1 /*
2  * Copyright (C) 2021 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.android.internal.graphics.cam;
18 
19 import android.annotation.NonNull;
20 import android.util.MathUtils;
21 
22 import com.android.internal.annotations.VisibleForTesting;
23 
24 /**
25  * The frame, or viewing conditions, where a color was seen. Used, along with a color, to create a
26  * color appearance model representing the color.
27  *
28  * <p>To convert a traditional color to a color appearance model, it requires knowing what
29  * conditions the color was observed in. Our perception of color depends on, for example, the tone
30  * of the light illuminating the color, how bright that light was, etc.
31  *
32  * <p>This class is modelled separately from the color appearance model itself because there are a
33  * number of calculations during the color => CAM conversion process that depend only on the viewing
34  * conditions. Caching those calculations in a Frame instance saves a significant amount of time.
35  */
36 public final class Frame {
37     // Standard viewing conditions assumed in RGB specification - Stokes, Anderson, Chandrasekar,
38     // Motta - A Standard Default Color Space for the Internet: sRGB, 1996.
39     //
40     // White point = D65
41     // Luminance of adapting field: 200 / Pi / 5, units are cd/m^2.
42     //   sRGB ambient illuminance = 64 lux (per sRGB spec). However, the spec notes this is
43     //     artificially low and based on monitors in 1990s. Use 200, the sRGB spec says this is the
44     //     real average, and a survey of lux values on Wikipedia confirms this is a comfortable
45     //     default: somewhere between a very dark overcast day and office lighting.
46     //   Per CAM16 introduction paper (Li et al, 2017) Ew = pi * lw, and La = lw * Yb/Yw
47     //   Ew = ambient environment luminance, in lux.
48     //   Yb/Yw is taken to be midgray, ~20% relative luminance (XYZ Y 18.4, CIELAB L* 50).
49     //   Therefore La = (Ew / pi) * .184
50     //   La = 200 / pi * .184
51     // Image surround to 10 degrees = ~20% relative luminance = CIELAB L* 50
52     //
53     // Not from sRGB standard:
54     // Surround = average, 2.0.
55     // Discounting illuminant = false, doesn't occur for self-luminous displays
56     public static final Frame DEFAULT =
57             Frame.make(
58                     CamUtils.WHITE_POINT_D65,
59                     (float) (200.0f / Math.PI * CamUtils.yFromLstar(50.0f) / 100.f), 50.0f, 2.0f,
60                     false);
61 
62     private final float mAw;
63     private final float mNbb;
64     private final float mNcb;
65     private final float mC;
66     private final float mNc;
67     private final float mN;
68     private final float[] mRgbD;
69     private final float mFl;
70     private final float mFlRoot;
71     private final float mZ;
72 
73     @VisibleForTesting
getAw()74     public float getAw() {
75         return mAw;
76     }
77 
78     @VisibleForTesting
getN()79     public float getN() {
80         return mN;
81     }
82 
83     @VisibleForTesting
getNbb()84     public float getNbb() {
85         return mNbb;
86     }
87 
getNcb()88     float getNcb() {
89         return mNcb;
90     }
91 
getC()92     float getC() {
93         return mC;
94     }
95 
getNc()96     float getNc() {
97         return mNc;
98     }
99 
100     @VisibleForTesting
101     @NonNull
getRgbD()102     public float[] getRgbD() {
103         return mRgbD;
104     }
105 
getFl()106     float getFl() {
107         return mFl;
108     }
109 
110     @VisibleForTesting
111     @NonNull
getFlRoot()112     public float getFlRoot() {
113         return mFlRoot;
114     }
115 
getZ()116     float getZ() {
117         return mZ;
118     }
119 
Frame(float n, float aw, float nbb, float ncb, float c, float nc, float[] rgbD, float fl, float fLRoot, float z)120     private Frame(float n, float aw, float nbb, float ncb, float c, float nc, float[] rgbD,
121             float fl, float fLRoot, float z) {
122         mN = n;
123         mAw = aw;
124         mNbb = nbb;
125         mNcb = ncb;
126         mC = c;
127         mNc = nc;
128         mRgbD = rgbD;
129         mFl = fl;
130         mFlRoot = fLRoot;
131         mZ = z;
132     }
133 
134     /** Create a custom frame. */
135     @NonNull
make(@onNull float[] whitepoint, float adaptingLuminance, float backgroundLstar, float surround, boolean discountingIlluminant)136     public static Frame make(@NonNull float[] whitepoint, float adaptingLuminance,
137             float backgroundLstar, float surround, boolean discountingIlluminant) {
138         // Transform white point XYZ to 'cone'/'rgb' responses
139         float[][] matrix = CamUtils.XYZ_TO_CAM16RGB;
140         float[] xyz = whitepoint;
141         float rW = (xyz[0] * matrix[0][0]) + (xyz[1] * matrix[0][1]) + (xyz[2] * matrix[0][2]);
142         float gW = (xyz[0] * matrix[1][0]) + (xyz[1] * matrix[1][1]) + (xyz[2] * matrix[1][2]);
143         float bW = (xyz[0] * matrix[2][0]) + (xyz[1] * matrix[2][1]) + (xyz[2] * matrix[2][2]);
144 
145         // Scale input surround, domain (0, 2), to CAM16 surround, domain (0.8, 1.0)
146         float f = 0.8f + (surround / 10.0f);
147         // "Exponential non-linearity"
148         float c = (f >= 0.9) ? MathUtils.lerp(0.59f, 0.69f, ((f - 0.9f) * 10.0f)) : MathUtils.lerp(
149                 0.525f, 0.59f, ((f - 0.8f) * 10.0f));
150         // Calculate degree of adaptation to illuminant
151         float d = discountingIlluminant ? 1.0f : f * (1.0f - ((1.0f / 3.6f) * (float) Math.exp(
152                 (-adaptingLuminance - 42.0f) / 92.0f)));
153         // Per Li et al, if D is greater than 1 or less than 0, set it to 1 or 0.
154         d = (d > 1.0) ? 1.0f : (d < 0.0) ? 0.0f : d;
155         // Chromatic induction factor
156         float nc = f;
157 
158         // Cone responses to the whitepoint, adjusted for illuminant discounting.
159         //
160         // Why use 100.0 instead of the white point's relative luminance?
161         //
162         // Some papers and implementations, for both CAM02 and CAM16, use the Y
163         // value of the reference white instead of 100. Fairchild's Color Appearance
164         // Models (3rd edition) notes that this is in error: it was included in the
165         // CIE 2004a report on CIECAM02, but, later parts of the conversion process
166         // account for scaling of appearance relative to the white point relative
167         // luminance. This part should simply use 100 as luminance.
168         float[] rgbD = new float[]{d * (100.0f / rW) + 1.0f - d, d * (100.0f / gW) + 1.0f - d,
169                 d * (100.0f / bW) + 1.0f - d, };
170         // Luminance-level adaptation factor
171         float k = 1.0f / (5.0f * adaptingLuminance + 1.0f);
172         float k4 = k * k * k * k;
173         float k4F = 1.0f - k4;
174         float fl = (k4 * adaptingLuminance) + (0.1f * k4F * k4F * (float) Math.cbrt(
175                 5.0 * adaptingLuminance));
176 
177         // Intermediate factor, ratio of background relative luminance to white relative luminance
178         float n = (float) CamUtils.yFromLstar(backgroundLstar) / whitepoint[1];
179 
180         // Base exponential nonlinearity
181         // note Schlomer 2018 has a typo and uses 1.58, the correct factor is 1.48
182         float z = 1.48f + (float) Math.sqrt(n);
183 
184         // Luminance-level induction factors
185         float nbb = 0.725f / (float) Math.pow(n, 0.2);
186         float ncb = nbb;
187 
188         // Discounted cone responses to the white point, adjusted for post-chromatic
189         // adaptation perceptual nonlinearities.
190         float[] rgbAFactors = new float[]{(float) Math.pow(fl * rgbD[0] * rW / 100.0, 0.42),
191                 (float) Math.pow(fl * rgbD[1] * gW / 100.0, 0.42), (float) Math.pow(
192                 fl * rgbD[2] * bW / 100.0, 0.42)};
193 
194         float[] rgbA = new float[]{(400.0f * rgbAFactors[0]) / (rgbAFactors[0] + 27.13f),
195                 (400.0f * rgbAFactors[1]) / (rgbAFactors[1] + 27.13f),
196                 (400.0f * rgbAFactors[2]) / (rgbAFactors[2] + 27.13f), };
197 
198         float aw = ((2.0f * rgbA[0]) + rgbA[1] + (0.05f * rgbA[2])) * nbb;
199 
200         return new Frame(n, aw, nbb, ncb, c, nc, rgbD, fl, (float) Math.pow(fl, 0.25), z);
201     }
202 }
203