1 /*
2 * Copyright (C) 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <aidl/Gtest.h>
17 #include <aidl/Vintf.h>
18
19 #include <aidl/android/hardware/sensors/BnSensors.h>
20 #include <aidl/android/hardware/sensors/ISensors.h>
21 #include <android/binder_manager.h>
22 #include <binder/IServiceManager.h>
23 #include <binder/ProcessState.h>
24 #include <hardware/sensors.h>
25 #include <log/log.h>
26 #include <utils/SystemClock.h>
27
28 #include "SensorsAidlEnvironment.h"
29 #include "SensorsAidlTestSharedMemory.h"
30 #include "sensors-vts-utils/SensorsVtsEnvironmentBase.h"
31
32 #include <cinttypes>
33 #include <condition_variable>
34 #include <map>
35 #include <unordered_map>
36 #include <unordered_set>
37 #include <vector>
38
39 using aidl::android::hardware::sensors::Event;
40 using aidl::android::hardware::sensors::ISensors;
41 using aidl::android::hardware::sensors::SensorInfo;
42 using aidl::android::hardware::sensors::SensorStatus;
43 using aidl::android::hardware::sensors::SensorType;
44 using aidl::android::hardware::sensors::AdditionalInfo;
45 using android::ProcessState;
46 using std::chrono::duration_cast;
47
48 constexpr size_t kEventSize =
49 static_cast<size_t>(ISensors::DIRECT_REPORT_SENSOR_EVENT_TOTAL_LENGTH);
50
51 namespace {
52
assertTypeMatchStringType(SensorType type,const std::string & stringType)53 static void assertTypeMatchStringType(SensorType type, const std::string& stringType) {
54 if (type >= SensorType::DEVICE_PRIVATE_BASE) {
55 return;
56 }
57
58 switch (type) {
59 #define CHECK_TYPE_STRING_FOR_SENSOR_TYPE(type) \
60 case SensorType::type: \
61 ASSERT_STREQ(SENSOR_STRING_TYPE_##type, stringType.c_str()); \
62 break;
63 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER);
64 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES);
65 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_LIMITED_AXES_UNCALIBRATED);
66 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ACCELEROMETER_UNCALIBRATED);
67 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ADDITIONAL_INFO);
68 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(AMBIENT_TEMPERATURE);
69 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DEVICE_ORIENTATION);
70 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(DYNAMIC_SENSOR_META);
71 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GAME_ROTATION_VECTOR);
72 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GEOMAGNETIC_ROTATION_VECTOR);
73 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GLANCE_GESTURE);
74 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GRAVITY);
75 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE);
76 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES);
77 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_LIMITED_AXES_UNCALIBRATED);
78 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(GYROSCOPE_UNCALIBRATED);
79 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEADING);
80 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_BEAT);
81 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HEART_RATE);
82 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LIGHT);
83 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LINEAR_ACCELERATION);
84 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(LOW_LATENCY_OFFBODY_DETECT);
85 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD);
86 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MAGNETIC_FIELD_UNCALIBRATED);
87 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(MOTION_DETECT);
88 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ORIENTATION);
89 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PICK_UP_GESTURE);
90 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(POSE_6DOF);
91 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PRESSURE);
92 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(PROXIMITY);
93 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(RELATIVE_HUMIDITY);
94 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(ROTATION_VECTOR);
95 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(SIGNIFICANT_MOTION);
96 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STATIONARY_DETECT);
97 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_COUNTER);
98 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(STEP_DETECTOR);
99 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(TILT_DETECTOR);
100 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WAKE_GESTURE);
101 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(WRIST_TILT_GESTURE);
102 CHECK_TYPE_STRING_FOR_SENSOR_TYPE(HINGE_ANGLE);
103 default:
104 FAIL() << "Type " << static_cast<int>(type)
105 << " in android defined range is not checked, "
106 << "stringType = " << stringType;
107 #undef CHECK_TYPE_STRING_FOR_SENSOR_TYPE
108 }
109 }
110
isDirectChannelTypeSupported(SensorInfo sensor,ISensors::SharedMemInfo::SharedMemType type)111 bool isDirectChannelTypeSupported(SensorInfo sensor, ISensors::SharedMemInfo::SharedMemType type) {
112 switch (type) {
113 case ISensors::SharedMemInfo::SharedMemType::ASHMEM:
114 return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_ASHMEM) != 0;
115 case ISensors::SharedMemInfo::SharedMemType::GRALLOC:
116 return (sensor.flags & SensorInfo::SENSOR_FLAG_BITS_DIRECT_CHANNEL_GRALLOC) != 0;
117 default:
118 return false;
119 }
120 }
121
isDirectReportRateSupported(SensorInfo sensor,ISensors::RateLevel rate)122 bool isDirectReportRateSupported(SensorInfo sensor, ISensors::RateLevel rate) {
123 unsigned int r = static_cast<unsigned int>(sensor.flags &
124 SensorInfo::SENSOR_FLAG_BITS_MASK_DIRECT_REPORT) >>
125 static_cast<unsigned int>(SensorInfo::SENSOR_FLAG_SHIFT_DIRECT_REPORT);
126 return r >= static_cast<unsigned int>(rate);
127 }
128
expectedReportModeForType(SensorType type)129 int expectedReportModeForType(SensorType type) {
130 switch (type) {
131 case SensorType::ACCELEROMETER:
132 case SensorType::ACCELEROMETER_LIMITED_AXES:
133 case SensorType::ACCELEROMETER_UNCALIBRATED:
134 case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
135 case SensorType::GYROSCOPE:
136 case SensorType::GYROSCOPE_LIMITED_AXES:
137 case SensorType::MAGNETIC_FIELD:
138 case SensorType::ORIENTATION:
139 case SensorType::PRESSURE:
140 case SensorType::GRAVITY:
141 case SensorType::LINEAR_ACCELERATION:
142 case SensorType::ROTATION_VECTOR:
143 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
144 case SensorType::GAME_ROTATION_VECTOR:
145 case SensorType::GYROSCOPE_UNCALIBRATED:
146 case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED:
147 case SensorType::GEOMAGNETIC_ROTATION_VECTOR:
148 case SensorType::POSE_6DOF:
149 case SensorType::HEART_BEAT:
150 case SensorType::HEADING:
151 return SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE;
152
153 case SensorType::LIGHT:
154 case SensorType::PROXIMITY:
155 case SensorType::RELATIVE_HUMIDITY:
156 case SensorType::AMBIENT_TEMPERATURE:
157 case SensorType::HEART_RATE:
158 case SensorType::DEVICE_ORIENTATION:
159 case SensorType::STEP_COUNTER:
160 case SensorType::LOW_LATENCY_OFFBODY_DETECT:
161 return SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE;
162
163 case SensorType::SIGNIFICANT_MOTION:
164 case SensorType::WAKE_GESTURE:
165 case SensorType::GLANCE_GESTURE:
166 case SensorType::PICK_UP_GESTURE:
167 case SensorType::MOTION_DETECT:
168 case SensorType::STATIONARY_DETECT:
169 return SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE;
170
171 case SensorType::STEP_DETECTOR:
172 case SensorType::TILT_DETECTOR:
173 case SensorType::WRIST_TILT_GESTURE:
174 case SensorType::DYNAMIC_SENSOR_META:
175 return SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE;
176
177 default:
178 ALOGW("Type %d is not implemented in expectedReportModeForType", (int)type);
179 return INT32_MAX;
180 }
181 }
182
assertTypeMatchReportMode(SensorType type,int reportMode)183 void assertTypeMatchReportMode(SensorType type, int reportMode) {
184 if (type >= SensorType::DEVICE_PRIVATE_BASE) {
185 return;
186 }
187
188 int expected = expectedReportModeForType(type);
189
190 ASSERT_TRUE(expected == INT32_MAX || expected == reportMode)
191 << "reportMode=" << static_cast<int>(reportMode)
192 << "expected=" << static_cast<int>(expected);
193 }
194
assertDelayMatchReportMode(int32_t minDelayUs,int32_t maxDelayUs,int reportMode)195 void assertDelayMatchReportMode(int32_t minDelayUs, int32_t maxDelayUs, int reportMode) {
196 switch (reportMode) {
197 case SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE:
198 ASSERT_LT(0, minDelayUs);
199 ASSERT_LE(0, maxDelayUs);
200 break;
201 case SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE:
202 ASSERT_LE(0, minDelayUs);
203 ASSERT_LE(0, maxDelayUs);
204 break;
205 case SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE:
206 ASSERT_EQ(-1, minDelayUs);
207 ASSERT_EQ(0, maxDelayUs);
208 break;
209 case SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE:
210 // do not enforce anything for special reporting mode
211 break;
212 default:
213 FAIL() << "Report mode " << static_cast<int>(reportMode) << " not checked";
214 }
215 }
216
checkIsOk(ndk::ScopedAStatus status)217 void checkIsOk(ndk::ScopedAStatus status) {
218 ASSERT_TRUE(status.isOk());
219 }
220
221 } // namespace
222
223 class EventCallback : public IEventCallback<Event> {
224 public:
reset()225 void reset() {
226 mFlushMap.clear();
227 mEventMap.clear();
228 }
229
onEvent(const Event & event)230 void onEvent(const Event& event) override {
231 if (event.sensorType == SensorType::META_DATA &&
232 event.payload.get<Event::EventPayload::Tag::meta>().what ==
233 Event::EventPayload::MetaData::MetaDataEventType::META_DATA_FLUSH_COMPLETE) {
234 std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
235 mFlushMap[event.sensorHandle]++;
236 mFlushCV.notify_all();
237 } else if (event.sensorType != SensorType::ADDITIONAL_INFO) {
238 std::unique_lock<std::recursive_mutex> lock(mEventMutex);
239 mEventMap[event.sensorHandle].push_back(event);
240 mEventCV.notify_all();
241 }
242 }
243
getFlushCount(int32_t sensorHandle)244 int32_t getFlushCount(int32_t sensorHandle) {
245 std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
246 return mFlushMap[sensorHandle];
247 }
248
waitForFlushEvents(const std::vector<SensorInfo> & sensorsToWaitFor,int32_t numCallsToFlush,std::chrono::milliseconds timeout)249 void waitForFlushEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
250 int32_t numCallsToFlush, std::chrono::milliseconds timeout) {
251 std::unique_lock<std::recursive_mutex> lock(mFlushMutex);
252 mFlushCV.wait_for(lock, timeout,
253 [&] { return flushesReceived(sensorsToWaitFor, numCallsToFlush); });
254 }
255
getEvents(int32_t sensorHandle)256 const std::vector<Event> getEvents(int32_t sensorHandle) {
257 std::unique_lock<std::recursive_mutex> lock(mEventMutex);
258 return mEventMap[sensorHandle];
259 }
260
waitForEvents(const std::vector<SensorInfo> & sensorsToWaitFor,std::chrono::milliseconds timeout)261 void waitForEvents(const std::vector<SensorInfo>& sensorsToWaitFor,
262 std::chrono::milliseconds timeout) {
263 std::unique_lock<std::recursive_mutex> lock(mEventMutex);
264 mEventCV.wait_for(lock, timeout, [&] { return eventsReceived(sensorsToWaitFor); });
265 }
266
267 protected:
flushesReceived(const std::vector<SensorInfo> & sensorsToWaitFor,int32_t numCallsToFlush)268 bool flushesReceived(const std::vector<SensorInfo>& sensorsToWaitFor, int32_t numCallsToFlush) {
269 for (const SensorInfo& sensor : sensorsToWaitFor) {
270 if (getFlushCount(sensor.sensorHandle) < numCallsToFlush) {
271 return false;
272 }
273 }
274 return true;
275 }
276
eventsReceived(const std::vector<SensorInfo> & sensorsToWaitFor)277 bool eventsReceived(const std::vector<SensorInfo>& sensorsToWaitFor) {
278 for (const SensorInfo& sensor : sensorsToWaitFor) {
279 if (getEvents(sensor.sensorHandle).size() == 0) {
280 return false;
281 }
282 }
283 return true;
284 }
285
286 std::map<int32_t, int32_t> mFlushMap;
287 std::recursive_mutex mFlushMutex;
288 std::condition_variable_any mFlushCV;
289
290 std::map<int32_t, std::vector<Event>> mEventMap;
291 std::recursive_mutex mEventMutex;
292 std::condition_variable_any mEventCV;
293 };
294
295 class SensorsAidlTest : public testing::TestWithParam<std::string> {
296 public:
SetUp()297 virtual void SetUp() override {
298 mEnvironment = new SensorsAidlEnvironment(GetParam());
299 mEnvironment->SetUp();
300
301 // Ensure that we have a valid environment before performing tests
302 ASSERT_NE(getSensors(), nullptr);
303 }
304
TearDown()305 virtual void TearDown() override {
306 for (int32_t handle : mSensorHandles) {
307 activate(handle, false);
308 }
309 mSensorHandles.clear();
310
311 mEnvironment->TearDown();
312 delete mEnvironment;
313 mEnvironment = nullptr;
314 }
315
316 protected:
317 std::vector<SensorInfo> getNonOneShotSensors();
318 std::vector<SensorInfo> getNonOneShotAndNonSpecialSensors();
319 std::vector<SensorInfo> getNonOneShotAndNonOnChangeAndNonSpecialSensors();
320 std::vector<SensorInfo> getOneShotSensors();
321 std::vector<SensorInfo> getInjectEventSensors();
322
323 void verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType);
324
325 void verifyRegisterDirectChannel(
326 std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
327 int32_t* directChannelHandle, bool supportsSharedMemType,
328 bool supportsAnyDirectChannel);
329
330 void verifyConfigure(const SensorInfo& sensor, ISensors::SharedMemInfo::SharedMemType memType,
331 int32_t directChannelHandle, bool directChannelSupported);
332
333 void queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
334 bool* supportsSharedMemType, bool* supportsAnyDirectChannel);
335
336 void verifyUnregisterDirectChannel(int32_t* directChannelHandle, bool supportsAnyDirectChannel);
337
338 void checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
339 ISensors::RateLevel rateLevel, int32_t* reportToken);
340
getSensors()341 inline std::shared_ptr<ISensors>& getSensors() { return mEnvironment->mSensors; }
342
getEnvironment()343 inline SensorsAidlEnvironment* getEnvironment() { return mEnvironment; }
344
isValidType(SensorType sensorType)345 inline bool isValidType(SensorType sensorType) { return (int)sensorType > 0; }
346
347 std::vector<SensorInfo> getSensorsList();
348
getInvalidSensorHandle()349 int32_t getInvalidSensorHandle() {
350 // Find a sensor handle that does not exist in the sensor list
351 int32_t maxHandle = 0;
352 for (const SensorInfo& sensor : getSensorsList()) {
353 maxHandle = std::max(maxHandle, sensor.sensorHandle);
354 }
355 return maxHandle + 1;
356 }
357
358 ndk::ScopedAStatus activate(int32_t sensorHandle, bool enable);
359 void activateAllSensors(bool enable);
360
batch(int32_t sensorHandle,int64_t samplingPeriodNs,int64_t maxReportLatencyNs)361 ndk::ScopedAStatus batch(int32_t sensorHandle, int64_t samplingPeriodNs,
362 int64_t maxReportLatencyNs) {
363 return getSensors()->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs);
364 }
365
flush(int32_t sensorHandle)366 ndk::ScopedAStatus flush(int32_t sensorHandle) { return getSensors()->flush(sensorHandle); }
367
368 ndk::ScopedAStatus registerDirectChannel(const ISensors::SharedMemInfo& mem,
369 int32_t* aidlReturn);
370
unregisterDirectChannel(int32_t * channelHandle)371 ndk::ScopedAStatus unregisterDirectChannel(int32_t* channelHandle) {
372 return getSensors()->unregisterDirectChannel(*channelHandle);
373 }
374
configDirectReport(int32_t sensorHandle,int32_t channelHandle,ISensors::RateLevel rate,int32_t * reportToken)375 ndk::ScopedAStatus configDirectReport(int32_t sensorHandle, int32_t channelHandle,
376 ISensors::RateLevel rate, int32_t* reportToken) {
377 return getSensors()->configDirectReport(sensorHandle, channelHandle, rate, reportToken);
378 }
379
380 void runSingleFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
381 int32_t expectedFlushCount, bool expectedResult);
382
383 void runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
384 int32_t flushCalls, int32_t expectedFlushCount, bool expectedResult);
385
extractReportMode(int32_t flag)386 inline static int32_t extractReportMode(int32_t flag) {
387 return (flag & (SensorInfo::SENSOR_FLAG_BITS_CONTINUOUS_MODE |
388 SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE |
389 SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE |
390 SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE));
391 }
392
393 // All sensors and direct channnels used
394 std::unordered_set<int32_t> mSensorHandles;
395 std::unordered_set<int32_t> mDirectChannelHandles;
396
397 private:
398 SensorsAidlEnvironment* mEnvironment;
399 };
400
registerDirectChannel(const ISensors::SharedMemInfo & mem,int32_t * aidlReturn)401 ndk::ScopedAStatus SensorsAidlTest::registerDirectChannel(const ISensors::SharedMemInfo& mem,
402 int32_t* aidlReturn) {
403 // If registeration of a channel succeeds, add the handle of channel to a set so that it can be
404 // unregistered when test fails. Unregister a channel does not remove the handle on purpose.
405 // Unregistering a channel more than once should not have negative effect.
406
407 ndk::ScopedAStatus status = getSensors()->registerDirectChannel(mem, aidlReturn);
408 if (status.isOk()) {
409 mDirectChannelHandles.insert(*aidlReturn);
410 }
411 return status;
412 }
413
getSensorsList()414 std::vector<SensorInfo> SensorsAidlTest::getSensorsList() {
415 std::vector<SensorInfo> sensorInfoList;
416 checkIsOk(getSensors()->getSensorsList(&sensorInfoList));
417 return sensorInfoList;
418 }
419
activate(int32_t sensorHandle,bool enable)420 ndk::ScopedAStatus SensorsAidlTest::activate(int32_t sensorHandle, bool enable) {
421 // If activating a sensor, add the handle in a set so that when test fails it can be turned off.
422 // The handle is not removed when it is deactivating on purpose so that it is not necessary to
423 // check the return value of deactivation. Deactivating a sensor more than once does not have
424 // negative effect.
425 if (enable) {
426 mSensorHandles.insert(sensorHandle);
427 }
428 return getSensors()->activate(sensorHandle, enable);
429 }
430
activateAllSensors(bool enable)431 void SensorsAidlTest::activateAllSensors(bool enable) {
432 for (const SensorInfo& sensorInfo : getSensorsList()) {
433 if (isValidType(sensorInfo.type)) {
434 checkIsOk(batch(sensorInfo.sensorHandle, sensorInfo.minDelayUs,
435 0 /* maxReportLatencyNs */));
436 checkIsOk(activate(sensorInfo.sensorHandle, enable));
437 }
438 }
439 }
440
getNonOneShotSensors()441 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotSensors() {
442 std::vector<SensorInfo> sensors;
443 for (const SensorInfo& info : getSensorsList()) {
444 if (extractReportMode(info.flags) != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
445 sensors.push_back(info);
446 }
447 }
448 return sensors;
449 }
450
getNonOneShotAndNonSpecialSensors()451 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonSpecialSensors() {
452 std::vector<SensorInfo> sensors;
453 for (const SensorInfo& info : getSensorsList()) {
454 int reportMode = extractReportMode(info.flags);
455 if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
456 reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
457 sensors.push_back(info);
458 }
459 }
460 return sensors;
461 }
462
getNonOneShotAndNonOnChangeAndNonSpecialSensors()463 std::vector<SensorInfo> SensorsAidlTest::getNonOneShotAndNonOnChangeAndNonSpecialSensors() {
464 std::vector<SensorInfo> sensors;
465 for (const SensorInfo& info : getSensorsList()) {
466 int reportMode = extractReportMode(info.flags);
467 if (reportMode != SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE &&
468 reportMode != SensorInfo::SENSOR_FLAG_BITS_ON_CHANGE_MODE &&
469 reportMode != SensorInfo::SENSOR_FLAG_BITS_SPECIAL_REPORTING_MODE) {
470 sensors.push_back(info);
471 }
472 }
473 return sensors;
474 }
475
getOneShotSensors()476 std::vector<SensorInfo> SensorsAidlTest::getOneShotSensors() {
477 std::vector<SensorInfo> sensors;
478 for (const SensorInfo& info : getSensorsList()) {
479 if (extractReportMode(info.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE) {
480 sensors.push_back(info);
481 }
482 }
483 return sensors;
484 }
485
getInjectEventSensors()486 std::vector<SensorInfo> SensorsAidlTest::getInjectEventSensors() {
487 std::vector<SensorInfo> out;
488 std::vector<SensorInfo> sensorInfoList = getSensorsList();
489 for (const SensorInfo& info : sensorInfoList) {
490 if (info.flags & SensorInfo::SENSOR_FLAG_BITS_DATA_INJECTION) {
491 out.push_back(info);
492 }
493 }
494 return out;
495 }
496
runSingleFlushTest(const std::vector<SensorInfo> & sensors,bool activateSensor,int32_t expectedFlushCount,bool expectedResult)497 void SensorsAidlTest::runSingleFlushTest(const std::vector<SensorInfo>& sensors,
498 bool activateSensor, int32_t expectedFlushCount,
499 bool expectedResult) {
500 runFlushTest(sensors, activateSensor, 1 /* flushCalls */, expectedFlushCount, expectedResult);
501 }
502
runFlushTest(const std::vector<SensorInfo> & sensors,bool activateSensor,int32_t flushCalls,int32_t expectedFlushCount,bool expectedResult)503 void SensorsAidlTest::runFlushTest(const std::vector<SensorInfo>& sensors, bool activateSensor,
504 int32_t flushCalls, int32_t expectedFlushCount,
505 bool expectedResult) {
506 EventCallback callback;
507 getEnvironment()->registerCallback(&callback);
508
509 for (const SensorInfo& sensor : sensors) {
510 // Configure and activate the sensor
511 batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */);
512 activate(sensor.sensorHandle, activateSensor);
513
514 // Flush the sensor
515 for (int32_t i = 0; i < flushCalls; i++) {
516 SCOPED_TRACE(::testing::Message()
517 << "Flush " << i << "/" << flushCalls << ": "
518 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
519 << sensor.sensorHandle << std::dec
520 << " type=" << static_cast<int>(sensor.type) << " name=" << sensor.name);
521
522 EXPECT_EQ(flush(sensor.sensorHandle).isOk(), expectedResult);
523 }
524 }
525
526 // Wait up to one second for the flush events
527 callback.waitForFlushEvents(sensors, flushCalls, std::chrono::milliseconds(1000) /* timeout */);
528
529 // Deactivate all sensors after waiting for flush events so pending flush events are not
530 // abandoned by the HAL.
531 for (const SensorInfo& sensor : sensors) {
532 activate(sensor.sensorHandle, false);
533 }
534 getEnvironment()->unregisterCallback();
535
536 // Check that the correct number of flushes are present for each sensor
537 for (const SensorInfo& sensor : sensors) {
538 SCOPED_TRACE(::testing::Message()
539 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
540 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
541 << " name=" << sensor.name);
542 ASSERT_EQ(callback.getFlushCount(sensor.sensorHandle), expectedFlushCount);
543 }
544 }
545
TEST_P(SensorsAidlTest,SensorListValid)546 TEST_P(SensorsAidlTest, SensorListValid) {
547 std::vector<SensorInfo> sensorInfoList = getSensorsList();
548 std::unordered_map<int32_t, std::vector<std::string>> sensorTypeNameMap;
549 for (size_t i = 0; i < sensorInfoList.size(); ++i) {
550 const SensorInfo& info = sensorInfoList[i];
551 SCOPED_TRACE(::testing::Message()
552 << i << "/" << sensorInfoList.size() << ": "
553 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
554 << info.sensorHandle << std::dec << " type=" << static_cast<int>(info.type)
555 << " name=" << info.name);
556
557 // Test type string non-empty only for private sensor typeinfo.
558 if (info.type >= SensorType::DEVICE_PRIVATE_BASE) {
559 EXPECT_FALSE(info.typeAsString.empty());
560 } else if (!info.typeAsString.empty()) {
561 // Test type string matches framework string if specified for non-private typeinfo.
562 EXPECT_NO_FATAL_FAILURE(assertTypeMatchStringType(info.type, info.typeAsString));
563 }
564
565 // Test if all sensors have name and vendor
566 EXPECT_FALSE(info.name.empty());
567 EXPECT_FALSE(info.vendor.empty());
568
569 // Make sure that the sensor handle is not within the reserved range for runtime
570 // sensors.
571 EXPECT_FALSE(ISensors::RUNTIME_SENSORS_HANDLE_BASE <= info.sensorHandle &&
572 info.sensorHandle <= ISensors::RUNTIME_SENSORS_HANDLE_END);
573
574 // Make sure that sensors of the same type have a unique name.
575 std::vector<std::string>& v = sensorTypeNameMap[static_cast<int32_t>(info.type)];
576 bool isUniqueName = std::find(v.begin(), v.end(), info.name) == v.end();
577 EXPECT_TRUE(isUniqueName) << "Duplicate sensor Name: " << info.name;
578 if (isUniqueName) {
579 v.push_back(info.name);
580 }
581
582 EXPECT_LE(0, info.power);
583 EXPECT_LT(0, info.maxRange);
584
585 // Info type, should have no sensor
586 EXPECT_FALSE(info.type == SensorType::ADDITIONAL_INFO ||
587 info.type == SensorType::META_DATA);
588
589 EXPECT_GE(info.fifoMaxEventCount, info.fifoReservedEventCount);
590
591 // Test Reporting mode valid
592 EXPECT_NO_FATAL_FAILURE(
593 assertTypeMatchReportMode(info.type, extractReportMode(info.flags)));
594
595 // Test min max are in the right order
596 EXPECT_LE(info.minDelayUs, info.maxDelayUs);
597 // Test min/max delay matches reporting mode
598 EXPECT_NO_FATAL_FAILURE(assertDelayMatchReportMode(info.minDelayUs, info.maxDelayUs,
599 extractReportMode(info.flags)));
600 }
601 }
602
TEST_P(SensorsAidlTest,SetOperationMode)603 TEST_P(SensorsAidlTest, SetOperationMode) {
604 if (getInjectEventSensors().size() > 0) {
605 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
606 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
607 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
608 } else {
609 int errorCode =
610 getSensors()
611 ->setOperationMode(ISensors::OperationMode::DATA_INJECTION)
612 .getExceptionCode();
613 ASSERT_TRUE((errorCode == EX_UNSUPPORTED_OPERATION) ||
614 (errorCode == EX_ILLEGAL_ARGUMENT));
615 }
616 }
617
TEST_P(SensorsAidlTest,InjectSensorEventData)618 TEST_P(SensorsAidlTest, InjectSensorEventData) {
619 std::vector<SensorInfo> sensors = getInjectEventSensors();
620 if (sensors.size() == 0) {
621 return;
622 }
623
624 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::DATA_INJECTION).isOk());
625
626 EventCallback callback;
627 getEnvironment()->registerCallback(&callback);
628
629 // AdditionalInfo event should not be sent to Event FMQ
630 Event additionalInfoEvent;
631 additionalInfoEvent.sensorType = SensorType::ADDITIONAL_INFO;
632 additionalInfoEvent.timestamp = android::elapsedRealtimeNano();
633 AdditionalInfo info;
634 info.type = AdditionalInfo::AdditionalInfoType::AINFO_BEGIN;
635 info.serial = 1;
636 AdditionalInfo::AdditionalInfoPayload::Int32Values infoData;
637 for (int32_t i = 0; i < 14; i++) {
638 infoData.values[i] = i;
639 }
640 info.payload.set<AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32>(infoData);
641 additionalInfoEvent.payload.set<Event::EventPayload::Tag::additional>(info);
642
643 Event injectedEvent;
644 injectedEvent.timestamp = android::elapsedRealtimeNano();
645 Event::EventPayload::Vec3 data = {1, 2, 3, SensorStatus::ACCURACY_HIGH};
646 injectedEvent.payload.set<Event::EventPayload::Tag::vec3>(data);
647
648 for (const auto& s : sensors) {
649 additionalInfoEvent.sensorHandle = s.sensorHandle;
650 ASSERT_TRUE(getSensors()->injectSensorData(additionalInfoEvent).isOk());
651
652 injectedEvent.sensorType = s.type;
653 injectedEvent.sensorHandle = s.sensorHandle;
654 ASSERT_TRUE(getSensors()->injectSensorData(injectedEvent).isOk());
655 }
656
657 // Wait for events to be written back to the Event FMQ
658 callback.waitForEvents(sensors, std::chrono::milliseconds(1000) /* timeout */);
659 getEnvironment()->unregisterCallback();
660
661 for (const auto& s : sensors) {
662 auto events = callback.getEvents(s.sensorHandle);
663 if (events.empty()) {
664 FAIL() << "Received no events";
665 } else {
666 auto lastEvent = events.back();
667 SCOPED_TRACE(::testing::Message()
668 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
669 << s.sensorHandle << std::dec << " type=" << static_cast<int>(s.type)
670 << " name=" << s.name);
671
672 // Verify that only a single event has been received
673 ASSERT_EQ(events.size(), 1);
674
675 // Verify that the event received matches the event injected and is not the additional
676 // info event
677 ASSERT_EQ(lastEvent.sensorType, s.type);
678 ASSERT_EQ(lastEvent.timestamp, injectedEvent.timestamp);
679 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().x,
680 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().x);
681 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().y,
682 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().y);
683 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().z,
684 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().z);
685 ASSERT_EQ(lastEvent.payload.get<Event::EventPayload::Tag::vec3>().status,
686 injectedEvent.payload.get<Event::EventPayload::Tag::vec3>().status);
687 }
688 }
689
690 ASSERT_TRUE(getSensors()->setOperationMode(ISensors::OperationMode::NORMAL).isOk());
691 }
692
TEST_P(SensorsAidlTest,CallInitializeTwice)693 TEST_P(SensorsAidlTest, CallInitializeTwice) {
694 // Create a helper class so that a second environment is able to be instantiated
695 class SensorsAidlEnvironmentTest : public SensorsAidlEnvironment {
696 public:
697 SensorsAidlEnvironmentTest(const std::string& service_name)
698 : SensorsAidlEnvironment(service_name) {}
699 };
700
701 if (getSensorsList().size() == 0) {
702 // No sensors
703 return;
704 }
705
706 constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000; // 1s
707 constexpr int32_t kNumEvents = 1;
708
709 // Create a new environment that calls initialize()
710 std::unique_ptr<SensorsAidlEnvironmentTest> newEnv =
711 std::make_unique<SensorsAidlEnvironmentTest>(GetParam());
712 newEnv->SetUp();
713 if (HasFatalFailure()) {
714 return; // Exit early if setting up the new environment failed
715 }
716
717 activateAllSensors(true);
718 // Verify that the old environment does not receive any events
719 EXPECT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
720 // Verify that the new event queue receives sensor events
721 EXPECT_GE(newEnv.get()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
722 activateAllSensors(false);
723
724 // Cleanup the test environment
725 newEnv->TearDown();
726
727 // Restore the test environment for future tests
728 getEnvironment()->TearDown();
729 getEnvironment()->SetUp();
730 if (HasFatalFailure()) {
731 return; // Exit early if resetting the environment failed
732 }
733
734 // Ensure that the original environment is receiving events
735 activateAllSensors(true);
736 EXPECT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
737 activateAllSensors(false);
738 }
739
TEST_P(SensorsAidlTest,CleanupConnectionsOnInitialize)740 TEST_P(SensorsAidlTest, CleanupConnectionsOnInitialize) {
741 activateAllSensors(true);
742
743 // Verify that events are received
744 constexpr useconds_t kCollectionTimeoutUs = 1000 * 1000; // 1s
745 constexpr int32_t kNumEvents = 1;
746 ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
747
748 // Clear the active sensor handles so they are not disabled during TearDown
749 auto handles = mSensorHandles;
750 mSensorHandles.clear();
751 getEnvironment()->TearDown();
752 getEnvironment()->SetUp();
753 if (HasFatalFailure()) {
754 return; // Exit early if resetting the environment failed
755 }
756
757 // Verify no events are received until sensors are re-activated
758 ASSERT_EQ(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), 0);
759 activateAllSensors(true);
760 ASSERT_GE(getEnvironment()->collectEvents(kCollectionTimeoutUs, kNumEvents).size(), kNumEvents);
761
762 // Disable sensors
763 activateAllSensors(false);
764
765 // Restore active sensors prior to clearing the environment
766 mSensorHandles = handles;
767 }
768
TEST_P(SensorsAidlTest,FlushSensor)769 TEST_P(SensorsAidlTest, FlushSensor) {
770 std::vector<SensorInfo> sensors = getNonOneShotSensors();
771 if (sensors.size() == 0) {
772 return;
773 }
774
775 constexpr int32_t kFlushes = 5;
776 runSingleFlushTest(sensors, true /* activateSensor */, 1 /* expectedFlushCount */,
777 true /* expectedResult */);
778 runFlushTest(sensors, true /* activateSensor */, kFlushes, kFlushes, true /* expectedResult */);
779 }
780
TEST_P(SensorsAidlTest,FlushOneShotSensor)781 TEST_P(SensorsAidlTest, FlushOneShotSensor) {
782 // Find a sensor that is a one-shot sensor
783 std::vector<SensorInfo> sensors = getOneShotSensors();
784 if (sensors.size() == 0) {
785 return;
786 }
787
788 runSingleFlushTest(sensors, true /* activateSensor */, 0 /* expectedFlushCount */,
789 false /* expectedResult */);
790 }
791
TEST_P(SensorsAidlTest,FlushInactiveSensor)792 TEST_P(SensorsAidlTest, FlushInactiveSensor) {
793 // Attempt to find a non-one shot sensor, then a one-shot sensor if necessary
794 std::vector<SensorInfo> sensors = getNonOneShotSensors();
795 if (sensors.size() == 0) {
796 sensors = getOneShotSensors();
797 if (sensors.size() == 0) {
798 return;
799 }
800 }
801
802 runSingleFlushTest(sensors, false /* activateSensor */, 0 /* expectedFlushCount */,
803 false /* expectedResult */);
804 }
805
TEST_P(SensorsAidlTest,Batch)806 TEST_P(SensorsAidlTest, Batch) {
807 if (getSensorsList().size() == 0) {
808 return;
809 }
810
811 activateAllSensors(false /* enable */);
812 for (const SensorInfo& sensor : getSensorsList()) {
813 SCOPED_TRACE(::testing::Message()
814 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
815 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
816 << " name=" << sensor.name);
817
818 // Call batch on inactive sensor
819 // One shot sensors have minDelay set to -1 which is an invalid
820 // parameter. Use 0 instead to avoid errors.
821 int64_t samplingPeriodNs =
822 extractReportMode(sensor.flags) == SensorInfo::SENSOR_FLAG_BITS_ONE_SHOT_MODE
823 ? 0
824 : sensor.minDelayUs;
825 checkIsOk(batch(sensor.sensorHandle, samplingPeriodNs, 0 /* maxReportLatencyNs */));
826
827 // Activate the sensor
828 activate(sensor.sensorHandle, true /* enabled */);
829
830 // Call batch on an active sensor
831 checkIsOk(batch(sensor.sensorHandle, sensor.maxDelayUs, 0 /* maxReportLatencyNs */));
832 }
833 activateAllSensors(false /* enable */);
834
835 // Call batch on an invalid sensor
836 SensorInfo sensor = getSensorsList().front();
837 sensor.sensorHandle = getInvalidSensorHandle();
838 ASSERT_EQ(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */)
839 .getExceptionCode(),
840 EX_ILLEGAL_ARGUMENT);
841 }
842
TEST_P(SensorsAidlTest,Activate)843 TEST_P(SensorsAidlTest, Activate) {
844 if (getSensorsList().size() == 0) {
845 return;
846 }
847
848 // Verify that sensor events are generated when activate is called
849 for (const SensorInfo& sensor : getSensorsList()) {
850 SCOPED_TRACE(::testing::Message()
851 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
852 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
853 << " name=" << sensor.name);
854
855 checkIsOk(batch(sensor.sensorHandle, sensor.minDelayUs, 0 /* maxReportLatencyNs */));
856 checkIsOk(activate(sensor.sensorHandle, true));
857
858 // Call activate on a sensor that is already activated
859 checkIsOk(activate(sensor.sensorHandle, true));
860
861 // Deactivate the sensor
862 checkIsOk(activate(sensor.sensorHandle, false));
863
864 // Call deactivate on a sensor that is already deactivated
865 checkIsOk(activate(sensor.sensorHandle, false));
866 }
867
868 // Attempt to activate an invalid sensor
869 int32_t invalidHandle = getInvalidSensorHandle();
870 ASSERT_EQ(activate(invalidHandle, true).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
871 ASSERT_EQ(activate(invalidHandle, false).getExceptionCode(), EX_ILLEGAL_ARGUMENT);
872 }
873
TEST_P(SensorsAidlTest,NoStaleEvents)874 TEST_P(SensorsAidlTest, NoStaleEvents) {
875 constexpr std::chrono::milliseconds kFiveHundredMs(500);
876 constexpr std::chrono::milliseconds kOneSecond(1000);
877
878 // Register the callback to receive sensor events
879 EventCallback callback;
880 getEnvironment()->registerCallback(&callback);
881
882 // This test is not valid for one-shot, on-change or special-report-mode sensors
883 const std::vector<SensorInfo> sensors = getNonOneShotAndNonOnChangeAndNonSpecialSensors();
884 std::chrono::milliseconds maxMinDelay(0);
885 for (const SensorInfo& sensor : sensors) {
886 std::chrono::milliseconds minDelay = duration_cast<std::chrono::milliseconds>(
887 std::chrono::microseconds(sensor.minDelayUs));
888 maxMinDelay = std::chrono::milliseconds(std::max(maxMinDelay.count(), minDelay.count()));
889 }
890
891 // Activate the sensors so that they start generating events
892 activateAllSensors(true);
893
894 // According to the CDD, the first sample must be generated within 400ms + 2 * sample_time
895 // and the maximum reporting latency is 100ms + 2 * sample_time. Wait a sufficient amount
896 // of time to guarantee that a sample has arrived.
897 callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
898 activateAllSensors(false);
899
900 // Save the last received event for each sensor
901 std::map<int32_t, int64_t> lastEventTimestampMap;
902 for (const SensorInfo& sensor : sensors) {
903 SCOPED_TRACE(::testing::Message()
904 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
905 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
906 << " name=" << sensor.name);
907
908 if (callback.getEvents(sensor.sensorHandle).size() >= 1) {
909 lastEventTimestampMap[sensor.sensorHandle] =
910 callback.getEvents(sensor.sensorHandle).back().timestamp;
911 }
912 }
913
914 // Allow some time to pass, reset the callback, then reactivate the sensors
915 usleep(duration_cast<std::chrono::microseconds>(kOneSecond + (5 * maxMinDelay)).count());
916 callback.reset();
917 activateAllSensors(true);
918 callback.waitForEvents(sensors, kFiveHundredMs + (5 * maxMinDelay));
919 activateAllSensors(false);
920
921 getEnvironment()->unregisterCallback();
922
923 for (const SensorInfo& sensor : sensors) {
924 SCOPED_TRACE(::testing::Message()
925 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
926 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
927 << " name=" << sensor.name);
928
929 // Skip sensors that did not previously report an event
930 if (lastEventTimestampMap.find(sensor.sensorHandle) == lastEventTimestampMap.end()) {
931 continue;
932 }
933
934 // Skip sensors with no events
935 const std::vector<Event> events = callback.getEvents(sensor.sensorHandle);
936 if (events.empty()) {
937 continue;
938 }
939
940 // Ensure that the first event received is not stale by ensuring that its timestamp is
941 // sufficiently different from the previous event
942 const Event newEvent = events.front();
943 std::chrono::milliseconds delta =
944 duration_cast<std::chrono::milliseconds>(std::chrono::nanoseconds(
945 newEvent.timestamp - lastEventTimestampMap[sensor.sensorHandle]));
946 std::chrono::milliseconds sensorMinDelay = duration_cast<std::chrono::milliseconds>(
947 std::chrono::microseconds(sensor.minDelayUs));
948 ASSERT_GE(delta, kFiveHundredMs + (3 * sensorMinDelay));
949 }
950 }
951
checkRateLevel(const SensorInfo & sensor,int32_t directChannelHandle,ISensors::RateLevel rateLevel,int32_t * reportToken)952 void SensorsAidlTest::checkRateLevel(const SensorInfo& sensor, int32_t directChannelHandle,
953 ISensors::RateLevel rateLevel, int32_t* reportToken) {
954 ndk::ScopedAStatus status =
955 configDirectReport(sensor.sensorHandle, directChannelHandle, rateLevel, reportToken);
956
957 SCOPED_TRACE(::testing::Message()
958 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
959 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
960 << " name=" << sensor.name);
961
962 if (isDirectReportRateSupported(sensor, rateLevel)) {
963 ASSERT_TRUE(status.isOk());
964 if (rateLevel != ISensors::RateLevel::STOP) {
965 ASSERT_GT(*reportToken, 0);
966 }
967 } else {
968 ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
969 }
970 }
971
queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,bool * supportsSharedMemType,bool * supportsAnyDirectChannel)972 void SensorsAidlTest::queryDirectChannelSupport(ISensors::SharedMemInfo::SharedMemType memType,
973 bool* supportsSharedMemType,
974 bool* supportsAnyDirectChannel) {
975 *supportsSharedMemType = false;
976 *supportsAnyDirectChannel = false;
977 for (const SensorInfo& curSensor : getSensorsList()) {
978 if (isDirectChannelTypeSupported(curSensor, memType)) {
979 *supportsSharedMemType = true;
980 }
981 if (isDirectChannelTypeSupported(curSensor,
982 ISensors::SharedMemInfo::SharedMemType::ASHMEM) ||
983 isDirectChannelTypeSupported(curSensor,
984 ISensors::SharedMemInfo::SharedMemType::GRALLOC)) {
985 *supportsAnyDirectChannel = true;
986 }
987
988 if (*supportsSharedMemType && *supportsAnyDirectChannel) {
989 break;
990 }
991 }
992 }
993
verifyRegisterDirectChannel(std::shared_ptr<SensorsAidlTestSharedMemory<SensorType,Event>> mem,int32_t * directChannelHandle,bool supportsSharedMemType,bool supportsAnyDirectChannel)994 void SensorsAidlTest::verifyRegisterDirectChannel(
995 std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem,
996 int32_t* directChannelHandle, bool supportsSharedMemType, bool supportsAnyDirectChannel) {
997 char* buffer = mem->getBuffer();
998 size_t size = mem->getSize();
999
1000 if (supportsSharedMemType) {
1001 memset(buffer, 0xff, size);
1002 }
1003
1004 int32_t channelHandle;
1005
1006 ::ndk::ScopedAStatus status = registerDirectChannel(mem->getSharedMemInfo(), &channelHandle);
1007 if (supportsSharedMemType) {
1008 ASSERT_TRUE(status.isOk());
1009 ASSERT_GT(channelHandle, 0);
1010
1011 // Verify that the memory has been zeroed
1012 for (size_t i = 0; i < mem->getSize(); i++) {
1013 ASSERT_EQ(buffer[i], 0x00);
1014 }
1015 } else {
1016 int32_t error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
1017 ASSERT_EQ(status.getExceptionCode(), error);
1018 }
1019 *directChannelHandle = channelHandle;
1020 }
1021
verifyUnregisterDirectChannel(int32_t * channelHandle,bool supportsAnyDirectChannel)1022 void SensorsAidlTest::verifyUnregisterDirectChannel(int32_t* channelHandle,
1023 bool supportsAnyDirectChannel) {
1024 int result = supportsAnyDirectChannel ? EX_NONE : EX_UNSUPPORTED_OPERATION;
1025 ndk::ScopedAStatus status = unregisterDirectChannel(channelHandle);
1026 ASSERT_EQ(status.getExceptionCode(), result);
1027 }
1028
verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType)1029 void SensorsAidlTest::verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType memType) {
1030 constexpr size_t kNumEvents = 1;
1031 constexpr size_t kMemSize = kNumEvents * kEventSize;
1032
1033 std::shared_ptr<SensorsAidlTestSharedMemory<SensorType, Event>> mem(
1034 SensorsAidlTestSharedMemory<SensorType, Event>::create(memType, kMemSize));
1035 ASSERT_NE(mem, nullptr);
1036
1037 bool supportsSharedMemType;
1038 bool supportsAnyDirectChannel;
1039 queryDirectChannelSupport(memType, &supportsSharedMemType, &supportsAnyDirectChannel);
1040
1041 for (const SensorInfo& sensor : getSensorsList()) {
1042 int32_t directChannelHandle = 0;
1043 verifyRegisterDirectChannel(mem, &directChannelHandle, supportsSharedMemType,
1044 supportsAnyDirectChannel);
1045 verifyConfigure(sensor, memType, directChannelHandle, supportsAnyDirectChannel);
1046 verifyUnregisterDirectChannel(&directChannelHandle, supportsAnyDirectChannel);
1047 }
1048 }
1049
verifyConfigure(const SensorInfo & sensor,ISensors::SharedMemInfo::SharedMemType memType,int32_t directChannelHandle,bool supportsAnyDirectChannel)1050 void SensorsAidlTest::verifyConfigure(const SensorInfo& sensor,
1051 ISensors::SharedMemInfo::SharedMemType memType,
1052 int32_t directChannelHandle, bool supportsAnyDirectChannel) {
1053 SCOPED_TRACE(::testing::Message()
1054 << " handle=0x" << std::hex << std::setw(8) << std::setfill('0')
1055 << sensor.sensorHandle << std::dec << " type=" << static_cast<int>(sensor.type)
1056 << " name=" << sensor.name);
1057
1058 int32_t reportToken = 0;
1059 if (isDirectChannelTypeSupported(sensor, memType)) {
1060 // Verify that each rate level is properly supported
1061 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::NORMAL, &reportToken);
1062 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::FAST, &reportToken);
1063 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::VERY_FAST, &reportToken);
1064 checkRateLevel(sensor, directChannelHandle, ISensors::RateLevel::STOP, &reportToken);
1065
1066 // Verify that a sensor handle of -1 is only acceptable when using RateLevel::STOP
1067 ndk::ScopedAStatus status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1068 ISensors::RateLevel::NORMAL, &reportToken);
1069 ASSERT_EQ(status.getExceptionCode(), EX_ILLEGAL_ARGUMENT);
1070
1071 status = configDirectReport(-1 /* sensorHandle */, directChannelHandle,
1072 ISensors::RateLevel::STOP, &reportToken);
1073 ASSERT_TRUE(status.isOk());
1074 } else {
1075 // directChannelHandle will be -1 here, HAL should either reject it as a bad value if there
1076 // is some level of direct channel report, otherwise return INVALID_OPERATION if direct
1077 // channel is not supported at all
1078 int error = supportsAnyDirectChannel ? EX_ILLEGAL_ARGUMENT : EX_UNSUPPORTED_OPERATION;
1079 ndk::ScopedAStatus status = configDirectReport(sensor.sensorHandle, directChannelHandle,
1080 ISensors::RateLevel::NORMAL, &reportToken);
1081 ASSERT_EQ(status.getExceptionCode(), error);
1082 }
1083 }
1084
TEST_P(SensorsAidlTest,DirectChannelAshmem)1085 TEST_P(SensorsAidlTest, DirectChannelAshmem) {
1086 verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::ASHMEM);
1087 }
1088
TEST_P(SensorsAidlTest,DirectChannelGralloc)1089 TEST_P(SensorsAidlTest, DirectChannelGralloc) {
1090 verifyDirectChannel(ISensors::SharedMemInfo::SharedMemType::GRALLOC);
1091 }
1092
1093 GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SensorsAidlTest);
1094 INSTANTIATE_TEST_SUITE_P(Sensors, SensorsAidlTest,
1095 testing::ValuesIn(android::getAidlHalInstanceNames(ISensors::descriptor)),
1096 android::PrintInstanceNameToString);
1097
main(int argc,char ** argv)1098 int main(int argc, char** argv) {
1099 ::testing::InitGoogleTest(&argc, argv);
1100 ProcessState::self()->setThreadPoolMaxThreadCount(1);
1101 ProcessState::self()->startThreadPool();
1102 return RUN_ALL_TESTS();
1103 }
1104