1 /* 2 * Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang.invoke; 27 28 import java.util.Arrays; 29 import java.util.Objects; 30 31 import dalvik.system.EmulatedStackFrame; 32 33 import static java.lang.invoke.MethodHandleStatics.*; 34 35 /** 36 * A method handle is a typed, directly executable reference to an underlying method, 37 * constructor, field, or similar low-level operation, with optional 38 * transformations of arguments or return values. 39 * These transformations are quite general, and include such patterns as 40 * {@linkplain #asType conversion}, 41 * {@linkplain #bindTo insertion}, 42 * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion}, 43 * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}. 44 * 45 * <h1>Method handle contents</h1> 46 * Method handles are dynamically and strongly typed according to their parameter and return types. 47 * They are not distinguished by the name or the defining class of their underlying methods. 48 * A method handle must be invoked using a symbolic type descriptor which matches 49 * the method handle's own {@linkplain #type type descriptor}. 50 * <p> 51 * Every method handle reports its type descriptor via the {@link #type type} accessor. 52 * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object, 53 * whose structure is a series of classes, one of which is 54 * the return type of the method (or {@code void.class} if none). 55 * <p> 56 * A method handle's type controls the types of invocations it accepts, 57 * and the kinds of transformations that apply to it. 58 * <p> 59 * A method handle contains a pair of special invoker methods 60 * called {@link #invokeExact invokeExact} and {@link #invoke invoke}. 61 * Both invoker methods provide direct access to the method handle's 62 * underlying method, constructor, field, or other operation, 63 * as modified by transformations of arguments and return values. 64 * Both invokers accept calls which exactly match the method handle's own type. 65 * The plain, inexact invoker also accepts a range of other call types. 66 * <p> 67 * Method handles are immutable and have no visible state. 68 * Of course, they can be bound to underlying methods or data which exhibit state. 69 * With respect to the Java Memory Model, any method handle will behave 70 * as if all of its (internal) fields are final variables. This means that any method 71 * handle made visible to the application will always be fully formed. 72 * This is true even if the method handle is published through a shared 73 * variable in a data race. 74 * <p> 75 * Method handles cannot be subclassed by the user. 76 * Implementations may (or may not) create internal subclasses of {@code MethodHandle} 77 * which may be visible via the {@link java.lang.Object#getClass Object.getClass} 78 * operation. The programmer should not draw conclusions about a method handle 79 * from its specific class, as the method handle class hierarchy (if any) 80 * may change from time to time or across implementations from different vendors. 81 * 82 * <h1>Method handle compilation</h1> 83 * A Java method call expression naming {@code invokeExact} or {@code invoke} 84 * can invoke a method handle from Java source code. 85 * From the viewpoint of source code, these methods can take any arguments 86 * and their result can be cast to any return type. 87 * Formally this is accomplished by giving the invoker methods 88 * {@code Object} return types and variable arity {@code Object} arguments, 89 * but they have an additional quality called <em>signature polymorphism</em> 90 * which connects this freedom of invocation directly to the JVM execution stack. 91 * <p> 92 * As is usual with virtual methods, source-level calls to {@code invokeExact} 93 * and {@code invoke} compile to an {@code invokevirtual} instruction. 94 * More unusually, the compiler must record the actual argument types, 95 * and may not perform method invocation conversions on the arguments. 96 * Instead, it must push them on the stack according to their own unconverted types. 97 * The method handle object itself is pushed on the stack before the arguments. 98 * The compiler then calls the method handle with a symbolic type descriptor which 99 * describes the argument and return types. 100 * <p> 101 * To issue a complete symbolic type descriptor, the compiler must also determine 102 * the return type. This is based on a cast on the method invocation expression, 103 * if there is one, or else {@code Object} if the invocation is an expression 104 * or else {@code void} if the invocation is a statement. 105 * The cast may be to a primitive type (but not {@code void}). 106 * <p> 107 * As a corner case, an uncasted {@code null} argument is given 108 * a symbolic type descriptor of {@code java.lang.Void}. 109 * The ambiguity with the type {@code Void} is harmless, since there are no references of type 110 * {@code Void} except the null reference. 111 * 112 * <h1>Method handle invocation</h1> 113 * The first time a {@code invokevirtual} instruction is executed 114 * it is linked, by symbolically resolving the names in the instruction 115 * and verifying that the method call is statically legal. 116 * This is true of calls to {@code invokeExact} and {@code invoke}. 117 * In this case, the symbolic type descriptor emitted by the compiler is checked for 118 * correct syntax and names it contains are resolved. 119 * Thus, an {@code invokevirtual} instruction which invokes 120 * a method handle will always link, as long 121 * as the symbolic type descriptor is syntactically well-formed 122 * and the types exist. 123 * <p> 124 * When the {@code invokevirtual} is executed after linking, 125 * the receiving method handle's type is first checked by the JVM 126 * to ensure that it matches the symbolic type descriptor. 127 * If the type match fails, it means that the method which the 128 * caller is invoking is not present on the individual 129 * method handle being invoked. 130 * <p> 131 * In the case of {@code invokeExact}, the type descriptor of the invocation 132 * (after resolving symbolic type names) must exactly match the method type 133 * of the receiving method handle. 134 * In the case of plain, inexact {@code invoke}, the resolved type descriptor 135 * must be a valid argument to the receiver's {@link #asType asType} method. 136 * Thus, plain {@code invoke} is more permissive than {@code invokeExact}. 137 * <p> 138 * After type matching, a call to {@code invokeExact} directly 139 * and immediately invoke the method handle's underlying method 140 * (or other behavior, as the case may be). 141 * <p> 142 * A call to plain {@code invoke} works the same as a call to 143 * {@code invokeExact}, if the symbolic type descriptor specified by the caller 144 * exactly matches the method handle's own type. 145 * If there is a type mismatch, {@code invoke} attempts 146 * to adjust the type of the receiving method handle, 147 * as if by a call to {@link #asType asType}, 148 * to obtain an exactly invokable method handle {@code M2}. 149 * This allows a more powerful negotiation of method type 150 * between caller and callee. 151 * <p> 152 * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable, 153 * and implementations are therefore not required to materialize it.) 154 * 155 * <h1>Invocation checking</h1> 156 * In typical programs, method handle type matching will usually succeed. 157 * But if a match fails, the JVM will throw a {@link WrongMethodTypeException}, 158 * either directly (in the case of {@code invokeExact}) or indirectly as if 159 * by a failed call to {@code asType} (in the case of {@code invoke}). 160 * <p> 161 * Thus, a method type mismatch which might show up as a linkage error 162 * in a statically typed program can show up as 163 * a dynamic {@code WrongMethodTypeException} 164 * in a program which uses method handles. 165 * <p> 166 * Because method types contain "live" {@code Class} objects, 167 * method type matching takes into account both types names and class loaders. 168 * Thus, even if a method handle {@code M} is created in one 169 * class loader {@code L1} and used in another {@code L2}, 170 * method handle calls are type-safe, because the caller's symbolic type 171 * descriptor, as resolved in {@code L2}, 172 * is matched against the original callee method's symbolic type descriptor, 173 * as resolved in {@code L1}. 174 * The resolution in {@code L1} happens when {@code M} is created 175 * and its type is assigned, while the resolution in {@code L2} happens 176 * when the {@code invokevirtual} instruction is linked. 177 * <p> 178 * Apart from the checking of type descriptors, 179 * a method handle's capability to call its underlying method is unrestricted. 180 * If a method handle is formed on a non-public method by a class 181 * that has access to that method, the resulting handle can be used 182 * in any place by any caller who receives a reference to it. 183 * <p> 184 * Unlike with the Core Reflection API, where access is checked every time 185 * a reflective method is invoked, 186 * method handle access checking is performed 187 * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>. 188 * In the case of {@code ldc} (see below), access checking is performed as part of linking 189 * the constant pool entry underlying the constant method handle. 190 * <p> 191 * Thus, handles to non-public methods, or to methods in non-public classes, 192 * should generally be kept secret. 193 * They should not be passed to untrusted code unless their use from 194 * the untrusted code would be harmless. 195 * 196 * <h1>Method handle creation</h1> 197 * Java code can create a method handle that directly accesses 198 * any method, constructor, or field that is accessible to that code. 199 * This is done via a reflective, capability-based API called 200 * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup} 201 * For example, a static method handle can be obtained 202 * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}. 203 * There are also conversion methods from Core Reflection API objects, 204 * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}. 205 * <p> 206 * Like classes and strings, method handles that correspond to accessible 207 * fields, methods, and constructors can also be represented directly 208 * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes. 209 * A new type of constant pool entry, {@code CONSTANT_MethodHandle}, 210 * refers directly to an associated {@code CONSTANT_Methodref}, 211 * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref} 212 * constant pool entry. 213 * (For full details on method handle constants, 214 * see sections 4.4.8 and 5.4.3.5 of the Java Virtual Machine Specification.) 215 * <p> 216 * Method handles produced by lookups or constant loads from methods or 217 * constructors with the variable arity modifier bit ({@code 0x0080}) 218 * have a corresponding variable arity, as if they were defined with 219 * the help of {@link #asVarargsCollector asVarargsCollector}. 220 * <p> 221 * A method reference may refer either to a static or non-static method. 222 * In the non-static case, the method handle type includes an explicit 223 * receiver argument, prepended before any other arguments. 224 * In the method handle's type, the initial receiver argument is typed 225 * according to the class under which the method was initially requested. 226 * (E.g., if a non-static method handle is obtained via {@code ldc}, 227 * the type of the receiver is the class named in the constant pool entry.) 228 * <p> 229 * Method handle constants are subject to the same link-time access checks 230 * their corresponding bytecode instructions, and the {@code ldc} instruction 231 * will throw corresponding linkage errors if the bytecode behaviors would 232 * throw such errors. 233 * <p> 234 * As a corollary of this, access to protected members is restricted 235 * to receivers only of the accessing class, or one of its subclasses, 236 * and the accessing class must in turn be a subclass (or package sibling) 237 * of the protected member's defining class. 238 * If a method reference refers to a protected non-static method or field 239 * of a class outside the current package, the receiver argument will 240 * be narrowed to the type of the accessing class. 241 * <p> 242 * When a method handle to a virtual method is invoked, the method is 243 * always looked up in the receiver (that is, the first argument). 244 * <p> 245 * A non-virtual method handle to a specific virtual method implementation 246 * can also be created. These do not perform virtual lookup based on 247 * receiver type. Such a method handle simulates the effect of 248 * an {@code invokespecial} instruction to the same method. 249 * 250 * <h1>Usage examples</h1> 251 * Here are some examples of usage: 252 * <blockquote><pre>{@code 253 Object x, y; String s; int i; 254 MethodType mt; MethodHandle mh; 255 MethodHandles.Lookup lookup = MethodHandles.lookup(); 256 // mt is (char,char)String 257 mt = MethodType.methodType(String.class, char.class, char.class); 258 mh = lookup.findVirtual(String.class, "replace", mt); 259 s = (String) mh.invokeExact("daddy",'d','n'); 260 // invokeExact(Ljava/lang/String;CC)Ljava/lang/String; 261 assertEquals(s, "nanny"); 262 // weakly typed invocation (using MHs.invoke) 263 s = (String) mh.invokeWithArguments("sappy", 'p', 'v'); 264 assertEquals(s, "savvy"); 265 // mt is (Object[])List 266 mt = MethodType.methodType(java.util.List.class, Object[].class); 267 mh = lookup.findStatic(java.util.Arrays.class, "asList", mt); 268 assert(mh.isVarargsCollector()); 269 x = mh.invoke("one", "two"); 270 // invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object; 271 assertEquals(x, java.util.Arrays.asList("one","two")); 272 // mt is (Object,Object,Object)Object 273 mt = MethodType.genericMethodType(3); 274 mh = mh.asType(mt); 275 x = mh.invokeExact((Object)1, (Object)2, (Object)3); 276 // invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object; 277 assertEquals(x, java.util.Arrays.asList(1,2,3)); 278 // mt is ()int 279 mt = MethodType.methodType(int.class); 280 mh = lookup.findVirtual(java.util.List.class, "size", mt); 281 i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3)); 282 // invokeExact(Ljava/util/List;)I 283 assert(i == 3); 284 mt = MethodType.methodType(void.class, String.class); 285 mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt); 286 mh.invokeExact(System.out, "Hello, world."); 287 // invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V 288 * }</pre></blockquote> 289 * Each of the above calls to {@code invokeExact} or plain {@code invoke} 290 * generates a single invokevirtual instruction with 291 * the symbolic type descriptor indicated in the following comment. 292 * In these examples, the helper method {@code assertEquals} is assumed to 293 * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals} 294 * on its arguments, and asserts that the result is true. 295 * 296 * <h1>Exceptions</h1> 297 * The methods {@code invokeExact} and {@code invoke} are declared 298 * to throw {@link java.lang.Throwable Throwable}, 299 * which is to say that there is no static restriction on what a method handle 300 * can throw. Since the JVM does not distinguish between checked 301 * and unchecked exceptions (other than by their class, of course), 302 * there is no particular effect on bytecode shape from ascribing 303 * checked exceptions to method handle invocations. But in Java source 304 * code, methods which perform method handle calls must either explicitly 305 * throw {@code Throwable}, or else must catch all 306 * throwables locally, rethrowing only those which are legal in the context, 307 * and wrapping ones which are illegal. 308 * 309 * <h1><a name="sigpoly"></a>Signature polymorphism</h1> 310 * The unusual compilation and linkage behavior of 311 * {@code invokeExact} and plain {@code invoke} 312 * is referenced by the term <em>signature polymorphism</em>. 313 * As defined in the Java Language Specification, 314 * a signature polymorphic method is one which can operate with 315 * any of a wide range of call signatures and return types. 316 * <p> 317 * In source code, a call to a signature polymorphic method will 318 * compile, regardless of the requested symbolic type descriptor. 319 * As usual, the Java compiler emits an {@code invokevirtual} 320 * instruction with the given symbolic type descriptor against the named method. 321 * The unusual part is that the symbolic type descriptor is derived from 322 * the actual argument and return types, not from the method declaration. 323 * <p> 324 * When the JVM processes bytecode containing signature polymorphic calls, 325 * it will successfully link any such call, regardless of its symbolic type descriptor. 326 * (In order to retain type safety, the JVM will guard such calls with suitable 327 * dynamic type checks, as described elsewhere.) 328 * <p> 329 * Bytecode generators, including the compiler back end, are required to emit 330 * untransformed symbolic type descriptors for these methods. 331 * Tools which determine symbolic linkage are required to accept such 332 * untransformed descriptors, without reporting linkage errors. 333 * 334 * <h1>Interoperation between method handles and the Core Reflection API</h1> 335 * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API, 336 * any class member represented by a Core Reflection API object 337 * can be converted to a behaviorally equivalent method handle. 338 * For example, a reflective {@link java.lang.reflect.Method Method} can 339 * be converted to a method handle using 340 * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}. 341 * The resulting method handles generally provide more direct and efficient 342 * access to the underlying class members. 343 * <p> 344 * As a special case, 345 * when the Core Reflection API is used to view the signature polymorphic 346 * methods {@code invokeExact} or plain {@code invoke} in this class, 347 * they appear as ordinary non-polymorphic methods. 348 * Their reflective appearance, as viewed by 349 * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod}, 350 * is unaffected by their special status in this API. 351 * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers} 352 * will report exactly those modifier bits required for any similarly 353 * declared method, including in this case {@code native} and {@code varargs} bits. 354 * <p> 355 * As with any reflected method, these methods (when reflected) may be 356 * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}. 357 * However, such reflective calls do not result in method handle invocations. 358 * Such a call, if passed the required argument 359 * (a single one, of type {@code Object[]}), will ignore the argument and 360 * will throw an {@code UnsupportedOperationException}. 361 * <p> 362 * Since {@code invokevirtual} instructions can natively 363 * invoke method handles under any symbolic type descriptor, this reflective view conflicts 364 * with the normal presentation of these methods via bytecodes. 365 * Thus, these two native methods, when reflectively viewed by 366 * {@code Class.getDeclaredMethod}, may be regarded as placeholders only. 367 * <p> 368 * In order to obtain an invoker method for a particular type descriptor, 369 * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker}, 370 * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}. 371 * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual} 372 * API is also able to return a method handle 373 * to call {@code invokeExact} or plain {@code invoke}, 374 * for any specified type descriptor . 375 * 376 * <h1>Interoperation between method handles and Java generics</h1> 377 * A method handle can be obtained on a method, constructor, or field 378 * which is declared with Java generic types. 379 * As with the Core Reflection API, the type of the method handle 380 * will constructed from the erasure of the source-level type. 381 * When a method handle is invoked, the types of its arguments 382 * or the return value cast type may be generic types or type instances. 383 * If this occurs, the compiler will replace those 384 * types by their erasures when it constructs the symbolic type descriptor 385 * for the {@code invokevirtual} instruction. 386 * <p> 387 * Method handles do not represent 388 * their function-like types in terms of Java parameterized (generic) types, 389 * because there are three mismatches between function-like types and parameterized 390 * Java types. 391 * <ul> 392 * <li>Method types range over all possible arities, 393 * from no arguments to up to the <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments. 394 * Generics are not variadic, and so cannot represent this.</li> 395 * <li>Method types can specify arguments of primitive types, 396 * which Java generic types cannot range over.</li> 397 * <li>Higher order functions over method handles (combinators) are 398 * often generic across a wide range of function types, including 399 * those of multiple arities. It is impossible to represent such 400 * genericity with a Java type parameter.</li> 401 * </ul> 402 * 403 * <h1><a name="maxarity"></a>Arity limits</h1> 404 * The JVM imposes on all methods and constructors of any kind an absolute 405 * limit of 255 stacked arguments. This limit can appear more restrictive 406 * in certain cases: 407 * <ul> 408 * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots. 409 * <li>A non-static method consumes an extra argument for the object on which the method is called. 410 * <li>A constructor consumes an extra argument for the object which is being constructed. 411 * <li>Since a method handle’s {@code invoke} method (or other signature-polymorphic method) is non-virtual, 412 * it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object. 413 * </ul> 414 * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments. 415 * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it. 416 * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}. 417 * In particular, a method handle’s type must not have an arity of the exact maximum 255. 418 * 419 * @see MethodType 420 * @see MethodHandles 421 * @author John Rose, JSR 292 EG 422 */ 423 public abstract class MethodHandle { 424 // Android-removed: MethodHandleImpl.initStatics() unused on Android. 425 // static { MethodHandleImpl.initStatics(); } 426 427 /** 428 * Internal marker interface which distinguishes (to the Java compiler) 429 * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>. 430 * 431 * @hide 432 */ 433 @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD}) 434 @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME) 435 // Android-changed: Made public @hide as otherwise it breaks the stubs generation. 436 // @interface PolymorphicSignature { } 437 public @interface PolymorphicSignature { } 438 439 /** 440 * The type of this method handle, this corresponds to the exact type of the method 441 * being invoked. 442 */ 443 private final MethodType type; 444 445 // Android-removed: LambdaForm is unused on Android. 446 // They will be substituted with appropriate implementation / delegate classes. 447 /* 448 /*private* final LambdaForm form; 449 // form is not private so that invokers can easily fetch it 450 */ 451 /*private*/ MethodHandle asTypeCache; 452 // asTypeCache is not private so that invokers can easily fetch it 453 /* 454 // Android-removed: customizationCount is unused on Android. 455 /*non-public* byte customizationCount; 456 // customizationCount should be accessible from invokers 457 */ 458 459 /** 460 * The spread invoker associated with this type with zero trailing arguments. 461 * This is used to speed up invokeWithArguments. 462 */ 463 private MethodHandle cachedSpreadInvoker; 464 465 /** 466 * The INVOKE* constants and SGET/SPUT and IGET/IPUT constants specify the behaviour of this 467 * method handle with respect to the ArtField* or the ArtMethod* that it operates on. These 468 * behaviours are equivalent to the dex bytecode behaviour on the respective method_id or 469 * field_id in the equivalent instruction. 470 * 471 * INVOKE_TRANSFORM is a special type of handle which doesn't encode any dex bytecode behaviour, 472 * instead it transforms the list of input arguments or performs other higher order operations 473 * before (optionally) delegating to another method handle. 474 */ 475 476 /** @hide */ public static final int INVOKE_VIRTUAL = 0; 477 /** @hide */ public static final int INVOKE_SUPER = 1; 478 /** @hide */ public static final int INVOKE_DIRECT = 2; 479 /** @hide */ public static final int INVOKE_STATIC = 3; 480 /** @hide */ public static final int INVOKE_INTERFACE = 4; 481 /** @hide */ public static final int INVOKE_TRANSFORM = 5; 482 /** @hide */ public static final int INVOKE_VAR_HANDLE = 6; 483 /** @hide */ public static final int INVOKE_VAR_HANDLE_EXACT = 7; 484 /** @hide */ public static final int IGET = 8; 485 /** @hide */ public static final int IPUT = 9; 486 /** @hide */ public static final int SGET = 10; 487 /** @hide */ public static final int SPUT = 11; 488 489 // The kind of this method handle (used by the runtime). This is one of the INVOKE_* 490 // constants or SGET/SPUT, IGET/IPUT. 491 /** @hide */ protected final int handleKind; 492 493 // The ArtMethod* or ArtField* associated with this method handle (used by the runtime). 494 /** @hide */ protected final long artFieldOrMethod; 495 496 /** @hide */ MethodHandle(long artFieldOrMethod, int handleKind, MethodType type)497 protected MethodHandle(long artFieldOrMethod, int handleKind, MethodType type) { 498 this.artFieldOrMethod = artFieldOrMethod; 499 this.handleKind = handleKind; 500 this.type = type; 501 } 502 // END Android-added: Android specific implementation. 503 504 /** 505 * Reports the type of this method handle. 506 * Every invocation of this method handle via {@code invokeExact} must exactly match this type. 507 * @return the method handle type 508 */ type()509 public MethodType type() { 510 return type; 511 } 512 513 // BEGIN Android-removed: LambdaForm unsupported on Android. 514 /* 515 /** 516 * Package-private constructor for the method handle implementation hierarchy. 517 * Method handle inheritance will be contained completely within 518 * the {@code java.lang.invoke} package. 519 * 520 // @param type type (permanently assigned) of the new method handle 521 /*non-public* MethodHandle(MethodType type, LambdaForm form) { 522 type.getClass(); // explicit NPE 523 form.getClass(); // explicit NPE 524 this.type = type; 525 this.form = form.uncustomize(); 526 527 this.form.prepare(); // TO DO: Try to delay this step until just before invocation. 528 } 529 */ 530 // END Android-removed: LambdaForm unsupported on Android. 531 532 /** 533 * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match. 534 * The symbolic type descriptor at the call site of {@code invokeExact} must 535 * exactly match this method handle's {@link #type type}. 536 * No conversions are allowed on arguments or return values. 537 * <p> 538 * When this method is observed via the Core Reflection API, 539 * it will appear as a single native method, taking an object array and returning an object. 540 * If this native method is invoked directly via 541 * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI, 542 * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}, 543 * it will throw an {@code UnsupportedOperationException}. 544 * @param args the signature-polymorphic parameter list, statically represented using varargs 545 * @return the signature-polymorphic result, statically represented using {@code Object} 546 * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor 547 * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call 548 */ invokeExact(Object... args)549 public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable; 550 551 /** 552 * Invokes the method handle, allowing any caller type descriptor, 553 * and optionally performing conversions on arguments and return values. 554 * <p> 555 * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type type}, 556 * the call proceeds as if by {@link #invokeExact invokeExact}. 557 * <p> 558 * Otherwise, the call proceeds as if this method handle were first 559 * adjusted by calling {@link #asType asType} to adjust this method handle 560 * to the required type, and then the call proceeds as if by 561 * {@link #invokeExact invokeExact} on the adjusted method handle. 562 * <p> 563 * There is no guarantee that the {@code asType} call is actually made. 564 * If the JVM can predict the results of making the call, it may perform 565 * adaptations directly on the caller's arguments, 566 * and call the target method handle according to its own exact type. 567 * <p> 568 * The resolved type descriptor at the call site of {@code invoke} must 569 * be a valid argument to the receivers {@code asType} method. 570 * In particular, the caller must specify the same argument arity 571 * as the callee's type, 572 * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}. 573 * <p> 574 * When this method is observed via the Core Reflection API, 575 * it will appear as a single native method, taking an object array and returning an object. 576 * If this native method is invoked directly via 577 * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI, 578 * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}, 579 * it will throw an {@code UnsupportedOperationException}. 580 * @param args the signature-polymorphic parameter list, statically represented using varargs 581 * @return the signature-polymorphic result, statically represented using {@code Object} 582 * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor 583 * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails 584 * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call 585 */ invoke(Object... args)586 public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable; 587 588 // BEGIN Android-removed: RI implementation unused on Android. 589 /* 590 /** 591 * Private method for trusted invocation of a method handle respecting simplified signatures. 592 * Type mismatches will not throw {@code WrongMethodTypeException}, but could crash the JVM. 593 * <p> 594 * The caller signature is restricted to the following basic types: 595 * Object, int, long, float, double, and void return. 596 * <p> 597 * The caller is responsible for maintaining type correctness by ensuring 598 * that the each outgoing argument value is a member of the range of the corresponding 599 * callee argument type. 600 * (The caller should therefore issue appropriate casts and integer narrowing 601 * operations on outgoing argument values.) 602 * The caller can assume that the incoming result value is part of the range 603 * of the callee's return type. 604 * @param args the signature-polymorphic parameter list, statically represented using varargs 605 * @return the signature-polymorphic result, statically represented using {@code Object} 606 * 607 /*non-public* final native @PolymorphicSignature Object invokeBasic(Object... args) throws Throwable; 608 609 /** 610 * Private method for trusted invocation of a MemberName of kind {@code REF_invokeVirtual}. 611 * The caller signature is restricted to basic types as with {@code invokeBasic}. 612 * The trailing (not leading) argument must be a MemberName. 613 * @param args the signature-polymorphic parameter list, statically represented using varargs 614 * @return the signature-polymorphic result, statically represented using {@code Object} 615 * 616 /*non-public* static native @PolymorphicSignature Object linkToVirtual(Object... args) throws Throwable; 617 618 /** 619 * Private method for trusted invocation of a MemberName of kind {@code REF_invokeStatic}. 620 * The caller signature is restricted to basic types as with {@code invokeBasic}. 621 * The trailing (not leading) argument must be a MemberName. 622 * @param args the signature-polymorphic parameter list, statically represented using varargs 623 * @return the signature-polymorphic result, statically represented using {@code Object} 624 * 625 /*non-public* static native @PolymorphicSignature Object linkToStatic(Object... args) throws Throwable; 626 627 /** 628 * Private method for trusted invocation of a MemberName of kind {@code REF_invokeSpecial}. 629 * The caller signature is restricted to basic types as with {@code invokeBasic}. 630 * The trailing (not leading) argument must be a MemberName. 631 * @param args the signature-polymorphic parameter list, statically represented using varargs 632 * @return the signature-polymorphic result, statically represented using {@code Object} 633 * 634 /*non-public* static native @PolymorphicSignature Object linkToSpecial(Object... args) throws Throwable; 635 636 /** 637 * Private method for trusted invocation of a MemberName of kind {@code REF_invokeInterface}. 638 * The caller signature is restricted to basic types as with {@code invokeBasic}. 639 * The trailing (not leading) argument must be a MemberName. 640 * @param args the signature-polymorphic parameter list, statically represented using varargs 641 * @return the signature-polymorphic result, statically represented using {@code Object} 642 * 643 /*non-public* static native @PolymorphicSignature Object linkToInterface(Object... args) throws Throwable; 644 */ 645 // END Android-removed: RI implementation unused on Android. 646 647 /** 648 * Performs a variable arity invocation, passing the arguments in the given list 649 * to the method handle, as if via an inexact {@link #invoke invoke} from a call site 650 * which mentions only the type {@code Object}, and whose arity is the length 651 * of the argument list. 652 * <p> 653 * Specifically, execution proceeds as if by the following steps, 654 * although the methods are not guaranteed to be called if the JVM 655 * can predict their effects. 656 * <ul> 657 * <li>Determine the length of the argument array as {@code N}. 658 * For a null reference, {@code N=0}. </li> 659 * <li>Determine the general type {@code TN} of {@code N} arguments as 660 * as {@code TN=MethodType.genericMethodType(N)}.</li> 661 * <li>Force the original target method handle {@code MH0} to the 662 * required type, as {@code MH1 = MH0.asType(TN)}. </li> 663 * <li>Spread the array into {@code N} separate arguments {@code A0, ...}. </li> 664 * <li>Invoke the type-adjusted method handle on the unpacked arguments: 665 * MH1.invokeExact(A0, ...). </li> 666 * <li>Take the return value as an {@code Object} reference. </li> 667 * </ul> 668 * <p> 669 * Because of the action of the {@code asType} step, the following argument 670 * conversions are applied as necessary: 671 * <ul> 672 * <li>reference casting 673 * <li>unboxing 674 * <li>widening primitive conversions 675 * </ul> 676 * <p> 677 * The result returned by the call is boxed if it is a primitive, 678 * or forced to null if the return type is void. 679 * <p> 680 * This call is equivalent to the following code: 681 * <blockquote><pre>{@code 682 * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0); 683 * Object result = invoker.invokeExact(this, arguments); 684 * }</pre></blockquote> 685 * <p> 686 * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke}, 687 * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI. 688 * It can therefore be used as a bridge between native or reflective code and method handles. 689 * 690 * @param arguments the arguments to pass to the target 691 * @return the result returned by the target 692 * @throws ClassCastException if an argument cannot be converted by reference casting 693 * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments 694 * @throws Throwable anything thrown by the target method invocation 695 * @see MethodHandles#spreadInvoker 696 */ invokeWithArguments(Object... arguments)697 public Object invokeWithArguments(Object... arguments) throws Throwable { 698 MethodType invocationType = MethodType.genericMethodType(arguments == null ? 0 : arguments.length); 699 // BEGIN Android-changed: Android specific implementation. 700 // return invocationType.invokers().spreadInvoker(0).invokeExact(asType(invocationType), arguments); 701 MethodHandle invoker = cachedSpreadInvoker; 702 if (invoker == null || !invoker.type().equals(invocationType)) { 703 invoker = MethodHandles.spreadInvoker(invocationType, 0); 704 cachedSpreadInvoker = invoker; 705 } 706 return invoker.invoke(asType(invocationType), arguments); 707 // END Android-changed: Android specific implementation. 708 } 709 710 /** 711 * Performs a variable arity invocation, passing the arguments in the given array 712 * to the method handle, as if via an inexact {@link #invoke invoke} from a call site 713 * which mentions only the type {@code Object}, and whose arity is the length 714 * of the argument array. 715 * <p> 716 * This method is also equivalent to the following code: 717 * <blockquote><pre>{@code 718 * invokeWithArguments(arguments.toArray() 719 * }</pre></blockquote> 720 * 721 * @param arguments the arguments to pass to the target 722 * @return the result returned by the target 723 * @throws NullPointerException if {@code arguments} is a null reference 724 * @throws ClassCastException if an argument cannot be converted by reference casting 725 * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments 726 * @throws Throwable anything thrown by the target method invocation 727 */ invokeWithArguments(java.util.List<?> arguments)728 public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable { 729 return invokeWithArguments(arguments.toArray()); 730 } 731 732 /** 733 * Produces an adapter method handle which adapts the type of the 734 * current method handle to a new type. 735 * The resulting method handle is guaranteed to report a type 736 * which is equal to the desired new type. 737 * <p> 738 * If the original type and new type are equal, returns {@code this}. 739 * <p> 740 * The new method handle, when invoked, will perform the following 741 * steps: 742 * <ul> 743 * <li>Convert the incoming argument list to match the original 744 * method handle's argument list. 745 * <li>Invoke the original method handle on the converted argument list. 746 * <li>Convert any result returned by the original method handle 747 * to the return type of new method handle. 748 * </ul> 749 * <p> 750 * This method provides the crucial behavioral difference between 751 * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}. 752 * The two methods 753 * perform the same steps when the caller's type descriptor exactly m atches 754 * the callee's, but when the types differ, plain {@link #invoke invoke} 755 * also calls {@code asType} (or some internal equivalent) in order 756 * to match up the caller's and callee's types. 757 * <p> 758 * If the current method is a variable arity method handle 759 * argument list conversion may involve the conversion and collection 760 * of several arguments into an array, as 761 * {@linkplain #asVarargsCollector described elsewhere}. 762 * In every other case, all conversions are applied <em>pairwise</em>, 763 * which means that each argument or return value is converted to 764 * exactly one argument or return value (or no return value). 765 * The applied conversions are defined by consulting the 766 * the corresponding component types of the old and new 767 * method handle types. 768 * <p> 769 * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types, 770 * or old and new return types. Specifically, for some valid index {@code i}, let 771 * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}. 772 * Or else, going the other way for return values, let 773 * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}. 774 * If the types are the same, the new method handle makes no change 775 * to the corresponding argument or return value (if any). 776 * Otherwise, one of the following conversions is applied 777 * if possible: 778 * <ul> 779 * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied. 780 * (The types do not need to be related in any particular way. 781 * This is because a dynamic value of null can convert to any reference type.) 782 * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation 783 * conversion (JLS 5.3) is applied, if one exists. 784 * (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.) 785 * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference, 786 * a Java casting conversion (JLS 5.5) is applied if one exists. 787 * (Specifically, the value is boxed from <em>T0</em> to its wrapper class, 788 * which is then widened as needed to <em>T1</em>.) 789 * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing 790 * conversion will be applied at runtime, possibly followed 791 * by a Java method invocation conversion (JLS 5.3) 792 * on the primitive value. (These are the primitive widening conversions.) 793 * <em>T0</em> must be a wrapper class or a supertype of one. 794 * (In the case where <em>T0</em> is Object, these are the conversions 795 * allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.) 796 * The unboxing conversion must have a possibility of success, which means that 797 * if <em>T0</em> is not itself a wrapper class, there must exist at least one 798 * wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed 799 * primitive value can be widened to <em>T1</em>. 800 * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded 801 * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced. 802 * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive, 803 * a zero value is introduced. 804 * </ul> 805 * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types, 806 * because neither corresponds specifically to the <em>dynamic type</em> of any 807 * actual argument or return value.) 808 * <p> 809 * The method handle conversion cannot be made if any one of the required 810 * pairwise conversions cannot be made. 811 * <p> 812 * At runtime, the conversions applied to reference arguments 813 * or return values may require additional runtime checks which can fail. 814 * An unboxing operation may fail because the original reference is null, 815 * causing a {@link java.lang.NullPointerException NullPointerException}. 816 * An unboxing operation or a reference cast may also fail on a reference 817 * to an object of the wrong type, 818 * causing a {@link java.lang.ClassCastException ClassCastException}. 819 * Although an unboxing operation may accept several kinds of wrappers, 820 * if none are available, a {@code ClassCastException} will be thrown. 821 * 822 * @param newType the expected type of the new method handle 823 * @return a method handle which delegates to {@code this} after performing 824 * any necessary argument conversions, and arranges for any 825 * necessary return value conversions 826 * @throws NullPointerException if {@code newType} is a null reference 827 * @throws WrongMethodTypeException if the conversion cannot be made 828 * @see MethodHandles#explicitCastArguments 829 */ asType(MethodType newType)830 public MethodHandle asType(MethodType newType) { 831 // Fast path alternative to a heavyweight {@code asType} call. 832 // Return 'this' if the conversion will be a no-op. 833 // Android-changed: use equals() rather than = since MethodTypes are not interned. 834 if (newType.equals(type)) { 835 return this; 836 } 837 // Return 'this.asTypeCache' if the conversion is already memoized. 838 MethodHandle atc = asTypeCached(newType); 839 if (atc != null) { 840 return atc; 841 } 842 return asTypeUncached(newType); 843 } 844 asTypeCached(MethodType newType)845 private MethodHandle asTypeCached(MethodType newType) { 846 MethodHandle atc = asTypeCache; 847 // Android-changed: use equals() rather than = since MethodTypes are not interned. 848 if (atc != null && newType.equals(atc.type)) { 849 return atc; 850 } 851 return null; 852 } 853 854 /** Override this to change asType behavior. */ asTypeUncached(MethodType newType)855 /*non-public*/ MethodHandle asTypeUncached(MethodType newType) { 856 if (!type.isConvertibleTo(newType)) 857 throw new WrongMethodTypeException("cannot convert "+this+" to "+newType); 858 // BEGIN Android-changed: Android specific implementation. 859 // return asTypeCache = MethodHandleImpl.makePairwiseConvert(this, newType, true); 860 return asTypeCache = new Transformers.AsTypeAdapter(this, newType); 861 // END Android-changed: Android specific implementation. 862 } 863 864 /** 865 * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument 866 * and spreads its elements as positional arguments. 867 * The new method handle adapts, as its <i>target</i>, 868 * the current method handle. The type of the adapter will be 869 * the same as the type of the target, except that the final 870 * {@code arrayLength} parameters of the target's type are replaced 871 * by a single array parameter of type {@code arrayType}. 872 * <p> 873 * If the array element type differs from any of the corresponding 874 * argument types on the original target, 875 * the original target is adapted to take the array elements directly, 876 * as if by a call to {@link #asType asType}. 877 * <p> 878 * When called, the adapter replaces a trailing array argument 879 * by the array's elements, each as its own argument to the target. 880 * (The order of the arguments is preserved.) 881 * They are converted pairwise by casting and/or unboxing 882 * to the types of the trailing parameters of the target. 883 * Finally the target is called. 884 * What the target eventually returns is returned unchanged by the adapter. 885 * <p> 886 * Before calling the target, the adapter verifies that the array 887 * contains exactly enough elements to provide a correct argument count 888 * to the target method handle. 889 * (The array may also be null when zero elements are required.) 890 * <p> 891 * When the adapter is called, the length of the supplied {@code array} 892 * argument is queried as if by {@code array.length} or {@code arraylength} 893 * bytecode. If the adapter accepts a zero-length trailing array argument, 894 * the supplied {@code array} argument can either be a zero-length array or 895 * {@code null}; otherwise, the adapter will throw a {@code NullPointerException} 896 * if the array is {@code null} and throw an {@link IllegalArgumentException} 897 * if the array does not have the correct number of elements. 898 * <p> 899 * Here are some simple examples of array-spreading method handles: 900 * <blockquote><pre>{@code 901 MethodHandle equals = publicLookup() 902 .findVirtual(String.class, "equals", methodType(boolean.class, Object.class)); 903 assert( (boolean) equals.invokeExact("me", (Object)"me")); 904 assert(!(boolean) equals.invokeExact("me", (Object)"thee")); 905 // spread both arguments from a 2-array: 906 MethodHandle eq2 = equals.asSpreader(Object[].class, 2); 907 assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" })); 908 assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" })); 909 // try to spread from anything but a 2-array: 910 for (int n = 0; n <= 10; n++) { 911 Object[] badArityArgs = (n == 2 ? new Object[0] : new Object[n]); 912 try { assert((boolean) eq2.invokeExact(badArityArgs) && false); } 913 catch (IllegalArgumentException ex) { } // OK 914 } 915 // spread both arguments from a String array: 916 MethodHandle eq2s = equals.asSpreader(String[].class, 2); 917 assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" })); 918 assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" })); 919 // spread second arguments from a 1-array: 920 MethodHandle eq1 = equals.asSpreader(Object[].class, 1); 921 assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" })); 922 assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" })); 923 // spread no arguments from a 0-array or null: 924 MethodHandle eq0 = equals.asSpreader(Object[].class, 0); 925 assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0])); 926 assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null)); 927 // asSpreader and asCollector are approximate inverses: 928 for (int n = 0; n <= 2; n++) { 929 for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) { 930 MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n); 931 assert( (boolean) equals2.invokeWithArguments("me", "me")); 932 assert(!(boolean) equals2.invokeWithArguments("me", "thee")); 933 } 934 } 935 MethodHandle caToString = publicLookup() 936 .findStatic(Arrays.class, "toString", methodType(String.class, char[].class)); 937 assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray())); 938 MethodHandle caString3 = caToString.asCollector(char[].class, 3); 939 assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C')); 940 MethodHandle caToString2 = caString3.asSpreader(char[].class, 2); 941 assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray())); 942 * }</pre></blockquote> 943 * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments 944 * @param arrayLength the number of arguments to spread from an incoming array argument 945 * @return a new method handle which spreads its final array argument, 946 * before calling the original method handle 947 * @throws NullPointerException if {@code arrayType} is a null reference 948 * @throws IllegalArgumentException if {@code arrayType} is not an array type, 949 * or if target does not have at least 950 * {@code arrayLength} parameter types, 951 * or if {@code arrayLength} is negative, 952 * or if the resulting method handle's type would have 953 * <a href="MethodHandle.html#maxarity">too many parameters</a> 954 * @throws WrongMethodTypeException if the implied {@code asType} call fails 955 * @see #asCollector 956 */ asSpreader(Class<?> arrayType, int arrayLength)957 public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) { 958 return asSpreader(type().parameterCount() - arrayLength, arrayType, arrayLength); 959 } 960 961 /** 962 * Makes an <em>array-spreading</em> method handle, which accepts an array argument at a given position and spreads 963 * its elements as positional arguments in place of the array. The new method handle adapts, as its <i>target</i>, 964 * the current method handle. The type of the adapter will be the same as the type of the target, except that the 965 * {@code arrayLength} parameters of the target's type, starting at the zero-based position {@code spreadArgPos}, 966 * are replaced by a single array parameter of type {@code arrayType}. 967 * <p> 968 * This method behaves very much like {@link #asSpreader(Class, int)}, but accepts an additional {@code spreadArgPos} 969 * argument to indicate at which position in the parameter list the spreading should take place. 970 * 971 * @apiNote Example: 972 * <blockquote><pre>{@code 973 MethodHandle compare = LOOKUP.findStatic(Objects.class, "compare", methodType(int.class, Object.class, Object.class, Comparator.class)); 974 MethodHandle compare2FromArray = compare.asSpreader(0, Object[].class, 2); 975 Object[] ints = new Object[]{3, 9, 7, 7}; 976 Comparator<Integer> cmp = (a, b) -> a - b; 977 assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 0, 2), cmp) < 0); 978 assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 1, 3), cmp) > 0); 979 assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 2, 4), cmp) == 0); 980 * }</pre></blockquote> 981 * @param spreadArgPos the position (zero-based index) in the argument list at which spreading should start. 982 * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments 983 * @param arrayLength the number of arguments to spread from an incoming array argument 984 * @return a new method handle which spreads an array argument at a given position, 985 * before calling the original method handle 986 * @throws NullPointerException if {@code arrayType} is a null reference 987 * @throws IllegalArgumentException if {@code arrayType} is not an array type, 988 * or if target does not have at least 989 * {@code arrayLength} parameter types, 990 * or if {@code arrayLength} is negative, 991 * or if {@code spreadArgPos} has an illegal value (negative, or together with arrayLength exceeding the 992 * number of arguments), 993 * or if the resulting method handle's type would have 994 * <a href="MethodHandle.html#maxarity">too many parameters</a> 995 * @throws WrongMethodTypeException if the implied {@code asType} call fails 996 * 997 * @see #asSpreader(Class, int) 998 * @since 9 999 */ asSpreader(int spreadArgPos, Class<?> arrayType, int arrayLength)1000 public MethodHandle asSpreader(int spreadArgPos, Class<?> arrayType, int arrayLength) { 1001 MethodType postSpreadType = asSpreaderChecks(arrayType, spreadArgPos, arrayLength); 1002 // BEGIN Android-changed: Android specific implementation. 1003 /* 1004 MethodHandle afterSpread = this.asType(postSpreadType); 1005 BoundMethodHandle mh = afterSpread.rebind(); 1006 LambdaForm lform = mh.editor().spreadArgumentsForm(1 + spreadArgPos, arrayType, arrayLength); 1007 MethodType preSpreadType = postSpreadType.replaceParameterTypes(spreadArgPos, spreadArgPos + arrayLength, arrayType); 1008 return mh.copyWith(preSpreadType, lform); 1009 */ 1010 final int spreadEnd = spreadArgPos + arrayLength; 1011 final MethodType adapterType = 1012 postSpreadType.replaceParameterTypes(spreadArgPos, spreadEnd, arrayType); 1013 return new Transformers.Spreader( 1014 asType(postSpreadType), adapterType, spreadArgPos, arrayLength); 1015 // END Android-changed: Android specific implementation. 1016 } 1017 1018 /** 1019 * See if {@code asSpreader} can be validly called with the given arguments. 1020 * Return the type of the method handle call after spreading but before conversions. 1021 */ asSpreaderChecks(Class<?> arrayType, int pos, int arrayLength)1022 private MethodType asSpreaderChecks(Class<?> arrayType, int pos, int arrayLength) { 1023 spreadArrayChecks(arrayType, arrayLength); 1024 int nargs = type().parameterCount(); 1025 if (nargs < arrayLength || arrayLength < 0) 1026 throw newIllegalArgumentException("bad spread array length"); 1027 if (pos < 0 || pos + arrayLength > nargs) { 1028 throw newIllegalArgumentException("bad spread position"); 1029 } 1030 Class<?> arrayElement = arrayType.getComponentType(); 1031 MethodType mtype = type(); 1032 boolean match = true, fail = false; 1033 for (int i = pos; i < pos + arrayLength; i++) { 1034 Class<?> ptype = mtype.parameterType(i); 1035 if (ptype != arrayElement) { 1036 match = false; 1037 if (!MethodType.canConvert(arrayElement, ptype)) { 1038 fail = true; 1039 break; 1040 } 1041 } 1042 } 1043 if (match) return mtype; 1044 MethodType needType = mtype.asSpreaderType(arrayType, pos, arrayLength); 1045 if (!fail) return needType; 1046 // elicit an error: 1047 this.asType(needType); 1048 throw newInternalError("should not return"); 1049 } 1050 spreadArrayChecks(Class<?> arrayType, int arrayLength)1051 private void spreadArrayChecks(Class<?> arrayType, int arrayLength) { 1052 Class<?> arrayElement = arrayType.getComponentType(); 1053 if (arrayElement == null) 1054 throw newIllegalArgumentException("not an array type", arrayType); 1055 if ((arrayLength & 0x7F) != arrayLength) { 1056 if ((arrayLength & 0xFF) != arrayLength) 1057 throw newIllegalArgumentException("array length is not legal", arrayLength); 1058 assert(arrayLength >= 128); 1059 if (arrayElement == long.class || 1060 arrayElement == double.class) 1061 throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength); 1062 } 1063 } 1064 1065 /** 1066 * Adapts this method handle to be {@linkplain #asVarargsCollector variable arity} 1067 * if the boolean flag is true, else {@linkplain #asFixedArity fixed arity}. 1068 * If the method handle is already of the proper arity mode, it is returned 1069 * unchanged. 1070 * @apiNote 1071 * <p>This method is sometimes useful when adapting a method handle that 1072 * may be variable arity, to ensure that the resulting adapter is also 1073 * variable arity if and only if the original handle was. For example, 1074 * this code changes the first argument of a handle {@code mh} to {@code int} without 1075 * disturbing its variable arity property: 1076 * {@code mh.asType(mh.type().changeParameterType(0,int.class)) 1077 * .withVarargs(mh.isVarargsCollector())} 1078 * <p> 1079 * This call is approximately equivalent to the following code: 1080 * <blockquote><pre>{@code 1081 * if (makeVarargs == isVarargsCollector()) 1082 * return this; 1083 * else if (makeVarargs) 1084 * return asVarargsCollector(type().lastParameterType()); 1085 * else 1086 * return return asFixedArity(); 1087 * }</pre></blockquote> 1088 * @param makeVarargs true if the return method handle should have variable arity behavior 1089 * @return a method handle of the same type, with possibly adjusted variable arity behavior 1090 * @throws IllegalArgumentException if {@code makeVarargs} is true and 1091 * this method handle does not have a trailing array parameter 1092 * @since 9 1093 * @see #asVarargsCollector 1094 * @see #asFixedArity 1095 */ withVarargs(boolean makeVarargs)1096 public MethodHandle withVarargs(boolean makeVarargs) { 1097 assert(!isVarargsCollector()); // subclass responsibility 1098 if (makeVarargs) { 1099 return asVarargsCollector(type().lastParameterType()); 1100 } else { 1101 return this; 1102 } 1103 } 1104 1105 /** 1106 * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing 1107 * positional arguments and collects them into an array argument. 1108 * The new method handle adapts, as its <i>target</i>, 1109 * the current method handle. The type of the adapter will be 1110 * the same as the type of the target, except that a single trailing 1111 * parameter (usually of type {@code arrayType}) is replaced by 1112 * {@code arrayLength} parameters whose type is element type of {@code arrayType}. 1113 * <p> 1114 * If the array type differs from the final argument type on the original target, 1115 * the original target is adapted to take the array type directly, 1116 * as if by a call to {@link #asType asType}. 1117 * <p> 1118 * When called, the adapter replaces its trailing {@code arrayLength} 1119 * arguments by a single new array of type {@code arrayType}, whose elements 1120 * comprise (in order) the replaced arguments. 1121 * Finally the target is called. 1122 * What the target eventually returns is returned unchanged by the adapter. 1123 * <p> 1124 * (The array may also be a shared constant when {@code arrayLength} is zero.) 1125 * <p> 1126 * (<em>Note:</em> The {@code arrayType} is often identical to the last 1127 * parameter type of the original target. 1128 * It is an explicit argument for symmetry with {@code asSpreader}, and also 1129 * to allow the target to use a simple {@code Object} as its last parameter type.) 1130 * <p> 1131 * In order to create a collecting adapter which is not restricted to a particular 1132 * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector} instead. 1133 * <p> 1134 * Here are some examples of array-collecting method handles: 1135 * <blockquote><pre>{@code 1136 MethodHandle deepToString = publicLookup() 1137 .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class)); 1138 assertEquals("[won]", (String) deepToString.invokeExact(new Object[]{"won"})); 1139 MethodHandle ts1 = deepToString.asCollector(Object[].class, 1); 1140 assertEquals(methodType(String.class, Object.class), ts1.type()); 1141 //assertEquals("[won]", (String) ts1.invokeExact( new Object[]{"won"})); //FAIL 1142 assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"})); 1143 // arrayType can be a subtype of Object[] 1144 MethodHandle ts2 = deepToString.asCollector(String[].class, 2); 1145 assertEquals(methodType(String.class, String.class, String.class), ts2.type()); 1146 assertEquals("[two, too]", (String) ts2.invokeExact("two", "too")); 1147 MethodHandle ts0 = deepToString.asCollector(Object[].class, 0); 1148 assertEquals("[]", (String) ts0.invokeExact()); 1149 // collectors can be nested, Lisp-style 1150 MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2); 1151 assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D"))); 1152 // arrayType can be any primitive array type 1153 MethodHandle bytesToString = publicLookup() 1154 .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class)) 1155 .asCollector(byte[].class, 3); 1156 assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3)); 1157 MethodHandle longsToString = publicLookup() 1158 .findStatic(Arrays.class, "toString", methodType(String.class, long[].class)) 1159 .asCollector(long[].class, 1); 1160 assertEquals("[123]", (String) longsToString.invokeExact((long)123)); 1161 * }</pre></blockquote> 1162 * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments 1163 * @param arrayLength the number of arguments to collect into a new array argument 1164 * @return a new method handle which collects some trailing argument 1165 * into an array, before calling the original method handle 1166 * @throws NullPointerException if {@code arrayType} is a null reference 1167 * @throws IllegalArgumentException if {@code arrayType} is not an array type 1168 * or {@code arrayType} is not assignable to this method handle's trailing parameter type, 1169 * or {@code arrayLength} is not a legal array size, 1170 * or the resulting method handle's type would have 1171 * <a href="MethodHandle.html#maxarity">too many parameters</a> 1172 * @throws WrongMethodTypeException if the implied {@code asType} call fails 1173 * @see #asSpreader 1174 * @see #asVarargsCollector 1175 */ asCollector(Class<?> arrayType, int arrayLength)1176 public MethodHandle asCollector(Class<?> arrayType, int arrayLength) { 1177 return asCollector(type().parameterCount() - 1, arrayType, arrayLength); 1178 } 1179 1180 /** 1181 * Makes an <em>array-collecting</em> method handle, which accepts a given number of positional arguments starting 1182 * at a given position, and collects them into an array argument. The new method handle adapts, as its 1183 * <i>target</i>, the current method handle. The type of the adapter will be the same as the type of the target, 1184 * except that the parameter at the position indicated by {@code collectArgPos} (usually of type {@code arrayType}) 1185 * is replaced by {@code arrayLength} parameters whose type is element type of {@code arrayType}. 1186 * <p> 1187 * This method behaves very much like {@link #asCollector(Class, int)}, but differs in that its {@code 1188 * collectArgPos} argument indicates at which position in the parameter list arguments should be collected. This 1189 * index is zero-based. 1190 * 1191 * @apiNote Examples: 1192 * <blockquote><pre>{@code 1193 StringWriter swr = new StringWriter(); 1194 MethodHandle swWrite = LOOKUP.findVirtual(StringWriter.class, "write", methodType(void.class, char[].class, int.class, int.class)).bindTo(swr); 1195 MethodHandle swWrite4 = swWrite.asCollector(0, char[].class, 4); 1196 swWrite4.invoke('A', 'B', 'C', 'D', 1, 2); 1197 assertEquals("BC", swr.toString()); 1198 swWrite4.invoke('P', 'Q', 'R', 'S', 0, 4); 1199 assertEquals("BCPQRS", swr.toString()); 1200 swWrite4.invoke('W', 'X', 'Y', 'Z', 3, 1); 1201 assertEquals("BCPQRSZ", swr.toString()); 1202 * }</pre></blockquote> 1203 * <p> 1204 * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector 1205 * variable-arity method handle}, even if the original target method handle was. 1206 * @param collectArgPos the zero-based position in the parameter list at which to start collecting. 1207 * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments 1208 * @param arrayLength the number of arguments to collect into a new array argument 1209 * @return a new method handle which collects some arguments 1210 * into an array, before calling the original method handle 1211 * @throws NullPointerException if {@code arrayType} is a null reference 1212 * @throws IllegalArgumentException if {@code arrayType} is not an array type 1213 * or {@code arrayType} is not assignable to this method handle's array parameter type, 1214 * or {@code arrayLength} is not a legal array size, 1215 * or {@code collectArgPos} has an illegal value (negative, or greater than the number of arguments), 1216 * or the resulting method handle's type would have 1217 * <a href="MethodHandle.html#maxarity">too many parameters</a> 1218 * @throws WrongMethodTypeException if the implied {@code asType} call fails 1219 * 1220 * @see #asCollector(Class, int) 1221 * @since 9 1222 */ asCollector(int collectArgPos, Class<?> arrayType, int arrayLength)1223 public MethodHandle asCollector(int collectArgPos, Class<?> arrayType, int arrayLength) { 1224 asCollectorChecks(arrayType, collectArgPos, arrayLength); 1225 // BEGIN Android-changed: Android specific implementation. 1226 /* 1227 BoundMethodHandle mh = rebind(); 1228 MethodType resultType = type().asCollectorType(arrayType, collectArgPos, arrayLength); 1229 MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength); 1230 LambdaForm lform = mh.editor().collectArgumentArrayForm(1 + collectArgPos, newArray); 1231 if (lform != null) { 1232 return mh.copyWith(resultType, lform); 1233 } 1234 lform = mh.editor().collectArgumentsForm(1 + collectArgPos, newArray.type().basicType()); 1235 return mh.copyWithExtendL(resultType, lform, newArray); 1236 */ 1237 return new Transformers.Collector(this, arrayType, collectArgPos, arrayLength); 1238 // END Android-changed: Android specific implementation. 1239 } 1240 1241 /** 1242 * See if {@code asCollector} can be validly called with the given arguments. 1243 * Return false if the last parameter is not an exact match to arrayType. 1244 */ asCollectorChecks(Class<?> arrayType, int pos, int arrayLength)1245 /*non-public*/ boolean asCollectorChecks(Class<?> arrayType, int pos, int arrayLength) { 1246 spreadArrayChecks(arrayType, arrayLength); 1247 int nargs = type().parameterCount(); 1248 if (pos < 0 || pos >= nargs) { 1249 throw newIllegalArgumentException("bad collect position"); 1250 } 1251 if (nargs != 0) { 1252 Class<?> param = type().parameterType(pos); 1253 if (param == arrayType) return true; 1254 if (param.isAssignableFrom(arrayType)) return false; 1255 } 1256 throw newIllegalArgumentException("array type not assignable to argument", this, arrayType); 1257 } 1258 1259 /** 1260 * Makes a <em>variable arity</em> adapter which is able to accept 1261 * any number of trailing positional arguments and collect them 1262 * into an array argument. 1263 * <p> 1264 * The type and behavior of the adapter will be the same as 1265 * the type and behavior of the target, except that certain 1266 * {@code invoke} and {@code asType} requests can lead to 1267 * trailing positional arguments being collected into target's 1268 * trailing parameter. 1269 * Also, the 1270 * {@linkplain MethodType#lastParameterType last parameter type} 1271 * of the adapter will be 1272 * {@code arrayType}, even if the target has a different 1273 * last parameter type. 1274 * <p> 1275 * This transformation may return {@code this} if the method handle is 1276 * already of variable arity and its trailing parameter type 1277 * is identical to {@code arrayType}. 1278 * <p> 1279 * When called with {@link #invokeExact invokeExact}, the adapter invokes 1280 * the target with no argument changes. 1281 * (<em>Note:</em> This behavior is different from a 1282 * {@linkplain #asCollector fixed arity collector}, 1283 * since it accepts a whole array of indeterminate length, 1284 * rather than a fixed number of arguments.) 1285 * <p> 1286 * When called with plain, inexact {@link #invoke invoke}, if the caller 1287 * type is the same as the adapter, the adapter invokes the target as with 1288 * {@code invokeExact}. 1289 * (This is the normal behavior for {@code invoke} when types match.) 1290 * <p> 1291 * Otherwise, if the caller and adapter arity are the same, and the 1292 * trailing parameter type of the caller is a reference type identical to 1293 * or assignable to the trailing parameter type of the adapter, 1294 * the arguments and return values are converted pairwise, 1295 * as if by {@link #asType asType} on a fixed arity 1296 * method handle. 1297 * <p> 1298 * Otherwise, the arities differ, or the adapter's trailing parameter 1299 * type is not assignable from the corresponding caller type. 1300 * In this case, the adapter replaces all trailing arguments from 1301 * the original trailing argument position onward, by 1302 * a new array of type {@code arrayType}, whose elements 1303 * comprise (in order) the replaced arguments. 1304 * <p> 1305 * The caller type must provides as least enough arguments, 1306 * and of the correct type, to satisfy the target's requirement for 1307 * positional arguments before the trailing array argument. 1308 * Thus, the caller must supply, at a minimum, {@code N-1} arguments, 1309 * where {@code N} is the arity of the target. 1310 * Also, there must exist conversions from the incoming arguments 1311 * to the target's arguments. 1312 * As with other uses of plain {@code invoke}, if these basic 1313 * requirements are not fulfilled, a {@code WrongMethodTypeException} 1314 * may be thrown. 1315 * <p> 1316 * In all cases, what the target eventually returns is returned unchanged by the adapter. 1317 * <p> 1318 * In the final case, it is exactly as if the target method handle were 1319 * temporarily adapted with a {@linkplain #asCollector fixed arity collector} 1320 * to the arity required by the caller type. 1321 * (As with {@code asCollector}, if the array length is zero, 1322 * a shared constant may be used instead of a new array. 1323 * If the implied call to {@code asCollector} would throw 1324 * an {@code IllegalArgumentException} or {@code WrongMethodTypeException}, 1325 * the call to the variable arity adapter must throw 1326 * {@code WrongMethodTypeException}.) 1327 * <p> 1328 * The behavior of {@link #asType asType} is also specialized for 1329 * variable arity adapters, to maintain the invariant that 1330 * plain, inexact {@code invoke} is always equivalent to an {@code asType} 1331 * call to adjust the target type, followed by {@code invokeExact}. 1332 * Therefore, a variable arity adapter responds 1333 * to an {@code asType} request by building a fixed arity collector, 1334 * if and only if the adapter and requested type differ either 1335 * in arity or trailing argument type. 1336 * The resulting fixed arity collector has its type further adjusted 1337 * (if necessary) to the requested type by pairwise conversion, 1338 * as if by another application of {@code asType}. 1339 * <p> 1340 * When a method handle is obtained by executing an {@code ldc} instruction 1341 * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked 1342 * as a variable arity method (with the modifier bit {@code 0x0080}), 1343 * the method handle will accept multiple arities, as if the method handle 1344 * constant were created by means of a call to {@code asVarargsCollector}. 1345 * <p> 1346 * In order to create a collecting adapter which collects a predetermined 1347 * number of arguments, and whose type reflects this predetermined number, 1348 * use {@link #asCollector asCollector} instead. 1349 * <p> 1350 * No method handle transformations produce new method handles with 1351 * variable arity, unless they are documented as doing so. 1352 * Therefore, besides {@code asVarargsCollector} and {@code withVarargs}, 1353 * all methods in {@code MethodHandle} and {@code MethodHandles} 1354 * will return a method handle with fixed arity, 1355 * except in the cases where they are specified to return their original 1356 * operand (e.g., {@code asType} of the method handle's own type). 1357 * <p> 1358 * Calling {@code asVarargsCollector} on a method handle which is already 1359 * of variable arity will produce a method handle with the same type and behavior. 1360 * It may (or may not) return the original variable arity method handle. 1361 * <p> 1362 * Here is an example, of a list-making variable arity method handle: 1363 * <blockquote><pre>{@code 1364 MethodHandle deepToString = publicLookup() 1365 .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class)); 1366 MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class); 1367 assertEquals("[won]", (String) ts1.invokeExact( new Object[]{"won"})); 1368 assertEquals("[won]", (String) ts1.invoke( new Object[]{"won"})); 1369 assertEquals("[won]", (String) ts1.invoke( "won" )); 1370 assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"})); 1371 // findStatic of Arrays.asList(...) produces a variable arity method handle: 1372 MethodHandle asList = publicLookup() 1373 .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class)); 1374 assertEquals(methodType(List.class, Object[].class), asList.type()); 1375 assert(asList.isVarargsCollector()); 1376 assertEquals("[]", asList.invoke().toString()); 1377 assertEquals("[1]", asList.invoke(1).toString()); 1378 assertEquals("[two, too]", asList.invoke("two", "too").toString()); 1379 String[] argv = { "three", "thee", "tee" }; 1380 assertEquals("[three, thee, tee]", asList.invoke(argv).toString()); 1381 assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString()); 1382 List ls = (List) asList.invoke((Object)argv); 1383 assertEquals(1, ls.size()); 1384 assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0))); 1385 * }</pre></blockquote> 1386 * <p style="font-size:smaller;"> 1387 * <em>Discussion:</em> 1388 * These rules are designed as a dynamically-typed variation 1389 * of the Java rules for variable arity methods. 1390 * In both cases, callers to a variable arity method or method handle 1391 * can either pass zero or more positional arguments, or else pass 1392 * pre-collected arrays of any length. Users should be aware of the 1393 * special role of the final argument, and of the effect of a 1394 * type match on that final argument, which determines whether 1395 * or not a single trailing argument is interpreted as a whole 1396 * array or a single element of an array to be collected. 1397 * Note that the dynamic type of the trailing argument has no 1398 * effect on this decision, only a comparison between the symbolic 1399 * type descriptor of the call site and the type descriptor of the method handle.) 1400 * 1401 * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments 1402 * @return a new method handle which can collect any number of trailing arguments 1403 * into an array, before calling the original method handle 1404 * @throws NullPointerException if {@code arrayType} is a null reference 1405 * @throws IllegalArgumentException if {@code arrayType} is not an array type 1406 * or {@code arrayType} is not assignable to this method handle's trailing parameter type 1407 * @see #asCollector 1408 * @see #isVarargsCollector 1409 * @see #withVarargs 1410 * @see #asFixedArity 1411 */ asVarargsCollector(Class<?> arrayType)1412 public MethodHandle asVarargsCollector(Class<?> arrayType) { 1413 Objects.requireNonNull(arrayType); 1414 boolean lastMatch = asCollectorChecks(arrayType, type().parameterCount() - 1, 0); 1415 if (isVarargsCollector() && lastMatch) 1416 return this; 1417 // Android-changed: Android specific implementation. 1418 // return MethodHandleImpl.makeVarargsCollector(this, arrayType); 1419 return new Transformers.VarargsCollector(this); 1420 } 1421 1422 /** 1423 * Determines if this method handle 1424 * supports {@linkplain #asVarargsCollector variable arity} calls. 1425 * Such method handles arise from the following sources: 1426 * <ul> 1427 * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector} 1428 * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method} 1429 * which resolves to a variable arity Java method or constructor 1430 * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle} 1431 * which resolves to a variable arity Java method or constructor 1432 * </ul> 1433 * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls 1434 * @see #asVarargsCollector 1435 * @see #asFixedArity 1436 */ isVarargsCollector()1437 public boolean isVarargsCollector() { 1438 return false; 1439 } 1440 1441 /** 1442 * Makes a <em>fixed arity</em> method handle which is otherwise 1443 * equivalent to the current method handle. 1444 * <p> 1445 * If the current method handle is not of 1446 * {@linkplain #asVarargsCollector variable arity}, 1447 * the current method handle is returned. 1448 * This is true even if the current method handle 1449 * could not be a valid input to {@code asVarargsCollector}. 1450 * <p> 1451 * Otherwise, the resulting fixed-arity method handle has the same 1452 * type and behavior of the current method handle, 1453 * except that {@link #isVarargsCollector isVarargsCollector} 1454 * will be false. 1455 * The fixed-arity method handle may (or may not) be the 1456 * a previous argument to {@code asVarargsCollector}. 1457 * <p> 1458 * Here is an example, of a list-making variable arity method handle: 1459 * <blockquote><pre>{@code 1460 MethodHandle asListVar = publicLookup() 1461 .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class)) 1462 .asVarargsCollector(Object[].class); 1463 MethodHandle asListFix = asListVar.asFixedArity(); 1464 assertEquals("[1]", asListVar.invoke(1).toString()); 1465 Exception caught = null; 1466 try { asListFix.invoke((Object)1); } 1467 catch (Exception ex) { caught = ex; } 1468 assert(caught instanceof ClassCastException); 1469 assertEquals("[two, too]", asListVar.invoke("two", "too").toString()); 1470 try { asListFix.invoke("two", "too"); } 1471 catch (Exception ex) { caught = ex; } 1472 assert(caught instanceof WrongMethodTypeException); 1473 Object[] argv = { "three", "thee", "tee" }; 1474 assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString()); 1475 assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString()); 1476 assertEquals(1, ((List) asListVar.invoke((Object)argv)).size()); 1477 assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString()); 1478 * }</pre></blockquote> 1479 * 1480 * @return a new method handle which accepts only a fixed number of arguments 1481 * @see #asVarargsCollector 1482 * @see #isVarargsCollector 1483 */ asFixedArity()1484 public MethodHandle asFixedArity() { 1485 // BEGIN Android-changed: Android specific implementation. 1486 // assert(!isVarargsCollector()); 1487 // return this; 1488 1489 MethodHandle mh = this; 1490 if (mh.isVarargsCollector()) { 1491 mh = ((Transformers.VarargsCollector) mh).asFixedArity(); 1492 } 1493 assert(!mh.isVarargsCollector()); 1494 return mh; 1495 // END Android-changed: Android specific implementation. 1496 } 1497 1498 /** 1499 * Binds a value {@code x} to the first argument of a method handle, without invoking it. 1500 * The new method handle adapts, as its <i>target</i>, 1501 * the current method handle by binding it to the given argument. 1502 * The type of the bound handle will be 1503 * the same as the type of the target, except that a single leading 1504 * reference parameter will be omitted. 1505 * <p> 1506 * When called, the bound handle inserts the given value {@code x} 1507 * as a new leading argument to the target. The other arguments are 1508 * also passed unchanged. 1509 * What the target eventually returns is returned unchanged by the bound handle. 1510 * <p> 1511 * The reference {@code x} must be convertible to the first parameter 1512 * type of the target. 1513 * <p> 1514 * (<em>Note:</em> Because method handles are immutable, the target method handle 1515 * retains its original type and behavior.) 1516 * @param x the value to bind to the first argument of the target 1517 * @return a new method handle which prepends the given value to the incoming 1518 * argument list, before calling the original method handle 1519 * @throws IllegalArgumentException if the target does not have a 1520 * leading parameter type that is a reference type 1521 * @throws ClassCastException if {@code x} cannot be converted 1522 * to the leading parameter type of the target 1523 * @see MethodHandles#insertArguments 1524 */ bindTo(Object x)1525 public MethodHandle bindTo(Object x) { 1526 x = type.leadingReferenceParameter().cast(x); // throw CCE if needed 1527 // Android-changed: Android specific implementation. 1528 // return bindArgumentL(0, x); 1529 return new Transformers.BindTo(this, x); 1530 } 1531 1532 /** 1533 * Returns a string representation of the method handle, 1534 * starting with the string {@code "MethodHandle"} and 1535 * ending with the string representation of the method handle's type. 1536 * In other words, this method returns a string equal to the value of: 1537 * <blockquote><pre>{@code 1538 * "MethodHandle" + type().toString() 1539 * }</pre></blockquote> 1540 * <p> 1541 * (<em>Note:</em> Future releases of this API may add further information 1542 * to the string representation. 1543 * Therefore, the present syntax should not be parsed by applications.) 1544 * 1545 * @return a string representation of the method handle 1546 */ 1547 @Override toString()1548 public String toString() { 1549 // Android-removed: Debugging support unused on Android. 1550 // if (DEBUG_METHOD_HANDLE_NAMES) return "MethodHandle"+debugString(); 1551 return standardString(); 1552 } standardString()1553 String standardString() { 1554 return "MethodHandle"+type; 1555 } 1556 1557 // BEGIN Android-removed: Debugging support unused on Android. 1558 /* 1559 /** Return a string with a several lines describing the method handle structure. 1560 * This string would be suitable for display in an IDE debugger. 1561 * 1562 String debugString() { 1563 return type+" : "+internalForm()+internalProperties(); 1564 } 1565 */ 1566 // END Android-removed: Debugging support unused on Android. 1567 1568 // BEGIN Android-added: Android specific implementation. 1569 /** @hide */ getHandleKind()1570 public int getHandleKind() { 1571 if (handleKind == INVOKE_VAR_HANDLE_EXACT || handleKind == INVOKE_VAR_HANDLE) { 1572 // No need to expose Android implementation detail, avoids larger 1573 // MethodHandleInfo changes in revealDirect() code path. 1574 return INVOKE_VIRTUAL; 1575 } 1576 return handleKind; 1577 } 1578 1579 /** @hide */ transform(EmulatedStackFrame arguments)1580 protected void transform(EmulatedStackFrame arguments) throws Throwable { 1581 throw new AssertionError("MethodHandle.transform should never be called."); 1582 } 1583 1584 /** 1585 * Entry back into the runtime to dispatch a MethodHandle with a specific EmulatedStackFrame 1586 * containing the arguments to provide. 1587 * @param arguments the stack frame holding arguments for the invocation. 1588 * @hide 1589 */ invokeExactWithFrame(EmulatedStackFrame arguments)1590 /* package-private */ native void invokeExactWithFrame(EmulatedStackFrame arguments) 1591 throws Throwable; 1592 1593 /** 1594 * Creates a copy of this method handle, copying all relevant data. 1595 * 1596 * @hide 1597 */ duplicate()1598 protected MethodHandle duplicate() { 1599 try { 1600 return (MethodHandle) this.clone(); 1601 } catch (CloneNotSupportedException cnse) { 1602 throw new AssertionError("Subclass of Transformer is not cloneable"); 1603 } 1604 } 1605 1606 /** 1607 * This is the entry point for all transform calls, and dispatches to the protected 1608 * transform method. This layer of indirection exists purely for convenience, because 1609 * we can invoke-direct on a fixed ArtMethod for all transform variants. 1610 * 1611 * NOTE: If this extra layer of indirection proves to be a problem, we can get rid 1612 * of this layer of indirection at the cost of some additional ugliness. 1613 */ transformInternal(EmulatedStackFrame arguments)1614 private void transformInternal(EmulatedStackFrame arguments) throws Throwable { 1615 transform(arguments); 1616 } 1617 // END Android-added: Android specific implementation. 1618 1619 // BEGIN Android-removed: RI implementation unused on Android. 1620 /* 1621 //// Implementation methods. 1622 //// Sub-classes can override these default implementations. 1623 //// All these methods assume arguments are already validated. 1624 1625 // Other transforms to do: convert, explicitCast, permute, drop, filter, fold, GWT, catch 1626 1627 BoundMethodHandle bindArgumentL(int pos, Object value) { 1628 return rebind().bindArgumentL(pos, value); 1629 } 1630 1631 /*non-public* 1632 MethodHandle setVarargs(MemberName member) throws IllegalAccessException { 1633 if (!member.isVarargs()) return this; 1634 Class<?> arrayType = type().lastParameterType(); 1635 if (arrayType.isArray()) { 1636 return MethodHandleImpl.makeVarargsCollector(this, arrayType); 1637 } 1638 throw member.makeAccessException("cannot make variable arity", null); 1639 } 1640 1641 /*non-public* 1642 MethodHandle viewAsType(MethodType newType, boolean strict) { 1643 // No actual conversions, just a new view of the same method. 1644 // Note that this operation must not produce a DirectMethodHandle, 1645 // because retyped DMHs, like any transformed MHs, 1646 // cannot be cracked into MethodHandleInfo. 1647 assert viewAsTypeChecks(newType, strict); 1648 BoundMethodHandle mh = rebind(); 1649 assert(!((MethodHandle)mh instanceof DirectMethodHandle)); 1650 return mh.copyWith(newType, mh.form); 1651 } 1652 1653 /*non-public* 1654 boolean viewAsTypeChecks(MethodType newType, boolean strict) { 1655 if (strict) { 1656 assert(type().isViewableAs(newType, true)) 1657 : Arrays.asList(this, newType); 1658 } else { 1659 assert(type().basicType().isViewableAs(newType.basicType(), true)) 1660 : Arrays.asList(this, newType); 1661 } 1662 return true; 1663 } 1664 1665 // Decoding 1666 1667 /*non-public* 1668 LambdaForm internalForm() { 1669 return form; 1670 } 1671 1672 /*non-public* 1673 MemberName internalMemberName() { 1674 return null; // DMH returns DMH.member 1675 } 1676 1677 /*non-public* 1678 Class<?> internalCallerClass() { 1679 return null; // caller-bound MH for @CallerSensitive method returns caller 1680 } 1681 1682 /*non-public* 1683 MethodHandleImpl.Intrinsic intrinsicName() { 1684 // no special intrinsic meaning to most MHs 1685 return MethodHandleImpl.Intrinsic.NONE; 1686 } 1687 1688 /*non-public* 1689 MethodHandle withInternalMemberName(MemberName member, boolean isInvokeSpecial) { 1690 if (member != null) { 1691 return MethodHandleImpl.makeWrappedMember(this, member, isInvokeSpecial); 1692 } else if (internalMemberName() == null) { 1693 // The required internaMemberName is null, and this MH (like most) doesn't have one. 1694 return this; 1695 } else { 1696 // The following case is rare. Mask the internalMemberName by wrapping the MH in a BMH. 1697 MethodHandle result = rebind(); 1698 assert (result.internalMemberName() == null); 1699 return result; 1700 } 1701 } 1702 1703 /*non-public* 1704 boolean isInvokeSpecial() { 1705 return false; // DMH.Special returns true 1706 } 1707 1708 /*non-public* 1709 Object internalValues() { 1710 return null; 1711 } 1712 1713 /*non-public* 1714 Object internalProperties() { 1715 // Override to something to follow this.form, like "\n& FOO=bar" 1716 return ""; 1717 } 1718 1719 //// Method handle implementation methods. 1720 //// Sub-classes can override these default implementations. 1721 //// All these methods assume arguments are already validated. 1722 1723 /*non-public* 1724 abstract MethodHandle copyWith(MethodType mt, LambdaForm lf); 1725 1726 /** Require this method handle to be a BMH, or else replace it with a "wrapper" BMH. 1727 * Many transforms are implemented only for BMHs. 1728 * @return a behaviorally equivalent BMH 1729 * 1730 abstract BoundMethodHandle rebind(); 1731 1732 /** 1733 * Replace the old lambda form of this method handle with a new one. 1734 * The new one must be functionally equivalent to the old one. 1735 * Threads may continue running the old form indefinitely, 1736 * but it is likely that the new one will be preferred for new executions. 1737 * Use with discretion. 1738 * 1739 /*non-public* 1740 void updateForm(LambdaForm newForm) { 1741 assert(newForm.customized == null || newForm.customized == this); 1742 if (form == newForm) return; 1743 newForm.prepare(); // as in MethodHandle.<init> 1744 UNSAFE.putObject(this, FORM_OFFSET, newForm); 1745 UNSAFE.fullFence(); 1746 } 1747 1748 /** Craft a LambdaForm customized for this particular MethodHandle * 1749 /*non-public* 1750 void customize() { 1751 if (form.customized == null) { 1752 LambdaForm newForm = form.customize(this); 1753 updateForm(newForm); 1754 } else { 1755 assert(form.customized == this); 1756 } 1757 } 1758 1759 private static final long FORM_OFFSET; 1760 static { 1761 try { 1762 FORM_OFFSET = UNSAFE.objectFieldOffset(MethodHandle.class.getDeclaredField("form")); 1763 } catch (ReflectiveOperationException ex) { 1764 throw newInternalError(ex); 1765 } 1766 } 1767 */ 1768 // END Android-removed: RI implementation unused on Android. 1769 } 1770