1 /* 2 ** Copyright 2011, The Android Open Source Project 3 ** 4 ** Licensed under the Apache License, Version 2.0 (the "License"); 5 ** you may not use this file except in compliance with the License. 6 ** You may obtain a copy of the License at 7 ** 8 ** http://www.apache.org/licenses/LICENSE-2.0 9 ** 10 ** Unless required by applicable law or agreed to in writing, software 11 ** distributed under the License is distributed on an "AS IS" BASIS, 12 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 ** See the License for the specific language governing permissions and 14 ** limitations under the License. 15 */ 16 17 #ifndef ANDROID_PACKAGES_MODULES_NEURALNETWORKS_DRIVER_CACHE_BLOB_CACHE_BLOB_CACHE_H 18 #define ANDROID_PACKAGES_MODULES_NEURALNETWORKS_DRIVER_CACHE_BLOB_CACHE_BLOB_CACHE_H 19 20 #include <stddef.h> 21 22 #include <functional> 23 #include <memory> 24 #include <utility> 25 #include <vector> 26 27 namespace android { 28 29 // A BlobCache is an in-memory cache for binary key/value pairs. A BlobCache 30 // does NOT provide any thread-safety guarantees. 31 // 32 // The cache contents can be serialized to an in-memory buffer or mmap'd file 33 // and then reloaded in a subsequent execution of the program. This 34 // serialization is non-portable and the data should only be used by the device 35 // that generated it. 36 class BlobCache { 37 public: 38 enum class Select { 39 RANDOM, // evict random entries 40 LRU, // evict least-recently-used entries 41 42 DEFAULT = RANDOM, 43 }; 44 45 enum class Capacity { 46 // cut back to no more than half capacity; new/replacement 47 // entry still might not fit 48 HALVE, 49 50 // cut back to whatever is necessary to fit new/replacement 51 // entry 52 FIT, 53 54 // cut back to no more than half capacity and ensure that 55 // there's enough space for new/replacement entry 56 FIT_HALVE, 57 58 DEFAULT = HALVE, 59 }; 60 61 // When we're inserting or replacing an entry in the cache, and 62 // there's not enough space, how do we clean the cache? 63 typedef std::pair<Select, Capacity> Policy; 64 defaultPolicy()65 static Policy defaultPolicy() { return Policy(Select::DEFAULT, Capacity::DEFAULT); } 66 67 // Create an empty blob cache. The blob cache will cache key/value pairs 68 // with key and value sizes less than or equal to maxKeySize and 69 // maxValueSize, respectively. The total combined size of ALL cache entries 70 // (key sizes plus value sizes) will not exceed maxTotalSize. 71 BlobCache(size_t maxKeySize, size_t maxValueSize, size_t maxTotalSize, 72 Policy policy = defaultPolicy()); 73 74 // set inserts a new binary value into the cache and associates it with the 75 // given binary key. If the key or value are too large for the cache then 76 // the cache remains unchanged. This includes the case where a different 77 // value was previously associated with the given key - the old value will 78 // remain in the cache. If the given key and value are small enough to be 79 // put in the cache (based on the maxKeySize, maxValueSize, and maxTotalSize 80 // values specified to the BlobCache constructor), then the key/value pair 81 // will be in the cache after set returns. Note, however, that a subsequent 82 // call to set may evict old key/value pairs from the cache. 83 // 84 // Preconditions: 85 // key != NULL 86 // 0 < keySize 87 // value != NULL 88 // 0 < valueSize 89 void set(const void* key, size_t keySize, const void* value, size_t valueSize); 90 91 // get retrieves from the cache the binary value associated with a given 92 // binary key. If the key is present in the cache then the length of the 93 // binary value associated with that key is returned. If the key 94 // is not present in the cache then 0 is returned. 95 // 96 // There are two variants of get: one takes a buffer (value, valueSize) 97 // and one takes an allocator (value, alloc). 98 // 99 // For the BUFFER variant, if the value argument is non-NULL and 100 // the size of the cached value is less than valueSize bytes then 101 // the cached value is copied into the buffer pointed to by the 102 // value argument. If the key is not present in the cache then 103 // the buffer pointed to by the value argument is not modified. 104 // 105 // Preconditions: 106 // key != NULL 107 // 0 < keySize 108 // 0 <= valueSize 109 // 110 // For the ALLOCATOR variant, if it is possible to allocate a 111 // buffer for the cached value via a call to the allocator by 112 // 113 // size_t cached_value_size = ...; 114 // void* buf = alloc(cached_value_size); 115 // 116 // then the cached value is copied into the newly-allocated buffer 117 // and *value is set to the address of the newly-allocated buffer. 118 // If the allocator returns NULL, or the key is not present in the 119 // cache, then *value is set to NULL. 120 // 121 // Preconditions: 122 // key != NULL 123 // 0 < keySize 124 // value != NULL 125 // 126 // Note that when calling get multiple times with the same key, the later 127 // calls may fail, returning 0, even if earlier calls succeeded. The return 128 // value must be checked for each call. 129 size_t get(const void* key, size_t keySize, void* value, size_t valueSize); 130 size_t get(const void* key, size_t keySize, void** value, std::function<void*(size_t)> alloc); 131 template <typename T> get(const void * key,size_t keySize,T ** value,std::function<void * (size_t)> alloc)132 size_t get(const void* key, size_t keySize, T** value, std::function<void*(size_t)> alloc) { 133 void* valueVoid; 134 const size_t size = get(key, keySize, &valueVoid, alloc); 135 *value = static_cast<T*>(valueVoid); 136 return size; 137 } 138 139 // getFlattenedSize returns the number of bytes needed to store the entire 140 // serialized cache. 141 size_t getFlattenedSize() const; 142 143 // flatten serializes the current contents of the cache into the memory 144 // pointed to by 'buffer'. The serialized cache contents can later be 145 // loaded into a BlobCache object using the unflatten method. The contents 146 // of the BlobCache object will not be modified. 147 // 148 // Preconditions: 149 // size >= this.getFlattenedSize() 150 int flatten(void* buffer, size_t size) const; 151 152 // unflatten replaces the contents of the cache with the serialized cache 153 // contents in the memory pointed to by 'buffer'. The previous contents of 154 // the BlobCache will be evicted from the cache. If an error occurs while 155 // unflattening the serialized cache contents then the BlobCache will be 156 // left in an empty state. 157 // 158 int unflatten(void const* buffer, size_t size); 159 160 private: 161 // Copying is disallowed. 162 BlobCache(const BlobCache&); 163 void operator=(const BlobCache&); 164 165 // A random function helper to get around MinGW not having nrand48() 166 long int blob_random(); 167 168 // Use this in place of a cache entry index to indicate that no 169 // entry is being designated. 170 static const size_t NoEntry = ~size_t(0); 171 172 // Is this Capacity value one of the *FIT* values? 173 static bool isFit(Capacity capacity); 174 175 // clean evicts a selected set of entries from the cache to make 176 // room for a new entry or for replacing an entry with a larger 177 // one. mSelect determines how to pick entries to evict, and 178 // mCapacity determines when to stop evicting entries. 179 // 180 // newEntrySize is the size of the entry we want to add to the 181 // cache, or the new size of the entry we want to replace in the 182 // cache. 183 // 184 // If we are replacing an entry in the cache, then onBehalfOf is 185 // the index of that entry in the cache; otherwise, it is NoEntry. 186 // 187 // Returns true if at least one entry is evicted. 188 bool clean(size_t newEntrySize, size_t onBehalfOf); 189 190 // isCleanable returns true if the cache is full enough for the clean method 191 // to have some effect, and false otherwise. 192 bool isCleanable() const; 193 194 // findVictim selects an entry to remove from the cache. The 195 // cache must not be empty. 196 size_t findVictim(); 197 198 // findDownTo determines how far to clean the cache -- until it 199 // results in a total size that does not exceed the return value 200 // of findDownTo. newEntrySize and onBehalfOf have the same 201 // meanings they do for clean. 202 size_t findDownTo(size_t newEntrySize, size_t onBehalfOf); 203 204 // A Blob is an immutable sized unstructured data blob. 205 class Blob { 206 public: 207 Blob(const void* data, size_t size, bool copyData); 208 ~Blob(); 209 210 bool operator<(const Blob& rhs) const; 211 212 const void* getData() const; 213 size_t getSize() const; 214 215 private: 216 // Copying is not allowed. 217 Blob(const Blob&); 218 void operator=(const Blob&); 219 220 // mData points to the buffer containing the blob data. 221 const void* mData; 222 223 // mSize is the size of the blob data in bytes. 224 size_t mSize; 225 226 // mOwnsData indicates whether or not this Blob object should free the 227 // memory pointed to by mData when the Blob gets destructed. 228 bool mOwnsData; 229 }; 230 231 // A CacheEntry is a single key/value pair in the cache. 232 class CacheEntry { 233 public: 234 CacheEntry(); 235 CacheEntry(const std::shared_ptr<Blob>& key, const std::shared_ptr<Blob>& value, 236 uint32_t recency); 237 CacheEntry(const CacheEntry& ce); 238 239 bool operator<(const CacheEntry& rhs) const; 240 const CacheEntry& operator=(const CacheEntry&); 241 242 std::shared_ptr<Blob> getKey() const; 243 std::shared_ptr<Blob> getValue() const; 244 245 void setValue(const std::shared_ptr<Blob>& value); 246 247 uint32_t getRecency() const; 248 void setRecency(uint32_t recency); 249 250 private: 251 // mKey is the key that identifies the cache entry. 252 std::shared_ptr<Blob> mKey; 253 254 // mValue is the cached data associated with the key. 255 std::shared_ptr<Blob> mValue; 256 257 // mRecency is the last "time" (as indicated by 258 // BlobCache::mAccessCount) that this entry was accessed. 259 uint32_t mRecency; 260 }; 261 262 // A Header is the header for the entire BlobCache serialization format. No 263 // need to make this portable, so we simply write the struct out. 264 struct Header { 265 // mMagicNumber is the magic number that identifies the data as 266 // serialized BlobCache contents. It must always contain 'Blb$'. 267 uint32_t mMagicNumber; 268 269 // mBlobCacheVersion is the serialization format version. 270 uint32_t mBlobCacheVersion; 271 272 // mDeviceVersion is the device-specific version of the cache. This can 273 // be used to invalidate the cache. 274 uint32_t mDeviceVersion; 275 276 // mNumEntries is number of cache entries following the header in the 277 // data. 278 size_t mNumEntries; 279 280 // mBuildId is the build id of the device when the cache was created. 281 // When an update to the build happens (via an OTA or other update) this 282 // is used to invalidate the cache. 283 int mBuildIdLength; 284 char mBuildId[]; 285 }; 286 287 // An EntryHeader is the header for a serialized cache entry. No need to 288 // make this portable, so we simply write the struct out. Each EntryHeader 289 // is followed imediately by the key data and then the value data. 290 // 291 // The beginning of each serialized EntryHeader is 4-byte aligned, so the 292 // number of bytes that a serialized cache entry will occupy is: 293 // 294 // ((sizeof(EntryHeader) + keySize + valueSize) + 3) & ~3 295 // 296 struct EntryHeader { 297 // mKeySize is the size of the entry key in bytes. 298 size_t mKeySize; 299 300 // mValueSize is the size of the entry value in bytes. 301 size_t mValueSize; 302 303 // mData contains both the key and value data for the cache entry. The 304 // key comes first followed immediately by the value. 305 uint8_t mData[]; 306 }; 307 308 // mMaxKeySize is the maximum key size that will be cached. Calls to 309 // BlobCache::set with a keySize parameter larger than mMaxKeySize will 310 // simply not add the key/value pair to the cache. 311 const size_t mMaxKeySize; 312 313 // mMaxValueSize is the maximum value size that will be cached. Calls to 314 // BlobCache::set with a valueSize parameter larger than mMaxValueSize will 315 // simply not add the key/value pair to the cache. 316 const size_t mMaxValueSize; 317 318 // mMaxTotalSize is the maximum size that all cache entries can occupy. This 319 // includes space for both keys and values. When a call to BlobCache::set 320 // would otherwise cause this limit to be exceeded, either the key/value 321 // pair passed to BlobCache::set will not be cached or other cache entries 322 // will be evicted from the cache to make room for the new entry. 323 const size_t mMaxTotalSize; 324 325 // mPolicySelect indicates how we pick entries to evict from the cache. 326 const Select mPolicySelect; 327 328 // mPolicyCapacity indicates how we decide when to stop evicting 329 // entries from the cache. 330 const Capacity mPolicyCapacity; 331 332 // mTotalSize is the total combined size of all keys and values currently in 333 // the cache. 334 size_t mTotalSize; 335 336 // mAccessCount is the number of times an entry has been 337 // added/replaced by set(), or its content (not just its size) 338 // retrieved by get(). It serves as a clock for recognizing how 339 // recently an entry was accessed, for the Select::LRU policy. 340 uint32_t mAccessCount; 341 342 // mRandState is the pseudo-random number generator state. It is passed to 343 // nrand48 to generate random numbers when needed. 344 unsigned short mRandState[3]; 345 346 // mCacheEntries stores all the cache entries that are resident in memory. 347 // Cache entries are added to it by the 'set' method. 348 std::vector<CacheEntry> mCacheEntries; 349 }; 350 351 } // namespace android 352 353 #endif // ANDROID_PACKAGES_MODULES_NEURALNETWORKS_DRIVER_CACHE_BLOB_CACHE_BLOB_CACHE_H 354