1 /*
2 * Copyright (C) 2020 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #define LOG_TAG "GoogleIIOSensorSubHal"
17
18 #include "Sensor.h"
19 #include <hardware/sensors.h>
20 #include <log/log.h>
21 #include <utils/SystemClock.h>
22 #include <cmath>
23
24 namespace android {
25 namespace hardware {
26 namespace sensors {
27 namespace V2_1 {
28 namespace subhal {
29 namespace implementation {
30
31 using ::android::hardware::sensors::V1_0::AdditionalInfoType;
32 using ::android::hardware::sensors::V1_0::MetaDataEventType;
33 using ::android::hardware::sensors::V1_0::SensorFlagBits;
34 using ::android::hardware::sensors::V1_0::SensorStatus;
35 using ::sensor::hal::configuration::V1_0::Location;
36 using ::sensor::hal::configuration::V1_0::Orientation;
37
SensorBase(int32_t sensorHandle,ISensorsEventCallback * callback,SensorType type)38 SensorBase::SensorBase(int32_t sensorHandle, ISensorsEventCallback* callback, SensorType type)
39 : mIsEnabled(false),
40 mSamplingPeriodNs(0),
41 mCallback(callback),
42 mMode(OperationMode::NORMAL),
43 mSensorThread(this) {
44 mSensorInfo.type = type;
45 mSensorInfo.sensorHandle = sensorHandle;
46 mSensorInfo.vendor = "Google";
47 mSensorInfo.version = 1;
48 mSensorInfo.fifoReservedEventCount = 0;
49 mSensorInfo.fifoMaxEventCount = 0;
50 mSensorInfo.requiredPermission = "";
51 mSensorInfo.flags = 0;
52
53 switch (type) {
54 case SensorType::ACCELEROMETER:
55 mSensorInfo.typeAsString = SENSOR_STRING_TYPE_ACCELEROMETER;
56 break;
57 case SensorType::GYROSCOPE:
58 mSensorInfo.typeAsString = SENSOR_STRING_TYPE_GYROSCOPE;
59 break;
60 default:
61 ALOGE("unsupported sensor type %d", type);
62 break;
63 }
64
65 mSensorThread.start();
66 }
67
~SensorBase()68 SensorBase::~SensorBase() {
69 mIsEnabled = false;
70 }
71
isEnabled() const72 bool SensorBase::isEnabled() const {
73 return mIsEnabled;
74 }
75
getOperationMode() const76 OperationMode SensorBase::getOperationMode() const {
77 return mMode;
78 }
79
~HWSensorBase()80 HWSensorBase::~HWSensorBase() {
81 close(mPollFdIio.fd);
82 }
83
getSensorInfo() const84 const SensorInfo& SensorBase::getSensorInfo() const {
85 return mSensorInfo;
86 }
87
batch(int32_t samplingPeriodNs)88 void HWSensorBase::batch(int32_t samplingPeriodNs) {
89 samplingPeriodNs =
90 std::clamp(samplingPeriodNs, mSensorInfo.minDelay * 1000, mSensorInfo.maxDelay * 1000);
91 if (mSamplingPeriodNs != samplingPeriodNs) {
92 unsigned int sampling_frequency = ns_to_frequency(samplingPeriodNs);
93 int i = 0;
94 mSamplingPeriodNs = samplingPeriodNs;
95 std::vector<double>::iterator low =
96 std::lower_bound(mIioData.sampling_freq_avl.begin(),
97 mIioData.sampling_freq_avl.end(), sampling_frequency);
98 i = low - mIioData.sampling_freq_avl.begin();
99 set_sampling_frequency(mIioData.sysfspath, mIioData.sampling_freq_avl[i]);
100 // Wake up the 'run' thread to check if a new event should be generated now
101 mSensorThread.notifyAll();
102 }
103 }
104
sendAdditionalInfoReport()105 void HWSensorBase::sendAdditionalInfoReport() {
106 std::vector<Event> events;
107
108 for (const auto& frame : mAdditionalInfoFrames) {
109 events.emplace_back(Event{
110 .sensorHandle = mSensorInfo.sensorHandle,
111 .sensorType = SensorType::ADDITIONAL_INFO,
112 .timestamp = android::elapsedRealtimeNano(),
113 .u.additional = frame,
114 });
115 }
116
117 if (!events.empty()) {
118 mCallback->postEvents(events, mCallback->createScopedWakelock(isWakeUpSensor()));
119 }
120 }
121
activate(bool enable)122 void HWSensorBase::activate(bool enable) {
123 std::unique_lock<std::mutex> lock(mSensorThread.lock());
124 if (mIsEnabled != enable) {
125 mIsEnabled = enable;
126 enable_sensor(mIioData.sysfspath, enable);
127 if (enable) sendAdditionalInfoReport();
128 mSensorThread.notifyAll();
129 }
130 }
131
flush()132 Result SensorBase::flush() {
133 // Only generate a flush complete event if the sensor is enabled and if the sensor is not a
134 // one-shot sensor.
135 if (!mIsEnabled || (mSensorInfo.flags & static_cast<uint32_t>(SensorFlagBits::ONE_SHOT_MODE))) {
136 return Result::BAD_VALUE;
137 }
138
139 // Note: If a sensor supports batching, write all of the currently batched events for the sensor
140 // to the Event FMQ prior to writing the flush complete event.
141 Event ev;
142 ev.sensorHandle = mSensorInfo.sensorHandle;
143 ev.sensorType = SensorType::META_DATA;
144 ev.u.meta.what = MetaDataEventType::META_DATA_FLUSH_COMPLETE;
145 std::vector<Event> evs{ev};
146 mCallback->postEvents(evs, mCallback->createScopedWakelock(isWakeUpSensor()));
147 return Result::OK;
148 }
149
flush()150 Result HWSensorBase::flush() {
151 Result result = Result::OK;
152 result = SensorBase::flush();
153 if (result == Result::OK) sendAdditionalInfoReport();
154 return result;
155 }
156
157 template <size_t N>
getChannelData(const std::array<float,N> & channelData,int64_t map,bool negate)158 static float getChannelData(const std::array<float, N>& channelData, int64_t map, bool negate) {
159 return negate ? -channelData[map] : channelData[map];
160 }
161
processScanData(uint8_t * data,Event * evt)162 void HWSensorBase::processScanData(uint8_t* data, Event* evt) {
163 std::array<float, NUM_OF_DATA_CHANNELS> channelData;
164 unsigned int chanIdx;
165 evt->sensorHandle = mSensorInfo.sensorHandle;
166 evt->sensorType = mSensorInfo.type;
167 for (auto i = 0u; i < mIioData.channelInfo.size(); i++) {
168 chanIdx = mIioData.channelInfo[i].index;
169
170 const int64_t val =
171 *reinterpret_cast<int64_t*>(data + chanIdx * mIioData.channelInfo[i].storage_bytes);
172 // If the channel index is the last, it is timestamp
173 // else it is sensor data
174 if (chanIdx == mIioData.channelInfo.size() - 1) {
175 evt->timestamp = val;
176 } else {
177 channelData[chanIdx] = static_cast<float>(val) * mIioData.scale;
178 }
179 }
180
181 evt->u.vec3.x = getChannelData(channelData, mXMap, mXNegate);
182 evt->u.vec3.y = getChannelData(channelData, mYMap, mYNegate);
183 evt->u.vec3.z = getChannelData(channelData, mZMap, mZNegate);
184 evt->u.vec3.status = SensorStatus::ACCURACY_HIGH;
185 }
186
pollForEvents()187 void HWSensorBase::pollForEvents() {
188 int err = poll(&mPollFdIio, 1, mSamplingPeriodNs * 1000);
189 if (err <= 0) {
190 ALOGE("Sensor %s poll returned %d", mIioData.name.c_str(), err);
191 return;
192 }
193
194 if (mPollFdIio.revents & POLLIN) {
195 int read_size = read(mPollFdIio.fd, &mSensorRawData[0], mScanSize);
196 if (read_size <= 0) {
197 ALOGE("%s: Failed to read data from iio char device.", mIioData.name.c_str());
198 return;
199 }
200
201 Event evt;
202 processScanData(&mSensorRawData[0], &evt);
203 mCallback->postEvents({evt}, mCallback->createScopedWakelock(isWakeUpSensor()));
204 }
205 }
206
idleLoop()207 void HWSensorBase::idleLoop() {
208 mSensorThread.wait([this] {
209 return ((mIsEnabled && mMode == OperationMode::NORMAL) || mSensorThread.isStopped());
210 });
211 }
212
pollSensor()213 void HWSensorBase::pollSensor() {
214 if (!mIsEnabled || mMode == OperationMode::DATA_INJECTION) {
215 idleLoop();
216 } else {
217 pollForEvents();
218 }
219 }
220
isWakeUpSensor()221 bool SensorBase::isWakeUpSensor() {
222 return mSensorInfo.flags & static_cast<uint32_t>(SensorFlagBits::WAKE_UP);
223 }
224
setOperationMode(OperationMode mode)225 void SensorBase::setOperationMode(OperationMode mode) {
226 std::unique_lock<std::mutex> lock(mSensorThread.lock());
227 if (mMode != mode) {
228 mMode = mode;
229 mSensorThread.notifyAll();
230 }
231 }
232
supportsDataInjection() const233 bool SensorBase::supportsDataInjection() const {
234 return mSensorInfo.flags & static_cast<uint32_t>(SensorFlagBits::DATA_INJECTION);
235 }
236
injectEvent(const Event & event)237 Result SensorBase::injectEvent(const Event& event) {
238 Result result = Result::OK;
239 if (event.sensorType == SensorType::ADDITIONAL_INFO) {
240 // When in OperationMode::NORMAL, SensorType::ADDITIONAL_INFO is used to push operation
241 // environment data into the device.
242 } else if (!supportsDataInjection()) {
243 result = Result::INVALID_OPERATION;
244 } else if (mMode == OperationMode::DATA_INJECTION) {
245 mCallback->postEvents({event}, mCallback->createScopedWakelock(isWakeUpSensor()));
246 } else {
247 result = Result::BAD_VALUE;
248 }
249 return result;
250 }
251
calculateScanSize()252 ssize_t HWSensorBase::calculateScanSize() {
253 ssize_t numBytes = 0;
254 for (auto i = 0u; i < mIioData.channelInfo.size(); i++) {
255 numBytes += mIioData.channelInfo[i].storage_bytes;
256 }
257 return numBytes;
258 }
259
checkAxis(int64_t map)260 static status_t checkAxis(int64_t map) {
261 if (map < 0 || map >= NUM_OF_DATA_CHANNELS)
262 return BAD_VALUE;
263 else
264 return OK;
265 }
266
getOrientation(std::optional<std::vector<Configuration>> config)267 static std::optional<std::vector<Orientation>> getOrientation(
268 std::optional<std::vector<Configuration>> config) {
269 if (!config) return std::nullopt;
270 if (config->empty()) return std::nullopt;
271 Configuration& sensorCfg = (*config)[0];
272 return sensorCfg.getOrientation();
273 }
274
getLocation(std::optional<std::vector<Configuration>> config)275 static std::optional<std::vector<Location>> getLocation(
276 std::optional<std::vector<Configuration>> config) {
277 if (!config) return std::nullopt;
278 if (config->empty()) return std::nullopt;
279 Configuration& sensorCfg = (*config)[0];
280 return sensorCfg.getLocation();
281 }
282
checkOrientation(std::optional<std::vector<Configuration>> config)283 static status_t checkOrientation(std::optional<std::vector<Configuration>> config) {
284 status_t ret = OK;
285 std::optional<std::vector<Orientation>> sensorOrientationList = getOrientation(config);
286 if (!sensorOrientationList) return OK;
287 if (sensorOrientationList->empty()) return OK;
288 Orientation& sensorOrientation = (*sensorOrientationList)[0];
289 if (!sensorOrientation.getFirstX() || !sensorOrientation.getFirstY() ||
290 !sensorOrientation.getFirstZ())
291 return BAD_VALUE;
292
293 int64_t xMap = sensorOrientation.getFirstX()->getMap();
294 ret = checkAxis(xMap);
295 if (ret != OK) return ret;
296 int64_t yMap = sensorOrientation.getFirstY()->getMap();
297 ret = checkAxis(yMap);
298 if (ret != OK) return ret;
299 int64_t zMap = sensorOrientation.getFirstZ()->getMap();
300 ret = checkAxis(zMap);
301 if (ret != OK) return ret;
302 if (xMap == yMap || yMap == zMap || zMap == xMap) return BAD_VALUE;
303 return ret;
304 }
305
setAxisDefaultValues()306 void HWSensorBase::setAxisDefaultValues() {
307 mXMap = 0;
308 mYMap = 1;
309 mZMap = 2;
310 mXNegate = mYNegate = mZNegate = false;
311 }
setOrientation(std::optional<std::vector<Configuration>> config)312 void HWSensorBase::setOrientation(std::optional<std::vector<Configuration>> config) {
313 std::optional<std::vector<Orientation>> sensorOrientationList = getOrientation(config);
314
315 if (sensorOrientationList && !sensorOrientationList->empty()) {
316 Orientation& sensorOrientation = (*sensorOrientationList)[0];
317
318 if (sensorOrientation.getRotate()) {
319 mXMap = sensorOrientation.getFirstX()->getMap();
320 mXNegate = sensorOrientation.getFirstX()->getNegate();
321 mYMap = sensorOrientation.getFirstY()->getMap();
322 mYNegate = sensorOrientation.getFirstY()->getNegate();
323 mZMap = sensorOrientation.getFirstZ()->getMap();
324 mZNegate = sensorOrientation.getFirstZ()->getNegate();
325 } else {
326 setAxisDefaultValues();
327 }
328 } else {
329 setAxisDefaultValues();
330 }
331 }
332
checkIIOData(const struct iio_device_data & iio_data)333 static status_t checkIIOData(const struct iio_device_data& iio_data) {
334 status_t ret = OK;
335 for (auto i = 0u; i < iio_data.channelInfo.size(); i++) {
336 if (iio_data.channelInfo[i].index > NUM_OF_DATA_CHANNELS) return BAD_VALUE;
337 }
338 return ret;
339 }
340
setSensorPlacementData(AdditionalInfo * sensorPlacement,int index,float value)341 static status_t setSensorPlacementData(AdditionalInfo* sensorPlacement, int index, float value) {
342 if (!sensorPlacement) return BAD_VALUE;
343
344 int arraySize =
345 sizeof(sensorPlacement->u.data_float) / sizeof(sensorPlacement->u.data_float[0]);
346 if (index < 0 || index >= arraySize) return BAD_VALUE;
347
348 sensorPlacement->u.data_float[index] = value;
349 return OK;
350 }
351
getSensorPlacement(AdditionalInfo * sensorPlacement,const std::optional<std::vector<Configuration>> & config)352 status_t HWSensorBase::getSensorPlacement(AdditionalInfo* sensorPlacement,
353 const std::optional<std::vector<Configuration>>& config) {
354 if (!sensorPlacement) return BAD_VALUE;
355
356 auto sensorLocationList = getLocation(config);
357 if (!sensorLocationList) return BAD_VALUE;
358 if (sensorLocationList->empty()) return BAD_VALUE;
359
360 auto sensorOrientationList = getOrientation(config);
361 if (!sensorOrientationList) return BAD_VALUE;
362 if (sensorOrientationList->empty()) return BAD_VALUE;
363
364 sensorPlacement->type = AdditionalInfoType::AINFO_SENSOR_PLACEMENT;
365 sensorPlacement->serial = 0;
366 memset(&sensorPlacement->u.data_float, 0, sizeof(sensorPlacement->u.data_float));
367
368 Location& sensorLocation = (*sensorLocationList)[0];
369 // SensorPlacementData is given as a 3x4 matrix consisting of a 3x3 rotation matrix (R)
370 // concatenated with a 3x1 location vector (t) in row major order. Example: This raw buffer:
371 // {x1,y1,z1,l1,x2,y2,z2,l2,x3,y3,z3,l3} corresponds to the following 3x4 matrix:
372 // x1 y1 z1 l1
373 // x2 y2 z2 l2
374 // x3 y3 z3 l3
375 // LOCATION_X_IDX,LOCATION_Y_IDX,LOCATION_Z_IDX corresponds to the indexes of the location
376 // vector (l1,l2,l3) in the raw buffer.
377 status_t ret = setSensorPlacementData(sensorPlacement, HWSensorBase::LOCATION_X_IDX,
378 sensorLocation.getX());
379 if (ret != OK) return ret;
380 ret = setSensorPlacementData(sensorPlacement, HWSensorBase::LOCATION_Y_IDX,
381 sensorLocation.getY());
382 if (ret != OK) return ret;
383 ret = setSensorPlacementData(sensorPlacement, HWSensorBase::LOCATION_Z_IDX,
384 sensorLocation.getZ());
385 if (ret != OK) return ret;
386
387 Orientation& sensorOrientation = (*sensorOrientationList)[0];
388 if (sensorOrientation.getRotate()) {
389 // If the HAL is already rotating the sensor orientation to align with the Android
390 // Coordinate system, then the sensor rotation matrix will be an identity matrix
391 // ROTATION_X_IDX, ROTATION_Y_IDX, ROTATION_Z_IDX corresponds to indexes of the
392 // (x1,y1,z1) in the raw buffer.
393 ret = setSensorPlacementData(sensorPlacement, HWSensorBase::ROTATION_X_IDX + 0, 1);
394 if (ret != OK) return ret;
395 ret = setSensorPlacementData(sensorPlacement, HWSensorBase::ROTATION_Y_IDX + 4, 1);
396 if (ret != OK) return ret;
397 ret = setSensorPlacementData(sensorPlacement, HWSensorBase::ROTATION_Z_IDX + 8, 1);
398 if (ret != OK) return ret;
399 } else {
400 ret = setSensorPlacementData(
401 sensorPlacement,
402 HWSensorBase::ROTATION_X_IDX + 4 * sensorOrientation.getFirstX()->getMap(),
403 sensorOrientation.getFirstX()->getNegate() ? -1 : 1);
404 if (ret != OK) return ret;
405 ret = setSensorPlacementData(
406 sensorPlacement,
407 HWSensorBase::ROTATION_Y_IDX + 4 * sensorOrientation.getFirstY()->getMap(),
408 sensorOrientation.getFirstY()->getNegate() ? -1 : 1);
409 if (ret != OK) return ret;
410 ret = setSensorPlacementData(
411 sensorPlacement,
412 HWSensorBase::ROTATION_Z_IDX + 4 * sensorOrientation.getFirstZ()->getMap(),
413 sensorOrientation.getFirstZ()->getNegate() ? -1 : 1);
414 if (ret != OK) return ret;
415 }
416 return OK;
417 }
418
setAdditionalInfoFrames(const std::optional<std::vector<Configuration>> & config)419 status_t HWSensorBase::setAdditionalInfoFrames(
420 const std::optional<std::vector<Configuration>>& config) {
421 AdditionalInfo additionalInfoSensorPlacement;
422 status_t ret = getSensorPlacement(&additionalInfoSensorPlacement, config);
423 if (ret != OK) return ret;
424
425 const AdditionalInfo additionalInfoBegin = {
426 .type = AdditionalInfoType::AINFO_BEGIN,
427 .serial = 0,
428 };
429 const AdditionalInfo additionalInfoEnd = {
430 .type = AdditionalInfoType::AINFO_END,
431 .serial = 0,
432 };
433
434 mAdditionalInfoFrames.insert(
435 mAdditionalInfoFrames.end(),
436 {additionalInfoBegin, additionalInfoSensorPlacement, additionalInfoEnd});
437 return OK;
438 }
439
buildSensor(int32_t sensorHandle,ISensorsEventCallback * callback,const struct iio_device_data & iio_data,const std::optional<std::vector<Configuration>> & config)440 HWSensorBase* HWSensorBase::buildSensor(int32_t sensorHandle, ISensorsEventCallback* callback,
441 const struct iio_device_data& iio_data,
442 const std::optional<std::vector<Configuration>>& config) {
443 if (checkOrientation(config) != OK) {
444 ALOGE("Orientation of the sensor %s in the configuration file is invalid",
445 iio_data.name.c_str());
446 return nullptr;
447 }
448 if (checkIIOData(iio_data) != OK) {
449 ALOGE("IIO channel index of the sensor %s is invalid", iio_data.name.c_str());
450 return nullptr;
451 }
452 return new HWSensorBase(sensorHandle, callback, iio_data, config);
453 }
454
HWSensorBase(int32_t sensorHandle,ISensorsEventCallback * callback,const struct iio_device_data & data,const std::optional<std::vector<Configuration>> & config)455 HWSensorBase::HWSensorBase(int32_t sensorHandle, ISensorsEventCallback* callback,
456 const struct iio_device_data& data,
457 const std::optional<std::vector<Configuration>>& config)
458 : SensorBase(sensorHandle, callback, data.type) {
459 std::string buffer_path;
460 mSensorInfo.flags |= SensorFlagBits::CONTINUOUS_MODE;
461 mSensorInfo.name = data.name;
462 mSensorInfo.resolution = data.resolution * data.scale;
463 mSensorInfo.maxRange = data.max_range * data.scale;
464 mSensorInfo.power = 0;
465 mIioData = data;
466 setOrientation(config);
467 status_t ret = setAdditionalInfoFrames(config);
468 if (ret == OK) mSensorInfo.flags |= SensorFlagBits::ADDITIONAL_INFO;
469 unsigned int max_sampling_frequency = 0;
470 unsigned int min_sampling_frequency = UINT_MAX;
471 for (auto i = 0u; i < data.sampling_freq_avl.size(); i++) {
472 if (max_sampling_frequency < data.sampling_freq_avl[i])
473 max_sampling_frequency = data.sampling_freq_avl[i];
474 if (min_sampling_frequency > data.sampling_freq_avl[i])
475 min_sampling_frequency = data.sampling_freq_avl[i];
476 }
477 mSensorInfo.minDelay = frequency_to_us(max_sampling_frequency);
478 mSensorInfo.maxDelay = frequency_to_us(min_sampling_frequency);
479 mScanSize = calculateScanSize();
480 buffer_path = "/dev/iio:device";
481 buffer_path.append(std::to_string(mIioData.iio_dev_num));
482 mPollFdIio.fd = open(buffer_path.c_str(), O_RDONLY | O_NONBLOCK);
483 if (mPollFdIio.fd < 0) {
484 ALOGE("%s: Failed to open iio char device (%s).", data.name.c_str(), buffer_path.c_str());
485 return;
486 }
487 mPollFdIio.events = POLLIN;
488 mSensorRawData.resize(mScanSize);
489 }
490
491 } // namespace implementation
492 } // namespace subhal
493 } // namespace V2_1
494 } // namespace sensors
495 } // namespace hardware
496 } // namespace android
497