1 /* 2 * Copyright (c) 2012, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 package java.util.stream; 26 27 import java.util.Objects; 28 import java.util.Spliterator; 29 import java.util.function.IntFunction; 30 import java.util.function.Supplier; 31 32 /** 33 * Abstract base class for "pipeline" classes, which are the core 34 * implementations of the Stream interface and its primitive specializations. 35 * Manages construction and evaluation of stream pipelines. 36 * 37 * <p>An {@code AbstractPipeline} represents an initial portion of a stream 38 * pipeline, encapsulating a stream source and zero or more intermediate 39 * operations. The individual {@code AbstractPipeline} objects are often 40 * referred to as <em>stages</em>, where each stage describes either the stream 41 * source or an intermediate operation. 42 * 43 * <p>A concrete intermediate stage is generally built from an 44 * {@code AbstractPipeline}, a shape-specific pipeline class which extends it 45 * (e.g., {@code IntPipeline}) which is also abstract, and an operation-specific 46 * concrete class which extends that. {@code AbstractPipeline} contains most of 47 * the mechanics of evaluating the pipeline, and implements methods that will be 48 * used by the operation; the shape-specific classes add helper methods for 49 * dealing with collection of results into the appropriate shape-specific 50 * containers. 51 * 52 * <p>After chaining a new intermediate operation, or executing a terminal 53 * operation, the stream is considered to be consumed, and no more intermediate 54 * or terminal operations are permitted on this stream instance. 55 * 56 * @implNote 57 * <p>For sequential streams, and parallel streams without 58 * <a href="package-summary.html#StreamOps">stateful intermediate 59 * operations</a>, parallel streams, pipeline evaluation is done in a single 60 * pass that "jams" all the operations together. For parallel streams with 61 * stateful operations, execution is divided into segments, where each 62 * stateful operations marks the end of a segment, and each segment is 63 * evaluated separately and the result used as the input to the next 64 * segment. In all cases, the source data is not consumed until a terminal 65 * operation begins. 66 * 67 * @param <E_IN> type of input elements 68 * @param <E_OUT> type of output elements 69 * @param <S> type of the subclass implementing {@code BaseStream} 70 * @since 1.8 71 * @hide Made public for CTS tests only (OpenJDK 8 streams tests). 72 */ 73 // Android-changed: Made public for CTS tests only. 74 public abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>> 75 extends PipelineHelper<E_OUT> implements BaseStream<E_OUT, S> { 76 private static final String MSG_STREAM_LINKED = "stream has already been operated upon or closed"; 77 private static final String MSG_CONSUMED = "source already consumed or closed"; 78 79 /** 80 * Backlink to the head of the pipeline chain (self if this is the source 81 * stage). 82 */ 83 @SuppressWarnings("rawtypes") 84 private final AbstractPipeline sourceStage; 85 86 /** 87 * The "upstream" pipeline, or null if this is the source stage. 88 */ 89 @SuppressWarnings("rawtypes") 90 private final AbstractPipeline previousStage; 91 92 /** 93 * The operation flags for the intermediate operation represented by this 94 * pipeline object. 95 */ 96 protected final int sourceOrOpFlags; 97 98 /** 99 * The next stage in the pipeline, or null if this is the last stage. 100 * Effectively final at the point of linking to the next pipeline. 101 */ 102 @SuppressWarnings("rawtypes") 103 private AbstractPipeline nextStage; 104 105 /** 106 * The number of intermediate operations between this pipeline object 107 * and the stream source if sequential, or the previous stateful if parallel. 108 * Valid at the point of pipeline preparation for evaluation. 109 */ 110 private int depth; 111 112 /** 113 * The combined source and operation flags for the source and all operations 114 * up to and including the operation represented by this pipeline object. 115 * Valid at the point of pipeline preparation for evaluation. 116 */ 117 private int combinedFlags; 118 119 /** 120 * The source spliterator. Only valid for the head pipeline. 121 * Before the pipeline is consumed if non-null then {@code sourceSupplier} 122 * must be null. After the pipeline is consumed if non-null then is set to 123 * null. 124 */ 125 private Spliterator<?> sourceSpliterator; 126 127 /** 128 * The source supplier. Only valid for the head pipeline. Before the 129 * pipeline is consumed if non-null then {@code sourceSpliterator} must be 130 * null. After the pipeline is consumed if non-null then is set to null. 131 */ 132 private Supplier<? extends Spliterator<?>> sourceSupplier; 133 134 /** 135 * True if this pipeline has been linked or consumed 136 */ 137 private boolean linkedOrConsumed; 138 139 /** 140 * True if there are any stateful ops in the pipeline; only valid for the 141 * source stage. 142 */ 143 private boolean sourceAnyStateful; 144 145 private Runnable sourceCloseAction; 146 147 /** 148 * True if pipeline is parallel, otherwise the pipeline is sequential; only 149 * valid for the source stage. 150 */ 151 private boolean parallel; 152 153 /** 154 * Constructor for the head of a stream pipeline. 155 * 156 * @param source {@code Supplier<Spliterator>} describing the stream source 157 * @param sourceFlags The source flags for the stream source, described in 158 * {@link StreamOpFlag} 159 * @param parallel True if the pipeline is parallel 160 */ AbstractPipeline(Supplier<? extends Spliterator<?>> source, int sourceFlags, boolean parallel)161 AbstractPipeline(Supplier<? extends Spliterator<?>> source, 162 int sourceFlags, boolean parallel) { 163 this.previousStage = null; 164 this.sourceSupplier = source; 165 this.sourceStage = this; 166 this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK; 167 // The following is an optimization of: 168 // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE); 169 this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE; 170 this.depth = 0; 171 this.parallel = parallel; 172 } 173 174 /** 175 * Constructor for the head of a stream pipeline. 176 * 177 * @param source {@code Spliterator} describing the stream source 178 * @param sourceFlags the source flags for the stream source, described in 179 * {@link StreamOpFlag} 180 * @param parallel {@code true} if the pipeline is parallel 181 */ AbstractPipeline(Spliterator<?> source, int sourceFlags, boolean parallel)182 AbstractPipeline(Spliterator<?> source, 183 int sourceFlags, boolean parallel) { 184 this.previousStage = null; 185 this.sourceSpliterator = source; 186 this.sourceStage = this; 187 this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK; 188 // The following is an optimization of: 189 // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE); 190 this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE; 191 this.depth = 0; 192 this.parallel = parallel; 193 } 194 195 /** 196 * Constructor for appending an intermediate operation stage onto an 197 * existing pipeline. 198 * 199 * @param previousStage the upstream pipeline stage 200 * @param opFlags the operation flags for the new stage, described in 201 * {@link StreamOpFlag} 202 */ AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags)203 AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) { 204 if (previousStage.linkedOrConsumed) 205 throw new IllegalStateException(MSG_STREAM_LINKED); 206 previousStage.linkedOrConsumed = true; 207 previousStage.nextStage = this; 208 209 this.previousStage = previousStage; 210 this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK; 211 this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags); 212 this.sourceStage = previousStage.sourceStage; 213 if (opIsStateful()) 214 sourceStage.sourceAnyStateful = true; 215 this.depth = previousStage.depth + 1; 216 } 217 218 219 // Terminal evaluation methods 220 221 /** 222 * Evaluate the pipeline with a terminal operation to produce a result. 223 * 224 * @param <R> the type of result 225 * @param terminalOp the terminal operation to be applied to the pipeline. 226 * @return the result 227 */ evaluate(TerminalOp<E_OUT, R> terminalOp)228 final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) { 229 assert getOutputShape() == terminalOp.inputShape(); 230 if (linkedOrConsumed) 231 throw new IllegalStateException(MSG_STREAM_LINKED); 232 linkedOrConsumed = true; 233 234 return isParallel() 235 ? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags())) 236 : terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags())); 237 } 238 239 /** 240 * Collect the elements output from the pipeline stage. 241 * 242 * @param generator the array generator to be used to create array instances 243 * @return a flat array-backed Node that holds the collected output elements 244 */ 245 @SuppressWarnings("unchecked") 246 // Android-changed: Made public for CTS tests only. evaluateToArrayNode(IntFunction<E_OUT[]> generator)247 public final Node<E_OUT> evaluateToArrayNode(IntFunction<E_OUT[]> generator) { 248 if (linkedOrConsumed) 249 throw new IllegalStateException(MSG_STREAM_LINKED); 250 linkedOrConsumed = true; 251 252 // If the last intermediate operation is stateful then 253 // evaluate directly to avoid an extra collection step 254 if (isParallel() && previousStage != null && opIsStateful()) { 255 // Set the depth of this, last, pipeline stage to zero to slice the 256 // pipeline such that this operation will not be included in the 257 // upstream slice and upstream operations will not be included 258 // in this slice 259 depth = 0; 260 return opEvaluateParallel(previousStage, previousStage.sourceSpliterator(0), generator); 261 } 262 else { 263 return evaluate(sourceSpliterator(0), true, generator); 264 } 265 } 266 267 /** 268 * Gets the source stage spliterator if this pipeline stage is the source 269 * stage. The pipeline is consumed after this method is called and 270 * returns successfully. 271 * 272 * @return the source stage spliterator 273 * @throws IllegalStateException if this pipeline stage is not the source 274 * stage. 275 */ 276 @SuppressWarnings("unchecked") sourceStageSpliterator()277 final Spliterator<E_OUT> sourceStageSpliterator() { 278 if (this != sourceStage) 279 throw new IllegalStateException(); 280 281 if (linkedOrConsumed) 282 throw new IllegalStateException(MSG_STREAM_LINKED); 283 linkedOrConsumed = true; 284 285 if (sourceStage.sourceSpliterator != null) { 286 @SuppressWarnings("unchecked") 287 Spliterator<E_OUT> s = sourceStage.sourceSpliterator; 288 sourceStage.sourceSpliterator = null; 289 return s; 290 } 291 else if (sourceStage.sourceSupplier != null) { 292 @SuppressWarnings("unchecked") 293 Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSupplier.get(); 294 sourceStage.sourceSupplier = null; 295 return s; 296 } 297 else { 298 throw new IllegalStateException(MSG_CONSUMED); 299 } 300 } 301 302 // BaseStream 303 304 @Override 305 @SuppressWarnings("unchecked") sequential()306 public final S sequential() { 307 sourceStage.parallel = false; 308 return (S) this; 309 } 310 311 @Override 312 @SuppressWarnings("unchecked") parallel()313 public final S parallel() { 314 sourceStage.parallel = true; 315 return (S) this; 316 } 317 318 @Override close()319 public void close() { 320 linkedOrConsumed = true; 321 sourceSupplier = null; 322 sourceSpliterator = null; 323 if (sourceStage.sourceCloseAction != null) { 324 Runnable closeAction = sourceStage.sourceCloseAction; 325 sourceStage.sourceCloseAction = null; 326 closeAction.run(); 327 } 328 } 329 330 @Override 331 @SuppressWarnings("unchecked") onClose(Runnable closeHandler)332 public S onClose(Runnable closeHandler) { 333 if (linkedOrConsumed) 334 throw new IllegalStateException(MSG_STREAM_LINKED); 335 Objects.requireNonNull(closeHandler); 336 Runnable existingHandler = sourceStage.sourceCloseAction; 337 sourceStage.sourceCloseAction = 338 (existingHandler == null) 339 ? closeHandler 340 : Streams.composeWithExceptions(existingHandler, closeHandler); 341 return (S) this; 342 } 343 344 // Primitive specialization use co-variant overrides, hence is not final 345 @Override 346 @SuppressWarnings("unchecked") spliterator()347 public Spliterator<E_OUT> spliterator() { 348 if (linkedOrConsumed) 349 throw new IllegalStateException(MSG_STREAM_LINKED); 350 linkedOrConsumed = true; 351 352 if (this == sourceStage) { 353 if (sourceStage.sourceSpliterator != null) { 354 @SuppressWarnings("unchecked") 355 Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSpliterator; 356 sourceStage.sourceSpliterator = null; 357 return s; 358 } 359 else if (sourceStage.sourceSupplier != null) { 360 @SuppressWarnings("unchecked") 361 Supplier<Spliterator<E_OUT>> s = (Supplier<Spliterator<E_OUT>>) sourceStage.sourceSupplier; 362 sourceStage.sourceSupplier = null; 363 return lazySpliterator(s); 364 } 365 else { 366 throw new IllegalStateException(MSG_CONSUMED); 367 } 368 } 369 else { 370 return wrap(this, () -> sourceSpliterator(0), isParallel()); 371 } 372 } 373 374 @Override isParallel()375 public final boolean isParallel() { 376 return sourceStage.parallel; 377 } 378 379 380 /** 381 * Returns the composition of stream flags of the stream source and all 382 * intermediate operations. 383 * 384 * @return the composition of stream flags of the stream source and all 385 * intermediate operations 386 * @see StreamOpFlag 387 */ 388 // Android-changed: Made public for CTS tests only. getStreamFlags()389 public final int getStreamFlags() { 390 return StreamOpFlag.toStreamFlags(combinedFlags); 391 } 392 393 /** 394 * Get the source spliterator for this pipeline stage. For a sequential or 395 * stateless parallel pipeline, this is the source spliterator. For a 396 * stateful parallel pipeline, this is a spliterator describing the results 397 * of all computations up to and including the most recent stateful 398 * operation. 399 */ 400 @SuppressWarnings("unchecked") sourceSpliterator(int terminalFlags)401 private Spliterator<?> sourceSpliterator(int terminalFlags) { 402 // Get the source spliterator of the pipeline 403 Spliterator<?> spliterator = null; 404 if (sourceStage.sourceSpliterator != null) { 405 spliterator = sourceStage.sourceSpliterator; 406 sourceStage.sourceSpliterator = null; 407 } 408 else if (sourceStage.sourceSupplier != null) { 409 spliterator = (Spliterator<?>) sourceStage.sourceSupplier.get(); 410 sourceStage.sourceSupplier = null; 411 } 412 else { 413 throw new IllegalStateException(MSG_CONSUMED); 414 } 415 416 if (isParallel() && sourceStage.sourceAnyStateful) { 417 // Adapt the source spliterator, evaluating each stateful op 418 // in the pipeline up to and including this pipeline stage. 419 // The depth and flags of each pipeline stage are adjusted accordingly. 420 int depth = 1; 421 for (@SuppressWarnings("rawtypes") AbstractPipeline u = sourceStage, p = sourceStage.nextStage, e = this; 422 u != e; 423 u = p, p = p.nextStage) { 424 425 int thisOpFlags = p.sourceOrOpFlags; 426 if (p.opIsStateful()) { 427 depth = 0; 428 429 if (StreamOpFlag.SHORT_CIRCUIT.isKnown(thisOpFlags)) { 430 // Clear the short circuit flag for next pipeline stage 431 // This stage encapsulates short-circuiting, the next 432 // stage may not have any short-circuit operations, and 433 // if so spliterator.forEachRemaining should be used 434 // for traversal 435 thisOpFlags = thisOpFlags & ~StreamOpFlag.IS_SHORT_CIRCUIT; 436 } 437 438 spliterator = p.opEvaluateParallelLazy(u, spliterator); 439 440 // Inject or clear SIZED on the source pipeline stage 441 // based on the stage's spliterator 442 thisOpFlags = spliterator.hasCharacteristics(Spliterator.SIZED) 443 ? (thisOpFlags & ~StreamOpFlag.NOT_SIZED) | StreamOpFlag.IS_SIZED 444 : (thisOpFlags & ~StreamOpFlag.IS_SIZED) | StreamOpFlag.NOT_SIZED; 445 } 446 p.depth = depth++; 447 p.combinedFlags = StreamOpFlag.combineOpFlags(thisOpFlags, u.combinedFlags); 448 } 449 } 450 451 if (terminalFlags != 0) { 452 // Apply flags from the terminal operation to last pipeline stage 453 combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags); 454 } 455 456 return spliterator; 457 } 458 459 // PipelineHelper 460 461 @Override getSourceShape()462 final StreamShape getSourceShape() { 463 @SuppressWarnings("rawtypes") 464 AbstractPipeline p = AbstractPipeline.this; 465 while (p.depth > 0) { 466 p = p.previousStage; 467 } 468 return p.getOutputShape(); 469 } 470 471 @Override exactOutputSizeIfKnown(Spliterator<P_IN> spliterator)472 final <P_IN> long exactOutputSizeIfKnown(Spliterator<P_IN> spliterator) { 473 int flags = getStreamAndOpFlags(); 474 long size = StreamOpFlag.SIZED.isKnown(flags) ? spliterator.getExactSizeIfKnown() : -1; 475 // Currently, we have no stateless SIZE_ADJUSTING intermediate operations, 476 // so we can simply ignore SIZE_ADJUSTING in parallel streams, since adjustments 477 // are already accounted in the input spliterator. 478 // 479 // If we ever have a stateless SIZE_ADJUSTING intermediate operation, 480 // we would need step back until depth == 0, then call exactOutputSize() for 481 // the subsequent stages. 482 if (size != -1 && StreamOpFlag.SIZE_ADJUSTING.isKnown(flags) && !isParallel()) { 483 // Skip the source stage as it's never SIZE_ADJUSTING 484 for (AbstractPipeline<?, ?, ?> stage = sourceStage.nextStage; stage != null; stage = stage.nextStage) { 485 size = stage.exactOutputSize(size); 486 } 487 } 488 return size; 489 } 490 491 /** 492 * Returns the exact output size of the pipeline given the exact size reported by the previous stage. 493 * 494 * @param previousSize the exact size reported by the previous stage 495 * @return the output size of this stage 496 */ exactOutputSize(long previousSize)497 long exactOutputSize(long previousSize) { 498 return previousSize; 499 } 500 501 @Override wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator)502 final <P_IN, S extends Sink<E_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator) { 503 copyInto(wrapSink(Objects.requireNonNull(sink)), spliterator); 504 return sink; 505 } 506 507 @Override copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator)508 final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) { 509 Objects.requireNonNull(wrappedSink); 510 511 if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) { 512 wrappedSink.begin(spliterator.getExactSizeIfKnown()); 513 spliterator.forEachRemaining(wrappedSink); 514 wrappedSink.end(); 515 } 516 else { 517 copyIntoWithCancel(wrappedSink, spliterator); 518 } 519 } 520 521 @Override 522 @SuppressWarnings("unchecked") copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator)523 final <P_IN> boolean copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) { 524 @SuppressWarnings({"rawtypes","unchecked"}) 525 AbstractPipeline p = AbstractPipeline.this; 526 while (p.depth > 0) { 527 p = p.previousStage; 528 } 529 530 wrappedSink.begin(spliterator.getExactSizeIfKnown()); 531 boolean cancelled = p.forEachWithCancel(spliterator, wrappedSink); 532 wrappedSink.end(); 533 return cancelled; 534 } 535 536 @Override 537 // Android-changed: Made public for CTS tests only. getStreamAndOpFlags()538 public final int getStreamAndOpFlags() { 539 return combinedFlags; 540 } 541 isOrdered()542 final boolean isOrdered() { 543 return StreamOpFlag.ORDERED.isKnown(combinedFlags); 544 } 545 546 @Override 547 @SuppressWarnings("unchecked") 548 // Android-changed: Made public for CTS tests only. wrapSink(Sink<E_OUT> sink)549 public final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) { 550 Objects.requireNonNull(sink); 551 552 for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) { 553 sink = p.opWrapSink(p.previousStage.combinedFlags, sink); 554 } 555 return (Sink<P_IN>) sink; 556 } 557 558 @Override 559 @SuppressWarnings("unchecked") wrapSpliterator(Spliterator<P_IN> sourceSpliterator)560 final <P_IN> Spliterator<E_OUT> wrapSpliterator(Spliterator<P_IN> sourceSpliterator) { 561 if (depth == 0) { 562 return (Spliterator<E_OUT>) sourceSpliterator; 563 } 564 else { 565 return wrap(this, () -> sourceSpliterator, isParallel()); 566 } 567 } 568 569 @Override 570 @SuppressWarnings("unchecked") 571 // Android-changed: Made public for CTS tests only. evaluate(Spliterator<P_IN> spliterator, boolean flatten, IntFunction<E_OUT[]> generator)572 public final <P_IN> Node<E_OUT> evaluate(Spliterator<P_IN> spliterator, 573 boolean flatten, 574 IntFunction<E_OUT[]> generator) { 575 if (isParallel()) { 576 // @@@ Optimize if op of this pipeline stage is a stateful op 577 return evaluateToNode(this, spliterator, flatten, generator); 578 } 579 else { 580 Node.Builder<E_OUT> nb = makeNodeBuilder( 581 exactOutputSizeIfKnown(spliterator), generator); 582 return wrapAndCopyInto(nb, spliterator).build(); 583 } 584 } 585 586 587 // Shape-specific abstract methods, implemented by XxxPipeline classes 588 589 /** 590 * Get the output shape of the pipeline. If the pipeline is the head, 591 * then it's output shape corresponds to the shape of the source. 592 * Otherwise, it's output shape corresponds to the output shape of the 593 * associated operation. 594 * 595 * @return the output shape 596 */ 597 // Android-changed: Made public for CTS tests only. getOutputShape()598 public abstract StreamShape getOutputShape(); 599 600 /** 601 * Collect elements output from a pipeline into a Node that holds elements 602 * of this shape. 603 * 604 * @param helper the pipeline helper describing the pipeline stages 605 * @param spliterator the source spliterator 606 * @param flattenTree true if the returned node should be flattened 607 * @param generator the array generator 608 * @return a Node holding the output of the pipeline 609 */ 610 // Android-changed: Made public for CTS tests only. evaluateToNode(PipelineHelper<E_OUT> helper, Spliterator<P_IN> spliterator, boolean flattenTree, IntFunction<E_OUT[]> generator)611 public abstract <P_IN> Node<E_OUT> evaluateToNode(PipelineHelper<E_OUT> helper, 612 Spliterator<P_IN> spliterator, 613 boolean flattenTree, 614 IntFunction<E_OUT[]> generator); 615 616 /** 617 * Create a spliterator that wraps a source spliterator, compatible with 618 * this stream shape, and operations associated with a {@link 619 * PipelineHelper}. 620 * 621 * @param ph the pipeline helper describing the pipeline stages 622 * @param supplier the supplier of a spliterator 623 * @return a wrapping spliterator compatible with this shape 624 */ 625 // Android-changed: Made public for CTS tests only. wrap(PipelineHelper<E_OUT> ph, Supplier<Spliterator<P_IN>> supplier, boolean isParallel)626 public abstract <P_IN> Spliterator<E_OUT> wrap(PipelineHelper<E_OUT> ph, 627 Supplier<Spliterator<P_IN>> supplier, 628 boolean isParallel); 629 630 /** 631 * Create a lazy spliterator that wraps and obtains the supplied the 632 * spliterator when a method is invoked on the lazy spliterator. 633 * @param supplier the supplier of a spliterator 634 */ 635 // Android-changed: Made public for CTS tests only. lazySpliterator(Supplier<? extends Spliterator<E_OUT>> supplier)636 public abstract Spliterator<E_OUT> lazySpliterator(Supplier<? extends Spliterator<E_OUT>> supplier); 637 638 /** 639 * Traverse the elements of a spliterator compatible with this stream shape, 640 * pushing those elements into a sink. If the sink requests cancellation, 641 * no further elements will be pulled or pushed. 642 * 643 * @param spliterator the spliterator to pull elements from 644 * @param sink the sink to push elements to 645 * @return true if the cancellation was requested 646 */ 647 // Android-changed: Made public for CTS tests only. forEachWithCancel(Spliterator<E_OUT> spliterator, Sink<E_OUT> sink)648 public abstract boolean forEachWithCancel(Spliterator<E_OUT> spliterator, Sink<E_OUT> sink); 649 650 /** 651 * Make a node builder compatible with this stream shape. 652 * 653 * @param exactSizeIfKnown if {@literal >=0}, then a node builder will be 654 * created that has a fixed capacity of at most sizeIfKnown elements. If 655 * {@literal < 0}, then the node builder has an unfixed capacity. A fixed 656 * capacity node builder will throw exceptions if an element is added after 657 * builder has reached capacity, or is built before the builder has reached 658 * capacity. 659 * 660 * @param generator the array generator to be used to create instances of a 661 * T[] array. For implementations supporting primitive nodes, this parameter 662 * may be ignored. 663 * @return a node builder 664 */ 665 @Override 666 // Android-changed: Made public for CTS tests only. makeNodeBuilder(long exactSizeIfKnown, IntFunction<E_OUT[]> generator)667 public abstract Node.Builder<E_OUT> makeNodeBuilder(long exactSizeIfKnown, 668 IntFunction<E_OUT[]> generator); 669 670 671 // Op-specific abstract methods, implemented by the operation class 672 673 /** 674 * Returns whether this operation is stateful or not. If it is stateful, 675 * then the method 676 * {@link #opEvaluateParallel(PipelineHelper, java.util.Spliterator, java.util.function.IntFunction)} 677 * must be overridden. 678 * 679 * @return {@code true} if this operation is stateful 680 */ 681 // Android-changed: Made public for CTS tests only. opIsStateful()682 public abstract boolean opIsStateful(); 683 684 /** 685 * Accepts a {@code Sink} which will receive the results of this operation, 686 * and return a {@code Sink} which accepts elements of the input type of 687 * this operation and which performs the operation, passing the results to 688 * the provided {@code Sink}. 689 * 690 * @apiNote 691 * The implementation may use the {@code flags} parameter to optimize the 692 * sink wrapping. For example, if the input is already {@code DISTINCT}, 693 * the implementation for the {@code Stream#distinct()} method could just 694 * return the sink it was passed. 695 * 696 * @param flags The combined stream and operation flags up to, but not 697 * including, this operation 698 * @param sink sink to which elements should be sent after processing 699 * @return a sink which accepts elements, perform the operation upon 700 * each element, and passes the results (if any) to the provided 701 * {@code Sink}. 702 */ 703 // Android-changed: Made public for CTS tests only. opWrapSink(int flags, Sink<E_OUT> sink)704 public abstract Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink); 705 706 /** 707 * Performs a parallel evaluation of the operation using the specified 708 * {@code PipelineHelper} which describes the upstream intermediate 709 * operations. Only called on stateful operations. If {@link 710 * #opIsStateful()} returns true then implementations must override the 711 * default implementation. 712 * 713 * @implSpec The default implementation always throw 714 * {@code UnsupportedOperationException}. 715 * 716 * @param helper the pipeline helper describing the pipeline stages 717 * @param spliterator the source {@code Spliterator} 718 * @param generator the array generator 719 * @return a {@code Node} describing the result of the evaluation 720 */ 721 // Android-changed: Made public for CTS tests only. opEvaluateParallel(PipelineHelper<E_OUT> helper, Spliterator<P_IN> spliterator, IntFunction<E_OUT[]> generator)722 public <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper, 723 Spliterator<P_IN> spliterator, 724 IntFunction<E_OUT[]> generator) { 725 throw new UnsupportedOperationException("Parallel evaluation is not supported"); 726 } 727 728 /** 729 * Returns a {@code Spliterator} describing a parallel evaluation of the 730 * operation, using the specified {@code PipelineHelper} which describes the 731 * upstream intermediate operations. Only called on stateful operations. 732 * It is not necessary (though acceptable) to do a full computation of the 733 * result here; it is preferable, if possible, to describe the result via a 734 * lazily evaluated spliterator. 735 * 736 * @implSpec The default implementation behaves as if: 737 * <pre>{@code 738 * return evaluateParallel(helper, i -> (E_OUT[]) new 739 * Object[i]).spliterator(); 740 * }</pre> 741 * and is suitable for implementations that cannot do better than a full 742 * synchronous evaluation. 743 * 744 * @param helper the pipeline helper 745 * @param spliterator the source {@code Spliterator} 746 * @return a {@code Spliterator} describing the result of the evaluation 747 */ 748 @SuppressWarnings("unchecked") 749 // Android-changed: Made public for CTS tests only. opEvaluateParallelLazy(PipelineHelper<E_OUT> helper, Spliterator<P_IN> spliterator)750 public <P_IN> Spliterator<E_OUT> opEvaluateParallelLazy(PipelineHelper<E_OUT> helper, 751 Spliterator<P_IN> spliterator) { 752 return opEvaluateParallel(helper, spliterator, i -> (E_OUT[]) new Object[i]).spliterator(); 753 } 754 } 755