1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_CPU_OPERATION_UTILS_H
18 #define ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_CPU_OPERATION_UTILS_H
19
20 #include <android-base/logging.h>
21 #include <tensorflow/lite/kernels/internal/types.h>
22
23 #include <algorithm>
24 #include <cmath>
25 #include <limits>
26 #include <vector>
27
28 #include "OperationsExecutionUtils.h"
29
30 namespace android {
31 namespace nn {
32
33 // The implementations in tflite/kernels/internal/ take a Dims<4> object
34 // even if the original tensors were not 4D.
convertShapeToDims(const Shape & shape)35 inline tflite::Dims<4> convertShapeToDims(const Shape& shape) {
36 CHECK_LE(shape.dimensions.size(), 4u);
37 tflite::Dims<4> dims;
38
39 // The dimensions are reversed in Dims<4>.
40 for (int i = 0; i < 4; ++i) {
41 int src = static_cast<int>(shape.dimensions.size()) - i - 1;
42 if (src >= 0) {
43 dims.sizes[i] = static_cast<int>(getSizeOfDimension(shape, src));
44 } else {
45 dims.sizes[i] = 1;
46 }
47 }
48
49 dims.strides[0] = 1;
50 for (int i = 1; i < 4; i++) {
51 dims.strides[i] = dims.strides[i - 1] * dims.sizes[i - 1];
52 }
53 return dims;
54 }
55
convertShapeToTflshape(const Shape & shape)56 inline tflite::RuntimeShape convertShapeToTflshape(const Shape& shape) {
57 std::vector<int32_t> tflShapeDim(shape.dimensions.begin(), shape.dimensions.end());
58 return tflite::RuntimeShape(tflShapeDim.size(), tflShapeDim.data());
59 }
60
convertFloat16ToFloat32(const _Float16 * input,std::vector<float> * output)61 inline void convertFloat16ToFloat32(const _Float16* input, std::vector<float>* output) {
62 CHECK(input != nullptr);
63 CHECK(output != nullptr);
64 for (size_t i = 0; i < output->size(); ++i) {
65 (*output)[i] = static_cast<float>(input[i]);
66 }
67 }
68
convertFloat32ToFloat16(const std::vector<float> & input,_Float16 * output)69 inline void convertFloat32ToFloat16(const std::vector<float>& input, _Float16* output) {
70 CHECK(output != nullptr);
71 for (size_t i = 0; i < input.size(); ++i) {
72 output[i] = input[i];
73 }
74 }
75
76 // Convert int8 quantized values to uint8 assuming that the scale is the same
77 // and the distance between offsets is 128.
convertInt8ToUInt8(const int8_t * input,std::vector<uint8_t> * output)78 inline void convertInt8ToUInt8(const int8_t* input, std::vector<uint8_t>* output) {
79 CHECK(input != nullptr);
80 CHECK(output != nullptr);
81 for (size_t i = 0; i < output->size(); ++i) {
82 (*output)[i] = static_cast<uint8_t>(static_cast<int32_t>(input[i]) + 128);
83 }
84 }
85
86 // Convert uint8 quantized values to int8 assuming that the scale is the same
87 // and the distance between offsets is 128.
convertUInt8ToInt8(const std::vector<uint8_t> & input,int8_t * output)88 inline void convertUInt8ToInt8(const std::vector<uint8_t>& input, int8_t* output) {
89 CHECK(output != nullptr);
90 for (size_t i = 0; i < input.size(); ++i) {
91 output[i] = static_cast<int8_t>(static_cast<int32_t>(input[i]) - 128);
92 }
93 }
94
95 template <typename T>
convertQuantToFloat32(const T * input,float scale,int32_t zeroPoint,std::vector<float> * output)96 inline void convertQuantToFloat32(const T* input, float scale, int32_t zeroPoint,
97 std::vector<float>* output) {
98 CHECK(input != nullptr);
99 CHECK(output != nullptr);
100 for (size_t i = 0; i < output->size(); ++i) {
101 (*output)[i] = (static_cast<float>(input[i]) - zeroPoint) * scale;
102 }
103 }
104
105 template <typename T>
convertFloat32ToQuant(const std::vector<float> & input,float scale,int32_t zeroPoint,T * output)106 inline void convertFloat32ToQuant(const std::vector<float>& input, float scale, int32_t zeroPoint,
107 T* output) {
108 CHECK(output != nullptr);
109 for (size_t i = 0; i < input.size(); ++i) {
110 int32_t intVal = std::round(input[i] / scale + zeroPoint);
111 intVal = std::min<int32_t>(std::max<int32_t>(intVal, std::numeric_limits<T>::min()),
112 std::numeric_limits<T>::max());
113 output[i] = static_cast<T>(intVal);
114 }
115 }
116
117 template <typename T>
convertNchwToNhwc(const T * nchw,const Shape & nchwShape,std::vector<T> * nhwc,Shape * nhwcShape)118 inline bool convertNchwToNhwc(const T* nchw, const Shape& nchwShape, std::vector<T>* nhwc,
119 Shape* nhwcShape) {
120 NN_RET_CHECK_EQ(getNumberOfDimensions(nchwShape), 4u)
121 << "Error converting a non-4-D tensor to NHWC layout";
122 *nhwcShape = nchwShape;
123 const auto& fromDim = nchwShape.dimensions;
124 nhwcShape->dimensions = {fromDim[0], fromDim[2], fromDim[3], fromDim[1]};
125 nhwc->resize(getNumberOfElements(nchwShape));
126 auto to = nhwc->data();
127 uint32_t spatialSize = fromDim[2] * fromDim[3];
128 for (uint32_t n = 0; n < fromDim[0]; n++) {
129 for (uint32_t hw = 0; hw < spatialSize; hw++) {
130 for (uint32_t c = 0; c < fromDim[1]; c++) {
131 uint32_t fromIndex = n * fromDim[1] * spatialSize + c * spatialSize + hw;
132 *to++ = nchw[fromIndex];
133 }
134 }
135 }
136 return true;
137 }
138
139 template <typename T>
convertNhwcToNchw(const std::vector<T> & nhwc,const Shape & nhwcShape,T * nchw)140 inline bool convertNhwcToNchw(const std::vector<T>& nhwc, const Shape& nhwcShape, T* nchw) {
141 NN_RET_CHECK_EQ(getNumberOfDimensions(nhwcShape), 4u)
142 << "Error converting a non-4-D tensor to NCHW layout";
143 const auto& fromDim = nhwcShape.dimensions;
144 const auto from = nhwc.data();
145 uint32_t spatialSize = fromDim[1] * fromDim[2];
146 for (uint32_t n = 0; n < fromDim[0]; n++) {
147 for (uint32_t c = 0; c < fromDim[3]; c++) {
148 for (uint32_t hw = 0; hw < spatialSize; hw++) {
149 uint32_t fromIndex = n * spatialSize * fromDim[3] + hw * fromDim[3] + c;
150 *nchw++ = from[fromIndex];
151 }
152 }
153 }
154 return true;
155 }
156
157 template <typename T>
158 class InputWithLayout {
159 public:
InputWithLayout(bool useNchw)160 InputWithLayout(bool useNchw) : mDataOriginal(nullptr), mUseNchw(useNchw) {}
161
initialize(const T * data,const Shape & shape)162 bool initialize(const T* data, const Shape& shape) {
163 mDataOriginal = data;
164 mShape = shape;
165 if (mUseNchw) {
166 return convertNchwToNhwc(mDataOriginal, shape, &mDataNhwc, &mShape);
167 }
168 return true;
169 }
170
getNhwcBuffer()171 const T* getNhwcBuffer() { return mUseNchw ? mDataNhwc.data() : mDataOriginal; }
getNhwcShape()172 const Shape& getNhwcShape() { return mShape; }
173
174 private:
175 const T* mDataOriginal;
176 std::vector<T> mDataNhwc;
177 Shape mShape;
178 bool mUseNchw;
179 };
180
181 template <typename T>
182 class OutputWithLayout {
183 public:
OutputWithLayout(bool useNchw)184 OutputWithLayout(bool useNchw) : mDataOriginal(nullptr), mUseNchw(useNchw) {}
185
initialize(T * data,const Shape & shape)186 bool initialize(T* data, const Shape& shape) {
187 NN_RET_CHECK_EQ(getNumberOfDimensions(shape), 4u);
188 mDataOriginal = data;
189 mShape = shape;
190 if (mUseNchw) {
191 const auto& dim = shape.dimensions;
192 mShape.dimensions = {dim[0], dim[2], dim[3], dim[1]};
193 mDataNhwc.resize(getNumberOfElements(shape));
194 }
195 return true;
196 }
197
getNhwcBuffer()198 T* getNhwcBuffer() { return mUseNchw ? mDataNhwc.data() : mDataOriginal; }
getNhwcShape()199 const Shape& getNhwcShape() { return mShape; }
commit()200 bool commit() {
201 if (mUseNchw) {
202 return convertNhwcToNchw(mDataNhwc, mShape, mDataOriginal);
203 }
204 return true;
205 }
206
207 private:
208 T* mDataOriginal;
209 std::vector<T> mDataNhwc;
210 Shape mShape;
211 bool mUseNchw;
212 };
213
214 template <typename T>
215 inline void CalculateActivationRange(int32_t activation, const Shape& outputShape,
216 int32_t* outputActivationMin, int32_t* outputActivationMax);
217
218 template <>
219 inline void CalculateActivationRange<uint8_t>(int32_t activation, const Shape& outputShape,
220 int32_t* outputActivationMin,
221 int32_t* outputActivationMax) {
222 CalculateActivationRangeUint8(activation, outputShape, outputActivationMin,
223 outputActivationMax);
224 }
225
226 template <>
227 inline void CalculateActivationRange<int8_t>(int32_t activation, const Shape& outputShape,
228 int32_t* outputActivationMin,
229 int32_t* outputActivationMax) {
230 CalculateActivationRangeInt8(activation, outputShape, outputActivationMin, outputActivationMax);
231 }
232
233 } // namespace nn
234 } // namespace android
235
236 #endif // ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_CPU_OPERATION_UTILS_H
237