1 /*
2  * Copyright (c) 2012, 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 package java.util.stream;
26 
27 import java.nio.file.Files;
28 import java.nio.file.Path;
29 import java.util.*;
30 import java.util.concurrent.ConcurrentHashMap;
31 import java.util.function.BiConsumer;
32 import java.util.function.BiFunction;
33 import java.util.function.BinaryOperator;
34 import java.util.function.Consumer;
35 import java.util.function.DoubleConsumer;
36 import java.util.function.Function;
37 import java.util.function.IntConsumer;
38 import java.util.function.IntFunction;
39 import java.util.function.LongConsumer;
40 import java.util.function.Predicate;
41 import java.util.function.Supplier;
42 import java.util.function.ToDoubleFunction;
43 import java.util.function.ToIntFunction;
44 import java.util.function.ToLongFunction;
45 import java.util.function.UnaryOperator;
46 
47 /**
48  * A sequence of elements supporting sequential and parallel aggregate
49  * operations.  The following example illustrates an aggregate operation using
50  * {@link Stream} and {@link IntStream}:
51  *
52  * <pre>{@code
53  *     int sum = widgets.stream()
54  *                      .filter(w -> w.getColor() == RED)
55  *                      .mapToInt(w -> w.getWeight())
56  *                      .sum();
57  * }</pre>
58  *
59  * In this example, {@code widgets} is a {@code Collection<Widget>}.  We create
60  * a stream of {@code Widget} objects via {@link Collection#stream Collection.stream()},
61  * filter it to produce a stream containing only the red widgets, and then
62  * transform it into a stream of {@code int} values representing the weight of
63  * each red widget. Then this stream is summed to produce a total weight.
64  *
65  * <p>In addition to {@code Stream}, which is a stream of object references,
66  * there are primitive specializations for {@link IntStream}, {@link LongStream},
67  * and {@link DoubleStream}, all of which are referred to as "streams" and
68  * conform to the characteristics and restrictions described here.
69  *
70  * <p>To perform a computation, stream
71  * <a href="package-summary.html#StreamOps">operations</a> are composed into a
72  * <em>stream pipeline</em>.  A stream pipeline consists of a source (which
73  * might be an array, a collection, a generator function, an I/O channel,
74  * etc), zero or more <em>intermediate operations</em> (which transform a
75  * stream into another stream, such as {@link Stream#filter(Predicate)}), and a
76  * <em>terminal operation</em> (which produces a result or side-effect, such
77  * as {@link Stream#count()} or {@link Stream#forEach(Consumer)}).
78  * Streams are lazy; computation on the source data is only performed when the
79  * terminal operation is initiated, and source elements are consumed only
80  * as needed.
81  *
82  * <p>A stream implementation is permitted significant latitude in optimizing
83  * the computation of the result.  For example, a stream implementation is free
84  * to elide operations (or entire stages) from a stream pipeline -- and
85  * therefore elide invocation of behavioral parameters -- if it can prove that
86  * it would not affect the result of the computation.  This means that
87  * side-effects of behavioral parameters may not always be executed and should
88  * not be relied upon, unless otherwise specified (such as by the terminal
89  * operations {@code forEach} and {@code forEachOrdered}). (For a specific
90  * example of such an optimization, see the API note documented on the
91  * {@link #count} operation.  For more detail, see the
92  * <a href="package-summary.html#SideEffects">side-effects</a> section of the
93  * stream package documentation.)
94  *
95  * <p>Collections and streams, while bearing some superficial similarities,
96  * have different goals.  Collections are primarily concerned with the efficient
97  * management of, and access to, their elements.  By contrast, streams do not
98  * provide a means to directly access or manipulate their elements, and are
99  * instead concerned with declaratively describing their source and the
100  * computational operations which will be performed in aggregate on that source.
101  * However, if the provided stream operations do not offer the desired
102  * functionality, the {@link #iterator()} and {@link #spliterator()} operations
103  * can be used to perform a controlled traversal.
104  *
105  * <p>A stream pipeline, like the "widgets" example above, can be viewed as
106  * a <em>query</em> on the stream source.  Unless the source was explicitly
107  * designed for concurrent modification (such as a {@link ConcurrentHashMap}),
108  * unpredictable or erroneous behavior may result from modifying the stream
109  * source while it is being queried.
110  *
111  * <p>Most stream operations accept parameters that describe user-specified
112  * behavior, such as the lambda expression {@code w -> w.getWeight()} passed to
113  * {@code mapToInt} in the example above.  To preserve correct behavior,
114  * these <em>behavioral parameters</em>:
115  * <ul>
116  * <li>must be <a href="package-summary.html#NonInterference">non-interfering</a>
117  * (they do not modify the stream source); and</li>
118  * <li>in most cases must be <a href="package-summary.html#Statelessness">stateless</a>
119  * (their result should not depend on any state that might change during execution
120  * of the stream pipeline).</li>
121  * </ul>
122  *
123  * <p>Such parameters are always instances of a
124  * <a href="../function/package-summary.html">functional interface</a> such
125  * as {@link java.util.function.Function}, and are often lambda expressions or
126  * method references.  Unless otherwise specified these parameters must be
127  * <em>non-null</em>.
128  *
129  * <p>A stream should be operated on (invoking an intermediate or terminal stream
130  * operation) only once.  This rules out, for example, "forked" streams, where
131  * the same source feeds two or more pipelines, or multiple traversals of the
132  * same stream.  A stream implementation may throw {@link IllegalStateException}
133  * if it detects that the stream is being reused. However, since some stream
134  * operations may return their receiver rather than a new stream object, it may
135  * not be possible to detect reuse in all cases.
136  *
137  * <p>Streams have a {@link #close()} method and implement {@link AutoCloseable}.
138  * Operating on a stream after it has been closed will throw {@link IllegalStateException}.
139  * Most stream instances do not actually need to be closed after use, as they
140  * are backed by collections, arrays, or generating functions, which require no
141  * special resource management. Generally, only streams whose source is an IO channel,
142  * such as those returned by {@link Files#lines(Path)}, will require closing. If a
143  * stream does require closing, it must be opened as a resource within a try-with-resources
144  * statement or similar control structure to ensure that it is closed promptly after its
145  * operations have completed.
146  *
147  * <p>Stream pipelines may execute either sequentially or in
148  * <a href="package-summary.html#Parallelism">parallel</a>.  This
149  * execution mode is a property of the stream.  Streams are created
150  * with an initial choice of sequential or parallel execution.  (For example,
151  * {@link Collection#stream() Collection.stream()} creates a sequential stream,
152  * and {@link Collection#parallelStream() Collection.parallelStream()} creates
153  * a parallel one.)  This choice of execution mode may be modified by the
154  * {@link #sequential()} or {@link #parallel()} methods, and may be queried with
155  * the {@link #isParallel()} method.
156  *
157  * @param <T> the type of the stream elements
158  * @since 1.8
159  * @see IntStream
160  * @see LongStream
161  * @see DoubleStream
162  * @see <a href="package-summary.html">java.util.stream</a>
163  */
164 public interface Stream<T> extends BaseStream<T, Stream<T>> {
165 
166     /**
167      * Returns a stream consisting of the elements of this stream that match
168      * the given predicate.
169      *
170      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
171      * operation</a>.
172      *
173      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
174      *                  <a href="package-summary.html#Statelessness">stateless</a>
175      *                  predicate to apply to each element to determine if it
176      *                  should be included
177      * @return the new stream
178      */
filter(Predicate<? super T> predicate)179     Stream<T> filter(Predicate<? super T> predicate);
180 
181     /**
182      * Returns a stream consisting of the results of applying the given
183      * function to the elements of this stream.
184      *
185      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
186      * operation</a>.
187      *
188      * @param <R> The element type of the new stream
189      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
190      *               <a href="package-summary.html#Statelessness">stateless</a>
191      *               function to apply to each element
192      * @return the new stream
193      */
map(Function<? super T, ? extends R> mapper)194     <R> Stream<R> map(Function<? super T, ? extends R> mapper);
195 
196     /**
197      * Returns an {@code IntStream} consisting of the results of applying the
198      * given function to the elements of this stream.
199      *
200      * <p>This is an <a href="package-summary.html#StreamOps">
201      *     intermediate operation</a>.
202      *
203      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
204      *               <a href="package-summary.html#Statelessness">stateless</a>
205      *               function to apply to each element
206      * @return the new stream
207      */
mapToInt(ToIntFunction<? super T> mapper)208     IntStream mapToInt(ToIntFunction<? super T> mapper);
209 
210     /**
211      * Returns a {@code LongStream} consisting of the results of applying the
212      * given function to the elements of this stream.
213      *
214      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
215      * operation</a>.
216      *
217      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
218      *               <a href="package-summary.html#Statelessness">stateless</a>
219      *               function to apply to each element
220      * @return the new stream
221      */
mapToLong(ToLongFunction<? super T> mapper)222     LongStream mapToLong(ToLongFunction<? super T> mapper);
223 
224     /**
225      * Returns a {@code DoubleStream} consisting of the results of applying the
226      * given function to the elements of this stream.
227      *
228      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
229      * operation</a>.
230      *
231      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
232      *               <a href="package-summary.html#Statelessness">stateless</a>
233      *               function to apply to each element
234      * @return the new stream
235      */
mapToDouble(ToDoubleFunction<? super T> mapper)236     DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper);
237 
238     /**
239      * Returns a stream consisting of the results of replacing each element of
240      * this stream with the contents of a mapped stream produced by applying
241      * the provided mapping function to each element.  Each mapped stream is
242      * {@link java.util.stream.BaseStream#close() closed} after its contents
243      * have been placed into this stream.  (If a mapped stream is {@code null}
244      * an empty stream is used, instead.)
245      *
246      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
247      * operation</a>.
248      *
249      * @apiNote
250      * The {@code flatMap()} operation has the effect of applying a one-to-many
251      * transformation to the elements of the stream, and then flattening the
252      * resulting elements into a new stream.
253      *
254      * <p><b>Examples.</b>
255      *
256      * <p>If {@code orders} is a stream of purchase orders, and each purchase
257      * order contains a collection of line items, then the following produces a
258      * stream containing all the line items in all the orders:
259      * <pre>{@code
260      *     orders.flatMap(order -> order.getLineItems().stream())...
261      * }</pre>
262      *
263      * <p>If {@code path} is the path to a file, then the following produces a
264      * stream of the {@code words} contained in that file:
265      * <pre>{@code
266      *     Stream<String> lines = Files.lines(path, StandardCharsets.UTF_8);
267      *     Stream<String> words = lines.flatMap(line -> Stream.of(line.split(" +")));
268      * }</pre>
269      * The {@code mapper} function passed to {@code flatMap} splits a line,
270      * using a simple regular expression, into an array of words, and then
271      * creates a stream of words from that array.
272      *
273      * @param <R> The element type of the new stream
274      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
275      *               <a href="package-summary.html#Statelessness">stateless</a>
276      *               function to apply to each element which produces a stream
277      *               of new values
278      * @return the new stream
279      * @see #mapMulti
280      */
flatMap(Function<? super T, ? extends Stream<? extends R>> mapper)281     <R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);
282 
283     /**
284      * Returns an {@code IntStream} consisting of the results of replacing each
285      * element of this stream with the contents of a mapped stream produced by
286      * applying the provided mapping function to each element.  Each mapped
287      * stream is {@link java.util.stream.BaseStream#close() closed} after its
288      * contents have been placed into this stream.  (If a mapped stream is
289      * {@code null} an empty stream is used, instead.)
290      *
291      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
292      * operation</a>.
293      *
294      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
295      *               <a href="package-summary.html#Statelessness">stateless</a>
296      *               function to apply to each element which produces a stream
297      *               of new values
298      * @return the new stream
299      * @see #flatMap(Function)
300      */
flatMapToInt(Function<? super T, ? extends IntStream> mapper)301     IntStream flatMapToInt(Function<? super T, ? extends IntStream> mapper);
302 
303     /**
304      * Returns an {@code LongStream} consisting of the results of replacing each
305      * element of this stream with the contents of a mapped stream produced by
306      * applying the provided mapping function to each element.  Each mapped
307      * stream is {@link java.util.stream.BaseStream#close() closed} after its
308      * contents have been placed into this stream.  (If a mapped stream is
309      * {@code null} an empty stream is used, instead.)
310      *
311      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
312      * operation</a>.
313      *
314      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
315      *               <a href="package-summary.html#Statelessness">stateless</a>
316      *               function to apply to each element which produces a stream
317      *               of new values
318      * @return the new stream
319      * @see #flatMap(Function)
320      */
flatMapToLong(Function<? super T, ? extends LongStream> mapper)321     LongStream flatMapToLong(Function<? super T, ? extends LongStream> mapper);
322 
323     /**
324      * Returns an {@code DoubleStream} consisting of the results of replacing
325      * each element of this stream with the contents of a mapped stream produced
326      * by applying the provided mapping function to each element.  Each mapped
327      * stream is {@link java.util.stream.BaseStream#close() closed} after its
328      * contents have placed been into this stream.  (If a mapped stream is
329      * {@code null} an empty stream is used, instead.)
330      *
331      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
332      * operation</a>.
333      *
334      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
335      *               <a href="package-summary.html#Statelessness">stateless</a>
336      *               function to apply to each element which produces a stream
337      *               of new values
338      * @return the new stream
339      * @see #flatMap(Function)
340      */
flatMapToDouble(Function<? super T, ? extends DoubleStream> mapper)341     DoubleStream flatMapToDouble(Function<? super T, ? extends DoubleStream> mapper);
342 
343     // THE EXAMPLES USED IN THE JAVADOC MUST BE IN SYNC WITH THEIR CORRESPONDING
344     // TEST IN test/jdk/java/util/stream/examples/JavadocExamples.java.
345     /**
346      * Returns a stream consisting of the results of replacing each element of
347      * this stream with multiple elements, specifically zero or more elements.
348      * Replacement is performed by applying the provided mapping function to each
349      * element in conjunction with a {@linkplain Consumer consumer} argument
350      * that accepts replacement elements. The mapping function calls the consumer
351      * zero or more times to provide the replacement elements.
352      *
353      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
354      * operation</a>.
355      *
356      * <p>If the {@linkplain Consumer consumer} argument is used outside the scope of
357      * its application to the mapping function, the results are undefined.
358      *
359      * @implSpec
360      * The default implementation invokes {@link #flatMap flatMap} on this stream,
361      * passing a function that behaves as follows. First, it calls the mapper function
362      * with a {@code Consumer} that accumulates replacement elements into a newly created
363      * internal buffer. When the mapper function returns, it creates a stream from the
364      * internal buffer. Finally, it returns this stream to {@code flatMap}.
365      *
366      * @apiNote
367      * This method is similar to {@link #flatMap flatMap} in that it applies a one-to-many
368      * transformation to the elements of the stream and flattens the result elements
369      * into a new stream. This method is preferable to {@code flatMap} in the following
370      * circumstances:
371      * <ul>
372      * <li>When replacing each stream element with a small (possibly zero) number of
373      * elements. Using this method avoids the overhead of creating a new Stream instance
374      * for every group of result elements, as required by {@code flatMap}.</li>
375      * <li>When it is easier to use an imperative approach for generating result
376      * elements than it is to return them in the form of a Stream.</li>
377      * </ul>
378      *
379      * <p>If a lambda expression is provided as the mapper function argument, additional type
380      * information may be necessary for proper inference of the element type {@code <R>} of
381      * the returned stream. This can be provided in the form of explicit type declarations for
382      * the lambda parameters or as an explicit type argument to the {@code mapMulti} call.
383      *
384      * <p><b>Examples</b>
385      *
386      * <p>Given a stream of {@code Number} objects, the following
387      * produces a list containing only the {@code Integer} objects:
388      * <pre>{@code
389      *     Stream<Number> numbers = ... ;
390      *     List<Integer> integers = numbers.<Integer>mapMulti((number, consumer) -> {
391      *             if (number instanceof Integer i)
392      *                 consumer.accept(i);
393      *         })
394      *         .collect(Collectors.toList());
395      * }</pre>
396      *
397      * <p>If we have an {@code Iterable<Object>} and need to recursively expand its elements
398      * that are themselves of type {@code Iterable}, we can use {@code mapMulti} as follows:
399      * <pre>{@code
400      * class C {
401      *     static void expandIterable(Object e, Consumer<Object> c) {
402      *         if (e instanceof Iterable<?> elements) {
403      *             for (Object ie : elements) {
404      *                 expandIterable(ie, c);
405      *             }
406      *         } else if (e != null) {
407      *             c.accept(e);
408      *         }
409      *     }
410      *
411      *     public static void main(String[] args) {
412      *         var nestedList = List.of(1, List.of(2, List.of(3, 4)), 5);
413      *         Stream<Object> expandedStream = nestedList.stream().mapMulti(C::expandIterable);
414      *     }
415      * }
416      * }</pre>
417      *
418      * @param <R> The element type of the new stream
419      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
420      *               <a href="package-summary.html#Statelessness">stateless</a>
421      *               function that generates replacement elements
422      * @return the new stream
423      * @see #flatMap flatMap
424      * @since 16
425      */
mapMulti(BiConsumer<? super T, ? super Consumer<R>> mapper)426     default <R> Stream<R> mapMulti(BiConsumer<? super T, ? super Consumer<R>> mapper) {
427         Objects.requireNonNull(mapper);
428         return flatMap(e -> {
429             SpinedBuffer<R> buffer = new SpinedBuffer<>();
430             mapper.accept(e, buffer);
431             return StreamSupport.stream(buffer.spliterator(), false);
432         });
433     }
434 
435     /**
436      * Returns an {@code IntStream} consisting of the results of replacing each
437      * element of this stream with multiple elements, specifically zero or more
438      * elements.
439      * Replacement is performed by applying the provided mapping function to each
440      * element in conjunction with a {@linkplain IntConsumer consumer} argument
441      * that accepts replacement elements. The mapping function calls the consumer
442      * zero or more times to provide the replacement elements.
443      *
444      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
445      * operation</a>.
446      *
447      * <p>If the {@linkplain IntConsumer consumer} argument is used outside the scope of
448      * its application to the mapping function, the results are undefined.
449      *
450      * @implSpec
451      * The default implementation invokes {@link #flatMapToInt flatMapToInt} on this stream,
452      * passing a function that behaves as follows. First, it calls the mapper function
453      * with an {@code IntConsumer} that accumulates replacement elements into a newly created
454      * internal buffer. When the mapper function returns, it creates an {@code IntStream} from
455      * the internal buffer. Finally, it returns this stream to {@code flatMapToInt}.
456      *
457      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
458      *               <a href="package-summary.html#Statelessness">stateless</a>
459      *               function that generates replacement elements
460      * @return the new stream
461      * @see #mapMulti mapMulti
462      * @since 16
463      */
mapMultiToInt(BiConsumer<? super T, ? super IntConsumer> mapper)464     default IntStream mapMultiToInt(BiConsumer<? super T, ? super IntConsumer> mapper) {
465         Objects.requireNonNull(mapper);
466         return flatMapToInt(e -> {
467             SpinedBuffer.OfInt buffer = new SpinedBuffer.OfInt();
468             mapper.accept(e, buffer);
469             return StreamSupport.intStream(buffer.spliterator(), false);
470         });
471     }
472 
473     /**
474      * Returns a {@code LongStream} consisting of the results of replacing each
475      * element of this stream with multiple elements, specifically zero or more
476      * elements.
477      * Replacement is performed by applying the provided mapping function to each
478      * element in conjunction with a {@linkplain LongConsumer consumer} argument
479      * that accepts replacement elements. The mapping function calls the consumer
480      * zero or more times to provide the replacement elements.
481      *
482      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
483      * operation</a>.
484      *
485      * <p>If the {@linkplain LongConsumer consumer} argument is used outside the scope of
486      * its application to the mapping function, the results are undefined.
487      *
488      * @implSpec
489      * The default implementation invokes {@link #flatMapToLong flatMapToLong} on this stream,
490      * passing a function that behaves as follows. First, it calls the mapper function
491      * with a {@code LongConsumer} that accumulates replacement elements into a newly created
492      * internal buffer. When the mapper function returns, it creates a {@code LongStream} from
493      * the internal buffer. Finally, it returns this stream to {@code flatMapToLong}.
494      *
495      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
496      *               <a href="package-summary.html#Statelessness">stateless</a>
497      *               function that generates replacement elements
498      * @return the new stream
499      * @see #mapMulti mapMulti
500      * @since 16
501      */
502     default LongStream mapMultiToLong(BiConsumer<? super T, ? super LongConsumer> mapper) {
503         Objects.requireNonNull(mapper);
504         return flatMapToLong(e -> {
505             SpinedBuffer.OfLong buffer = new SpinedBuffer.OfLong();
506             mapper.accept(e, buffer);
507             return StreamSupport.longStream(buffer.spliterator(), false);
508         });
509     }
510 
511     /**
512      * Returns a {@code DoubleStream} consisting of the results of replacing each
513      * element of this stream with multiple elements, specifically zero or more
514      * elements.
515      * Replacement is performed by applying the provided mapping function to each
516      * element in conjunction with a {@linkplain DoubleConsumer consumer} argument
517      * that accepts replacement elements. The mapping function calls the consumer
518      * zero or more times to provide the replacement elements.
519      *
520      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
521      * operation</a>.
522      *
523      * <p>If the {@linkplain DoubleConsumer consumer} argument is used outside the scope of
524      * its application to the mapping function, the results are undefined.
525      *
526      * @implSpec
527      * The default implementation invokes {@link #flatMapToDouble flatMapToDouble} on this stream,
528      * passing a function that behaves as follows. First, it calls the mapper function
529      * with an {@code DoubleConsumer} that accumulates replacement elements into a newly created
530      * internal buffer. When the mapper function returns, it creates a {@code DoubleStream} from
531      * the internal buffer. Finally, it returns this stream to {@code flatMapToDouble}.
532      *
533      * @param mapper a <a href="package-summary.html#NonInterference">non-interfering</a>,
534      *               <a href="package-summary.html#Statelessness">stateless</a>
535      *               function that generates replacement elements
536      * @return the new stream
537      * @see #mapMulti mapMulti
538      * @since 16
539      */
540     default DoubleStream mapMultiToDouble(BiConsumer<? super T, ? super DoubleConsumer> mapper) {
541         Objects.requireNonNull(mapper);
542         return flatMapToDouble(e -> {
543             SpinedBuffer.OfDouble buffer = new SpinedBuffer.OfDouble();
544             mapper.accept(e, buffer);
545             return StreamSupport.doubleStream(buffer.spliterator(), false);
546         });
547     }
548 
549     /**
550      * Returns a stream consisting of the distinct elements (according to
551      * {@link Object#equals(Object)}) of this stream.
552      *
553      * <p>For ordered streams, the selection of distinct elements is stable
554      * (for duplicated elements, the element appearing first in the encounter
555      * order is preserved.)  For unordered streams, no stability guarantees
556      * are made.
557      *
558      * <p>This is a <a href="package-summary.html#StreamOps">stateful
559      * intermediate operation</a>.
560      *
561      * @apiNote
562      * Preserving stability for {@code distinct()} in parallel pipelines is
563      * relatively expensive (requires that the operation act as a full barrier,
564      * with substantial buffering overhead), and stability is often not needed.
565      * Using an unordered stream source (such as {@link #generate(Supplier)})
566      * or removing the ordering constraint with {@link #unordered()} may result
567      * in significantly more efficient execution for {@code distinct()} in parallel
568      * pipelines, if the semantics of your situation permit.  If consistency
569      * with encounter order is required, and you are experiencing poor performance
570      * or memory utilization with {@code distinct()} in parallel pipelines,
571      * switching to sequential execution with {@link #sequential()} may improve
572      * performance.
573      *
574      * @return the new stream
575      */
576     Stream<T> distinct();
577 
578     /**
579      * Returns a stream consisting of the elements of this stream, sorted
580      * according to natural order.  If the elements of this stream are not
581      * {@code Comparable}, a {@code java.lang.ClassCastException} may be thrown
582      * when the terminal operation is executed.
583      *
584      * <p>For ordered streams, the sort is stable.  For unordered streams, no
585      * stability guarantees are made.
586      *
587      * <p>This is a <a href="package-summary.html#StreamOps">stateful
588      * intermediate operation</a>.
589      *
590      * @return the new stream
591      */
592     Stream<T> sorted();
593 
594     /**
595      * Returns a stream consisting of the elements of this stream, sorted
596      * according to the provided {@code Comparator}.
597      *
598      * <p>For ordered streams, the sort is stable.  For unordered streams, no
599      * stability guarantees are made.
600      *
601      * <p>This is a <a href="package-summary.html#StreamOps">stateful
602      * intermediate operation</a>.
603      *
604      * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
605      *                   <a href="package-summary.html#Statelessness">stateless</a>
606      *                   {@code Comparator} to be used to compare stream elements
607      * @return the new stream
608      */
609     Stream<T> sorted(Comparator<? super T> comparator);
610 
611     /**
612      * Returns a stream consisting of the elements of this stream, additionally
613      * performing the provided action on each element as elements are consumed
614      * from the resulting stream.
615      *
616      * <p>This is an <a href="package-summary.html#StreamOps">intermediate
617      * operation</a>.
618      *
619      * <p>For parallel stream pipelines, the action may be called at
620      * whatever time and in whatever thread the element is made available by the
621      * upstream operation.  If the action modifies shared state,
622      * it is responsible for providing the required synchronization.
623      *
624      * @apiNote This method exists mainly to support debugging, where you want
625      * to see the elements as they flow past a certain point in a pipeline:
626      * <pre>{@code
627      *     Stream.of("one", "two", "three", "four")
628      *         .filter(e -> e.length() > 3)
629      *         .peek(e -> System.out.println("Filtered value: " + e))
630      *         .map(String::toUpperCase)
631      *         .peek(e -> System.out.println("Mapped value: " + e))
632      *         .collect(Collectors.toList());
633      * }</pre>
634      *
635      * <p>In cases where the stream implementation is able to optimize away the
636      * production of some or all the elements (such as with short-circuiting
637      * operations like {@code findFirst}, or in the example described in
638      * {@link #count}), the action will not be invoked for those elements.
639      *
640      * @param action a <a href="package-summary.html#NonInterference">
641      *                 non-interfering</a> action to perform on the elements as
642      *                 they are consumed from the stream
643      * @return the new stream
644      */
645     Stream<T> peek(Consumer<? super T> action);
646 
647     /**
648      * Returns a stream consisting of the elements of this stream, truncated
649      * to be no longer than {@code maxSize} in length.
650      *
651      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
652      * stateful intermediate operation</a>.
653      *
654      * @apiNote
655      * While {@code limit()} is generally a cheap operation on sequential
656      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
657      * especially for large values of {@code maxSize}, since {@code limit(n)}
658      * is constrained to return not just any <em>n</em> elements, but the
659      * <em>first n</em> elements in the encounter order.  Using an unordered
660      * stream source (such as {@link #generate(Supplier)}) or removing the
661      * ordering constraint with {@link #unordered()} may result in significant
662      * speedups of {@code limit()} in parallel pipelines, if the semantics of
663      * your situation permit.  If consistency with encounter order is required,
664      * and you are experiencing poor performance or memory utilization with
665      * {@code limit()} in parallel pipelines, switching to sequential execution
666      * with {@link #sequential()} may improve performance.
667      *
668      * @param maxSize the number of elements the stream should be limited to
669      * @return the new stream
670      * @throws IllegalArgumentException if {@code maxSize} is negative
671      */
672     Stream<T> limit(long maxSize);
673 
674     /**
675      * Returns a stream consisting of the remaining elements of this stream
676      * after discarding the first {@code n} elements of the stream.
677      * If this stream contains fewer than {@code n} elements then an
678      * empty stream will be returned.
679      *
680      * <p>This is a <a href="package-summary.html#StreamOps">stateful
681      * intermediate operation</a>.
682      *
683      * @apiNote
684      * While {@code skip()} is generally a cheap operation on sequential
685      * stream pipelines, it can be quite expensive on ordered parallel pipelines,
686      * especially for large values of {@code n}, since {@code skip(n)}
687      * is constrained to skip not just any <em>n</em> elements, but the
688      * <em>first n</em> elements in the encounter order.  Using an unordered
689      * stream source (such as {@link #generate(Supplier)}) or removing the
690      * ordering constraint with {@link #unordered()} may result in significant
691      * speedups of {@code skip()} in parallel pipelines, if the semantics of
692      * your situation permit.  If consistency with encounter order is required,
693      * and you are experiencing poor performance or memory utilization with
694      * {@code skip()} in parallel pipelines, switching to sequential execution
695      * with {@link #sequential()} may improve performance.
696      *
697      * @param n the number of leading elements to skip
698      * @return the new stream
699      * @throws IllegalArgumentException if {@code n} is negative
700      */
701     Stream<T> skip(long n);
702 
703     /**
704      * Returns, if this stream is ordered, a stream consisting of the longest
705      * prefix of elements taken from this stream that match the given predicate.
706      * Otherwise returns, if this stream is unordered, a stream consisting of a
707      * subset of elements taken from this stream that match the given predicate.
708      *
709      * <p>If this stream is ordered then the longest prefix is a contiguous
710      * sequence of elements of this stream that match the given predicate.  The
711      * first element of the sequence is the first element of this stream, and
712      * the element immediately following the last element of the sequence does
713      * not match the given predicate.
714      *
715      * <p>If this stream is unordered, and some (but not all) elements of this
716      * stream match the given predicate, then the behavior of this operation is
717      * nondeterministic; it is free to take any subset of matching elements
718      * (which includes the empty set).
719      *
720      * <p>Independent of whether this stream is ordered or unordered if all
721      * elements of this stream match the given predicate then this operation
722      * takes all elements (the result is the same as the input), or if no
723      * elements of the stream match the given predicate then no elements are
724      * taken (the result is an empty stream).
725      *
726      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
727      * stateful intermediate operation</a>.
728      *
729      * @implSpec
730      * The default implementation obtains the {@link #spliterator() spliterator}
731      * of this stream, wraps that spliterator so as to support the semantics
732      * of this operation on traversal, and returns a new stream associated with
733      * the wrapped spliterator.  The returned stream preserves the execution
734      * characteristics of this stream (namely parallel or sequential execution
735      * as per {@link #isParallel()}) but the wrapped spliterator may choose to
736      * not support splitting.  When the returned stream is closed, the close
737      * handlers for both the returned and this stream are invoked.
738      *
739      * @apiNote
740      * While {@code takeWhile()} is generally a cheap operation on sequential
741      * stream pipelines, it can be quite expensive on ordered parallel
742      * pipelines, since the operation is constrained to return not just any
743      * valid prefix, but the longest prefix of elements in the encounter order.
744      * Using an unordered stream source (such as {@link #generate(Supplier)}) or
745      * removing the ordering constraint with {@link #unordered()} may result in
746      * significant speedups of {@code takeWhile()} in parallel pipelines, if the
747      * semantics of your situation permit.  If consistency with encounter order
748      * is required, and you are experiencing poor performance or memory
749      * utilization with {@code takeWhile()} in parallel pipelines, switching to
750      * sequential execution with {@link #sequential()} may improve performance.
751      *
752      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
753      *                  <a href="package-summary.html#Statelessness">stateless</a>
754      *                  predicate to apply to elements to determine the longest
755      *                  prefix of elements.
756      * @return the new stream
757      * @since 9
758      */
759     default Stream<T> takeWhile(Predicate<? super T> predicate) {
760         Objects.requireNonNull(predicate);
761         // Reuses the unordered spliterator, which, when encounter is present,
762         // is safe to use as long as it configured not to split
763         return StreamSupport.stream(
764                 new WhileOps.UnorderedWhileSpliterator.OfRef.Taking<>(spliterator(), true, predicate),
765                 isParallel()).onClose(this::close);
766     }
767 
768     /**
769      * Returns, if this stream is ordered, a stream consisting of the remaining
770      * elements of this stream after dropping the longest prefix of elements
771      * that match the given predicate.  Otherwise returns, if this stream is
772      * unordered, a stream consisting of the remaining elements of this stream
773      * after dropping a subset of elements that match the given predicate.
774      *
775      * <p>If this stream is ordered then the longest prefix is a contiguous
776      * sequence of elements of this stream that match the given predicate.  The
777      * first element of the sequence is the first element of this stream, and
778      * the element immediately following the last element of the sequence does
779      * not match the given predicate.
780      *
781      * <p>If this stream is unordered, and some (but not all) elements of this
782      * stream match the given predicate, then the behavior of this operation is
783      * nondeterministic; it is free to drop any subset of matching elements
784      * (which includes the empty set).
785      *
786      * <p>Independent of whether this stream is ordered or unordered if all
787      * elements of this stream match the given predicate then this operation
788      * drops all elements (the result is an empty stream), or if no elements of
789      * the stream match the given predicate then no elements are dropped (the
790      * result is the same as the input).
791      *
792      * <p>This is a <a href="package-summary.html#StreamOps">stateful
793      * intermediate operation</a>.
794      *
795      * @implSpec
796      * The default implementation obtains the {@link #spliterator() spliterator}
797      * of this stream, wraps that spliterator so as to support the semantics
798      * of this operation on traversal, and returns a new stream associated with
799      * the wrapped spliterator.  The returned stream preserves the execution
800      * characteristics of this stream (namely parallel or sequential execution
801      * as per {@link #isParallel()}) but the wrapped spliterator may choose to
802      * not support splitting.  When the returned stream is closed, the close
803      * handlers for both the returned and this stream are invoked.
804      *
805      * @apiNote
806      * While {@code dropWhile()} is generally a cheap operation on sequential
807      * stream pipelines, it can be quite expensive on ordered parallel
808      * pipelines, since the operation is constrained to return not just any
809      * valid prefix, but the longest prefix of elements in the encounter order.
810      * Using an unordered stream source (such as {@link #generate(Supplier)}) or
811      * removing the ordering constraint with {@link #unordered()} may result in
812      * significant speedups of {@code dropWhile()} in parallel pipelines, if the
813      * semantics of your situation permit.  If consistency with encounter order
814      * is required, and you are experiencing poor performance or memory
815      * utilization with {@code dropWhile()} in parallel pipelines, switching to
816      * sequential execution with {@link #sequential()} may improve performance.
817      *
818      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
819      *                  <a href="package-summary.html#Statelessness">stateless</a>
820      *                  predicate to apply to elements to determine the longest
821      *                  prefix of elements.
822      * @return the new stream
823      * @since 9
824      */
825     default Stream<T> dropWhile(Predicate<? super T> predicate) {
826         Objects.requireNonNull(predicate);
827         // Reuses the unordered spliterator, which, when encounter is present,
828         // is safe to use as long as it configured not to split
829         return StreamSupport.stream(
830                 new WhileOps.UnorderedWhileSpliterator.OfRef.Dropping<>(spliterator(), true, predicate),
831                 isParallel()).onClose(this::close);
832     }
833 
834     /**
835      * Performs an action for each element of this stream.
836      *
837      * <p>This is a <a href="package-summary.html#StreamOps">terminal
838      * operation</a>.
839      *
840      * <p>The behavior of this operation is explicitly nondeterministic.
841      * For parallel stream pipelines, this operation does <em>not</em>
842      * guarantee to respect the encounter order of the stream, as doing so
843      * would sacrifice the benefit of parallelism.  For any given element, the
844      * action may be performed at whatever time and in whatever thread the
845      * library chooses.  If the action accesses shared state, it is
846      * responsible for providing the required synchronization.
847      *
848      * @param action a <a href="package-summary.html#NonInterference">
849      *               non-interfering</a> action to perform on the elements
850      */
851     void forEach(Consumer<? super T> action);
852 
853     /**
854      * Performs an action for each element of this stream, in the encounter
855      * order of the stream if the stream has a defined encounter order.
856      *
857      * <p>This is a <a href="package-summary.html#StreamOps">terminal
858      * operation</a>.
859      *
860      * <p>This operation processes the elements one at a time, in encounter
861      * order if one exists.  Performing the action for one element
862      * <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
863      * performing the action for subsequent elements, but for any given element,
864      * the action may be performed in whatever thread the library chooses.
865      *
866      * @param action a <a href="package-summary.html#NonInterference">
867      *               non-interfering</a> action to perform on the elements
868      * @see #forEach(Consumer)
869      */
870     void forEachOrdered(Consumer<? super T> action);
871 
872     /**
873      * Returns an array containing the elements of this stream.
874      *
875      * <p>This is a <a href="package-summary.html#StreamOps">terminal
876      * operation</a>.
877      *
878      * @return an array, whose {@linkplain Class#getComponentType runtime component
879      * type} is {@code Object}, containing the elements of this stream
880      */
881     Object[] toArray();
882 
883     /**
884      * Returns an array containing the elements of this stream, using the
885      * provided {@code generator} function to allocate the returned array, as
886      * well as any additional arrays that might be required for a partitioned
887      * execution or for resizing.
888      *
889      * <p>This is a <a href="package-summary.html#StreamOps">terminal
890      * operation</a>.
891      *
892      * @apiNote
893      * The generator function takes an integer, which is the size of the
894      * desired array, and produces an array of the desired size.  This can be
895      * concisely expressed with an array constructor reference:
896      * <pre>{@code
897      *     Person[] men = people.stream()
898      *                          .filter(p -> p.getGender() == MALE)
899      *                          .toArray(Person[]::new);
900      * }</pre>
901      *
902      * @param <A> the component type of the resulting array
903      * @param generator a function which produces a new array of the desired
904      *                  type and the provided length
905      * @return an array containing the elements in this stream
906      * @throws ArrayStoreException if the runtime type of any element of this
907      *         stream is not assignable to the {@linkplain Class#getComponentType
908      *         runtime component type} of the generated array
909      */
910     <A> A[] toArray(IntFunction<A[]> generator);
911 
912     /**
913      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
914      * elements of this stream, using the provided identity value and an
915      * <a href="package-summary.html#Associativity">associative</a>
916      * accumulation function, and returns the reduced value.  This is equivalent
917      * to:
918      * <pre>{@code
919      *     T result = identity;
920      *     for (T element : this stream)
921      *         result = accumulator.apply(result, element)
922      *     return result;
923      * }</pre>
924      *
925      * but is not constrained to execute sequentially.
926      *
927      * <p>The {@code identity} value must be an identity for the accumulator
928      * function. This means that for all {@code t},
929      * {@code accumulator.apply(identity, t)} is equal to {@code t}.
930      * The {@code accumulator} function must be an
931      * <a href="package-summary.html#Associativity">associative</a> function.
932      *
933      * <p>This is a <a href="package-summary.html#StreamOps">terminal
934      * operation</a>.
935      *
936      * @apiNote Sum, min, max, average, and string concatenation are all special
937      * cases of reduction. Summing a stream of numbers can be expressed as:
938      *
939      * <pre>{@code
940      *     Integer sum = integers.reduce(0, (a, b) -> a+b);
941      * }</pre>
942      *
943      * or:
944      *
945      * <pre>{@code
946      *     Integer sum = integers.reduce(0, Integer::sum);
947      * }</pre>
948      *
949      * <p>While this may seem a more roundabout way to perform an aggregation
950      * compared to simply mutating a running total in a loop, reduction
951      * operations parallelize more gracefully, without needing additional
952      * synchronization and with greatly reduced risk of data races.
953      *
954      * @param identity the identity value for the accumulating function
955      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
956      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
957      *                    <a href="package-summary.html#Statelessness">stateless</a>
958      *                    function for combining two values
959      * @return the result of the reduction
960      */
961     T reduce(T identity, BinaryOperator<T> accumulator);
962 
963     /**
964      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
965      * elements of this stream, using an
966      * <a href="package-summary.html#Associativity">associative</a> accumulation
967      * function, and returns an {@code Optional} describing the reduced value,
968      * if any. This is equivalent to:
969      * <pre>{@code
970      *     boolean foundAny = false;
971      *     T result = null;
972      *     for (T element : this stream) {
973      *         if (!foundAny) {
974      *             foundAny = true;
975      *             result = element;
976      *         }
977      *         else
978      *             result = accumulator.apply(result, element);
979      *     }
980      *     return foundAny ? Optional.of(result) : Optional.empty();
981      * }</pre>
982      *
983      * but is not constrained to execute sequentially.
984      *
985      * <p>The {@code accumulator} function must be an
986      * <a href="package-summary.html#Associativity">associative</a> function.
987      *
988      * <p>This is a <a href="package-summary.html#StreamOps">terminal
989      * operation</a>.
990      *
991      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
992      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
993      *                    <a href="package-summary.html#Statelessness">stateless</a>
994      *                    function for combining two values
995      * @return an {@link Optional} describing the result of the reduction
996      * @throws NullPointerException if the result of the reduction is null
997      * @see #reduce(Object, BinaryOperator)
998      * @see #min(Comparator)
999      * @see #max(Comparator)
1000      */
1001     Optional<T> reduce(BinaryOperator<T> accumulator);
1002 
1003     /**
1004      * Performs a <a href="package-summary.html#Reduction">reduction</a> on the
1005      * elements of this stream, using the provided identity, accumulation and
1006      * combining functions.  This is equivalent to:
1007      * <pre>{@code
1008      *     U result = identity;
1009      *     for (T element : this stream)
1010      *         result = accumulator.apply(result, element)
1011      *     return result;
1012      * }</pre>
1013      *
1014      * but is not constrained to execute sequentially.
1015      *
1016      * <p>The {@code identity} value must be an identity for the combiner
1017      * function.  This means that for all {@code u}, {@code combiner(identity, u)}
1018      * is equal to {@code u}.  Additionally, the {@code combiner} function
1019      * must be compatible with the {@code accumulator} function; for all
1020      * {@code u} and {@code t}, the following must hold:
1021      * <pre>{@code
1022      *     combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t)
1023      * }</pre>
1024      *
1025      * <p>This is a <a href="package-summary.html#StreamOps">terminal
1026      * operation</a>.
1027      *
1028      * @apiNote Many reductions using this form can be represented more simply
1029      * by an explicit combination of {@code map} and {@code reduce} operations.
1030      * The {@code accumulator} function acts as a fused mapper and accumulator,
1031      * which can sometimes be more efficient than separate mapping and reduction,
1032      * such as when knowing the previously reduced value allows you to avoid
1033      * some computation.
1034      *
1035      * @param <U> The type of the result
1036      * @param identity the identity value for the combiner function
1037      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
1038      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
1039      *                    <a href="package-summary.html#Statelessness">stateless</a>
1040      *                    function for incorporating an additional element into a result
1041      * @param combiner an <a href="package-summary.html#Associativity">associative</a>,
1042      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
1043      *                    <a href="package-summary.html#Statelessness">stateless</a>
1044      *                    function for combining two values, which must be
1045      *                    compatible with the accumulator function
1046      * @return the result of the reduction
1047      * @see #reduce(BinaryOperator)
1048      * @see #reduce(Object, BinaryOperator)
1049      */
1050     <U> U reduce(U identity,
1051                  BiFunction<U, ? super T, U> accumulator,
1052                  BinaryOperator<U> combiner);
1053 
1054     /**
1055      * Performs a <a href="package-summary.html#MutableReduction">mutable
1056      * reduction</a> operation on the elements of this stream.  A mutable
1057      * reduction is one in which the reduced value is a mutable result container,
1058      * such as an {@code ArrayList}, and elements are incorporated by updating
1059      * the state of the result rather than by replacing the result.  This
1060      * produces a result equivalent to:
1061      * <pre>{@code
1062      *     R result = supplier.get();
1063      *     for (T element : this stream)
1064      *         accumulator.accept(result, element);
1065      *     return result;
1066      * }</pre>
1067      *
1068      * <p>Like {@link #reduce(Object, BinaryOperator)}, {@code collect} operations
1069      * can be parallelized without requiring additional synchronization.
1070      *
1071      * <p>This is a <a href="package-summary.html#StreamOps">terminal
1072      * operation</a>.
1073      *
1074      * @apiNote There are many existing classes in the JDK whose signatures are
1075      * well-suited for use with method references as arguments to {@code collect()}.
1076      * For example, the following will accumulate strings into an {@code ArrayList}:
1077      * <pre>{@code
1078      *     List<String> asList = stringStream.collect(ArrayList::new, ArrayList::add,
1079      *                                                ArrayList::addAll);
1080      * }</pre>
1081      *
1082      * <p>The following will take a stream of strings and concatenates them into a
1083      * single string:
1084      * <pre>{@code
1085      *     String concat = stringStream.collect(StringBuilder::new, StringBuilder::append,
1086      *                                          StringBuilder::append)
1087      *                                 .toString();
1088      * }</pre>
1089      *
1090      * @param <R> the type of the mutable result container
1091      * @param supplier a function that creates a new mutable result container.
1092      *                 For a parallel execution, this function may be called
1093      *                 multiple times and must return a fresh value each time.
1094      * @param accumulator an <a href="package-summary.html#Associativity">associative</a>,
1095      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
1096      *                    <a href="package-summary.html#Statelessness">stateless</a>
1097      *                    function that must fold an element into a result
1098      *                    container.
1099      * @param combiner an <a href="package-summary.html#Associativity">associative</a>,
1100      *                    <a href="package-summary.html#NonInterference">non-interfering</a>,
1101      *                    <a href="package-summary.html#Statelessness">stateless</a>
1102      *                    function that accepts two partial result containers
1103      *                    and merges them, which must be compatible with the
1104      *                    accumulator function.  The combiner function must fold
1105      *                    the elements from the second result container into the
1106      *                    first result container.
1107      * @return the result of the reduction
1108      */
1109     <R> R collect(Supplier<R> supplier,
1110                   BiConsumer<R, ? super T> accumulator,
1111                   BiConsumer<R, R> combiner);
1112 
1113     /**
1114      * Performs a <a href="package-summary.html#MutableReduction">mutable
1115      * reduction</a> operation on the elements of this stream using a
1116      * {@code Collector}.  A {@code Collector}
1117      * encapsulates the functions used as arguments to
1118      * {@link #collect(Supplier, BiConsumer, BiConsumer)}, allowing for reuse of
1119      * collection strategies and composition of collect operations such as
1120      * multiple-level grouping or partitioning.
1121      *
1122      * <p>If the stream is parallel, and the {@code Collector}
1123      * is {@link Collector.Characteristics#CONCURRENT concurrent}, and
1124      * either the stream is unordered or the collector is
1125      * {@link Collector.Characteristics#UNORDERED unordered},
1126      * then a concurrent reduction will be performed (see {@link Collector} for
1127      * details on concurrent reduction.)
1128      *
1129      * <p>This is a <a href="package-summary.html#StreamOps">terminal
1130      * operation</a>.
1131      *
1132      * <p>When executed in parallel, multiple intermediate results may be
1133      * instantiated, populated, and merged so as to maintain isolation of
1134      * mutable data structures.  Therefore, even when executed in parallel
1135      * with non-thread-safe data structures (such as {@code ArrayList}), no
1136      * additional synchronization is needed for a parallel reduction.
1137      *
1138      * @apiNote
1139      * The following will accumulate strings into a List:
1140      * <pre>{@code
1141      *     List<String> asList = stringStream.collect(Collectors.toList());
1142      * }</pre>
1143      *
1144      * <p>The following will classify {@code Person} objects by city:
1145      * <pre>{@code
1146      *     Map<String, List<Person>> peopleByCity
1147      *         = personStream.collect(Collectors.groupingBy(Person::getCity));
1148      * }</pre>
1149      *
1150      * <p>The following will classify {@code Person} objects by state and city,
1151      * cascading two {@code Collector}s together:
1152      * <pre>{@code
1153      *     Map<String, Map<String, List<Person>>> peopleByStateAndCity
1154      *         = personStream.collect(Collectors.groupingBy(Person::getState,
1155      *                                                      Collectors.groupingBy(Person::getCity)));
1156      * }</pre>
1157      *
1158      * @param <R> the type of the result
1159      * @param <A> the intermediate accumulation type of the {@code Collector}
1160      * @param collector the {@code Collector} describing the reduction
1161      * @return the result of the reduction
1162      * @see #collect(Supplier, BiConsumer, BiConsumer)
1163      * @see Collectors
1164      */
1165     <R, A> R collect(Collector<? super T, A, R> collector);
1166 
1167     /**
1168      * Accumulates the elements of this stream into a {@code List}. The elements in
1169      * the list will be in this stream's encounter order, if one exists. The returned List
1170      * is unmodifiable; calls to any mutator method will always cause
1171      * {@code UnsupportedOperationException} to be thrown. There are no
1172      * guarantees on the implementation type or serializability of the returned List.
1173      *
1174      * <p>The returned instance may be <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>.
1175      * Callers should make no assumptions about the identity of the returned instances.
1176      * Identity-sensitive operations on these instances (reference equality ({@code ==}),
1177      * identity hash code, and synchronization) are unreliable and should be avoided.
1178      *
1179      * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
1180      *
1181      * @apiNote If more control over the returned object is required, use
1182      * {@link Collectors#toCollection(Supplier)}.
1183      *
1184      * @implSpec The implementation in this interface returns a List produced as if by the following:
1185      * <pre>{@code
1186      * Collections.unmodifiableList(new ArrayList<>(Arrays.asList(this.toArray())))
1187      * }</pre>
1188      *
1189      * @implNote Most instances of Stream will override this method and provide an implementation
1190      * that is highly optimized compared to the implementation in this interface.
1191      *
1192      * @return a List containing the stream elements
1193      *
1194      * @since 16
1195      */
1196     @SuppressWarnings("unchecked")
1197     default List<T> toList() {
1198         return (List<T>) Collections.unmodifiableList(new ArrayList<>(Arrays.asList(this.toArray())));
1199     }
1200 
1201     /**
1202      * Returns the minimum element of this stream according to the provided
1203      * {@code Comparator}.  This is a special case of a
1204      * <a href="package-summary.html#Reduction">reduction</a>.
1205      *
1206      * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
1207      *
1208      * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
1209      *                   <a href="package-summary.html#Statelessness">stateless</a>
1210      *                   {@code Comparator} to compare elements of this stream
1211      * @return an {@code Optional} describing the minimum element of this stream,
1212      * or an empty {@code Optional} if the stream is empty
1213      * @throws NullPointerException if the minimum element is null
1214      */
1215     Optional<T> min(Comparator<? super T> comparator);
1216 
1217     /**
1218      * Returns the maximum element of this stream according to the provided
1219      * {@code Comparator}.  This is a special case of a
1220      * <a href="package-summary.html#Reduction">reduction</a>.
1221      *
1222      * <p>This is a <a href="package-summary.html#StreamOps">terminal
1223      * operation</a>.
1224      *
1225      * @param comparator a <a href="package-summary.html#NonInterference">non-interfering</a>,
1226      *                   <a href="package-summary.html#Statelessness">stateless</a>
1227      *                   {@code Comparator} to compare elements of this stream
1228      * @return an {@code Optional} describing the maximum element of this stream,
1229      * or an empty {@code Optional} if the stream is empty
1230      * @throws NullPointerException if the maximum element is null
1231      */
1232     Optional<T> max(Comparator<? super T> comparator);
1233 
1234     /**
1235      * Returns the count of elements in this stream.  This is a special case of
1236      * a <a href="package-summary.html#Reduction">reduction</a> and is
1237      * equivalent to:
1238      * <pre>{@code
1239      *     return mapToLong(e -> 1L).sum();
1240      * }</pre>
1241      *
1242      * <p>This is a <a href="package-summary.html#StreamOps">terminal operation</a>.
1243      *
1244      * @apiNote
1245      * An implementation may choose to not execute the stream pipeline (either
1246      * sequentially or in parallel) if it is capable of computing the count
1247      * directly from the stream source.  In such cases no source elements will
1248      * be traversed and no intermediate operations will be evaluated.
1249      * Behavioral parameters with side-effects, which are strongly discouraged
1250      * except for harmless cases such as debugging, may be affected.  For
1251      * example, consider the following stream:
1252      * <pre>{@code
1253      *     List<String> l = Arrays.asList("A", "B", "C", "D");
1254      *     long count = l.stream().peek(System.out::println).count();
1255      * }</pre>
1256      * The number of elements covered by the stream source, a {@code List}, is
1257      * known and the intermediate operation, {@code peek}, does not inject into
1258      * or remove elements from the stream (as may be the case for
1259      * {@code flatMap} or {@code filter} operations).  Thus the count is the
1260      * size of the {@code List} and there is no need to execute the pipeline
1261      * and, as a side-effect, print out the list elements.
1262      *
1263      * @return the count of elements in this stream
1264      */
1265     long count();
1266 
1267     /**
1268      * Returns whether any elements of this stream match the provided
1269      * predicate.  May not evaluate the predicate on all elements if not
1270      * necessary for determining the result.  If the stream is empty then
1271      * {@code false} is returned and the predicate is not evaluated.
1272      *
1273      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
1274      * terminal operation</a>.
1275      *
1276      * @apiNote
1277      * This method evaluates the <em>existential quantification</em> of the
1278      * predicate over the elements of the stream (for some x P(x)).
1279      *
1280      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
1281      *                  <a href="package-summary.html#Statelessness">stateless</a>
1282      *                  predicate to apply to elements of this stream
1283      * @return {@code true} if any elements of the stream match the provided
1284      * predicate, otherwise {@code false}
1285      */
1286     boolean anyMatch(Predicate<? super T> predicate);
1287 
1288     /**
1289      * Returns whether all elements of this stream match the provided predicate.
1290      * May not evaluate the predicate on all elements if not necessary for
1291      * determining the result.  If the stream is empty then {@code true} is
1292      * returned and the predicate is not evaluated.
1293      *
1294      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
1295      * terminal operation</a>.
1296      *
1297      * @apiNote
1298      * This method evaluates the <em>universal quantification</em> of the
1299      * predicate over the elements of the stream (for all x P(x)).  If the
1300      * stream is empty, the quantification is said to be <em>vacuously
1301      * satisfied</em> and is always {@code true} (regardless of P(x)).
1302      *
1303      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
1304      *                  <a href="package-summary.html#Statelessness">stateless</a>
1305      *                  predicate to apply to elements of this stream
1306      * @return {@code true} if either all elements of the stream match the
1307      * provided predicate or the stream is empty, otherwise {@code false}
1308      */
1309     boolean allMatch(Predicate<? super T> predicate);
1310 
1311     /**
1312      * Returns whether no elements of this stream match the provided predicate.
1313      * May not evaluate the predicate on all elements if not necessary for
1314      * determining the result.  If the stream is empty then {@code true} is
1315      * returned and the predicate is not evaluated.
1316      *
1317      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
1318      * terminal operation</a>.
1319      *
1320      * @apiNote
1321      * This method evaluates the <em>universal quantification</em> of the
1322      * negated predicate over the elements of the stream (for all x ~P(x)).  If
1323      * the stream is empty, the quantification is said to be vacuously satisfied
1324      * and is always {@code true}, regardless of P(x).
1325      *
1326      * @param predicate a <a href="package-summary.html#NonInterference">non-interfering</a>,
1327      *                  <a href="package-summary.html#Statelessness">stateless</a>
1328      *                  predicate to apply to elements of this stream
1329      * @return {@code true} if either no elements of the stream match the
1330      * provided predicate or the stream is empty, otherwise {@code false}
1331      */
1332     boolean noneMatch(Predicate<? super T> predicate);
1333 
1334     /**
1335      * Returns an {@link Optional} describing the first element of this stream,
1336      * or an empty {@code Optional} if the stream is empty.  If the stream has
1337      * no encounter order, then any element may be returned.
1338      *
1339      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
1340      * terminal operation</a>.
1341      *
1342      * @return an {@code Optional} describing the first element of this stream,
1343      * or an empty {@code Optional} if the stream is empty
1344      * @throws NullPointerException if the element selected is null
1345      */
1346     Optional<T> findFirst();
1347 
1348     /**
1349      * Returns an {@link Optional} describing some element of the stream, or an
1350      * empty {@code Optional} if the stream is empty.
1351      *
1352      * <p>This is a <a href="package-summary.html#StreamOps">short-circuiting
1353      * terminal operation</a>.
1354      *
1355      * <p>The behavior of this operation is explicitly nondeterministic; it is
1356      * free to select any element in the stream.  This is to allow for maximal
1357      * performance in parallel operations; the cost is that multiple invocations
1358      * on the same source may not return the same result.  (If a stable result
1359      * is desired, use {@link #findFirst()} instead.)
1360      *
1361      * @return an {@code Optional} describing some element of this stream, or an
1362      * empty {@code Optional} if the stream is empty
1363      * @throws NullPointerException if the element selected is null
1364      * @see #findFirst()
1365      */
1366     Optional<T> findAny();
1367 
1368     // Static factories
1369 
1370     /**
1371      * Returns a builder for a {@code Stream}.
1372      *
1373      * @param <T> type of elements
1374      * @return a stream builder
1375      */
1376     public static<T> Builder<T> builder() {
1377         return new Streams.StreamBuilderImpl<>();
1378     }
1379 
1380     /**
1381      * Returns an empty sequential {@code Stream}.
1382      *
1383      * @param <T> the type of stream elements
1384      * @return an empty sequential stream
1385      */
1386     public static<T> Stream<T> empty() {
1387         return StreamSupport.stream(Spliterators.<T>emptySpliterator(), false);
1388     }
1389 
1390     /**
1391      * Returns a sequential {@code Stream} containing a single element.
1392      *
1393      * @param t the single element
1394      * @param <T> the type of stream elements
1395      * @return a singleton sequential stream
1396      */
1397     public static<T> Stream<T> of(T t) {
1398         return StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false);
1399     }
1400 
1401     /**
1402      * Returns a sequential {@code Stream} containing a single element, if
1403      * non-null, otherwise returns an empty {@code Stream}.
1404      *
1405      * @param t the single element
1406      * @param <T> the type of stream elements
1407      * @return a stream with a single element if the specified element
1408      *         is non-null, otherwise an empty stream
1409      * @since 9
1410      */
1411     public static<T> Stream<T> ofNullable(T t) {
1412         return t == null ? Stream.empty()
1413                          : StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false);
1414     }
1415 
1416     /**
1417      * Returns a sequential ordered stream whose elements are the specified values.
1418      *
1419      * @param <T> the type of stream elements
1420      * @param values the elements of the new stream
1421      * @return the new stream
1422      */
1423     @SafeVarargs
1424     @SuppressWarnings("varargs") // Creating a stream from an array is safe
1425     public static<T> Stream<T> of(T... values) {
1426         return Arrays.stream(values);
1427     }
1428 
1429     /**
1430      * Returns an infinite sequential ordered {@code Stream} produced by iterative
1431      * application of a function {@code f} to an initial element {@code seed},
1432      * producing a {@code Stream} consisting of {@code seed}, {@code f(seed)},
1433      * {@code f(f(seed))}, etc.
1434      *
1435      * <p>The first element (position {@code 0}) in the {@code Stream} will be
1436      * the provided {@code seed}.  For {@code n > 0}, the element at position
1437      * {@code n}, will be the result of applying the function {@code f} to the
1438      * element at position {@code n - 1}.
1439      *
1440      * <p>The action of applying {@code f} for one element
1441      * <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
1442      * the action of applying {@code f} for subsequent elements.  For any given
1443      * element the action may be performed in whatever thread the library
1444      * chooses.
1445      *
1446      * @param <T> the type of stream elements
1447      * @param seed the initial element
1448      * @param f a function to be applied to the previous element to produce
1449      *          a new element
1450      * @return a new sequential {@code Stream}
1451      */
1452     public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f) {
1453         Objects.requireNonNull(f);
1454         Spliterator<T> spliterator = new Spliterators.AbstractSpliterator<>(Long.MAX_VALUE,
1455                Spliterator.ORDERED | Spliterator.IMMUTABLE) {
1456             T prev;
1457             boolean started;
1458 
1459             @Override
1460             public boolean tryAdvance(Consumer<? super T> action) {
1461                 Objects.requireNonNull(action);
1462                 T t;
1463                 if (started)
1464                     t = f.apply(prev);
1465                 else {
1466                     t = seed;
1467                     started = true;
1468                 }
1469                 action.accept(prev = t);
1470                 return true;
1471             }
1472         };
1473         return StreamSupport.stream(spliterator, false);
1474     }
1475 
1476     /**
1477      * Returns a sequential ordered {@code Stream} produced by iterative
1478      * application of the given {@code next} function to an initial element,
1479      * conditioned on satisfying the given {@code hasNext} predicate.  The
1480      * stream terminates as soon as the {@code hasNext} predicate returns false.
1481      *
1482      * <p>{@code Stream.iterate} should produce the same sequence of elements as
1483      * produced by the corresponding for-loop:
1484      * <pre>{@code
1485      *     for (T index=seed; hasNext.test(index); index = next.apply(index)) {
1486      *         ...
1487      *     }
1488      * }</pre>
1489      *
1490      * <p>The resulting sequence may be empty if the {@code hasNext} predicate
1491      * does not hold on the seed value.  Otherwise the first element will be the
1492      * supplied {@code seed} value, the next element (if present) will be the
1493      * result of applying the {@code next} function to the {@code seed} value,
1494      * and so on iteratively until the {@code hasNext} predicate indicates that
1495      * the stream should terminate.
1496      *
1497      * <p>The action of applying the {@code hasNext} predicate to an element
1498      * <a href="../concurrent/package-summary.html#MemoryVisibility"><i>happens-before</i></a>
1499      * the action of applying the {@code next} function to that element.  The
1500      * action of applying the {@code next} function for one element
1501      * <i>happens-before</i> the action of applying the {@code hasNext}
1502      * predicate for subsequent elements.  For any given element an action may
1503      * be performed in whatever thread the library chooses.
1504      *
1505      * @param <T> the type of stream elements
1506      * @param seed the initial element
1507      * @param hasNext a predicate to apply to elements to determine when the
1508      *                stream must terminate.
1509      * @param next a function to be applied to the previous element to produce
1510      *             a new element
1511      * @return a new sequential {@code Stream}
1512      * @since 9
1513      */
1514     public static<T> Stream<T> iterate(T seed, Predicate<? super T> hasNext, UnaryOperator<T> next) {
1515         Objects.requireNonNull(next);
1516         Objects.requireNonNull(hasNext);
1517         Spliterator<T> spliterator = new Spliterators.AbstractSpliterator<>(Long.MAX_VALUE,
1518                Spliterator.ORDERED | Spliterator.IMMUTABLE) {
1519             T prev;
1520             boolean started, finished;
1521 
1522             @Override
1523             public boolean tryAdvance(Consumer<? super T> action) {
1524                 Objects.requireNonNull(action);
1525                 if (finished)
1526                     return false;
1527                 T t;
1528                 if (started)
1529                     t = next.apply(prev);
1530                 else {
1531                     t = seed;
1532                     started = true;
1533                 }
1534                 if (!hasNext.test(t)) {
1535                     prev = null;
1536                     finished = true;
1537                     return false;
1538                 }
1539                 action.accept(prev = t);
1540                 return true;
1541             }
1542 
1543             @Override
1544             public void forEachRemaining(Consumer<? super T> action) {
1545                 Objects.requireNonNull(action);
1546                 if (finished)
1547                     return;
1548                 finished = true;
1549                 T t = started ? next.apply(prev) : seed;
1550                 prev = null;
1551                 while (hasNext.test(t)) {
1552                     action.accept(t);
1553                     t = next.apply(t);
1554                 }
1555             }
1556         };
1557         return StreamSupport.stream(spliterator, false);
1558     }
1559 
1560     /**
1561      * Returns an infinite sequential unordered stream where each element is
1562      * generated by the provided {@code Supplier}.  This is suitable for
1563      * generating constant streams, streams of random elements, etc.
1564      *
1565      * @param <T> the type of stream elements
1566      * @param s the {@code Supplier} of generated elements
1567      * @return a new infinite sequential unordered {@code Stream}
1568      */
1569     public static<T> Stream<T> generate(Supplier<? extends T> s) {
1570         Objects.requireNonNull(s);
1571         return StreamSupport.stream(
1572                 new StreamSpliterators.InfiniteSupplyingSpliterator.OfRef<>(Long.MAX_VALUE, s), false);
1573     }
1574 
1575     /**
1576      * Creates a lazily concatenated stream whose elements are all the
1577      * elements of the first stream followed by all the elements of the
1578      * second stream.  The resulting stream is ordered if both
1579      * of the input streams are ordered, and parallel if either of the input
1580      * streams is parallel.  When the resulting stream is closed, the close
1581      * handlers for both input streams are invoked.
1582      *
1583      * <p>This method operates on the two input streams and binds each stream
1584      * to its source.  As a result subsequent modifications to an input stream
1585      * source may not be reflected in the concatenated stream result.
1586      *
1587      * @implNote
1588      * Use caution when constructing streams from repeated concatenation.
1589      * Accessing an element of a deeply concatenated stream can result in deep
1590      * call chains, or even {@code StackOverflowError}.
1591      *
1592      * <p>Subsequent changes to the sequential/parallel execution mode of the
1593      * returned stream are not guaranteed to be propagated to the input streams.
1594      *
1595      * @apiNote
1596      * To preserve optimization opportunities this method binds each stream to
1597      * its source and accepts only two streams as parameters.  For example, the
1598      * exact size of the concatenated stream source can be computed if the exact
1599      * size of each input stream source is known.
1600      * To concatenate more streams without binding, or without nested calls to
1601      * this method, try creating a stream of streams and flat-mapping with the
1602      * identity function, for example:
1603      * <pre>{@code
1604      *     Stream<T> concat = Stream.of(s1, s2, s3, s4).flatMap(s -> s);
1605      * }</pre>
1606      *
1607      * @param <T> The type of stream elements
1608      * @param a the first stream
1609      * @param b the second stream
1610      * @return the concatenation of the two input streams
1611      */
1612     public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b) {
1613         Objects.requireNonNull(a);
1614         Objects.requireNonNull(b);
1615 
1616         @SuppressWarnings("unchecked")
1617         Spliterator<T> split = new Streams.ConcatSpliterator.OfRef<>(
1618                 (Spliterator<T>) a.spliterator(), (Spliterator<T>) b.spliterator());
1619         Stream<T> stream = StreamSupport.stream(split, a.isParallel() || b.isParallel());
1620         return stream.onClose(Streams.composedClose(a, b));
1621     }
1622 
1623     /**
1624      * A mutable builder for a {@code Stream}.  This allows the creation of a
1625      * {@code Stream} by generating elements individually and adding them to the
1626      * {@code Builder} (without the copying overhead that comes from using
1627      * an {@code ArrayList} as a temporary buffer.)
1628      *
1629      * <p>A stream builder has a lifecycle, which starts in a building
1630      * phase, during which elements can be added, and then transitions to a built
1631      * phase, after which elements may not be added.  The built phase begins
1632      * when the {@link #build()} method is called, which creates an ordered
1633      * {@code Stream} whose elements are the elements that were added to the stream
1634      * builder, in the order they were added.
1635      *
1636      * @param <T> the type of stream elements
1637      * @see Stream#builder()
1638      * @since 1.8
1639      */
1640     public interface Builder<T> extends Consumer<T> {
1641 
1642         /**
1643          * Adds an element to the stream being built.
1644          *
1645          * @throws IllegalStateException if the builder has already transitioned to
1646          * the built state
1647          */
1648         @Override
1649         void accept(T t);
1650 
1651         /**
1652          * Adds an element to the stream being built.
1653          *
1654          * @implSpec
1655          * The default implementation behaves as if:
1656          * <pre>{@code
1657          *     accept(t)
1658          *     return this;
1659          * }</pre>
1660          *
1661          * @param t the element to add
1662          * @return {@code this} builder
1663          * @throws IllegalStateException if the builder has already transitioned to
1664          * the built state
1665          */
1666         default Builder<T> add(T t) {
1667             accept(t);
1668             return this;
1669         }
1670 
1671         /**
1672          * Builds the stream, transitioning this builder to the built state.
1673          * An {@code IllegalStateException} is thrown if there are further attempts
1674          * to operate on the builder after it has entered the built state.
1675          *
1676          * @return the built stream
1677          * @throws IllegalStateException if the builder has already transitioned to
1678          * the built state
1679          */
1680         Stream<T> build();
1681 
1682     }
1683 }
1684