1261 if (print_block_ops) {
1262 printf("%s: skip decrypt block %" PRIu64 "\n", __func__,
1263 entry->block);
1264 }
1265 } else if (entry->state != BLOCK_ENTRY_DATA_CLEAN_DECRYPTED) {
1266 if (print_block_ops) {
1267 printf("%s: Dirtying block %" PRIu64
1268 " that was not loaded. Previous state: %s\n",
1269 __func__, entry->block,
1270 block_cache_entry_data_state_name(entry->state));
1271 }
1272 }
1273 assert(block_cache_entry_has_one_ref(entry));
1274 entry->state = BLOCK_ENTRY_DATA_DIRTY_DECRYPTED;
1275 entry->dirty_ref = true;
1276 entry->dirty_tmp = is_tmp;
1277 entry->dirty_tr = tr;
1278 return (void*)data;
1279 }
1280
1281 /**
1282 * block_is_clean - Check if block is clean
1283 * @dev: Block device
1284 * @block: Block number
1285 *
1286 * Return: %true if there is no matching dirty cache entry, %false if the cache
1287 * contains a dirty block matching @dev and @block.
1288 */
block_is_clean(struct block_device * dev,data_block_t block)1289 bool block_is_clean(struct block_device* dev, data_block_t block) {
1290 struct block_cache_entry* entry;
1291
1292 entry = block_cache_lookup(NULL, dev, block, false);
1293 return !entry || !block_cache_entry_data_is_dirty(entry);
1294 }
1295
1296 /**
1297 * block_discard_dirty - Discard dirty cache data.
1298 * @data: Block data pointer
1299 */
block_discard_dirty(const void * data)1300 void block_discard_dirty(const void* data) {
1301 struct block_cache_entry* entry = data_to_block_cache_entry(data);
1302
1303 if (block_cache_entry_data_is_dirty(entry)) {
1304 assert(entry->dev);
1305 block_cache_entry_discard_dirty(entry);
1306 }
1307 }
1308
1309 /**
1310 * block_discard_dirty_by_block - Discard cache entry if dirty.
1311 * @dev: Block device
1312 * @block: Block number
1313 */
block_discard_dirty_by_block(struct block_device * dev,data_block_t block)1314 void block_discard_dirty_by_block(struct block_device* dev,
1315 data_block_t block) {
1316 struct block_cache_entry* entry;
1317
1318 entry = block_cache_lookup(NULL, dev, block, false);
1319 if (!entry) {
1320 return;
1321 }
1322 assert(!entry->dirty_ref);
1323 assert(!block_cache_entry_has_refs(entry));
1324 if (!block_cache_entry_data_is_dirty(entry)) {
1325 return;
1326 }
1327 block_discard_dirty(entry->data);
1328 }
1329
1330 /**
1331 * block_put_dirty - Release reference to dirty block.
1332 * @tr: Transaction
1333 * @data: Block data pointer
1334 * @data_ref: Reference pointer to release
1335 * @block_mac: block_mac pointer to update after encryting block
1336 * @block_mac_ref: Block data pointer that @block_mac belongs to, or NULL if
1337 * @block_mac points to a memory only location.
1338 *
1339 * Helper function to for block_put_dirty, block_put_dirty_no_mac and
1340 * block_put_dirty_discard.
1341 */
block_put_dirty_etc(struct transaction * tr,void * data,struct obj_ref * data_ref,struct block_mac * block_mac,void * block_mac_ref)1342 static void block_put_dirty_etc(struct transaction* tr,
1343 void* data,
1344 struct obj_ref* data_ref,
1345 struct block_mac* block_mac,
1346 void* block_mac_ref) {
1347 int ret;
1348 struct block_cache_entry* entry = data_to_block_cache_entry(data);
1349 struct block_cache_entry* parent =
1350 data_to_block_cache_entry_or_null(block_mac_ref);
1351 struct iv* iv = (void*)entry->data; /* TODO: support external iv */
1352
1353 if (tr) {
1354 assert(block_mac);
1355 assert(entry->state == BLOCK_ENTRY_DATA_DIRTY_DECRYPTED);
1356 assert(entry->dirty_ref);
1357 } else {
1358 assert(!block_mac);
1359 }
1360 assert(entry->guard1 == BLOCK_CACHE_GUARD_1);
1361 assert(entry->guard2 == BLOCK_CACHE_GUARD_2);
1362
1363 entry->dirty_ref = false;
1364 if (block_cache_entry_data_is_dirty(entry)) {
1365 entry->dirty_mac = true;
1366 ret = generate_iv(iv);
1367 assert(!ret);
1368 } else {
1369 pr_warn("block %" PRIu64 ", not dirty\n", entry->block);
1370 assert(entry->dirty_tr == NULL);
1371 assert(!tr);
1372 }
1373
1374 block_put(data, data_ref);
1375 /* TODO: fix clients to support lazy write */
1376 assert(block_cache_entry_data_is_encrypted(entry) || !tr);
1377 assert(!entry->dirty_mac);
1378 if (block_mac) {
1379 assert(block_mac_to_block(tr, block_mac) == entry->block);
1380 block_mac_set_mac(tr, block_mac, &entry->mac);
1381 }
1382 #if TLOG_LVL >= TLOG_LVL_DEBUG
1383 if (print_mac_update) {
1384 printf("%s: block %" PRIu64 ", update parent mac, %p, block %" PRIu64
1385 "\n",
1386 __func__, entry->block, block_mac, parent ? parent->block : 0);
1387 }
1388 #endif
1389 }
1390
1391 /**
1392 * block_put_dirty - Release reference to dirty block.
1393 * @tr: Transaction
1394 * @data: Block data pointer
1395 * @data_ref: Reference pointer to release
1396 * @block_mac: block_mac pointer to update after encryting block
1397 * @block_mac_ref: Block data pointer that @block_mac belongs to, or NULL if
1398 * @block_mac points to a memory only location.
1399 */
block_put_dirty(struct transaction * tr,void * data,struct obj_ref * data_ref,struct block_mac * block_mac,void * block_mac_ref)1400 void block_put_dirty(struct transaction* tr,
1401 void* data,
1402 struct obj_ref* data_ref,
1403 struct block_mac* block_mac,
1404 void* block_mac_ref) {
1405 assert(tr);
1406 assert(block_mac);
1407 block_put_dirty_etc(tr, data, data_ref, block_mac, block_mac_ref);
1408 }
1409
1410 /**
1411 * block_put_dirty_no_mac - Release reference to dirty super block.
1412 * @data: Block data pointer
1413 * @data_ref: Reference pointer to release
1414 * @allow_tampering: %true if this file system does not require tamper-proof
1415 * super block storage, %false if tamper detection must be
1416 * required.
1417 *
1418 * Similar to block_put_dirty except no transaction or block_mac is needed.
1419 */
block_put_dirty_no_mac(void * data,struct obj_ref * data_ref,bool allow_tampering)1420 void block_put_dirty_no_mac(void* data,
1421 struct obj_ref* data_ref,
1422 bool allow_tampering) {
1423 struct block_cache_entry* entry = data_to_block_cache_entry(data);
1424
1425 assert(entry->dev);
1426 assert((allow_tampering && !entry->dev->tamper_detecting) ||
1427 (!allow_tampering && entry->dev->tamper_detecting));
1428 block_put_dirty_etc(NULL, data, data_ref, NULL, NULL);
1429 }
1430
1431 /**
1432 * block_put_dirty_discard - Release reference to dirty block.
1433 * @data: Block data pointer
1434 * @data_ref: Reference pointer to release
1435 *
1436 * Similar to block_put_dirty except data can be discarded.
1437 */
block_put_dirty_discard(void * data,struct obj_ref * data_ref)1438 void block_put_dirty_discard(void* data, struct obj_ref* data_ref) {
1439 block_put_dirty_etc(NULL, data, data_ref, NULL, NULL);
1440 block_discard_dirty(data);
1441 }
1442
1443 /**
1444 * block_get_write_no_read - Get block data without read for write
1445 * @tr: Transaction
1446 * @block: Block number
1447 * @is_tmp: If true, data is only needed until @tr is commited.
1448 * @ref: Pointer to store reference in.
1449 *
1450 * Same as block_get_no_read followed by block_dirty.
1451 *
1452 * Return: Block data pointer.
1453 */
block_get_write_no_read(struct transaction * tr,data_block_t block,bool is_tmp,struct obj_ref * ref)1454 void* block_get_write_no_read(struct transaction* tr,
1455 data_block_t block,
1456 bool is_tmp,
1457 struct obj_ref* ref) {
1458 const void* data_ro = block_get_no_read(tr, block, ref);
1459 return block_dirty(tr, data_ro, is_tmp);
1460 }
1461
1462 /**
1463 * block_get_write - Get block data for write
1464 * @tr: Transaction
1465 * @block_mac: Block number and mac
1466 * @iv: Initial vector used to decrypt block, or NULL. If NULL, the
1467 * start of the loaded block data is used as the iv.
1468 * Only NULL is currently supported.
1469 * @is_tmp: If true, data is only needed until @tr is commited.
1470 * @ref: Pointer to store reference in.
1471 *
1472 * Same as block_get followed by block_dirty.
1473 *
1474 * Return: Block data pointer.
1475 */
block_get_write(struct transaction * tr,const struct block_mac * block_mac,const struct iv * iv,bool is_tmp,struct obj_ref * ref)1476 void* block_get_write(struct transaction* tr,
1477 const struct block_mac* block_mac,
1478 const struct iv* iv,
1479 bool is_tmp,
1480 struct obj_ref* ref) {
1481 const void* data_ro = block_get(tr, block_mac, iv, ref);
1482 if (!data_ro) {
1483 return NULL;
1484 }
1485 return block_dirty(tr, data_ro, is_tmp);
1486 }
1487
1488 /**
1489 * block_get_cleared - Get block cleared data for write
1490 * @tr: Transaction
1491 * @block: Block number
1492 * @is_tmp: If true, data is only needed until @tr is commited.
1493 * @ref: Pointer to store reference in.
1494 *
1495 * Return: Block data pointer.
1496 */
block_get_cleared(struct transaction * tr,data_block_t block,bool is_tmp,struct obj_ref * ref)1497 void* block_get_cleared(struct transaction* tr,
1498 data_block_t block,
1499 bool is_tmp,
1500 struct obj_ref* ref) {
1501 void* data = block_get_write_no_read(tr, block, is_tmp, ref);
1502 memset(data, 0, MAX_BLOCK_SIZE);
1503 return data;
1504 }
1505
1506 /**
1507 * block_get_cleared_super - Get block with cleared data for write on super_dev
1508 * @tr: Transaction
1509 * @block: Block number
1510 * @ref: Pointer to store reference in.
1511 * @pinned: Pin this block in the cache until it is successfully written
1512 *
1513 * Return: Block data pointer.
1514 */
block_get_cleared_super(struct transaction * tr,data_block_t block,struct obj_ref * ref,bool pinned)1515 void* block_get_cleared_super(struct transaction* tr,
1516 data_block_t block,
1517 struct obj_ref* ref,
1518 bool pinned) {
1519 void* data_rw;
1520 const void* data_ro = block_cache_get_data(tr->fs, tr->fs->super_dev, block,
1521 false, NULL, 0, ref, NULL);
1522
1523 /*
1524 * We should never end up in a situation where there is a dirty copy of a
1525 * super block in the cache while we are trying to rewrite that super block.
1526 * If a super block entry was created via write_current_super_block(), it
1527 * must be flushed before the necessary data writes go through to write new
1528 * root nodes. If we are trying to commit an empty transaction (i.e. no data
1529 * blocks changed), we skip the super block update in
1530 * transaction_complete(). The only other way to write a new super block,
1531 * write_current_super_block(), will be a no-op if there is already a
1532 * pending super block rewrite.
1533 */
1534 assert(data_ro);
1535 struct block_cache_entry* entry = data_to_block_cache_entry(data_ro);
1536 assert(!block_cache_entry_data_is_dirty(entry));
1537 entry->pinned = pinned;
1538 entry->is_superblock = true;
1539
1540 data_rw = block_dirty(tr, data_ro, false);
1541 assert(tr->fs->super_dev->block_size <= MAX_BLOCK_SIZE);
1542 memset(data_rw, 0, tr->fs->super_dev->block_size);
1543 return data_rw;
1544 }
1545
1546 /**
1547 * block_get_copy - Get block for write with data copied from another block.
1548 * @tr: Transaction
1549 * @data: Block data pointer
1550 * @block: New block number
1551 * @is_tmp: If true, data is only needed until @tr is commited.
1552 * @new_ref: Pointer to store reference to new block in.
1553 *
1554 * Return: Block data pointer.
1555 */
block_get_copy(struct transaction * tr,const void * data,data_block_t block,bool is_tmp,struct obj_ref * new_ref)1556 void* block_get_copy(struct transaction* tr,
1557 const void* data,
1558 data_block_t block,
1559 bool is_tmp,
1560 struct obj_ref* new_ref) {
1561 void* dst_data;
1562 struct block_cache_entry* src_entry = data_to_block_cache_entry(data);
1563
1564 assert(block);
1565 assert(block < tr->fs->dev->block_count);
1566
1567 dst_data = block_get_write_no_read(tr, block, is_tmp, new_ref);
1568 memcpy(dst_data, data, src_entry->block_size);
1569 return dst_data;
1570 }
1571
1572 /**
1573 * block_move - Get block for write and move to new location
1574 * @tr: Transaction
1575 * @data: Block data pointer
1576 * @block: New block number
1577 * @is_tmp: If true, data is only needed until @tr is commited.
1578 *
1579 * Change block number of cache entry mark new block dirty. Useful for
1580 * copy-on-write.
1581 *
1582 * Return: Non-const block data pointer.
1583 */
block_move(struct transaction * tr,const void * data,data_block_t block,bool is_tmp)1584 void* block_move(struct transaction* tr,
1585 const void* data,
1586 data_block_t block,
1587 bool is_tmp) {
1588 struct block_cache_entry* dest_entry;
1589 struct block_cache_entry* entry = data_to_block_cache_entry(data);
1590
1591 assert(block_cache_entry_has_one_ref(entry));
1592 assert(!block_cache_entry_data_is_dirty(entry));
1593 assert(entry->dev == tr->fs->dev);
1594
1595 if (print_block_move) {
1596 printf("%s: move cache entry %zd, from block %" PRIu64 " to %" PRIu64
1597 "\n",
1598 __func__, entry - block_cache_entries, entry->block, block);
1599 }
1600
1601 dest_entry = block_cache_lookup(NULL, tr->fs->dev, block, false);
1602 if (dest_entry) {
1603 assert(!block_cache_entry_has_refs(dest_entry));
1604 assert(!dest_entry->dirty_ref);
1605 assert(!dest_entry->dirty_tr || dest_entry->dirty_tr == tr);
1606 assert(!list_in_list(&dest_entry->io_op_node));
1607 assert(dest_entry->block == block);
1608 if (print_block_move) {
1609 printf("%s: clear old cache entry for block %" PRIu64 ", %zd\n",
1610 __func__, block, dest_entry - block_cache_entries);
1611 }
1612 /* TODO: Use block_cache_entry_discard instead? */
1613 block_cache_entry_discard_dirty(dest_entry);
1614 }
1615
1616 entry->block = block;
1617 return block_dirty(tr, data, is_tmp);
1618 }
1619
1620 /**
1621 * block_put - Release reference to block.
1622 * @data: Block data pointer
1623 * @data_ref: Reference pointer to release
1624 */
block_put(const void * data,struct obj_ref * ref)1625 void block_put(const void* data, struct obj_ref* ref) {
1626 struct block_cache_entry* entry = data_to_block_cache_entry(data);
1627
1628 if (print_block_ops) {
1629 printf("%s: block %" PRIu64 ", cache entry %zd, state %s\n", __func__,
1630 entry->block, entry - block_cache_entries,
1631 block_cache_entry_data_state_name(entry->state));
1632 }
1633
1634 assert(!entry->dirty_ref);
1635
1636 obj_del_ref(&entry->obj, ref, block_cache_entry_destroy);
1637 }
1638
1639 /**
1640 * block_probe - Verify that the given block is loadable and its mac is correct
1641 * @fs: Filesystem containing the block to probe
1642 * @block_mac: Block to probe
1643 * @allow_invalid: If %true, an invalid (i.e. zero) @block_mac will not be
1644 * probed and this function will return true
1645 *
1646 * Return: %false if the block is not valid or does not match the expected mac.
1647 * Returns %true if the block was readable, valid and matched the expected mac.
1648 * If @allow_invalid is %true, also return %true if @block_mac is invalid. Also
1649 * returns %true if an I/O error was encountered which does not positively
1650 * confirm a corrupted block.
1651 */
block_probe(struct fs * fs,const struct block_mac * block_mac,bool allow_invalid)1652 bool block_probe(struct fs* fs,
1653 const struct block_mac* block_mac,
1654 bool allow_invalid) {
1655 struct transaction probe_tr;
1656 struct obj_ref probe_ref = OBJ_REF_INITIAL_VALUE(probe_ref);
1657 const void* probe_block;
1658 /*
1659 * Assume the block is valid unless we get positive confirmation of an
1660 * invalid block.
1661 */
1662 bool valid = true;
1663
1664 transaction_init(&probe_tr, fs, true);
1665 if (block_mac_valid(&probe_tr, block_mac)) {
1666 probe_block =
1667 block_get_no_tr_fail(&probe_tr, block_mac, NULL, &probe_ref);
1668 if (probe_block) {
1669 block_put(probe_block, &probe_ref);
1670 } else if (probe_tr.invalid_block_found) {
1671 valid = false;
1672 }
1673 } else if (allow_invalid) {
1674 valid = true;
1675 }
1676 transaction_fail(&probe_tr);
1677 transaction_free(&probe_tr);
1678
1679 return valid;
1680 }
1681
1682 /**
1683 * data_to_block_num - Get block number from block data pointer
1684 * @data: Block data pointer
1685 *
1686 * Only used for debug code.
1687 *
1688 * Return: block number.
1689 */
data_to_block_num(const void * data)1690 data_block_t data_to_block_num(const void* data) {
1691 struct block_cache_entry* entry = data_to_block_cache_entry(data);
1692
1693 return entry->block;
1694 }
1695
1696 /**
1697 * block_cache_debug_get_ref_block_count - Get number of blocks that have
1698 * references
1699 *
1700 * Only used for debug code.
1701 *
1702 * Return: number of blocks in cache that have references.
1703 */
block_cache_debug_get_ref_block_count(void)1704 unsigned int block_cache_debug_get_ref_block_count(void) {
1705 unsigned int count = 0;
1706 struct block_cache_entry* entry;
1707
1708 list_for_every_entry(&block_cache_lru, entry, struct block_cache_entry,
1709 lru_node) {
1710 assert(entry->guard1 == BLOCK_CACHE_GUARD_1);
1711 assert(entry->guard2 == BLOCK_CACHE_GUARD_2);
1712 if (block_cache_entry_has_refs(entry)) {
1713 if (print_cache_get_ref_block_count) {
1714 #if TLOG_LVL >= TLOG_LVL_DEBUG
1715 printf("%s: cache entry %zd in use for %" PRIu64 ", dev %p\n",
1716 __func__, entry - block_cache_entries, entry->block,
1717 entry->dev);
1718 #else
1719 printf("%s: cache entry %zd in use for %" PRIu64 "\n",
1720 __func__, entry - block_cache_entries, entry->block);
1721 #endif
1722 }
1723 count++;
1724 }
1725 }
1726 return count;
1727 }
1728