1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 // This file contains pre-canonical-types utility code and does not includes HAL
17 // utilities. LegacyHalUtils.h is a superset of these utilities that includes
18 // HAL utilities.
19
20 #ifndef ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_LEGACY_UTILS_H
21 #define ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_LEGACY_UTILS_H
22
23 #include <android-base/logging.h>
24 #include <nnapi/TypeUtils.h>
25 #include <nnapi/Types.h>
26
27 #include <functional>
28 #include <tuple>
29 #include <utility>
30 #include <vector>
31
32 #include "NeuralNetworks.h"
33 #include "OperationResolver.h"
34 #include "nnapi/TypeUtils.h"
35 #include "nnapi/Types.h"
36
37 namespace android {
38 namespace nn {
39
40 // The number of data types (OperandCode) defined in NeuralNetworksTypes.h.
41 const int kNumberOfDataTypes = 16;
42
43 // The number of operation types (OperationCode) defined in NeuralNetworksTypes.h.
44 const int kNumberOfOperationTypes = 106;
45
46 #ifdef NN_EXPERIMENTAL_FEATURE
47 const int kNumberOfExperimentalOperationTypes = 1;
48 #endif // NN_EXPERIMENTAL_FEATURE
49
50 static_assert(kNumberOfOperationTypes == BuiltinOperationResolver::kNumberOfOperationTypes);
51
52 // The number of execution preferences defined in NeuralNetworks.h.
53 const int kNumberOfPreferences = 3;
54
55 // The number of data types (OperandCode) defined in NeuralNetworksOEM.h.
56 const int kNumberOfDataTypesOEM = 2;
57
58 // The number of operation types (OperationCode) defined in NeuralNetworksOEM.h.
59 const int kNumberOfOperationTypesOEM = 1;
60
61 // The lowest number assigned to any OEM Code in NeuralNetworksOEM.h.
62 const int kOEMCodeBase = 10000;
63
64 #ifdef NN_DEBUGGABLE
65 #define SHOW_IF_DEBUG(msg) msg
66 #else
67 #define SHOW_IF_DEBUG(msg) ""
68 #endif
69
70 #define NN_RETURN_IF_ERROR(expr) \
71 do { \
72 int _errorCode = (expr); \
73 if (_errorCode != ANEURALNETWORKS_NO_ERROR) { \
74 return _errorCode; \
75 } \
76 } while (0)
77
78 enum class HalVersion : int32_t {
79 UNKNOWN,
80 V1_0,
81 V1_1,
82 V1_2,
83 V1_3,
84 AIDL_V1,
85 AIDL_V2,
86 AIDL_UNSTABLE,
87 // TODO(b/207721221): Add AIDL support to TestPartitioning so that LATEST can be set to AIDL
88 // version.
89 LATEST = V1_3,
90 };
91
92 std::ostream& operator<<(std::ostream& os, const HalVersion& halVersion);
93
94 // Make a Duration from a duration in nanoseconds. If the value exceeds the max duration, return the
95 // maximum expressible duration.
96 Duration makeTimeoutDuration(uint64_t nanoseconds);
97
98 // Make a Duration from a duration in nanoseconds. If the value exceeds the max duration, return the
99 // maximum expressible duration. If nanoseconds == -1, the duration is omitted. Precondition:
100 // nanoseconds >= -1
101 OptionalDuration makeTimeoutDuration(int64_t nanoseconds);
102
103 // Make a deadline from a duration. If the sum of the current time and the
104 // duration exceeds the max time, return a time point holding the maximum
105 // expressible time.
106 TimePoint makeDeadline(Duration duration);
107
makeDeadline(uint64_t duration)108 inline TimePoint makeDeadline(uint64_t duration) {
109 return makeDeadline(makeTimeoutDuration(duration));
110 }
111
112 // Convenience function. If the duration is provided, this function creates a
113 // deadline using makeDeadline. If the duration is not provided, this function
114 // returns std::nullopt.
makeDeadline(OptionalDuration duration)115 inline OptionalTimePoint makeDeadline(OptionalDuration duration) {
116 return duration.has_value() ? std::make_optional(makeDeadline(*duration)) : OptionalTimePoint{};
117 }
makeDeadline(std::optional<uint64_t> duration)118 inline OptionalTimePoint makeDeadline(std::optional<uint64_t> duration) {
119 return duration.has_value() ? std::make_optional(makeDeadline(*duration)) : OptionalTimePoint{};
120 }
makeDeadline(int64_t duration)121 inline OptionalTimePoint makeDeadline(int64_t duration) {
122 return makeDeadline(makeTimeoutDuration(duration));
123 }
124
125 // Returns true if the deadline has passed. Returns false if either the deadline
126 // has not been exceeded or if the deadline is not present.
127 bool hasDeadlinePassed(const OptionalTimePoint& deadline);
128
129 // Returns true if an operand type is an extension type.
130 bool isExtensionOperandType(OperandType type);
131
132 // Returns true if an operation type is an extension type.
133 bool isExtensionOperationType(OperationType type);
134
135 // Returns the amount of space needed to store a value of the specified
136 // dimensions and type. For a tensor with unspecified rank or at least one
137 // unspecified dimension, returns zero.
138 //
139 // Aborts if the specified type is an extension type.
140 // Aborts if the size would overflow the return type.
141 //
142 // See also TypeManager::getSizeOfData(OperandType, const std::vector<uint32_t>&).
143 uint32_t nonExtensionOperandSizeOfData(OperandType type, const std::vector<uint32_t>& dimensions);
144
145 // Returns the amount of space needed to store a value of the dimensions and
146 // type of this operand. For a tensor with unspecified rank or at least one
147 // unspecified dimension, returns zero.
148 //
149 // Aborts if the specified type is an extension type.
150 // Aborts if the size would overflow the return type.
151 //
152 // See also TypeManager::getSizeOfData(const Operand&).
nonExtensionOperandSizeOfData(const Operand & operand)153 inline uint32_t nonExtensionOperandSizeOfData(const Operand& operand) {
154 return nonExtensionOperandSizeOfData(operand.type, operand.dimensions);
155 }
156
157 // Returns the amount of space needed to store a value of the specified
158 // dimensions and element size. For a tensor with unspecified rank or at least
159 // one unspecified dimension, returns zero.
160 //
161 // Aborts if the size would overflow the return type.
162 //
163 // See also TypeManager::getSizeOfData(const Operand&).
164 uint32_t sizeOfTensorData(uint32_t sizeOfElement, const std::vector<uint32_t>& dimensions);
165
166 // Returns true if the amount of space needed to store a value of the specified
167 // dimensions and element size overflows the uint32_t type.
168 //
169 // Aborts if the specified type is an extension type.
170 //
171 // See also TypeManager::sizeOfDataOverflowsUInt32(OperandType, const std::vector<uint32_t>&).
172 bool nonExtensionOperandSizeOfDataOverflowsUInt32(OperandType type,
173 const std::vector<uint32_t>& dimensions);
174
175 // Returns true if the amount of space needed to store a value of the specified
176 // dimensions and element size overflows the uint32_t type.
177 //
178 // See also TypeManager::sizeOfDataOverflowsUInt32(OperandType, const std::vector<uint32_t>&).
179 bool sizeOfTensorDataOverflowsUInt32(uint32_t elementSize, const std::vector<uint32_t>& dimensions);
180
181 // Returns true if a non-extension operand type is a scalar type.
182 //
183 // Aborts if the specified type is an extension type.
184 //
185 // See also TypeManager::isTensorType(OperandType).
186 bool nonExtensionOperandTypeIsScalar(int type);
187
188 // Whether an operand of tensor type has unspecified dimensions.
189 //
190 // Undefined behavior if the operand type is a scalar type.
191 bool tensorHasUnspecifiedDimensions(int type, const uint32_t* dim, uint32_t dimCount);
192 bool tensorHasUnspecifiedDimensions(OperandType type, const Dimensions& dimensions);
193 bool tensorHasUnspecifiedDimensions(const ANeuralNetworksOperandType* type);
194
195 // Returns the number of padding bytes needed to align data starting at `index` with `length` number
196 // of bytes such that `index` + returned number of padding bytes is aligned. Refer to
197 // `getAlignmentForLength` for more information on alignment (such as what the current alignments
198 // are for different data lengths).
199 uint32_t alignBytesNeeded(uint32_t index, size_t length);
200
201 // Does a detailed LOG(INFO) of the model
202 void logModelToInfo(const Model& model);
203
validCode(uint32_t codeCount,uint32_t codeCountOEM,uint32_t code)204 inline bool validCode(uint32_t codeCount, uint32_t codeCountOEM, uint32_t code) {
205 return (code < codeCount) || (code >= kOEMCodeBase && (code - kOEMCodeBase) < codeCountOEM);
206 }
207
208 // Validates an operand type.
209 //
210 // extensionOperandTypeInfo must be nullptr iff the type is not an extension type.
211 //
212 // If allowPartial is true, the dimensions may be underspecified.
213 int validateOperandType(const ANeuralNetworksOperandType& type,
214 const Extension::OperandTypeInformation* const extensionOperandTypeInfo,
215 const char* tag, bool allowPartial);
216 int validateOperandList(uint32_t count, const uint32_t* list, uint32_t operandCount,
217 const char* tag);
218
219 // A set of functions to help validate models containing IF or WHILE operations.
220 struct SubgraphValidationHelper {
221 // Checks if a given operand is a SUBGRAPH operand with a valid offset.
222 std::function<bool(const Operand&)> isValidSubgraphReference;
223 // Gets the input count of a subgraph referenced by a given operand.
224 std::function<uint32_t(const Operand&)> getSubgraphInputCount;
225 // Gets the output count of a subgraph referenced by a given operand.
226 std::function<uint32_t(const Operand&)> getSubgraphOutputCount;
227 // Gets the specified input operand of a subgraph referenced by a given operand.
228 std::function<const Operand*(const Operand&, uint32_t)> getSubgraphInputOperand;
229 // Gets the specified output operand of a subgraph referenced by a given operand.
230 std::function<const Operand*(const Operand&, uint32_t)> getSubgraphOutputOperand;
231 // Whether control flow operations with inner or outer input or output
232 // operands of unknown size are allowed.
233 bool allowControlFlowOperationWithOperandOfUnknownSize;
234 };
235
236 // Returns ANEURALNETWORKS_NO_ERROR if the corresponding operation is defined and can handle the
237 // provided operand types in the given HAL version, otherwise returns ANEURALNETWORKS_BAD_DATA.
238 // The last argument is only used for validating IF and WHILE operations.
239 int validateOperation(ANeuralNetworksOperationType opType, uint32_t inputCount,
240 const uint32_t* inputIndexes, uint32_t outputCount,
241 const uint32_t* outputIndexes, const std::vector<Operand>& operands,
242 HalVersion halVersion, const SubgraphValidationHelper& helper);
243
getSizeFromInts(int lower,int higher)244 inline size_t getSizeFromInts(int lower, int higher) {
245 return (uint32_t)(lower) + ((uint64_t)(uint32_t)(higher) << 32);
246 }
247
248 // Convert ANEURALNETWORKS_* result code to ErrorStatus.
249 // Not guaranteed to be a 1-to-1 mapping.
250 ErrorStatus convertResultCodeToErrorStatus(int resultCode);
251
252 // Convert ErrorStatus to ANEURALNETWORKS_* result code.
253 // Not guaranteed to be a 1-to-1 mapping.
254 int convertErrorStatusToResultCode(ErrorStatus status);
255
256 // Convert execution results to runtime format. Additionally checks that the
257 // returned results abide by the HAL specification, and logs an error if the
258 // result violates the specification.
259 std::tuple<int, std::vector<OutputShape>, Timing> getExecutionResult(
260 ErrorStatus status, std::vector<OutputShape> outputShapes, Timing timing);
261
convertToCanonicalPriority(int32_t priority)262 constexpr Priority convertToCanonicalPriority(int32_t priority) {
263 switch (priority) {
264 case ANEURALNETWORKS_PRIORITY_LOW:
265 return Priority::LOW;
266 case ANEURALNETWORKS_PRIORITY_MEDIUM:
267 return Priority::MEDIUM;
268 case ANEURALNETWORKS_PRIORITY_HIGH:
269 return Priority::HIGH;
270 }
271 LOG(FATAL) << "unrecognized priority: " << priority;
272 return {};
273 }
274
275 // The function syncWait() has the same semantics as the system function
276 // ::sync_wait(), except that the syncWait() return value is semantically
277 // richer. The timeout parameter is in msecs.
278 enum class FenceState {
279 ACTIVE, // fence has not been signaled
280 SIGNALED, // fence has been signaled
281 ERROR, // fence has been placed in the error state
282 UNKNOWN, // either bad argument passed to syncWait(), or internal error
283 };
284 FenceState syncWait(int fd, int timeout);
285
286 #ifdef NN_DEBUGGABLE
287 uint32_t getProp(const char* str, uint32_t defaultValue = 0);
288 #endif // NN_DEBUGGABLE
289
290 struct ApiVersion {
291 Version canonical;
292 int64_t featureLevel;
293 };
294
295 constexpr auto kHalVersionV1_0ToApi = ApiVersion{.canonical = kVersionFeatureLevel1,
296 .featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_1};
297 constexpr auto kHalVersionV1_1ToApi = ApiVersion{.canonical = kVersionFeatureLevel2,
298 .featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_2};
299 constexpr auto kHalVersionV1_2ToApi = ApiVersion{.canonical = kVersionFeatureLevel3,
300 .featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_3};
301 constexpr auto kHalVersionV1_3ToApi = ApiVersion{.canonical = kVersionFeatureLevel4,
302 .featureLevel = ANEURALNETWORKS_FEATURE_LEVEL_4};
303
304 // Utility that measures time period, in nanoseconds, from creation
305 // to destruction and stores result in the supplied memory location
306 // on destruction
307 struct [[nodiscard]] TimeNanoMeasurer {
308 TimePoint start;
309 uint64_t* saveAt;
310
TimeNanoMeasurerTimeNanoMeasurer311 explicit TimeNanoMeasurer(uint64_t* saveAt) : start(Clock::now()), saveAt(saveAt) {}
~TimeNanoMeasurerTimeNanoMeasurer312 ~TimeNanoMeasurer() { *saveAt = currentDuration(start); }
313 DISALLOW_COPY_AND_ASSIGN(TimeNanoMeasurer);
314
currentDurationTimeNanoMeasurer315 static inline uint64_t currentDuration(const TimePoint& start) {
316 auto end = Clock::now();
317 return std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count();
318 }
319 };
320
321 } // namespace nn
322 } // namespace android
323
324 #endif // ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_LEGACY_UTILS_H
325