1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <pthread.h>
30 
31 #include <errno.h>
32 #include <limits.h>
33 #include <stdatomic.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <sys/cdefs.h>
37 #include <sys/mman.h>
38 #include <unistd.h>
39 
40 #include "pthread_internal.h"
41 
42 #include "private/bionic_constants.h"
43 #include "private/bionic_fortify.h"
44 #include "private/bionic_futex.h"
45 #include "private/bionic_systrace.h"
46 #include "private/bionic_time_conversions.h"
47 #include "private/bionic_tls.h"
48 
49 /* a mutex attribute holds the following fields
50  *
51  * bits:     name       description
52  * 0-3       type       type of mutex
53  * 4         shared     process-shared flag
54  * 5         protocol   whether it is a priority inherit mutex.
55  */
56 #define  MUTEXATTR_TYPE_MASK   0x000f
57 #define  MUTEXATTR_SHARED_MASK 0x0010
58 #define MUTEXATTR_PROTOCOL_MASK 0x0020
59 
60 #define MUTEXATTR_PROTOCOL_SHIFT 5
61 
pthread_mutexattr_init(pthread_mutexattr_t * attr)62 int pthread_mutexattr_init(pthread_mutexattr_t *attr)
63 {
64     *attr = PTHREAD_MUTEX_DEFAULT;
65     return 0;
66 }
67 
pthread_mutexattr_destroy(pthread_mutexattr_t * attr)68 int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
69 {
70     *attr = -1;
71     return 0;
72 }
73 
pthread_mutexattr_gettype(const pthread_mutexattr_t * attr,int * type_p)74 int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type_p)
75 {
76     int type = (*attr & MUTEXATTR_TYPE_MASK);
77 
78     if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK) {
79         return EINVAL;
80     }
81 
82     *type_p = type;
83     return 0;
84 }
85 
pthread_mutexattr_settype(pthread_mutexattr_t * attr,int type)86 int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
87 {
88     if (type < PTHREAD_MUTEX_NORMAL || type > PTHREAD_MUTEX_ERRORCHECK ) {
89         return EINVAL;
90     }
91 
92     *attr = (*attr & ~MUTEXATTR_TYPE_MASK) | type;
93     return 0;
94 }
95 
96 /* process-shared mutexes are not supported at the moment */
97 
pthread_mutexattr_setpshared(pthread_mutexattr_t * attr,int pshared)98 int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
99 {
100     switch (pshared) {
101     case PTHREAD_PROCESS_PRIVATE:
102         *attr &= ~MUTEXATTR_SHARED_MASK;
103         return 0;
104 
105     case PTHREAD_PROCESS_SHARED:
106         /* our current implementation of pthread actually supports shared
107          * mutexes but won't cleanup if a process dies with the mutex held.
108          * Nevertheless, it's better than nothing. Shared mutexes are used
109          * by surfaceflinger and audioflinger.
110          */
111         *attr |= MUTEXATTR_SHARED_MASK;
112         return 0;
113     }
114     return EINVAL;
115 }
116 
pthread_mutexattr_getpshared(const pthread_mutexattr_t * attr,int * pshared)117 int pthread_mutexattr_getpshared(const pthread_mutexattr_t* attr, int* pshared) {
118     *pshared = (*attr & MUTEXATTR_SHARED_MASK) ? PTHREAD_PROCESS_SHARED : PTHREAD_PROCESS_PRIVATE;
119     return 0;
120 }
121 
pthread_mutexattr_setprotocol(pthread_mutexattr_t * attr,int protocol)122 int pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int protocol) {
123     if (protocol != PTHREAD_PRIO_NONE && protocol != PTHREAD_PRIO_INHERIT) {
124         return EINVAL;
125     }
126     *attr = (*attr & ~MUTEXATTR_PROTOCOL_MASK) | (protocol << MUTEXATTR_PROTOCOL_SHIFT);
127     return 0;
128 }
129 
pthread_mutexattr_getprotocol(const pthread_mutexattr_t * attr,int * protocol)130 int pthread_mutexattr_getprotocol(const pthread_mutexattr_t* attr, int* protocol) {
131     *protocol = (*attr & MUTEXATTR_PROTOCOL_MASK) >> MUTEXATTR_PROTOCOL_SHIFT;
132     return 0;
133 }
134 
135 // Priority Inheritance mutex implementation
136 struct PIMutex {
137   // mutex type, can be 0 (normal), 1 (recursive), 2 (errorcheck), constant during lifetime
138   uint8_t type;
139   // process-shared flag, constant during lifetime
140   bool shared;
141   // <number of times a thread holding a recursive PI mutex> - 1
142   uint16_t counter;
143   // owner_tid is read/written by both userspace code and kernel code. It includes three fields:
144   // FUTEX_WAITERS, FUTEX_OWNER_DIED and FUTEX_TID_MASK.
145   atomic_int owner_tid;
146 };
147 
PIMutexTryLock(PIMutex & mutex)148 static inline __always_inline int PIMutexTryLock(PIMutex& mutex) {
149     pid_t tid = __get_thread()->tid;
150     // Handle common case first.
151     int old_owner = 0;
152     if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex.owner_tid,
153                                                                &old_owner, tid,
154                                                                memory_order_acquire,
155                                                                memory_order_relaxed))) {
156         return 0;
157     }
158     if (tid == (old_owner & FUTEX_TID_MASK)) {
159         // We already own this mutex.
160         if (mutex.type == PTHREAD_MUTEX_NORMAL) {
161             return EBUSY;
162         }
163         if (mutex.type == PTHREAD_MUTEX_ERRORCHECK) {
164             return EDEADLK;
165         }
166         if (mutex.counter == 0xffff) {
167             return EAGAIN;
168         }
169         mutex.counter++;
170         return 0;
171     }
172     return EBUSY;
173 }
174 
175 // Inlining this function in pthread_mutex_lock() adds the cost of stack frame instructions on
176 // ARM/ARM64, which increases at most 20 percent overhead. So make it noinline.
PIMutexTimedLock(PIMutex & mutex,bool use_realtime_clock,const timespec * abs_timeout)177 static int  __attribute__((noinline)) PIMutexTimedLock(PIMutex& mutex,
178                                                        bool use_realtime_clock,
179                                                        const timespec* abs_timeout) {
180     int ret = PIMutexTryLock(mutex);
181     if (__predict_true(ret == 0)) {
182         return 0;
183     }
184     if (ret == EBUSY) {
185         ScopedTrace trace("Contending for pthread mutex");
186         ret = -__futex_pi_lock_ex(&mutex.owner_tid, mutex.shared, use_realtime_clock, abs_timeout);
187     }
188     return ret;
189 }
190 
PIMutexUnlock(PIMutex & mutex)191 static int PIMutexUnlock(PIMutex& mutex) {
192     pid_t tid = __get_thread()->tid;
193     int old_owner = tid;
194     // Handle common case first.
195     if (__predict_true(mutex.type == PTHREAD_MUTEX_NORMAL)) {
196         if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex.owner_tid,
197                                                                    &old_owner, 0,
198                                                                    memory_order_release,
199                                                                    memory_order_relaxed))) {
200             return 0;
201         }
202     } else {
203         old_owner = atomic_load_explicit(&mutex.owner_tid, memory_order_relaxed);
204     }
205 
206     if (tid != (old_owner & FUTEX_TID_MASK)) {
207         // The mutex can only be unlocked by the thread who owns it.
208         return EPERM;
209     }
210     if (mutex.type == PTHREAD_MUTEX_RECURSIVE) {
211         if (mutex.counter != 0u) {
212             --mutex.counter;
213             return 0;
214         }
215     }
216     if (old_owner == tid) {
217         // No thread is waiting.
218         if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex.owner_tid,
219                                                                    &old_owner, 0,
220                                                                    memory_order_release,
221                                                                    memory_order_relaxed))) {
222             return 0;
223         }
224     }
225     return -__futex_pi_unlock(&mutex.owner_tid, mutex.shared);
226 }
227 
PIMutexDestroy(PIMutex & mutex)228 static int PIMutexDestroy(PIMutex& mutex) {
229     // The mutex should be in unlocked state (owner_tid == 0) when destroyed.
230     // Store 0xffffffff to make the mutex unusable.
231     int old_owner = 0;
232     if (atomic_compare_exchange_strong_explicit(&mutex.owner_tid, &old_owner, 0xffffffff,
233                                                 memory_order_relaxed, memory_order_relaxed)) {
234         return 0;
235     }
236     return EBUSY;
237 }
238 
239 #if !defined(__LP64__)
240 
241 namespace PIMutexAllocator {
242 // pthread_mutex_t has only 4 bytes in 32-bit programs, which are not enough to hold PIMutex.
243 // So we use malloc to allocate PIMutexes and use 16-bit of pthread_mutex_t as indexes to find
244 // the allocated PIMutexes. This allows at most 65536 PI mutexes.
245 // When calling operations like pthread_mutex_lock/unlock, the 16-bit index is mapped to the
246 // corresponding PIMutex. To make the map operation fast, we use a lockless mapping method:
247 //   Once a PIMutex is allocated, all the data used to map index to the PIMutex isn't changed until
248 //   it is destroyed.
249 // Below are the data structures:
250 //   // struct Node contains a PIMutex.
251 //   typedef Node NodeArray[256];
252 //   typedef NodeArray* NodeArrayP;
253 //   NodeArrayP nodes[256];
254 //
255 // A 16-bit index is mapped to Node as below:
256 //   (*nodes[index >> 8])[index & 0xff]
257 //
258 // Also use a free list to allow O(1) finding recycled PIMutexes.
259 
260 union Node {
261     PIMutex mutex;
262     int next_free_id;  // If not -1, refer to the next node in the free PIMutex list.
263 };
264 typedef Node NodeArray[256];
265 typedef NodeArray* NodeArrayP;
266 
267 // lock_ protects below items.
268 static Lock lock;
269 static NodeArrayP* nodes;
270 static int next_to_alloc_id;
271 static int first_free_id = -1;  // If not -1, refer to the first node in the free PIMutex list.
272 
IdToNode(int id)273 static inline __always_inline Node& IdToNode(int id) {
274     return (*nodes[id >> 8])[id & 0xff];
275 }
276 
IdToPIMutex(int id)277 static inline __always_inline PIMutex& IdToPIMutex(int id) {
278     return IdToNode(id).mutex;
279 }
280 
AllocIdLocked()281 static int AllocIdLocked() {
282     if (first_free_id != -1) {
283         int result = first_free_id;
284         first_free_id = IdToNode(result).next_free_id;
285         return result;
286     }
287     if (next_to_alloc_id >= 0x10000) {
288         return -1;
289     }
290     int array_pos = next_to_alloc_id >> 8;
291     int node_pos = next_to_alloc_id & 0xff;
292     if (node_pos == 0) {
293         if (array_pos == 0) {
294             nodes = static_cast<NodeArray**>(calloc(256, sizeof(NodeArray*)));
295             if (nodes == nullptr) {
296                 return -1;
297             }
298         }
299         nodes[array_pos] = static_cast<NodeArray*>(malloc(sizeof(NodeArray)));
300         if (nodes[array_pos] == nullptr) {
301             return -1;
302         }
303     }
304     return next_to_alloc_id++;
305 }
306 
307 // If succeed, return an id referring to a PIMutex, otherwise return -1.
308 // A valid id is in range [0, 0xffff].
AllocId()309 static int AllocId() {
310     lock.lock();
311     int result = AllocIdLocked();
312     lock.unlock();
313     if (result != -1) {
314         memset(&IdToPIMutex(result), 0, sizeof(PIMutex));
315     }
316     return result;
317 }
318 
FreeId(int id)319 static void FreeId(int id) {
320     lock.lock();
321     IdToNode(id).next_free_id = first_free_id;
322     first_free_id = id;
323     lock.unlock();
324 }
325 
326 }  // namespace PIMutexAllocator
327 
328 #endif  // !defined(__LP64__)
329 
330 
331 /* Convenience macro, creates a mask of 'bits' bits that starts from
332  * the 'shift'-th least significant bit in a 32-bit word.
333  *
334  * Examples: FIELD_MASK(0,4)  -> 0xf
335  *           FIELD_MASK(16,9) -> 0x1ff0000
336  */
337 #define  FIELD_MASK(shift,bits)           (((1 << (bits))-1) << (shift))
338 
339 /* This one is used to create a bit pattern from a given field value */
340 #define  FIELD_TO_BITS(val,shift,bits)    (((val) & ((1 << (bits))-1)) << (shift))
341 
342 /* And this one does the opposite, i.e. extract a field's value from a bit pattern */
343 #define  FIELD_FROM_BITS(val,shift,bits)  (((val) >> (shift)) & ((1 << (bits))-1))
344 
345 /* Convenience macros.
346  *
347  * These are used to form or modify the bit pattern of a given mutex value
348  */
349 
350 /* Mutex state:
351  *
352  * 0 for unlocked
353  * 1 for locked, no waiters
354  * 2 for locked, maybe waiters
355  */
356 #define  MUTEX_STATE_SHIFT      0
357 #define  MUTEX_STATE_LEN        2
358 
359 #define  MUTEX_STATE_MASK           FIELD_MASK(MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
360 #define  MUTEX_STATE_FROM_BITS(v)   FIELD_FROM_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
361 #define  MUTEX_STATE_TO_BITS(v)     FIELD_TO_BITS(v, MUTEX_STATE_SHIFT, MUTEX_STATE_LEN)
362 
363 #define  MUTEX_STATE_UNLOCKED            0   /* must be 0 to match PTHREAD_MUTEX_INITIALIZER */
364 #define  MUTEX_STATE_LOCKED_UNCONTENDED  1   /* must be 1 due to atomic dec in unlock operation */
365 #define  MUTEX_STATE_LOCKED_CONTENDED    2   /* must be 1 + LOCKED_UNCONTENDED due to atomic dec */
366 
367 #define  MUTEX_STATE_BITS_UNLOCKED            MUTEX_STATE_TO_BITS(MUTEX_STATE_UNLOCKED)
368 #define  MUTEX_STATE_BITS_LOCKED_UNCONTENDED  MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_UNCONTENDED)
369 #define  MUTEX_STATE_BITS_LOCKED_CONTENDED    MUTEX_STATE_TO_BITS(MUTEX_STATE_LOCKED_CONTENDED)
370 
371 // Return true iff the mutex is unlocked.
372 #define MUTEX_STATE_BITS_IS_UNLOCKED(v) (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_UNLOCKED)
373 
374 // Return true iff the mutex is locked with no waiters.
375 #define MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(v)  (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_UNCONTENDED)
376 
377 // return true iff the mutex is locked with maybe waiters.
378 #define MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(v)   (((v) & MUTEX_STATE_MASK) == MUTEX_STATE_BITS_LOCKED_CONTENDED)
379 
380 /* used to flip from LOCKED_UNCONTENDED to LOCKED_CONTENDED */
381 #define  MUTEX_STATE_BITS_FLIP_CONTENTION(v)      ((v) ^ (MUTEX_STATE_BITS_LOCKED_CONTENDED ^ MUTEX_STATE_BITS_LOCKED_UNCONTENDED))
382 
383 /* Mutex counter:
384  *
385  * We need to check for overflow before incrementing, and we also need to
386  * detect when the counter is 0
387  */
388 #define  MUTEX_COUNTER_SHIFT         2
389 #define  MUTEX_COUNTER_LEN           11
390 #define  MUTEX_COUNTER_MASK          FIELD_MASK(MUTEX_COUNTER_SHIFT, MUTEX_COUNTER_LEN)
391 
392 #define  MUTEX_COUNTER_BITS_WILL_OVERFLOW(v)    (((v) & MUTEX_COUNTER_MASK) == MUTEX_COUNTER_MASK)
393 #define  MUTEX_COUNTER_BITS_IS_ZERO(v)          (((v) & MUTEX_COUNTER_MASK) == 0)
394 
395 /* Used to increment the counter directly after overflow has been checked */
396 #define  MUTEX_COUNTER_BITS_ONE      FIELD_TO_BITS(1, MUTEX_COUNTER_SHIFT,MUTEX_COUNTER_LEN)
397 
398 /* Mutex shared bit flag
399  *
400  * This flag is set to indicate that the mutex is shared among processes.
401  * This changes the futex opcode we use for futex wait/wake operations
402  * (non-shared operations are much faster).
403  */
404 #define  MUTEX_SHARED_SHIFT    13
405 #define  MUTEX_SHARED_MASK     FIELD_MASK(MUTEX_SHARED_SHIFT,1)
406 
407 /* Mutex type:
408  * We support normal, recursive and errorcheck mutexes.
409  */
410 #define  MUTEX_TYPE_SHIFT      14
411 #define  MUTEX_TYPE_LEN        2
412 #define  MUTEX_TYPE_MASK       FIELD_MASK(MUTEX_TYPE_SHIFT,MUTEX_TYPE_LEN)
413 
414 #define  MUTEX_TYPE_TO_BITS(t)       FIELD_TO_BITS(t, MUTEX_TYPE_SHIFT, MUTEX_TYPE_LEN)
415 
416 #define  MUTEX_TYPE_BITS_NORMAL      MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_NORMAL)
417 #define  MUTEX_TYPE_BITS_RECURSIVE   MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_RECURSIVE)
418 #define  MUTEX_TYPE_BITS_ERRORCHECK  MUTEX_TYPE_TO_BITS(PTHREAD_MUTEX_ERRORCHECK)
419 // Use a special mutex type to mark priority inheritance mutexes.
420 #define  PI_MUTEX_STATE     MUTEX_TYPE_TO_BITS(3)
421 
422 // For a PI mutex, it includes below fields:
423 //   Atomic(uint16_t) state;
424 //   PIMutex pi_mutex;  // uint16_t pi_mutex_id in 32-bit programs
425 //
426 //   state holds the following fields:
427 //
428 //   bits:   name    description
429 //   15-14   type    mutex type, should be 3
430 //   13-0    padding should be 0
431 //
432 //   pi_mutex holds the state of a PI mutex.
433 //   pi_mutex_id holds an integer to find the state of a PI mutex.
434 //
435 // For a Non-PI mutex, it includes below fields:
436 //   Atomic(uint16_t) state;
437 //   atomic_int owner_tid;  // Atomic(uint16_t) in 32-bit programs
438 //
439 //   state holds the following fields:
440 //
441 //   bits:     name     description
442 //   15-14     type     mutex type, can be 0 (normal), 1 (recursive), 2 (errorcheck)
443 //   13        shared   process-shared flag
444 //   12-2      counter  <number of times a thread holding a recursive Non-PI mutex> - 1
445 //   1-0       state    lock state (0, 1 or 2)
446 //
447 //   bits 15-13 are constant during the lifetime of the mutex.
448 //
449 //   owner_tid is used only in recursive and errorcheck Non-PI mutexes to hold the mutex owner
450 //   thread id.
451 //
452 // PI mutexes and Non-PI mutexes are distinguished by checking type field in state.
453 #if defined(__LP64__)
454 struct pthread_mutex_internal_t {
455     _Atomic(uint16_t) state;
456     uint16_t __pad;
457     union {
458         atomic_int owner_tid;
459         PIMutex pi_mutex;
460     };
461     char __reserved[28];
462 
ToPIMutexpthread_mutex_internal_t463     PIMutex& ToPIMutex() {
464         return pi_mutex;
465     }
466 
FreePIMutexpthread_mutex_internal_t467     void FreePIMutex() {
468     }
469 } __attribute__((aligned(4)));
470 
471 #else
472 struct pthread_mutex_internal_t {
473     _Atomic(uint16_t) state;
474     union {
475         _Atomic(uint16_t) owner_tid;
476         uint16_t pi_mutex_id;
477     };
478 
ToPIMutexpthread_mutex_internal_t479     PIMutex& ToPIMutex() {
480         return PIMutexAllocator::IdToPIMutex(pi_mutex_id);
481     }
482 
FreePIMutexpthread_mutex_internal_t483     void FreePIMutex() {
484         PIMutexAllocator::FreeId(pi_mutex_id);
485     }
486 } __attribute__((aligned(4)));
487 #endif
488 
489 static_assert(sizeof(pthread_mutex_t) == sizeof(pthread_mutex_internal_t),
490               "pthread_mutex_t should actually be pthread_mutex_internal_t in implementation.");
491 
492 // For binary compatibility with old version of pthread_mutex_t, we can't use more strict alignment
493 // than 4-byte alignment.
494 static_assert(alignof(pthread_mutex_t) == 4,
495               "pthread_mutex_t should fulfill the alignment of pthread_mutex_internal_t.");
496 
__get_internal_mutex(pthread_mutex_t * mutex_interface)497 static inline pthread_mutex_internal_t* __get_internal_mutex(pthread_mutex_t* mutex_interface) {
498   return reinterpret_cast<pthread_mutex_internal_t*>(mutex_interface);
499 }
500 
pthread_mutex_init(pthread_mutex_t * mutex_interface,const pthread_mutexattr_t * attr)501 int pthread_mutex_init(pthread_mutex_t* mutex_interface, const pthread_mutexattr_t* attr) {
502     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
503 
504     memset(mutex, 0, sizeof(pthread_mutex_internal_t));
505 
506     if (__predict_true(attr == nullptr)) {
507         atomic_init(&mutex->state, MUTEX_TYPE_BITS_NORMAL);
508         return 0;
509     }
510 
511     uint16_t state = 0;
512     if ((*attr & MUTEXATTR_SHARED_MASK) != 0) {
513         state |= MUTEX_SHARED_MASK;
514     }
515 
516     switch (*attr & MUTEXATTR_TYPE_MASK) {
517     case PTHREAD_MUTEX_NORMAL:
518       state |= MUTEX_TYPE_BITS_NORMAL;
519       break;
520     case PTHREAD_MUTEX_RECURSIVE:
521       state |= MUTEX_TYPE_BITS_RECURSIVE;
522       break;
523     case PTHREAD_MUTEX_ERRORCHECK:
524       state |= MUTEX_TYPE_BITS_ERRORCHECK;
525       break;
526     default:
527         return EINVAL;
528     }
529 
530     if (((*attr & MUTEXATTR_PROTOCOL_MASK) >> MUTEXATTR_PROTOCOL_SHIFT) == PTHREAD_PRIO_INHERIT) {
531 #if !defined(__LP64__)
532         if (state & MUTEX_SHARED_MASK) {
533             return EINVAL;
534         }
535         int id = PIMutexAllocator::AllocId();
536         if (id == -1) {
537             return ENOMEM;
538         }
539         mutex->pi_mutex_id = id;
540 #endif
541         atomic_init(&mutex->state, PI_MUTEX_STATE);
542         PIMutex& pi_mutex = mutex->ToPIMutex();
543         pi_mutex.type = *attr & MUTEXATTR_TYPE_MASK;
544         pi_mutex.shared = (*attr & MUTEXATTR_SHARED_MASK) != 0;
545     } else {
546         atomic_init(&mutex->state, state);
547         atomic_init(&mutex->owner_tid, 0);
548     }
549     return 0;
550 }
551 
552 // namespace for Non-PI mutex routines.
553 namespace NonPI {
554 
NormalMutexTryLock(pthread_mutex_internal_t * mutex,uint16_t shared)555 static inline __always_inline int NormalMutexTryLock(pthread_mutex_internal_t* mutex,
556                                                      uint16_t shared) {
557     const uint16_t unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
558     const uint16_t locked_uncontended = shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
559 
560     uint16_t old_state = unlocked;
561     if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
562                          locked_uncontended, memory_order_acquire, memory_order_relaxed))) {
563         return 0;
564     }
565     return EBUSY;
566 }
567 
568 /*
569  * Lock a normal Non-PI mutex.
570  *
571  * As noted above, there are three states:
572  *   0 (unlocked, no contention)
573  *   1 (locked, no contention)
574  *   2 (locked, contention)
575  *
576  * Non-recursive mutexes don't use the thread-id or counter fields, and the
577  * "type" value is zero, so the only bits that will be set are the ones in
578  * the lock state field.
579  */
NormalMutexLock(pthread_mutex_internal_t * mutex,uint16_t shared,bool use_realtime_clock,const timespec * abs_timeout_or_null)580 static inline __always_inline int NormalMutexLock(pthread_mutex_internal_t* mutex,
581                                                   uint16_t shared,
582                                                   bool use_realtime_clock,
583                                                   const timespec* abs_timeout_or_null) {
584     if (__predict_true(NormalMutexTryLock(mutex, shared) == 0)) {
585         return 0;
586     }
587     int result = check_timespec(abs_timeout_or_null, true);
588     if (result != 0) {
589         return result;
590     }
591 
592     ScopedTrace trace("Contending for pthread mutex");
593 
594     const uint16_t unlocked           = shared | MUTEX_STATE_BITS_UNLOCKED;
595     const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
596 
597     // We want to go to sleep until the mutex is available, which requires
598     // promoting it to locked_contended. We need to swap in the new state
599     // and then wait until somebody wakes us up.
600     // An atomic_exchange is used to compete with other threads for the lock.
601     // If it returns unlocked, we have acquired the lock, otherwise another
602     // thread still holds the lock and we should wait again.
603     // If lock is acquired, an acquire fence is needed to make all memory accesses
604     // made by other threads visible to the current CPU.
605     while (atomic_exchange_explicit(&mutex->state, locked_contended,
606                                     memory_order_acquire) != unlocked) {
607         if (__futex_wait_ex(&mutex->state, shared, locked_contended, use_realtime_clock,
608                             abs_timeout_or_null) == -ETIMEDOUT) {
609             return ETIMEDOUT;
610         }
611     }
612     return 0;
613 }
614 
615 /*
616  * Release a normal Non-PI mutex.  The caller is responsible for determining
617  * that we are in fact the owner of this lock.
618  */
NormalMutexUnlock(pthread_mutex_internal_t * mutex,uint16_t shared)619 static inline __always_inline void NormalMutexUnlock(pthread_mutex_internal_t* mutex,
620                                                      uint16_t shared) {
621     const uint16_t unlocked         = shared | MUTEX_STATE_BITS_UNLOCKED;
622     const uint16_t locked_contended = shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
623 
624     // We use an atomic_exchange to release the lock. If locked_contended state
625     // is returned, some threads is waiting for the lock and we need to wake up
626     // one of them.
627     // A release fence is required to make previous stores visible to next
628     // lock owner threads.
629     if (atomic_exchange_explicit(&mutex->state, unlocked,
630                                  memory_order_release) == locked_contended) {
631         // Wake up one waiting thread. We don't know which thread will be
632         // woken or when it'll start executing -- futexes make no guarantees
633         // here. There may not even be a thread waiting.
634         //
635         // The newly-woken thread will replace the unlocked state we just set above
636         // with locked_contended state, which means that when it eventually releases
637         // the mutex it will also call FUTEX_WAKE. This results in one extra wake
638         // call whenever a lock is contended, but let us avoid forgetting anyone
639         // without requiring us to track the number of sleepers.
640         //
641         // It's possible for another thread to sneak in and grab the lock between
642         // the exchange above and the wake call below. If the new thread is "slow"
643         // and holds the lock for a while, we'll wake up a sleeper, which will swap
644         // in locked_uncontended state and then go back to sleep since the lock is
645         // still held. If the new thread is "fast", running to completion before
646         // we call wake, the thread we eventually wake will find an unlocked mutex
647         // and will execute. Either way we have correct behavior and nobody is
648         // orphaned on the wait queue.
649         //
650         // The pthread_mutex_internal_t object may have been deallocated between the
651         // atomic exchange and the wake call. In that case, this wake call could
652         // target unmapped memory or memory used by an otherwise unrelated futex
653         // operation. Even if the kernel avoids spurious futex wakeups from its
654         // point of view, this wake call could trigger a spurious wakeup in any
655         // futex accessible from this process. References:
656         //  - https://lkml.org/lkml/2014/11/27/472
657         //  - http://austingroupbugs.net/view.php?id=811#c2267
658         __futex_wake_ex(&mutex->state, shared, 1);
659     }
660 }
661 
662 /* This common inlined function is used to increment the counter of a recursive Non-PI mutex.
663  *
664  * If the counter overflows, it will return EAGAIN.
665  * Otherwise, it atomically increments the counter and returns 0.
666  *
667  */
RecursiveIncrement(pthread_mutex_internal_t * mutex,uint16_t old_state)668 static inline __always_inline int RecursiveIncrement(pthread_mutex_internal_t* mutex,
669                                                      uint16_t old_state) {
670     // Detect recursive lock overflow and return EAGAIN.
671     // This is safe because only the owner thread can modify the
672     // counter bits in the mutex value.
673     if (MUTEX_COUNTER_BITS_WILL_OVERFLOW(old_state)) {
674         return EAGAIN;
675     }
676 
677     // Other threads are able to change the lower bits (e.g. promoting it to "contended"),
678     // but the mutex counter will not overflow. So we use atomic_fetch_add operation here.
679     // The mutex is already locked by current thread, so we don't need an acquire fence.
680     atomic_fetch_add_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed);
681     return 0;
682 }
683 
684 // Wait on a recursive or errorcheck Non-PI mutex.
RecursiveOrErrorcheckMutexWait(pthread_mutex_internal_t * mutex,uint16_t shared,uint16_t old_state,bool use_realtime_clock,const timespec * abs_timeout)685 static inline __always_inline int RecursiveOrErrorcheckMutexWait(pthread_mutex_internal_t* mutex,
686                                                                  uint16_t shared,
687                                                                  uint16_t old_state,
688                                                                  bool use_realtime_clock,
689                                                                  const timespec* abs_timeout) {
690 // __futex_wait always waits on a 32-bit value. But state is 16-bit. For a normal mutex, the owner_tid
691 // field in mutex is not used. On 64-bit devices, the __pad field in mutex is not used.
692 // But when a recursive or errorcheck mutex is used on 32-bit devices, we need to add the
693 // owner_tid value in the value argument for __futex_wait, otherwise we may always get EAGAIN error.
694 
695 #if defined(__LP64__)
696   return __futex_wait_ex(&mutex->state, shared, old_state, use_realtime_clock, abs_timeout);
697 
698 #else
699   // This implementation works only when the layout of pthread_mutex_internal_t matches below expectation.
700   // And it is based on the assumption that Android is always in little-endian devices.
701   static_assert(offsetof(pthread_mutex_internal_t, state) == 0, "");
702   static_assert(offsetof(pthread_mutex_internal_t, owner_tid) == 2, "");
703 
704   uint32_t owner_tid = atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed);
705   return __futex_wait_ex(&mutex->state, shared, (owner_tid << 16) | old_state,
706                          use_realtime_clock, abs_timeout);
707 #endif
708 }
709 
710 // Lock a Non-PI mutex.
MutexLockWithTimeout(pthread_mutex_internal_t * mutex,bool use_realtime_clock,const timespec * abs_timeout_or_null)711 static int MutexLockWithTimeout(pthread_mutex_internal_t* mutex, bool use_realtime_clock,
712                                 const timespec* abs_timeout_or_null) {
713     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
714     uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
715     uint16_t shared = (old_state & MUTEX_SHARED_MASK);
716 
717     // Handle common case first.
718     if ( __predict_true(mtype == MUTEX_TYPE_BITS_NORMAL) ) {
719         return NormalMutexLock(mutex, shared, use_realtime_clock, abs_timeout_or_null);
720     }
721 
722     // Do we already own this recursive or error-check mutex?
723     pid_t tid = __get_thread()->tid;
724     if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) {
725         if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
726             return EDEADLK;
727         }
728         return RecursiveIncrement(mutex, old_state);
729     }
730 
731     const uint16_t unlocked           = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
732     const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
733     const uint16_t locked_contended   = mtype | shared | MUTEX_STATE_BITS_LOCKED_CONTENDED;
734 
735     // First, if the mutex is unlocked, try to quickly acquire it.
736     // In the optimistic case where this works, set the state to locked_uncontended.
737     if (old_state == unlocked) {
738         // If exchanged successfully, an acquire fence is required to make
739         // all memory accesses made by other threads visible to the current CPU.
740         if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
741                              locked_uncontended, memory_order_acquire, memory_order_relaxed))) {
742             atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
743             return 0;
744         }
745     }
746 
747     ScopedTrace trace("Contending for pthread mutex");
748 
749     while (true) {
750         if (old_state == unlocked) {
751             // NOTE: We put the state to locked_contended since we _know_ there
752             // is contention when we are in this loop. This ensures all waiters
753             // will be unlocked.
754 
755             // If exchanged successfully, an acquire fence is required to make
756             // all memory accesses made by other threads visible to the current CPU.
757             if (__predict_true(atomic_compare_exchange_weak_explicit(&mutex->state,
758                                                                      &old_state, locked_contended,
759                                                                      memory_order_acquire,
760                                                                      memory_order_relaxed))) {
761                 atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
762                 return 0;
763             }
764             continue;
765         } else if (MUTEX_STATE_BITS_IS_LOCKED_UNCONTENDED(old_state)) {
766             // We should set it to locked_contended beforing going to sleep. This can make
767             // sure waiters will be woken up eventually.
768 
769             int new_state = MUTEX_STATE_BITS_FLIP_CONTENTION(old_state);
770             if (__predict_false(!atomic_compare_exchange_weak_explicit(&mutex->state,
771                                                                        &old_state, new_state,
772                                                                        memory_order_relaxed,
773                                                                        memory_order_relaxed))) {
774                 continue;
775             }
776             old_state = new_state;
777         }
778 
779         int result = check_timespec(abs_timeout_or_null, true);
780         if (result != 0) {
781             return result;
782         }
783         // We are in locked_contended state, sleep until someone wakes us up.
784         if (RecursiveOrErrorcheckMutexWait(mutex, shared, old_state, use_realtime_clock,
785                                            abs_timeout_or_null) == -ETIMEDOUT) {
786             return ETIMEDOUT;
787         }
788         old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
789     }
790 }
791 
792 }  // namespace NonPI
793 
IsMutexDestroyed(uint16_t mutex_state)794 static inline __always_inline bool IsMutexDestroyed(uint16_t mutex_state) {
795     return mutex_state == 0xffff;
796 }
797 
798 // Inlining this function in pthread_mutex_lock() adds the cost of stack frame instructions on
799 // ARM64. So make it noinline.
HandleUsingDestroyedMutex(pthread_mutex_t * mutex,const char * function_name)800 static int __attribute__((noinline)) HandleUsingDestroyedMutex(pthread_mutex_t* mutex,
801                                                                const char* function_name) {
802     if (android_get_application_target_sdk_version() >= 28) {
803         __fortify_fatal("%s called on a destroyed mutex (%p)", function_name, mutex);
804     }
805     return EBUSY;
806 }
807 
pthread_mutex_lock(pthread_mutex_t * mutex_interface)808 int pthread_mutex_lock(pthread_mutex_t* mutex_interface) {
809 #if !defined(__LP64__)
810     // Some apps depend on being able to pass NULL as a mutex and get EINVAL
811     // back. Don't need to worry about it for LP64 since the ABI is brand new,
812     // but keep compatibility for LP32. http://b/19995172.
813     if (mutex_interface == nullptr) {
814         return EINVAL;
815     }
816 #endif
817 
818     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
819     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
820     uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
821     // Avoid slowing down fast path of normal mutex lock operation.
822     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
823         uint16_t shared = (old_state & MUTEX_SHARED_MASK);
824         if (__predict_true(NonPI::NormalMutexTryLock(mutex, shared) == 0)) {
825             return 0;
826         }
827     }
828     if (old_state == PI_MUTEX_STATE) {
829         PIMutex& m = mutex->ToPIMutex();
830         // Handle common case first.
831         if (__predict_true(PIMutexTryLock(m) == 0)) {
832             return 0;
833         }
834         return PIMutexTimedLock(mutex->ToPIMutex(), false, nullptr);
835     }
836     if (__predict_false(IsMutexDestroyed(old_state))) {
837         return HandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
838     }
839     return NonPI::MutexLockWithTimeout(mutex, false, nullptr);
840 }
841 
pthread_mutex_unlock(pthread_mutex_t * mutex_interface)842 int pthread_mutex_unlock(pthread_mutex_t* mutex_interface) {
843 #if !defined(__LP64__)
844     // Some apps depend on being able to pass NULL as a mutex and get EINVAL
845     // back. Don't need to worry about it for LP64 since the ABI is brand new,
846     // but keep compatibility for LP32. http://b/19995172.
847     if (mutex_interface == nullptr) {
848         return EINVAL;
849     }
850 #endif
851 
852     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
853     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
854     uint16_t mtype  = (old_state & MUTEX_TYPE_MASK);
855     uint16_t shared = (old_state & MUTEX_SHARED_MASK);
856 
857     // Handle common case first.
858     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
859         NonPI::NormalMutexUnlock(mutex, shared);
860         return 0;
861     }
862     if (old_state == PI_MUTEX_STATE) {
863         return PIMutexUnlock(mutex->ToPIMutex());
864     }
865     if (__predict_false(IsMutexDestroyed(old_state))) {
866         return HandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
867     }
868 
869     // Do we already own this recursive or error-check mutex?
870     pid_t tid = __get_thread()->tid;
871     if ( tid != atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed) ) {
872         return EPERM;
873     }
874 
875     // If the counter is > 0, we can simply decrement it atomically.
876     // Since other threads can mutate the lower state bits (and only the
877     // lower state bits), use a compare_exchange loop to do it.
878     if (!MUTEX_COUNTER_BITS_IS_ZERO(old_state)) {
879         // We still own the mutex, so a release fence is not needed.
880         atomic_fetch_sub_explicit(&mutex->state, MUTEX_COUNTER_BITS_ONE, memory_order_relaxed);
881         return 0;
882     }
883 
884     // The counter is 0, so we'are going to unlock the mutex by resetting its
885     // state to unlocked, we need to perform a atomic_exchange inorder to read
886     // the current state, which will be locked_contended if there may have waiters
887     // to awake.
888     // A release fence is required to make previous stores visible to next
889     // lock owner threads.
890     atomic_store_explicit(&mutex->owner_tid, 0, memory_order_relaxed);
891     const uint16_t unlocked = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
892     old_state = atomic_exchange_explicit(&mutex->state, unlocked, memory_order_release);
893     if (MUTEX_STATE_BITS_IS_LOCKED_CONTENDED(old_state)) {
894         __futex_wake_ex(&mutex->state, shared, 1);
895     }
896 
897     return 0;
898 }
899 
pthread_mutex_trylock(pthread_mutex_t * mutex_interface)900 int pthread_mutex_trylock(pthread_mutex_t* mutex_interface) {
901     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
902 
903     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
904     uint16_t mtype  = (old_state & MUTEX_TYPE_MASK);
905 
906     // Handle common case first.
907     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
908         uint16_t shared = (old_state & MUTEX_SHARED_MASK);
909         return NonPI::NormalMutexTryLock(mutex, shared);
910     }
911     if (old_state == PI_MUTEX_STATE) {
912         return PIMutexTryLock(mutex->ToPIMutex());
913     }
914     if (__predict_false(IsMutexDestroyed(old_state))) {
915         return HandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
916     }
917 
918     // Do we already own this recursive or error-check mutex?
919     pid_t tid = __get_thread()->tid;
920     if (tid == atomic_load_explicit(&mutex->owner_tid, memory_order_relaxed)) {
921         if (mtype == MUTEX_TYPE_BITS_ERRORCHECK) {
922             return EBUSY;
923         }
924         return NonPI::RecursiveIncrement(mutex, old_state);
925     }
926 
927     uint16_t shared = (old_state & MUTEX_SHARED_MASK);
928     const uint16_t unlocked           = mtype | shared | MUTEX_STATE_BITS_UNLOCKED;
929     const uint16_t locked_uncontended = mtype | shared | MUTEX_STATE_BITS_LOCKED_UNCONTENDED;
930 
931     // Same as pthread_mutex_lock, except that we don't want to wait, and
932     // the only operation that can succeed is a single compare_exchange to acquire the
933     // lock if it is released / not owned by anyone. No need for a complex loop.
934     // If exchanged successfully, an acquire fence is required to make
935     // all memory accesses made by other threads visible to the current CPU.
936     old_state = unlocked;
937     if (__predict_true(atomic_compare_exchange_strong_explicit(&mutex->state, &old_state,
938                                                                locked_uncontended,
939                                                                memory_order_acquire,
940                                                                memory_order_relaxed))) {
941         atomic_store_explicit(&mutex->owner_tid, tid, memory_order_relaxed);
942         return 0;
943     }
944     return EBUSY;
945 }
946 
947 #if !defined(__LP64__)
948 // This exists only for backward binary compatibility on 32 bit platforms.
949 // (This function never existed for LP64.)
pthread_mutex_lock_timeout_np(pthread_mutex_t * mutex_interface,unsigned ms)950 extern "C" int pthread_mutex_lock_timeout_np(pthread_mutex_t* mutex_interface, unsigned ms) {
951     timespec ts;
952     timespec_from_ms(ts, ms);
953     timespec abs_timeout;
954     absolute_timespec_from_timespec(abs_timeout, ts, CLOCK_MONOTONIC);
955     int error = NonPI::MutexLockWithTimeout(__get_internal_mutex(mutex_interface), false,
956                                             &abs_timeout);
957     if (error == ETIMEDOUT) {
958         error = EBUSY;
959     }
960     return error;
961 }
962 #endif
963 
__pthread_mutex_timedlock(pthread_mutex_t * mutex_interface,bool use_realtime_clock,const timespec * abs_timeout,const char * function)964 static int __pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, bool use_realtime_clock,
965                                      const timespec* abs_timeout, const char* function) {
966     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
967     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
968     uint16_t mtype = (old_state & MUTEX_TYPE_MASK);
969     // Handle common case first.
970     if (__predict_true(mtype == MUTEX_TYPE_BITS_NORMAL)) {
971         uint16_t shared = (old_state & MUTEX_SHARED_MASK);
972         if (__predict_true(NonPI::NormalMutexTryLock(mutex, shared) == 0)) {
973             return 0;
974         }
975     }
976     if (old_state == PI_MUTEX_STATE) {
977         return PIMutexTimedLock(mutex->ToPIMutex(), use_realtime_clock, abs_timeout);
978     }
979     if (__predict_false(IsMutexDestroyed(old_state))) {
980         return HandleUsingDestroyedMutex(mutex_interface, function);
981     }
982     return NonPI::MutexLockWithTimeout(mutex, use_realtime_clock, abs_timeout);
983 }
984 
pthread_mutex_timedlock(pthread_mutex_t * mutex_interface,const struct timespec * abs_timeout)985 int pthread_mutex_timedlock(pthread_mutex_t* mutex_interface, const struct timespec* abs_timeout) {
986     return __pthread_mutex_timedlock(mutex_interface, true, abs_timeout, __FUNCTION__);
987 }
988 
pthread_mutex_timedlock_monotonic_np(pthread_mutex_t * mutex_interface,const struct timespec * abs_timeout)989 int pthread_mutex_timedlock_monotonic_np(pthread_mutex_t* mutex_interface,
990                                          const struct timespec* abs_timeout) {
991     return __pthread_mutex_timedlock(mutex_interface, false, abs_timeout, __FUNCTION__);
992 }
993 
pthread_mutex_clocklock(pthread_mutex_t * mutex_interface,clockid_t clock,const struct timespec * abs_timeout)994 int pthread_mutex_clocklock(pthread_mutex_t* mutex_interface, clockid_t clock,
995                             const struct timespec* abs_timeout) {
996   switch (clock) {
997     case CLOCK_MONOTONIC:
998       return __pthread_mutex_timedlock(mutex_interface, false, abs_timeout, __FUNCTION__);
999     case CLOCK_REALTIME:
1000       return __pthread_mutex_timedlock(mutex_interface, true, abs_timeout, __FUNCTION__);
1001     default: {
1002       pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
1003       uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
1004       if (IsMutexDestroyed(old_state)) {
1005         return HandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
1006       }
1007       return EINVAL;
1008     }
1009   }
1010 }
1011 
pthread_mutex_destroy(pthread_mutex_t * mutex_interface)1012 int pthread_mutex_destroy(pthread_mutex_t* mutex_interface) {
1013     pthread_mutex_internal_t* mutex = __get_internal_mutex(mutex_interface);
1014     uint16_t old_state = atomic_load_explicit(&mutex->state, memory_order_relaxed);
1015     if (__predict_false(IsMutexDestroyed(old_state))) {
1016         return HandleUsingDestroyedMutex(mutex_interface, __FUNCTION__);
1017     }
1018     if (old_state == PI_MUTEX_STATE) {
1019         int result = PIMutexDestroy(mutex->ToPIMutex());
1020         if (result == 0) {
1021             mutex->FreePIMutex();
1022             atomic_store(&mutex->state, 0xffff);
1023         }
1024         return result;
1025     }
1026     // Store 0xffff to make the mutex unusable. Although POSIX standard says it is undefined
1027     // behavior to destroy a locked mutex, we prefer not to change mutex->state in that situation.
1028     if (MUTEX_STATE_BITS_IS_UNLOCKED(old_state) &&
1029         atomic_compare_exchange_strong_explicit(&mutex->state, &old_state, 0xffff,
1030                                                 memory_order_relaxed, memory_order_relaxed)) {
1031       return 0;
1032     }
1033     return EBUSY;
1034 }
1035