1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  * Copyright (c) 1994, 2023, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 
27 package java.lang;
28 
29 import dalvik.annotation.optimization.CriticalNative;
30 
31 import java.math.BigDecimal;
32 import java.util.Random;
33 import jdk.internal.math.FloatConsts;
34 import jdk.internal.math.DoubleConsts;
35 import jdk.internal.vm.annotation.IntrinsicCandidate;
36 
37 // Android-note: Document that the results from Math are based on libm's behavior.
38 // For performance, Android implements many of the methods in this class in terms of the underlying
39 // OS's libm functions. libm has well-defined behavior for special cases. Where known these are
40 // marked with the tag above and the documentation has been modified as needed.
41 // Android-changed: Fixed method links in the last paragraph.
42 /**
43  * The class {@code Math} contains methods for performing basic
44  * numeric operations such as the elementary exponential, logarithm,
45  * square root, and trigonometric functions.
46  *
47  * <p>Unlike some of the numeric methods of class
48  * {@link java.lang.StrictMath StrictMath}, all implementations of the equivalent
49  * functions of class {@code Math} are not defined to return the
50  * bit-for-bit same results.  This relaxation permits
51  * better-performing implementations where strict reproducibility is
52  * not required.
53  *
54  * <p>By default many of the {@code Math} methods simply call
55  * the equivalent method in {@code StrictMath} for their
56  * implementation.  Code generators are encouraged to use
57  * platform-specific native libraries or microprocessor instructions,
58  * where available, to provide higher-performance implementations of
59  * {@code Math} methods.  Such higher-performance
60  * implementations still must conform to the specification for
61  * {@code Math}.
62  *
63  * <p>The quality of implementation specifications concern two
64  * properties, accuracy of the returned result and monotonicity of the
65  * method.  Accuracy of the floating-point {@code Math} methods is
66  * measured in terms of <i>ulps</i>, units in the last place.  For a
67  * given floating-point format, an {@linkplain #ulp(double) ulp} of a
68  * specific real number value is the distance between the two
69  * floating-point values bracketing that numerical value.  When
70  * discussing the accuracy of a method as a whole rather than at a
71  * specific argument, the number of ulps cited is for the worst-case
72  * error at any argument.  If a method always has an error less than
73  * 0.5 ulps, the method always returns the floating-point number
74  * nearest the exact result; such a method is <i>correctly
75  * rounded</i>.  A correctly rounded method is generally the best a
76  * floating-point approximation can be; however, it is impractical for
77  * many floating-point methods to be correctly rounded.  Instead, for
78  * the {@code Math} class, a larger error bound of 1 or 2 ulps is
79  * allowed for certain methods.  Informally, with a 1 ulp error bound,
80  * when the exact result is a representable number, the exact result
81  * should be returned as the computed result; otherwise, either of the
82  * two floating-point values which bracket the exact result may be
83  * returned.  For exact results large in magnitude, one of the
84  * endpoints of the bracket may be infinite.  Besides accuracy at
85  * individual arguments, maintaining proper relations between the
86  * method at different arguments is also important.  Therefore, most
87  * methods with more than 0.5 ulp errors are required to be
88  * <i>semi-monotonic</i>: whenever the mathematical function is
89  * non-decreasing, so is the floating-point approximation, likewise,
90  * whenever the mathematical function is non-increasing, so is the
91  * floating-point approximation.  Not all approximations that have 1
92  * ulp accuracy will automatically meet the monotonicity requirements.
93  *
94  * <p>
95  * The platform uses signed two's complement integer arithmetic with
96  * int and long primitive types.  The developer should choose
97  * the primitive type to ensure that arithmetic operations consistently
98  * produce correct results, which in some cases means the operations
99  * will not overflow the range of values of the computation.
100  * The best practice is to choose the primitive type and algorithm to avoid
101  * overflow. In cases where the size is {@code int} or {@code long} and
102  * overflow errors need to be detected, the methods whose names end with
103  * {@code Exact} throw an {@code ArithmeticException} when the results overflow.
104  *
105  * <h2><a id=Ieee754RecommendedOps>IEEE 754 Recommended
106  * Operations</a></h2>
107  *
108  * The 2019 revision of the IEEE 754 floating-point standard includes
109  * a section of recommended operations and the semantics of those
110  * operations if they are included in a programming environment. The
111  * recommended operations present in this class include {@link #sin(double)
112  * sin}, {@link #cos(double) cos}, {@link #tan(double) tan}, {@link #asin(double) asin}, {@link
113  * #acos(double) acos}, {@link #atan(double) atan}, {@link #exp(double) exp}, {@link #expm1(double)
114  * expm1}, {@link #log(double) log}, {@link #log10(double) log10}, {@link #log1p(double) log1p},
115  * {@link #sinh(double) sinh}, {@link #cosh(double) cosh}, {@link #tanh(double) tanh}, {@link
116  * #hypot(double, double) hypot}, and {@link #pow(double, double) pow}.  (The {@link #sqrt(double) sqrt}
117  * operation is a required part of IEEE 754 from a different section
118  * of the standard.) The special case behavior of the recommended
119  * operations generally follows the guidance of the IEEE 754
120  * standard. However, the {@code pow} method defines different
121  * behavior for some arguments, as noted in its {@linkplain #pow(double, double)
122  * specification}. The IEEE 754 standard defines its operations to be
123  * correctly rounded, which is a more stringent quality of
124  * implementation condition than required for most of the methods in
125  * question that are also included in this class.
126  *
127  * @see <a href="https://standards.ieee.org/ieee/754/6210/">
128  *      <cite>IEEE Standard for Floating-Point Arithmetic</cite></a>
129  *
130  * @author  Joseph D. Darcy
131  * @since   1.0
132  */
133 
134 public final class Math {
135 
136     // Android-changed: Numerous methods in this class are re-implemented in native for performance.
137     // Those methods are also annotated @CriticalNative.
138 
139     /**
140      * Don't let anyone instantiate this class.
141      */
Math()142     private Math() {}
143 
144     /**
145      * The {@code double} value that is closer than any other to
146      * <i>e</i>, the base of the natural logarithms.
147      */
148     public static final double E = 2.718281828459045;
149 
150     /**
151      * The {@code double} value that is closer than any other to
152      * <i>pi</i> (&pi;), the ratio of the circumference of a circle to
153      * its diameter.
154      */
155     public static final double PI = 3.141592653589793;
156 
157     /**
158      * The {@code double} value that is closer than any other to
159      * <i>tau</i> (&tau;), the ratio of the circumference of a circle
160      * to its radius.
161      *
162      * @apiNote
163      * The value of <i>pi</i> is one half that of <i>tau</i>; in other
164      * words, <i>tau</i> is double <i>pi</i> .
165      *
166      * @since 19
167      */
168     public static final double TAU = 2.0 * PI;
169 
170     /**
171      * Constant by which to multiply an angular value in degrees to obtain an
172      * angular value in radians.
173      */
174     private static final double DEGREES_TO_RADIANS = 0.017453292519943295;
175 
176     /**
177      * Constant by which to multiply an angular value in radians to obtain an
178      * angular value in degrees.
179      */
180     private static final double RADIANS_TO_DEGREES = 57.29577951308232;
181 
182     /**
183      * Returns the trigonometric sine of an angle.  Special cases:
184      * <ul><li>If the argument is NaN or an infinity, then the
185      * result is NaN.
186      * <li>If the argument is zero, then the result is a zero with the
187      * same sign as the argument.</ul>
188      *
189      * <p>The computed result must be within 1 ulp of the exact result.
190      * Results must be semi-monotonic.
191      *
192      * @param   a   an angle, in radians.
193      * @return  the sine of the argument.
194      */
195     // BEGIN Android-changed: Reimplement in native
196     /*
197     @IntrinsicCandidate
198     public static double sin(double a) {
199         return StrictMath.sin(a); // default impl. delegates to StrictMath
200     }
201     */
202     // END Android-changed: Reimplement in native
203     @CriticalNative
sin(double a)204     public static native double sin(double a);
205 
206     /**
207      * Returns the trigonometric cosine of an angle. Special cases:
208      * <ul><li>If the argument is NaN or an infinity, then the
209      * result is NaN.
210      * <li>If the argument is zero, then the result is {@code 1.0}.
211      *</ul>
212      *
213      * <p>The computed result must be within 1 ulp of the exact result.
214      * Results must be semi-monotonic.
215      *
216      * @param   a   an angle, in radians.
217      * @return  the cosine of the argument.
218      */
219     // BEGIN Android-changed: Reimplement in native
220     /*
221     @IntrinsicCandidate
222     public static double cos(double a) {
223         return StrictMath.cos(a); // default impl. delegates to StrictMath
224     }
225     */
226     // END Android-changed: Reimplement in native
227     @CriticalNative
cos(double a)228     public static native double cos(double a);
229 
230     /**
231      * Returns the trigonometric tangent of an angle.  Special cases:
232      * <ul><li>If the argument is NaN or an infinity, then the result
233      * is NaN.
234      * <li>If the argument is zero, then the result is a zero with the
235      * same sign as the argument.</ul>
236      *
237      * <p>The computed result must be within 1 ulp of the exact result.
238      * Results must be semi-monotonic.
239      *
240      * @param   a   an angle, in radians.
241      * @return  the tangent of the argument.
242      */
243     // BEGIN Android-changed: Reimplement in native
244     /*
245     @IntrinsicCandidate
246     public static double tan(double a) {
247         return StrictMath.tan(a); // default impl. delegates to StrictMath
248     }
249     */
250     // END Android-changed: Reimplement in native
251     @CriticalNative
tan(double a)252     public static native double tan(double a);
253 
254     /**
255      * Returns the arc sine of a value; the returned angle is in the
256      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
257      * <ul><li>If the argument is NaN or its absolute value is greater
258      * than 1, then the result is NaN.
259      * <li>If the argument is zero, then the result is a zero with the
260      * same sign as the argument.</ul>
261      *
262      * <p>The computed result must be within 1 ulp of the exact result.
263      * Results must be semi-monotonic.
264      *
265      * @param   a   the value whose arc sine is to be returned.
266      * @return  the arc sine of the argument.
267      */
268     // BEGIN Android-changed: Reimplement in native
269     /*
270     public static double asin(double a) {
271         return StrictMath.asin(a); // default impl. delegates to StrictMath
272     }
273     */
274     // END Android-changed: Reimplement in native
275     @CriticalNative
asin(double a)276     public static native double asin(double a);
277 
278     /**
279      * Returns the arc cosine of a value; the returned angle is in the
280      * range 0.0 through <i>pi</i>.  Special case:
281      * <ul><li>If the argument is NaN or its absolute value is greater
282      * than 1, then the result is NaN.
283      * <li>If the argument is {@code 1.0}, the result is positive zero.
284      * </ul>
285      *
286      * <p>The computed result must be within 1 ulp of the exact result.
287      * Results must be semi-monotonic.
288      *
289      * @param   a   the value whose arc cosine is to be returned.
290      * @return  the arc cosine of the argument.
291      */
292     // BEGIN Android-changed: Reimplement in native
293     /*
294     public static double acos(double a) {
295         return StrictMath.acos(a); // default impl. delegates to StrictMath
296     }
297     */
298     // END Android-changed: Reimplement in native
299     @CriticalNative
acos(double a)300     public static native double acos(double a);
301 
302     /**
303      * Returns the arc tangent of a value; the returned angle is in the
304      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
305      * <ul><li>If the argument is NaN, then the result is NaN.
306      * <li>If the argument is zero, then the result is a zero with the
307      * same sign as the argument.
308      * <li>If the argument is {@linkplain Double#isInfinite infinite},
309      * then the result is the closest value to <i>pi</i>/2 with the
310      * same sign as the input.
311      * </ul>
312      *
313      * <p>The computed result must be within 1 ulp of the exact result.
314      * Results must be semi-monotonic.
315      *
316      * @param   a   the value whose arc tangent is to be returned.
317      * @return  the arc tangent of the argument.
318      */
319     // BEGIN Android-changed: Reimplement in native
320     /*
321     public static double atan(double a) {
322         return StrictMath.atan(a); // default impl. delegates to StrictMath
323     }
324     */
325     // END Android-changed: Reimplement in native
326     @CriticalNative
atan(double a)327     public static native double atan(double a);
328 
329     /**
330      * Converts an angle measured in degrees to an approximately
331      * equivalent angle measured in radians.  The conversion from
332      * degrees to radians is generally inexact.
333      *
334      * @param   angdeg   an angle, in degrees
335      * @return  the measurement of the angle {@code angdeg}
336      *          in radians.
337      * @since   1.2
338      */
toRadians(double angdeg)339     public static double toRadians(double angdeg) {
340         return angdeg * DEGREES_TO_RADIANS;
341     }
342 
343     /**
344      * Converts an angle measured in radians to an approximately
345      * equivalent angle measured in degrees.  The conversion from
346      * radians to degrees is generally inexact; users should
347      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
348      * equal {@code 0.0}.
349      *
350      * @param   angrad   an angle, in radians
351      * @return  the measurement of the angle {@code angrad}
352      *          in degrees.
353      * @since   1.2
354      */
toDegrees(double angrad)355     public static double toDegrees(double angrad) {
356         return angrad * RADIANS_TO_DEGREES;
357     }
358 
359     /**
360      * Returns Euler's number <i>e</i> raised to the power of a
361      * {@code double} value.  Special cases:
362      * <ul><li>If the argument is NaN, the result is NaN.
363      * <li>If the argument is positive infinity, then the result is
364      * positive infinity.
365      * <li>If the argument is negative infinity, then the result is
366      * positive zero.
367      * <li>If the argument is zero, then the result is {@code 1.0}.
368      * </ul>
369      *
370      * <p>The computed result must be within 1 ulp of the exact result.
371      * Results must be semi-monotonic.
372      *
373      * @param   a   the exponent to raise <i>e</i> to.
374      * @return  the value <i>e</i><sup>{@code a}</sup>,
375      *          where <i>e</i> is the base of the natural logarithms.
376      */
377     // BEGIN Android-changed: Reimplement in native
378     /*
379     @IntrinsicCandidate
380     public static double exp(double a) {
381         return StrictMath.exp(a); // default impl. delegates to StrictMath
382     }
383     */
384     // END Android-changed: Reimplement in native
385     @CriticalNative
exp(double a)386     public static native double exp(double a);
387 
388     /**
389      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
390      * value.  Special cases:
391      * <ul><li>If the argument is NaN or less than zero, then the result
392      * is NaN.
393      * <li>If the argument is positive infinity, then the result is
394      * positive infinity.
395      * <li>If the argument is positive zero or negative zero, then the
396      * result is negative infinity.
397      * <li>If the argument is {@code 1.0}, then the result is positive
398      * zero.
399      * </ul>
400      *
401      * <p>The computed result must be within 1 ulp of the exact result.
402      * Results must be semi-monotonic.
403      *
404      * @param   a   a value
405      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
406      *          {@code a}.
407      */
408     // BEGIN Android-changed: Reimplement in native
409     /*
410     @IntrinsicCandidate
411     public static double log(double a) {
412         return StrictMath.log(a); // default impl. delegates to StrictMath
413     }
414     */
415     // END Android-changed: Reimplement in native
416     @CriticalNative
log(double a)417     public static native double log(double a);
418 
419     /**
420      * Returns the base 10 logarithm of a {@code double} value.
421      * Special cases:
422      *
423      * <ul><li>If the argument is NaN or less than zero, then the result
424      * is NaN.
425      * <li>If the argument is positive infinity, then the result is
426      * positive infinity.
427      * <li>If the argument is positive zero or negative zero, then the
428      * result is negative infinity.
429      * <li>If the argument is equal to 10<sup><i>n</i></sup> for
430      * integer <i>n</i>, then the result is <i>n</i>. In particular,
431      * if the argument is {@code 1.0} (10<sup>0</sup>), then the
432      * result is positive zero.
433      * </ul>
434      *
435      * <p>The computed result must be within 1 ulp of the exact result.
436      * Results must be semi-monotonic.
437      *
438      * @param   a   a value
439      * @return  the base 10 logarithm of  {@code a}.
440      * @since 1.5
441      */
442     // BEGIN Android-changed: Reimplement in native
443     /*
444     @IntrinsicCandidate
445     public static double log10(double a) {
446         return StrictMath.log10(a); // default impl. delegates to StrictMath
447     }
448     */
449     // END Android-changed: Reimplement in native
450     @CriticalNative
log10(double a)451     public static native double log10(double a);
452 
453     /**
454      * Returns the correctly rounded positive square root of a
455      * {@code double} value.
456      * Special cases:
457      * <ul><li>If the argument is NaN or less than zero, then the result
458      * is NaN.
459      * <li>If the argument is positive infinity, then the result is positive
460      * infinity.
461      * <li>If the argument is positive zero or negative zero, then the
462      * result is the same as the argument.</ul>
463      * Otherwise, the result is the {@code double} value closest to
464      * the true mathematical square root of the argument value.
465      *
466      * @apiNote
467      * This method corresponds to the squareRoot operation defined in
468      * IEEE 754.
469      *
470      * @param   a   a value.
471      * @return  the positive square root of {@code a}.
472      *          If the argument is NaN or less than zero, the result is NaN.
473      */
474     // BEGIN Android-changed: Reimplement in native
475     /*
476     @IntrinsicCandidate
477     public static double sqrt(double a) {
478         return StrictMath.sqrt(a); // default impl. delegates to StrictMath
479                                    // Note that hardware sqrt instructions
480                                    // frequently can be directly used by JITs
481                                    // and should be much faster than doing
482                                    // Math.sqrt in software.
483     }
484     */
485     // END Android-changed: Reimplement in native
486     @CriticalNative
sqrt(double a)487     public static native double sqrt(double a);
488 
489 
490     /**
491      * Returns the cube root of a {@code double} value.  For
492      * positive finite {@code x}, {@code cbrt(-x) ==
493      * -cbrt(x)}; that is, the cube root of a negative value is
494      * the negative of the cube root of that value's magnitude.
495      *
496      * Special cases:
497      *
498      * <ul>
499      *
500      * <li>If the argument is NaN, then the result is NaN.
501      *
502      * <li>If the argument is infinite, then the result is an infinity
503      * with the same sign as the argument.
504      *
505      * <li>If the argument is zero, then the result is a zero with the
506      * same sign as the argument.
507      *
508      * </ul>
509      *
510      * <p>The computed result must be within 1 ulp of the exact result.
511      *
512      * @param   a   a value.
513      * @return  the cube root of {@code a}.
514      * @since 1.5
515      */
516     // BEGIN Android-changed: Reimplement in native
517     /*
518     public static double cbrt(double a) {
519         return StrictMath.cbrt(a);
520     }
521     */
522     // END Android-changed: Reimplement in native
523     @CriticalNative
cbrt(double a)524     public static native double cbrt(double a);
525 
526     /**
527      * Computes the remainder operation on two arguments as prescribed
528      * by the IEEE 754 standard.
529      * The remainder value is mathematically equal to
530      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
531      * where <i>n</i> is the mathematical integer closest to the exact
532      * mathematical value of the quotient {@code f1/f2}, and if two
533      * mathematical integers are equally close to {@code f1/f2},
534      * then <i>n</i> is the integer that is even. If the remainder is
535      * zero, its sign is the same as the sign of the first argument.
536      * Special cases:
537      * <ul><li>If either argument is NaN, or the first argument is infinite,
538      * or the second argument is positive zero or negative zero, then the
539      * result is NaN.
540      * <li>If the first argument is finite and the second argument is
541      * infinite, then the result is the same as the first argument.</ul>
542      *
543      * @param   f1   the dividend.
544      * @param   f2   the divisor.
545      * @return  the remainder when {@code f1} is divided by
546      *          {@code f2}.
547      */
548     // BEGIN Android-changed: Reimplement in native
549     /*
550     public static double IEEEremainder(double f1, double f2) {
551         return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
552     }
553     */
554     // END Android-changed: Reimplement in native
555     @CriticalNative
IEEEremainder(double f1, double f2)556     public static native double IEEEremainder(double f1, double f2);
557 
558     /**
559      * Returns the smallest (closest to negative infinity)
560      * {@code double} value that is greater than or equal to the
561      * argument and is equal to a mathematical integer. Special cases:
562      * <ul><li>If the argument value is already equal to a
563      * mathematical integer, then the result is the same as the
564      * argument.  <li>If the argument is NaN or an infinity or
565      * positive zero or negative zero, then the result is the same as
566      * the argument.  <li>If the argument value is less than zero but
567      * greater than -1.0, then the result is negative zero.</ul> Note
568      * that the value of {@code Math.ceil(x)} is exactly the
569      * value of {@code -Math.floor(-x)}.
570      *
571      * @apiNote
572      * This method corresponds to the roundToIntegralTowardPositive
573      * operation defined in IEEE 754.
574      *
575      * @param   a   a value.
576      * @return  the smallest (closest to negative infinity)
577      *          floating-point value that is greater than or equal to
578      *          the argument and is equal to a mathematical integer.
579      */
580     // BEGIN Android-changed: Reimplement in native
581     /*
582     @IntrinsicCandidate
583     public static double ceil(double a) {
584         return StrictMath.ceil(a); // default impl. delegates to StrictMath
585     }
586     */
587     // END Android-changed: Reimplement in native
588     @CriticalNative
ceil(double a)589     public static native double ceil(double a);
590 
591     /**
592      * Returns the largest (closest to positive infinity)
593      * {@code double} value that is less than or equal to the
594      * argument and is equal to a mathematical integer. Special cases:
595      * <ul><li>If the argument value is already equal to a
596      * mathematical integer, then the result is the same as the
597      * argument.  <li>If the argument is NaN or an infinity or
598      * positive zero or negative zero, then the result is the same as
599      * the argument.</ul>
600      *
601      * @apiNote
602      * This method corresponds to the roundToIntegralTowardNegative
603      * operation defined in IEEE 754.
604      *
605      * @param   a   a value.
606      * @return  the largest (closest to positive infinity)
607      *          floating-point value that less than or equal to the argument
608      *          and is equal to a mathematical integer.
609      */
610     // BEGIN Android-changed: Reimplement in native
611     /*
612     @IntrinsicCandidate
613     public static double floor(double a) {
614         return StrictMath.floor(a); // default impl. delegates to StrictMath
615     }
616     */
617     // END Android-changed: Reimplement in native
618     @CriticalNative
floor(double a)619     public static native double floor(double a);
620 
621     /**
622      * Returns the {@code double} value that is closest in value
623      * to the argument and is equal to a mathematical integer. If two
624      * {@code double} values that are mathematical integers are
625      * equally close, the result is the integer value that is
626      * even. Special cases:
627      * <ul><li>If the argument value is already equal to a mathematical
628      * integer, then the result is the same as the argument.
629      * <li>If the argument is NaN or an infinity or positive zero or negative
630      * zero, then the result is the same as the argument.</ul>
631      *
632      * @apiNote
633      * This method corresponds to the roundToIntegralTiesToEven
634      * operation defined in IEEE 754.
635      *
636      * @param   a   a {@code double} value.
637      * @return  the closest floating-point value to {@code a} that is
638      *          equal to a mathematical integer.
639      */
640     // BEGIN Android-changed: Reimplement in native
641     /*
642     @IntrinsicCandidate
643     public static double rint(double a) {
644         return StrictMath.rint(a); // default impl. delegates to StrictMath
645     }
646     */
647     // END Android-changed: Reimplement in native
648     @CriticalNative
rint(double a)649     public static native double rint(double a);
650 
651     /**
652      * Returns the angle <i>theta</i> from the conversion of rectangular
653      * coordinates ({@code x},&nbsp;{@code y}) to polar
654      * coordinates (r,&nbsp;<i>theta</i>).
655      * This method computes the phase <i>theta</i> by computing an arc tangent
656      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
657      * cases:
658      * <ul><li>If either argument is NaN, then the result is NaN.
659      * <li>If the first argument is positive zero and the second argument
660      * is positive, or the first argument is positive and finite and the
661      * second argument is positive infinity, then the result is positive
662      * zero.
663      * <li>If the first argument is negative zero and the second argument
664      * is positive, or the first argument is negative and finite and the
665      * second argument is positive infinity, then the result is negative zero.
666      * <li>If the first argument is positive zero and the second argument
667      * is negative, or the first argument is positive and finite and the
668      * second argument is negative infinity, then the result is the
669      * {@code double} value closest to <i>pi</i>.
670      * <li>If the first argument is negative zero and the second argument
671      * is negative, or the first argument is negative and finite and the
672      * second argument is negative infinity, then the result is the
673      * {@code double} value closest to -<i>pi</i>.
674      * <li>If the first argument is positive and the second argument is
675      * positive zero or negative zero, or the first argument is positive
676      * infinity and the second argument is finite, then the result is the
677      * {@code double} value closest to <i>pi</i>/2.
678      * <li>If the first argument is negative and the second argument is
679      * positive zero or negative zero, or the first argument is negative
680      * infinity and the second argument is finite, then the result is the
681      * {@code double} value closest to -<i>pi</i>/2.
682      * <li>If both arguments are positive infinity, then the result is the
683      * {@code double} value closest to <i>pi</i>/4.
684      * <li>If the first argument is positive infinity and the second argument
685      * is negative infinity, then the result is the {@code double}
686      * value closest to 3*<i>pi</i>/4.
687      * <li>If the first argument is negative infinity and the second argument
688      * is positive infinity, then the result is the {@code double} value
689      * closest to -<i>pi</i>/4.
690      * <li>If both arguments are negative infinity, then the result is the
691      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
692      *
693      * <p>The computed result must be within 2 ulps of the exact result.
694      * Results must be semi-monotonic.
695      *
696      * @apiNote
697      * For <i>y</i> with a positive sign and finite nonzero
698      * <i>x</i>, the exact mathematical value of {@code atan2} is
699      * equal to:
700      * <ul>
701      * <li>If <i>x</i> {@literal >} 0, atan(abs(<i>y</i>/<i>x</i>))
702      * <li>If <i>x</i> {@literal <} 0, &pi; - atan(abs(<i>y</i>/<i>x</i>))
703      * </ul>
704      *
705      * @param   y   the ordinate coordinate
706      * @param   x   the abscissa coordinate
707      * @return  the <i>theta</i> component of the point
708      *          (<i>r</i>,&nbsp;<i>theta</i>)
709      *          in polar coordinates that corresponds to the point
710      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
711      */
712     // BEGIN Android-changed: Reimplement in native
713     /*
714     @IntrinsicCandidate
715     public static double atan2(double y, double x) {
716         return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
717     }
718     */
719     // END Android-changed: Reimplement in native
720     @CriticalNative
atan2(double y, double x)721     public static native double atan2(double y, double x);
722 
723     // Android-changed: Document that the results from Math are based on libm's behavior.
724     // The cases known to differ with libm's pow():
725     //   If the first argument is 1.0 then result is always 1.0 (not NaN).
726     //   If the first argument is -1.0 and the second argument is infinite, the result is 1.0 (not
727     //   NaN).
728     /**
729      * Returns the value of the first argument raised to the power of the
730      * second argument. Special cases:
731      *
732      * <ul><li>If the second argument is positive or negative zero, then the
733      * result is 1.0.
734      * <li>If the second argument is 1.0, then the result is the same as the
735      * first argument.
736      * <li>If the first argument is 1.0, then the result is 1.0.
737      * <li>If the second argument is NaN, then the result is NaN except where the first argument is
738      * 1.0.
739      * <li>If the first argument is NaN and the second argument is nonzero,
740      * then the result is NaN.
741      *
742      * <li>If
743      * <ul>
744      * <li>the absolute value of the first argument is greater than 1
745      * and the second argument is positive infinity, or
746      * <li>the absolute value of the first argument is less than 1 and
747      * the second argument is negative infinity,
748      * </ul>
749      * then the result is positive infinity.
750      *
751      * <li>If
752      * <ul>
753      * <li>the absolute value of the first argument is greater than 1 and
754      * the second argument is negative infinity, or
755      * <li>the absolute value of the
756      * first argument is less than 1 and the second argument is positive
757      * infinity,
758      * </ul>
759      * then the result is positive zero.
760      *
761      * <li>If the absolute value of the first argument equals 1 and the
762      * second argument is infinite, then the result is 1.0.
763      *
764      * <li>If
765      * <ul>
766      * <li>the first argument is positive zero and the second argument
767      * is greater than zero, or
768      * <li>the first argument is positive infinity and the second
769      * argument is less than zero,
770      * </ul>
771      * then the result is positive zero.
772      *
773      * <li>If
774      * <ul>
775      * <li>the first argument is positive zero and the second argument
776      * is less than zero, or
777      * <li>the first argument is positive infinity and the second
778      * argument is greater than zero,
779      * </ul>
780      * then the result is positive infinity.
781      *
782      * <li>If
783      * <ul>
784      * <li>the first argument is negative zero and the second argument
785      * is greater than zero but not a finite odd integer, or
786      * <li>the first argument is negative infinity and the second
787      * argument is less than zero but not a finite odd integer,
788      * </ul>
789      * then the result is positive zero.
790      *
791      * <li>If
792      * <ul>
793      * <li>the first argument is negative zero and the second argument
794      * is a positive finite odd integer, or
795      * <li>the first argument is negative infinity and the second
796      * argument is a negative finite odd integer,
797      * </ul>
798      * then the result is negative zero.
799      *
800      * <li>If
801      * <ul>
802      * <li>the first argument is negative zero and the second argument
803      * is less than zero but not a finite odd integer, or
804      * <li>the first argument is negative infinity and the second
805      * argument is greater than zero but not a finite odd integer,
806      * </ul>
807      * then the result is positive infinity.
808      *
809      * <li>If
810      * <ul>
811      * <li>the first argument is negative zero and the second argument
812      * is a negative finite odd integer, or
813      * <li>the first argument is negative infinity and the second
814      * argument is a positive finite odd integer,
815      * </ul>
816      * then the result is negative infinity.
817      *
818      * <li>If the first argument is finite and less than zero
819      * <ul>
820      * <li> if the second argument is a finite even integer, the
821      * result is equal to the result of raising the absolute value of
822      * the first argument to the power of the second argument
823      *
824      * <li>if the second argument is a finite odd integer, the result
825      * is equal to the negative of the result of raising the absolute
826      * value of the first argument to the power of the second
827      * argument
828      *
829      * <li>if the second argument is finite and not an integer, then
830      * the result is NaN.
831      * </ul>
832      *
833      * <li>If both arguments are integers, then the result is exactly equal
834      * to the mathematical result of raising the first argument to the power
835      * of the second argument if that result can in fact be represented
836      * exactly as a {@code double} value.</ul>
837      *
838      * <p>(In the foregoing descriptions, a floating-point value is
839      * considered to be an integer if and only if it is finite and a
840      * fixed point of the method {@link #ceil ceil} or,
841      * equivalently, a fixed point of the method {@link #floor
842      * floor}. A value is a fixed point of a one-argument
843      * method if and only if the result of applying the method to the
844      * value is equal to the value.)
845      *
846      * <p>The computed result must be within 1 ulp of the exact result.
847      * Results must be semi-monotonic.
848      *
849      * @apiNote
850      * The special cases definitions of this method differ from the
851      * special case definitions of the IEEE 754 recommended {@code
852      * pow} operation for &plusmn;{@code 1.0} raised to an infinite
853      * power. This method treats such cases as indeterminate and
854      * specifies a NaN is returned. The IEEE 754 specification treats
855      * the infinite power as a large integer (large-magnitude
856      * floating-point numbers are numerically integers, specifically
857      * even integers) and therefore specifies {@code 1.0} be returned.
858      *
859      * @param   a   the base.
860      * @param   b   the exponent.
861      * @return  the value {@code a}<sup>{@code b}</sup>.
862      */
863     // BEGIN Android-changed: Reimplement in native
864     /*
865     @IntrinsicCandidate
866     public static double pow(double a, double b) {
867         return StrictMath.pow(a, b); // default impl. delegates to StrictMath
868     }
869     */
870     // END Android-changed: Reimplement in native
871     @CriticalNative
pow(double a, double b)872     public static native double pow(double a, double b);
873 
874     /**
875      * Returns the closest {@code int} to the argument, with ties
876      * rounding to positive infinity.
877      *
878      * <p>
879      * Special cases:
880      * <ul><li>If the argument is NaN, the result is 0.
881      * <li>If the argument is negative infinity or any value less than or
882      * equal to the value of {@code Integer.MIN_VALUE}, the result is
883      * equal to the value of {@code Integer.MIN_VALUE}.
884      * <li>If the argument is positive infinity or any value greater than or
885      * equal to the value of {@code Integer.MAX_VALUE}, the result is
886      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
887      *
888      * @param   a   a floating-point value to be rounded to an integer.
889      * @return  the value of the argument rounded to the nearest
890      *          {@code int} value.
891      * @see     java.lang.Integer#MAX_VALUE
892      * @see     java.lang.Integer#MIN_VALUE
893      */
894     @IntrinsicCandidate
round(float a)895     public static int round(float a) {
896         int intBits = Float.floatToRawIntBits(a);
897         int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK)
898                 >> (FloatConsts.SIGNIFICAND_WIDTH - 1);
899         int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2
900                 + FloatConsts.EXP_BIAS) - biasedExp;
901         if ((shift & -32) == 0) { // shift >= 0 && shift < 32
902             // a is a finite number such that pow(2,-32) <= ulp(a) < 1
903             int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK)
904                     | (FloatConsts.SIGNIF_BIT_MASK + 1));
905             if (intBits < 0) {
906                 r = -r;
907             }
908             // In the comments below each Java expression evaluates to the value
909             // the corresponding mathematical expression:
910             // (r) evaluates to a / ulp(a)
911             // (r >> shift) evaluates to floor(a * 2)
912             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
913             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
914             return ((r >> shift) + 1) >> 1;
915         } else {
916             // a is either
917             // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2
918             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
919             // - an infinity or NaN
920             return (int) a;
921         }
922     }
923 
924     /**
925      * Returns the closest {@code long} to the argument, with ties
926      * rounding to positive infinity.
927      *
928      * <p>Special cases:
929      * <ul><li>If the argument is NaN, the result is 0.
930      * <li>If the argument is negative infinity or any value less than or
931      * equal to the value of {@code Long.MIN_VALUE}, the result is
932      * equal to the value of {@code Long.MIN_VALUE}.
933      * <li>If the argument is positive infinity or any value greater than or
934      * equal to the value of {@code Long.MAX_VALUE}, the result is
935      * equal to the value of {@code Long.MAX_VALUE}.</ul>
936      *
937      * @param   a   a floating-point value to be rounded to a
938      *          {@code long}.
939      * @return  the value of the argument rounded to the nearest
940      *          {@code long} value.
941      * @see     java.lang.Long#MAX_VALUE
942      * @see     java.lang.Long#MIN_VALUE
943      */
944     @IntrinsicCandidate
round(double a)945     public static long round(double a) {
946         long longBits = Double.doubleToRawLongBits(a);
947         long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK)
948                 >> (DoubleConsts.SIGNIFICAND_WIDTH - 1);
949         long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2
950                 + DoubleConsts.EXP_BIAS) - biasedExp;
951         if ((shift & -64) == 0) { // shift >= 0 && shift < 64
952             // a is a finite number such that pow(2,-64) <= ulp(a) < 1
953             long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK)
954                     | (DoubleConsts.SIGNIF_BIT_MASK + 1));
955             if (longBits < 0) {
956                 r = -r;
957             }
958             // In the comments below each Java expression evaluates to the value
959             // the corresponding mathematical expression:
960             // (r) evaluates to a / ulp(a)
961             // (r >> shift) evaluates to floor(a * 2)
962             // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2)
963             // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2)
964             return ((r >> shift) + 1) >> 1;
965         } else {
966             // a is either
967             // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2
968             // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer
969             // - an infinity or NaN
970             return (long) a;
971         }
972     }
973 
974     private static final class RandomNumberGeneratorHolder {
975         static final Random randomNumberGenerator = new Random();
976     }
977 
978     /**
979      * Returns a {@code double} value with a positive sign, greater
980      * than or equal to {@code 0.0} and less than {@code 1.0}.
981      * Returned values are chosen pseudorandomly with (approximately)
982      * uniform distribution from that range.
983      *
984      * <p>When this method is first called, it creates a single new
985      * pseudorandom-number generator, exactly as if by the expression
986      *
987      * <blockquote>{@code new java.util.Random()}</blockquote>
988      *
989      * This new pseudorandom-number generator is used thereafter for
990      * all calls to this method and is used nowhere else.
991      *
992      * <p>This method is properly synchronized to allow correct use by
993      * more than one thread. However, if many threads need to generate
994      * pseudorandom numbers at a great rate, it may reduce contention
995      * for each thread to have its own pseudorandom-number generator.
996      *
997      * @apiNote
998      * As the largest {@code double} value less than {@code 1.0}
999      * is {@code Math.nextDown(1.0)}, a value {@code x} in the closed range
1000      * {@code [x1,x2]} where {@code x1<=x2} may be defined by the statements
1001      *
1002      * <blockquote><pre>{@code
1003      * double f = Math.random()/Math.nextDown(1.0);
1004      * double x = x1*(1.0 - f) + x2*f;
1005      * }</pre></blockquote>
1006      *
1007      * @return  a pseudorandom {@code double} greater than or equal
1008      * to {@code 0.0} and less than {@code 1.0}.
1009      * @see #nextDown(double)
1010      * @see Random#nextDouble()
1011      */
random()1012     public static double random() {
1013         return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
1014     }
1015 
1016     // Android-added: setRandomSeedInternal(long), called after zygote forks.
1017     // This allows different processes to have different random seeds.
1018     /**
1019      * Set the seed for the pseudo random generator used by {@link #random()}
1020      * and {@link #randomIntInternal()}.
1021      *
1022      * @hide for internal use only.
1023      */
setRandomSeedInternal(long seed)1024     public static void setRandomSeedInternal(long seed) {
1025         RandomNumberGeneratorHolder.randomNumberGenerator.setSeed(seed);
1026     }
1027 
1028     // Android-added: randomIntInternal() method: like random() but for int.
1029     /**
1030      * @hide for internal use only.
1031      */
randomIntInternal()1032     public static int randomIntInternal() {
1033         return RandomNumberGeneratorHolder.randomNumberGenerator.nextInt();
1034     }
1035 
1036     // Android-added: randomLongInternal() method: like random() but for long.
1037     /**
1038      * @hide for internal use only.
1039      */
randomLongInternal()1040     public static long randomLongInternal() {
1041         return RandomNumberGeneratorHolder.randomNumberGenerator.nextLong();
1042     }
1043 
1044     /**
1045      * Returns the sum of its arguments,
1046      * throwing an exception if the result overflows an {@code int}.
1047      *
1048      * @param x the first value
1049      * @param y the second value
1050      * @return the result
1051      * @throws ArithmeticException if the result overflows an int
1052      * @since 1.8
1053      */
1054     @IntrinsicCandidate
addExact(int x, int y)1055     public static int addExact(int x, int y) {
1056         int r = x + y;
1057         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
1058         if (((x ^ r) & (y ^ r)) < 0) {
1059             throw new ArithmeticException("integer overflow");
1060         }
1061         return r;
1062     }
1063 
1064     /**
1065      * Returns the sum of its arguments,
1066      * throwing an exception if the result overflows a {@code long}.
1067      *
1068      * @param x the first value
1069      * @param y the second value
1070      * @return the result
1071      * @throws ArithmeticException if the result overflows a long
1072      * @since 1.8
1073      */
1074     @IntrinsicCandidate
addExact(long x, long y)1075     public static long addExact(long x, long y) {
1076         long r = x + y;
1077         // HD 2-12 Overflow iff both arguments have the opposite sign of the result
1078         if (((x ^ r) & (y ^ r)) < 0) {
1079             throw new ArithmeticException("long overflow");
1080         }
1081         return r;
1082     }
1083 
1084     /**
1085      * Returns the difference of the arguments,
1086      * throwing an exception if the result overflows an {@code int}.
1087      *
1088      * @param x the first value
1089      * @param y the second value to subtract from the first
1090      * @return the result
1091      * @throws ArithmeticException if the result overflows an int
1092      * @since 1.8
1093      */
1094     @IntrinsicCandidate
subtractExact(int x, int y)1095     public static int subtractExact(int x, int y) {
1096         int r = x - y;
1097         // HD 2-12 Overflow iff the arguments have different signs and
1098         // the sign of the result is different from the sign of x
1099         if (((x ^ y) & (x ^ r)) < 0) {
1100             throw new ArithmeticException("integer overflow");
1101         }
1102         return r;
1103     }
1104 
1105     /**
1106      * Returns the difference of the arguments,
1107      * throwing an exception if the result overflows a {@code long}.
1108      *
1109      * @param x the first value
1110      * @param y the second value to subtract from the first
1111      * @return the result
1112      * @throws ArithmeticException if the result overflows a long
1113      * @since 1.8
1114      */
1115     @IntrinsicCandidate
subtractExact(long x, long y)1116     public static long subtractExact(long x, long y) {
1117         long r = x - y;
1118         // HD 2-12 Overflow iff the arguments have different signs and
1119         // the sign of the result is different from the sign of x
1120         if (((x ^ y) & (x ^ r)) < 0) {
1121             throw new ArithmeticException("long overflow");
1122         }
1123         return r;
1124     }
1125 
1126     /**
1127      * Returns the product of the arguments,
1128      * throwing an exception if the result overflows an {@code int}.
1129      *
1130      * @param x the first value
1131      * @param y the second value
1132      * @return the result
1133      * @throws ArithmeticException if the result overflows an int
1134      * @since 1.8
1135      */
1136     @IntrinsicCandidate
multiplyExact(int x, int y)1137     public static int multiplyExact(int x, int y) {
1138         long r = (long)x * (long)y;
1139         if ((int)r != r) {
1140             throw new ArithmeticException("integer overflow");
1141         }
1142         return (int)r;
1143     }
1144 
1145     /**
1146      * Returns the product of the arguments, throwing an exception if the result
1147      * overflows a {@code long}.
1148      *
1149      * @param x the first value
1150      * @param y the second value
1151      * @return the result
1152      * @throws ArithmeticException if the result overflows a long
1153      * @since 9
1154      */
multiplyExact(long x, int y)1155     public static long multiplyExact(long x, int y) {
1156         return multiplyExact(x, (long)y);
1157     }
1158 
1159     /**
1160      * Returns the product of the arguments,
1161      * throwing an exception if the result overflows a {@code long}.
1162      *
1163      * @param x the first value
1164      * @param y the second value
1165      * @return the result
1166      * @throws ArithmeticException if the result overflows a long
1167      * @since 1.8
1168      */
1169     @IntrinsicCandidate
multiplyExact(long x, long y)1170     public static long multiplyExact(long x, long y) {
1171         long r = x * y;
1172         long ax = Math.abs(x);
1173         long ay = Math.abs(y);
1174         if (((ax | ay) >>> 31 != 0)) {
1175             // Some bits greater than 2^31 that might cause overflow
1176             // Check the result using the divide operator
1177             // and check for the special case of Long.MIN_VALUE * -1
1178            if (((y != 0) && (r / y != x)) ||
1179                (x == Long.MIN_VALUE && y == -1)) {
1180                 throw new ArithmeticException("long overflow");
1181             }
1182         }
1183         return r;
1184     }
1185 
1186     /**
1187      * Returns the quotient of the arguments, throwing an exception if the
1188      * result overflows an {@code int}.  Such overflow occurs in this method if
1189      * {@code x} is {@link Integer#MIN_VALUE} and {@code y} is {@code -1}.
1190      * In contrast, if {@code Integer.MIN_VALUE / -1} were evaluated directly,
1191      * the result would be {@code Integer.MIN_VALUE} and no exception would be
1192      * thrown.
1193      * <p>
1194      * If {@code y} is zero, an {@code ArithmeticException} is thrown
1195      * (JLS {@jls 15.17.2}).
1196      * <p>
1197      * The built-in remainder operator "{@code %}" is a suitable counterpart
1198      * both for this method and for the built-in division operator "{@code /}".
1199      *
1200      * @param x the dividend
1201      * @param y the divisor
1202      * @return the quotient {@code x / y}
1203      * @throws ArithmeticException if {@code y} is zero or the quotient
1204      * overflows an int
1205      * @jls 15.17.2 Division Operator /
1206      * @since 18
1207      */
divideExact(int x, int y)1208     public static int divideExact(int x, int y) {
1209         int q = x / y;
1210         if ((x & y & q) >= 0) {
1211             return q;
1212         }
1213         throw new ArithmeticException("integer overflow");
1214     }
1215 
1216     /**
1217      * Returns the quotient of the arguments, throwing an exception if the
1218      * result overflows a {@code long}.  Such overflow occurs in this method if
1219      * {@code x} is {@link Long#MIN_VALUE} and {@code y} is {@code -1}.
1220      * In contrast, if {@code Long.MIN_VALUE / -1} were evaluated directly,
1221      * the result would be {@code Long.MIN_VALUE} and no exception would be
1222      * thrown.
1223      * <p>
1224      * If {@code y} is zero, an {@code ArithmeticException} is thrown
1225      * (JLS {@jls 15.17.2}).
1226      * <p>
1227      * The built-in remainder operator "{@code %}" is a suitable counterpart
1228      * both for this method and for the built-in division operator "{@code /}".
1229      *
1230      * @param x the dividend
1231      * @param y the divisor
1232      * @return the quotient {@code x / y}
1233      * @throws ArithmeticException if {@code y} is zero or the quotient
1234      * overflows a long
1235      * @jls 15.17.2 Division Operator /
1236      * @since 18
1237      */
divideExact(long x, long y)1238     public static long divideExact(long x, long y) {
1239         long q = x / y;
1240         if ((x & y & q) >= 0) {
1241             return q;
1242         }
1243         throw new ArithmeticException("long overflow");
1244     }
1245 
1246     /**
1247      * Returns the largest (closest to positive infinity)
1248      * {@code int} value that is less than or equal to the algebraic quotient.
1249      * This method is identical to {@link #floorDiv(int,int)} except that it
1250      * throws an {@code ArithmeticException} when the dividend is
1251      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is
1252      * {@code -1} instead of ignoring the integer overflow and returning
1253      * {@code Integer.MIN_VALUE}.
1254      * <p>
1255      * The floor modulus method {@link #floorMod(int,int)} is a suitable
1256      * counterpart both for this method and for the {@link #floorDiv(int,int)}
1257      * method.
1258      * <p>
1259      * For examples, see {@link #floorDiv(int, int)}.
1260      *
1261      * @param x the dividend
1262      * @param y the divisor
1263      * @return the largest (closest to positive infinity)
1264      * {@code int} value that is less than or equal to the algebraic quotient.
1265      * @throws ArithmeticException if the divisor {@code y} is zero, or the
1266      * dividend {@code x} is {@code Integer.MIN_VALUE} and the divisor {@code y}
1267      * is {@code -1}.
1268      * @see #floorDiv(int, int)
1269      * @since 18
1270      */
floorDivExact(int x, int y)1271     public static int floorDivExact(int x, int y) {
1272         final int q = x / y;
1273         if ((x & y & q) >= 0) {
1274             // if the signs are different and modulo not zero, round down
1275             if ((x ^ y) < 0 && (q * y != x)) {
1276                 return q - 1;
1277             }
1278             return q;
1279         }
1280         throw new ArithmeticException("integer overflow");
1281     }
1282 
1283     /**
1284      * Returns the largest (closest to positive infinity)
1285      * {@code long} value that is less than or equal to the algebraic quotient.
1286      * This method is identical to {@link #floorDiv(long,long)} except that it
1287      * throws an {@code ArithmeticException} when the dividend is
1288      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is
1289      * {@code -1} instead of ignoring the integer overflow and returning
1290      * {@code Long.MIN_VALUE}.
1291      * <p>
1292      * The floor modulus method {@link #floorMod(long,long)} is a suitable
1293      * counterpart both for this method and for the {@link #floorDiv(long,long)}
1294      * method.
1295      * <p>
1296      * For examples, see {@link #floorDiv(int, int)}.
1297      *
1298      * @param x the dividend
1299      * @param y the divisor
1300      * @return the largest (closest to positive infinity)
1301      * {@code long} value that is less than or equal to the algebraic quotient.
1302      * @throws ArithmeticException if the divisor {@code y} is zero, or the
1303      * dividend {@code x} is {@code Long.MIN_VALUE} and the divisor {@code y}
1304      * is {@code -1}.
1305      * @see #floorDiv(long,long)
1306      * @since 18
1307      */
floorDivExact(long x, long y)1308     public static long floorDivExact(long x, long y) {
1309         final long q = x / y;
1310         if ((x & y & q) >= 0) {
1311             // if the signs are different and modulo not zero, round down
1312             if ((x ^ y) < 0 && (q * y != x)) {
1313                 return q - 1;
1314             }
1315             return q;
1316         }
1317         throw new ArithmeticException("long overflow");
1318     }
1319 
1320     /**
1321      * Returns the smallest (closest to negative infinity)
1322      * {@code int} value that is greater than or equal to the algebraic quotient.
1323      * This method is identical to {@link #ceilDiv(int,int)} except that it
1324      * throws an {@code ArithmeticException} when the dividend is
1325      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is
1326      * {@code -1} instead of ignoring the integer overflow and returning
1327      * {@code Integer.MIN_VALUE}.
1328      * <p>
1329      * The ceil modulus method {@link #ceilMod(int,int)} is a suitable
1330      * counterpart both for this method and for the {@link #ceilDiv(int,int)}
1331      * method.
1332      * <p>
1333      * For examples, see {@link #ceilDiv(int, int)}.
1334      *
1335      * @param x the dividend
1336      * @param y the divisor
1337      * @return the smallest (closest to negative infinity)
1338      * {@code int} value that is greater than or equal to the algebraic quotient.
1339      * @throws ArithmeticException if the divisor {@code y} is zero, or the
1340      * dividend {@code x} is {@code Integer.MIN_VALUE} and the divisor {@code y}
1341      * is {@code -1}.
1342      * @see #ceilDiv(int, int)
1343      * @since 18
1344      */
ceilDivExact(int x, int y)1345     public static int ceilDivExact(int x, int y) {
1346         final int q = x / y;
1347         if ((x & y & q) >= 0) {
1348             // if the signs are the same and modulo not zero, round up
1349             if ((x ^ y) >= 0 && (q * y != x)) {
1350                 return q + 1;
1351             }
1352             return q;
1353         }
1354         throw new ArithmeticException("integer overflow");
1355     }
1356 
1357     /**
1358      * Returns the smallest (closest to negative infinity)
1359      * {@code long} value that is greater than or equal to the algebraic quotient.
1360      * This method is identical to {@link #ceilDiv(long,long)} except that it
1361      * throws an {@code ArithmeticException} when the dividend is
1362      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is
1363      * {@code -1} instead of ignoring the integer overflow and returning
1364      * {@code Long.MIN_VALUE}.
1365      * <p>
1366      * The ceil modulus method {@link #ceilMod(long,long)} is a suitable
1367      * counterpart both for this method and for the {@link #ceilDiv(long,long)}
1368      * method.
1369      * <p>
1370      * For examples, see {@link #ceilDiv(int, int)}.
1371      *
1372      * @param x the dividend
1373      * @param y the divisor
1374      * @return the smallest (closest to negative infinity)
1375      * {@code long} value that is greater than or equal to the algebraic quotient.
1376      * @throws ArithmeticException if the divisor {@code y} is zero, or the
1377      * dividend {@code x} is {@code Long.MIN_VALUE} and the divisor {@code y}
1378      * is {@code -1}.
1379      * @see #ceilDiv(long,long)
1380      * @since 18
1381      */
ceilDivExact(long x, long y)1382     public static long ceilDivExact(long x, long y) {
1383         final long q = x / y;
1384         if ((x & y & q) >= 0) {
1385             // if the signs are the same and modulo not zero, round up
1386             if ((x ^ y) >= 0 && (q * y != x)) {
1387                 return q + 1;
1388             }
1389             return q;
1390         }
1391         throw new ArithmeticException("long overflow");
1392     }
1393 
1394     /**
1395      * Returns the argument incremented by one, throwing an exception if the
1396      * result overflows an {@code int}.
1397      * The overflow only occurs for {@linkplain Integer#MAX_VALUE the maximum value}.
1398      *
1399      * @param a the value to increment
1400      * @return the result
1401      * @throws ArithmeticException if the result overflows an int
1402      * @since 1.8
1403      */
1404     @IntrinsicCandidate
incrementExact(int a)1405     public static int incrementExact(int a) {
1406         if (a == Integer.MAX_VALUE) {
1407             throw new ArithmeticException("integer overflow");
1408         }
1409 
1410         return a + 1;
1411     }
1412 
1413     /**
1414      * Returns the argument incremented by one, throwing an exception if the
1415      * result overflows a {@code long}.
1416      * The overflow only occurs for {@linkplain Long#MAX_VALUE the maximum value}.
1417      *
1418      * @param a the value to increment
1419      * @return the result
1420      * @throws ArithmeticException if the result overflows a long
1421      * @since 1.8
1422      */
1423     @IntrinsicCandidate
incrementExact(long a)1424     public static long incrementExact(long a) {
1425         if (a == Long.MAX_VALUE) {
1426             throw new ArithmeticException("long overflow");
1427         }
1428 
1429         return a + 1L;
1430     }
1431 
1432     /**
1433      * Returns the argument decremented by one, throwing an exception if the
1434      * result overflows an {@code int}.
1435      * The overflow only occurs for {@linkplain Integer#MIN_VALUE the minimum value}.
1436      *
1437      * @param a the value to decrement
1438      * @return the result
1439      * @throws ArithmeticException if the result overflows an int
1440      * @since 1.8
1441      */
1442     @IntrinsicCandidate
decrementExact(int a)1443     public static int decrementExact(int a) {
1444         if (a == Integer.MIN_VALUE) {
1445             throw new ArithmeticException("integer overflow");
1446         }
1447 
1448         return a - 1;
1449     }
1450 
1451     /**
1452      * Returns the argument decremented by one, throwing an exception if the
1453      * result overflows a {@code long}.
1454      * The overflow only occurs for {@linkplain Long#MIN_VALUE the minimum value}.
1455      *
1456      * @param a the value to decrement
1457      * @return the result
1458      * @throws ArithmeticException if the result overflows a long
1459      * @since 1.8
1460      */
1461     @IntrinsicCandidate
decrementExact(long a)1462     public static long decrementExact(long a) {
1463         if (a == Long.MIN_VALUE) {
1464             throw new ArithmeticException("long overflow");
1465         }
1466 
1467         return a - 1L;
1468     }
1469 
1470     /**
1471      * Returns the negation of the argument, throwing an exception if the
1472      * result overflows an {@code int}.
1473      * The overflow only occurs for {@linkplain Integer#MIN_VALUE the minimum value}.
1474      *
1475      * @param a the value to negate
1476      * @return the result
1477      * @throws ArithmeticException if the result overflows an int
1478      * @since 1.8
1479      */
1480     @IntrinsicCandidate
negateExact(int a)1481     public static int negateExact(int a) {
1482         if (a == Integer.MIN_VALUE) {
1483             throw new ArithmeticException("integer overflow");
1484         }
1485 
1486         return -a;
1487     }
1488 
1489     /**
1490      * Returns the negation of the argument, throwing an exception if the
1491      * result overflows a {@code long}.
1492      * The overflow only occurs for {@linkplain Long#MIN_VALUE the minimum value}.
1493      *
1494      * @param a the value to negate
1495      * @return the result
1496      * @throws ArithmeticException if the result overflows a long
1497      * @since 1.8
1498      */
1499     @IntrinsicCandidate
negateExact(long a)1500     public static long negateExact(long a) {
1501         if (a == Long.MIN_VALUE) {
1502             throw new ArithmeticException("long overflow");
1503         }
1504 
1505         return -a;
1506     }
1507 
1508     /**
1509      * Returns the value of the {@code long} argument,
1510      * throwing an exception if the value overflows an {@code int}.
1511      *
1512      * @param value the long value
1513      * @return the argument as an int
1514      * @throws ArithmeticException if the {@code argument} overflows an int
1515      * @since 1.8
1516      */
toIntExact(long value)1517     public static int toIntExact(long value) {
1518         if ((int)value != value) {
1519             throw new ArithmeticException("integer overflow");
1520         }
1521         return (int)value;
1522     }
1523 
1524     /**
1525      * Returns the exact mathematical product of the arguments.
1526      *
1527      * @param x the first value
1528      * @param y the second value
1529      * @return the result
1530      * @since 9
1531      */
multiplyFull(int x, int y)1532     public static long multiplyFull(int x, int y) {
1533         return (long)x * (long)y;
1534     }
1535 
1536     /**
1537      * Returns as a {@code long} the most significant 64 bits of the 128-bit
1538      * product of two 64-bit factors.
1539      *
1540      * @param x the first value
1541      * @param y the second value
1542      * @return the result
1543      * @see #unsignedMultiplyHigh
1544      * @since 9
1545      */
1546     @IntrinsicCandidate
multiplyHigh(long x, long y)1547     public static long multiplyHigh(long x, long y) {
1548         // Use technique from section 8-2 of Henry S. Warren, Jr.,
1549         // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174.
1550         long x1 = x >> 32;
1551         long x2 = x & 0xFFFFFFFFL;
1552         long y1 = y >> 32;
1553         long y2 = y & 0xFFFFFFFFL;
1554 
1555         long z2 = x2 * y2;
1556         long t = x1 * y2 + (z2 >>> 32);
1557         long z1 = t & 0xFFFFFFFFL;
1558         long z0 = t >> 32;
1559         z1 += x2 * y1;
1560 
1561         return x1 * y1 + z0 + (z1 >> 32);
1562     }
1563 
1564     /**
1565      * Returns as a {@code long} the most significant 64 bits of the unsigned
1566      * 128-bit product of two unsigned 64-bit factors.
1567      *
1568      * @param x the first value
1569      * @param y the second value
1570      * @return the result
1571      * @see #multiplyHigh
1572      * @since 18
1573      */
1574     @IntrinsicCandidate
unsignedMultiplyHigh(long x, long y)1575     public static long unsignedMultiplyHigh(long x, long y) {
1576         // Compute via multiplyHigh() to leverage the intrinsic
1577         long result = Math.multiplyHigh(x, y);
1578         result += (y & (x >> 63)); // equivalent to `if (x < 0) result += y;`
1579         result += (x & (y >> 63)); // equivalent to `if (y < 0) result += x;`
1580         return result;
1581     }
1582 
1583     /**
1584      * Returns the largest (closest to positive infinity)
1585      * {@code int} value that is less than or equal to the algebraic quotient.
1586      * There is one special case: if the dividend is
1587      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
1588      * then integer overflow occurs and
1589      * the result is equal to {@code Integer.MIN_VALUE}.
1590      * <p>
1591      * Normal integer division operates under the round to zero rounding mode
1592      * (truncation).  This operation instead acts under the round toward
1593      * negative infinity (floor) rounding mode.
1594      * The floor rounding mode gives different results from truncation
1595      * when the exact quotient is not an integer and is negative.
1596      * <ul>
1597      *   <li>If the signs of the arguments are the same, the results of
1598      *       {@code floorDiv} and the {@code /} operator are the same.  <br>
1599      *       For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li>
1600      *   <li>If the signs of the arguments are different, {@code floorDiv}
1601      *       returns the largest integer less than or equal to the quotient
1602      *       while the {@code /} operator returns the smallest integer greater
1603      *       than or equal to the quotient.
1604      *       They differ if and only if the quotient is not an integer.<br>
1605      *       For example, {@code floorDiv(-4, 3) == -2},
1606      *       whereas {@code (-4 / 3) == -1}.
1607      *   </li>
1608      * </ul>
1609      *
1610      * @param x the dividend
1611      * @param y the divisor
1612      * @return the largest (closest to positive infinity)
1613      * {@code int} value that is less than or equal to the algebraic quotient.
1614      * @throws ArithmeticException if the divisor {@code y} is zero
1615      * @see #floorMod(int, int)
1616      * @see #floor(double)
1617      * @since 1.8
1618      */
floorDiv(int x, int y)1619     public static int floorDiv(int x, int y) {
1620         final int q = x / y;
1621         // if the signs are different and modulo not zero, round down
1622         if ((x ^ y) < 0 && (q * y != x)) {
1623             return q - 1;
1624         }
1625         return q;
1626     }
1627 
1628     /**
1629      * Returns the largest (closest to positive infinity)
1630      * {@code long} value that is less than or equal to the algebraic quotient.
1631      * There is one special case: if the dividend is
1632      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1633      * then integer overflow occurs and
1634      * the result is equal to {@code Long.MIN_VALUE}.
1635      * <p>
1636      * Normal integer division operates under the round to zero rounding mode
1637      * (truncation).  This operation instead acts under the round toward
1638      * negative infinity (floor) rounding mode.
1639      * The floor rounding mode gives different results from truncation
1640      * when the exact result is not an integer and is negative.
1641      * <p>
1642      * For examples, see {@link #floorDiv(int, int)}.
1643      *
1644      * @param x the dividend
1645      * @param y the divisor
1646      * @return the largest (closest to positive infinity)
1647      * {@code long} value that is less than or equal to the algebraic quotient.
1648      * @throws ArithmeticException if the divisor {@code y} is zero
1649      * @see #floorMod(long, int)
1650      * @see #floor(double)
1651      * @since 9
1652      */
floorDiv(long x, int y)1653     public static long floorDiv(long x, int y) {
1654         return floorDiv(x, (long)y);
1655     }
1656 
1657     /**
1658      * Returns the largest (closest to positive infinity)
1659      * {@code long} value that is less than or equal to the algebraic quotient.
1660      * There is one special case: if the dividend is
1661      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1662      * then integer overflow occurs and
1663      * the result is equal to {@code Long.MIN_VALUE}.
1664      * <p>
1665      * Normal integer division operates under the round to zero rounding mode
1666      * (truncation).  This operation instead acts under the round toward
1667      * negative infinity (floor) rounding mode.
1668      * The floor rounding mode gives different results from truncation
1669      * when the exact result is not an integer and is negative.
1670      * <p>
1671      * For examples, see {@link #floorDiv(int, int)}.
1672      *
1673      * @param x the dividend
1674      * @param y the divisor
1675      * @return the largest (closest to positive infinity)
1676      * {@code long} value that is less than or equal to the algebraic quotient.
1677      * @throws ArithmeticException if the divisor {@code y} is zero
1678      * @see #floorMod(long, long)
1679      * @see #floor(double)
1680      * @since 1.8
1681      */
floorDiv(long x, long y)1682     public static long floorDiv(long x, long y) {
1683         final long q = x / y;
1684         // if the signs are different and modulo not zero, round down
1685         if ((x ^ y) < 0 && (q * y != x)) {
1686             return q - 1;
1687         }
1688         return q;
1689     }
1690 
1691     /**
1692      * Returns the floor modulus of the {@code int} arguments.
1693      * <p>
1694      * The floor modulus is {@code r = x - (floorDiv(x, y) * y)},
1695      * has the same sign as the divisor {@code y} or is zero, and
1696      * is in the range of {@code -abs(y) < r < +abs(y)}.
1697      *
1698      * <p>
1699      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1700      * <ul>
1701      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}</li>
1702      * </ul>
1703      * <p>
1704      * The difference in values between {@code floorMod} and the {@code %} operator
1705      * is due to the difference between {@code floorDiv} and the {@code /}
1706      * operator, as detailed in {@linkplain #floorDiv(int, int)}.
1707      * <p>
1708      * Examples:
1709      * <ul>
1710      *   <li>Regardless of the signs of the arguments, {@code floorMod}(x, y)
1711      *       is zero exactly when {@code x % y} is zero as well.</li>
1712      *   <li>If neither {@code floorMod}(x, y) nor {@code x % y} is zero,
1713      *       they differ exactly when the signs of the arguments differ.<br>
1714      *       <ul>
1715      *       <li>{@code floorMod(+4, +3) == +1}; &nbsp; and {@code (+4 % +3) == +1}</li>
1716      *       <li>{@code floorMod(-4, -3) == -1}; &nbsp; and {@code (-4 % -3) == -1}</li>
1717      *       <li>{@code floorMod(+4, -3) == -2}; &nbsp; and {@code (+4 % -3) == +1}</li>
1718      *       <li>{@code floorMod(-4, +3) == +2}; &nbsp; and {@code (-4 % +3) == -1}</li>
1719      *       </ul>
1720      *   </li>
1721      * </ul>
1722      *
1723      * @param x the dividend
1724      * @param y the divisor
1725      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1726      * @throws ArithmeticException if the divisor {@code y} is zero
1727      * @see #floorDiv(int, int)
1728      * @since 1.8
1729      */
floorMod(int x, int y)1730     public static int floorMod(int x, int y) {
1731         final int r = x % y;
1732         // if the signs are different and modulo not zero, adjust result
1733         if ((x ^ y) < 0 && r != 0) {
1734             return r + y;
1735         }
1736         return r;
1737     }
1738 
1739     /**
1740      * Returns the floor modulus of the {@code long} and {@code int} arguments.
1741      * <p>
1742      * The floor modulus is {@code r = x - (floorDiv(x, y) * y)},
1743      * has the same sign as the divisor {@code y} or is zero, and
1744      * is in the range of {@code -abs(y) < r < +abs(y)}.
1745      *
1746      * <p>
1747      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1748      * <ul>
1749      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}</li>
1750      * </ul>
1751      * <p>
1752      * For examples, see {@link #floorMod(int, int)}.
1753      *
1754      * @param x the dividend
1755      * @param y the divisor
1756      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1757      * @throws ArithmeticException if the divisor {@code y} is zero
1758      * @see #floorDiv(long, int)
1759      * @since 9
1760      */
floorMod(long x, int y)1761     public static int floorMod(long x, int y) {
1762         // Result cannot overflow the range of int.
1763         return (int)floorMod(x, (long)y);
1764     }
1765 
1766     /**
1767      * Returns the floor modulus of the {@code long} arguments.
1768      * <p>
1769      * The floor modulus is {@code r = x - (floorDiv(x, y) * y)},
1770      * has the same sign as the divisor {@code y} or is zero, and
1771      * is in the range of {@code -abs(y) < r < +abs(y)}.
1772      *
1773      * <p>
1774      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1775      * <ul>
1776      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}</li>
1777      * </ul>
1778      * <p>
1779      * For examples, see {@link #floorMod(int, int)}.
1780      *
1781      * @param x the dividend
1782      * @param y the divisor
1783      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1784      * @throws ArithmeticException if the divisor {@code y} is zero
1785      * @see #floorDiv(long, long)
1786      * @since 1.8
1787      */
floorMod(long x, long y)1788     public static long floorMod(long x, long y) {
1789         final long r = x % y;
1790         // if the signs are different and modulo not zero, adjust result
1791         if ((x ^ y) < 0 && r != 0) {
1792             return r + y;
1793         }
1794         return r;
1795     }
1796 
1797     /**
1798      * Returns the smallest (closest to negative infinity)
1799      * {@code int} value that is greater than or equal to the algebraic quotient.
1800      * There is one special case: if the dividend is
1801      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
1802      * then integer overflow occurs and
1803      * the result is equal to {@code Integer.MIN_VALUE}.
1804      * <p>
1805      * Normal integer division operates under the round to zero rounding mode
1806      * (truncation).  This operation instead acts under the round toward
1807      * positive infinity (ceiling) rounding mode.
1808      * The ceiling rounding mode gives different results from truncation
1809      * when the exact quotient is not an integer and is positive.
1810      * <ul>
1811      *   <li>If the signs of the arguments are different, the results of
1812      *       {@code ceilDiv} and the {@code /} operator are the same.  <br>
1813      *       For example, {@code ceilDiv(-4, 3) == -1} and {@code (-4 / 3) == -1}.</li>
1814      *   <li>If the signs of the arguments are the same, {@code ceilDiv}
1815      *       returns the smallest integer greater than or equal to the quotient
1816      *       while the {@code /} operator returns the largest integer less
1817      *       than or equal to the quotient.
1818      *       They differ if and only if the quotient is not an integer.<br>
1819      *       For example, {@code ceilDiv(4, 3) == 2},
1820      *       whereas {@code (4 / 3) == 1}.
1821      *   </li>
1822      * </ul>
1823      *
1824      * @param x the dividend
1825      * @param y the divisor
1826      * @return the smallest (closest to negative infinity)
1827      * {@code int} value that is greater than or equal to the algebraic quotient.
1828      * @throws ArithmeticException if the divisor {@code y} is zero
1829      * @see #ceilMod(int, int)
1830      * @see #ceil(double)
1831      * @since 18
1832      */
ceilDiv(int x, int y)1833     public static int ceilDiv(int x, int y) {
1834         final int q = x / y;
1835         // if the signs are the same and modulo not zero, round up
1836         if ((x ^ y) >= 0 && (q * y != x)) {
1837             return q + 1;
1838         }
1839         return q;
1840     }
1841 
1842     /**
1843      * Returns the smallest (closest to negative infinity)
1844      * {@code long} value that is greater than or equal to the algebraic quotient.
1845      * There is one special case: if the dividend is
1846      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1847      * then integer overflow occurs and
1848      * the result is equal to {@code Long.MIN_VALUE}.
1849      * <p>
1850      * Normal integer division operates under the round to zero rounding mode
1851      * (truncation).  This operation instead acts under the round toward
1852      * positive infinity (ceiling) rounding mode.
1853      * The ceiling rounding mode gives different results from truncation
1854      * when the exact result is not an integer and is positive.
1855      * <p>
1856      * For examples, see {@link #ceilDiv(int, int)}.
1857      *
1858      * @param x the dividend
1859      * @param y the divisor
1860      * @return the smallest (closest to negative infinity)
1861      * {@code long} value that is greater than or equal to the algebraic quotient.
1862      * @throws ArithmeticException if the divisor {@code y} is zero
1863      * @see #ceilMod(int, int)
1864      * @see #ceil(double)
1865      * @since 18
1866      */
ceilDiv(long x, int y)1867     public static long ceilDiv(long x, int y) {
1868         return ceilDiv(x, (long)y);
1869     }
1870 
1871     /**
1872      * Returns the smallest (closest to negative infinity)
1873      * {@code long} value that is greater than or equal to the algebraic quotient.
1874      * There is one special case: if the dividend is
1875      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1876      * then integer overflow occurs and
1877      * the result is equal to {@code Long.MIN_VALUE}.
1878      * <p>
1879      * Normal integer division operates under the round to zero rounding mode
1880      * (truncation).  This operation instead acts under the round toward
1881      * positive infinity (ceiling) rounding mode.
1882      * The ceiling rounding mode gives different results from truncation
1883      * when the exact result is not an integer and is positive.
1884      * <p>
1885      * For examples, see {@link #ceilDiv(int, int)}.
1886      *
1887      * @param x the dividend
1888      * @param y the divisor
1889      * @return the smallest (closest to negative infinity)
1890      * {@code long} value that is greater than or equal to the algebraic quotient.
1891      * @throws ArithmeticException if the divisor {@code y} is zero
1892      * @see #ceilMod(int, int)
1893      * @see #ceil(double)
1894      * @since 18
1895      */
ceilDiv(long x, long y)1896     public static long ceilDiv(long x, long y) {
1897         final long q = x / y;
1898         // if the signs are the same and modulo not zero, round up
1899         if ((x ^ y) >= 0 && (q * y != x)) {
1900             return q + 1;
1901         }
1902         return q;
1903     }
1904 
1905     /**
1906      * Returns the ceiling modulus of the {@code int} arguments.
1907      * <p>
1908      * The ceiling modulus is {@code r = x - (ceilDiv(x, y) * y)},
1909      * has the opposite sign as the divisor {@code y} or is zero, and
1910      * is in the range of {@code -abs(y) < r < +abs(y)}.
1911      *
1912      * <p>
1913      * The relationship between {@code ceilDiv} and {@code ceilMod} is such that:
1914      * <ul>
1915      *   <li>{@code ceilDiv(x, y) * y + ceilMod(x, y) == x}</li>
1916      * </ul>
1917      * <p>
1918      * The difference in values between {@code ceilMod} and the {@code %} operator
1919      * is due to the difference between {@code ceilDiv} and the {@code /}
1920      * operator, as detailed in {@linkplain #ceilDiv(int, int)}.
1921      * <p>
1922      * Examples:
1923      * <ul>
1924      *   <li>Regardless of the signs of the arguments, {@code ceilMod}(x, y)
1925      *       is zero exactly when {@code x % y} is zero as well.</li>
1926      *   <li>If neither {@code ceilMod}(x, y) nor {@code x % y} is zero,
1927      *       they differ exactly when the signs of the arguments are the same.<br>
1928      *       <ul>
1929      *       <li>{@code ceilMod(+4, +3) == -2}; &nbsp; and {@code (+4 % +3) == +1}</li>
1930      *       <li>{@code ceilMod(-4, -3) == +2}; &nbsp; and {@code (-4 % -3) == -1}</li>
1931      *       <li>{@code ceilMod(+4, -3) == +1}; &nbsp; and {@code (+4 % -3) == +1}</li>
1932      *       <li>{@code ceilMod(-4, +3) == -1}; &nbsp; and {@code (-4 % +3) == -1}</li>
1933      *       </ul>
1934      *   </li>
1935      * </ul>
1936      *
1937      * @param x the dividend
1938      * @param y the divisor
1939      * @return the ceiling modulus {@code x - (ceilDiv(x, y) * y)}
1940      * @throws ArithmeticException if the divisor {@code y} is zero
1941      * @see #ceilDiv(int, int)
1942      * @since 18
1943      */
ceilMod(int x, int y)1944     public static int ceilMod(int x, int y) {
1945         final int r = x % y;
1946         // if the signs are the same and modulo not zero, adjust result
1947         if ((x ^ y) >= 0 && r != 0) {
1948             return r - y;
1949         }
1950         return r;
1951     }
1952 
1953     /**
1954      * Returns the ceiling modulus of the {@code long} and {@code int} arguments.
1955      * <p>
1956      * The ceiling modulus is {@code r = x - (ceilDiv(x, y) * y)},
1957      * has the opposite sign as the divisor {@code y} or is zero, and
1958      * is in the range of {@code -abs(y) < r < +abs(y)}.
1959      *
1960      * <p>
1961      * The relationship between {@code ceilDiv} and {@code ceilMod} is such that:
1962      * <ul>
1963      *   <li>{@code ceilDiv(x, y) * y + ceilMod(x, y) == x}</li>
1964      * </ul>
1965      * <p>
1966      * For examples, see {@link #ceilMod(int, int)}.
1967      *
1968      * @param x the dividend
1969      * @param y the divisor
1970      * @return the ceiling modulus {@code x - (ceilDiv(x, y) * y)}
1971      * @throws ArithmeticException if the divisor {@code y} is zero
1972      * @see #ceilDiv(long, int)
1973      * @since 18
1974      */
ceilMod(long x, int y)1975     public static int ceilMod(long x, int y) {
1976         // Result cannot overflow the range of int.
1977         return (int)ceilMod(x, (long)y);
1978     }
1979 
1980     /**
1981      * Returns the ceiling modulus of the {@code long} arguments.
1982      * <p>
1983      * The ceiling modulus is {@code r = x - (ceilDiv(x, y) * y)},
1984      * has the opposite sign as the divisor {@code y} or is zero, and
1985      * is in the range of {@code -abs(y) < r < +abs(y)}.
1986      *
1987      * <p>
1988      * The relationship between {@code ceilDiv} and {@code ceilMod} is such that:
1989      * <ul>
1990      *   <li>{@code ceilDiv(x, y) * y + ceilMod(x, y) == x}</li>
1991      * </ul>
1992      * <p>
1993      * For examples, see {@link #ceilMod(int, int)}.
1994      *
1995      * @param x the dividend
1996      * @param y the divisor
1997      * @return the ceiling modulus {@code x - (ceilDiv(x, y) * y)}
1998      * @throws ArithmeticException if the divisor {@code y} is zero
1999      * @see #ceilDiv(long, long)
2000      * @since 18
2001      */
ceilMod(long x, long y)2002     public static long ceilMod(long x, long y) {
2003         final long r = x % y;
2004         // if the signs are the same and modulo not zero, adjust result
2005         if ((x ^ y) >= 0 && r != 0) {
2006             return r - y;
2007         }
2008         return r;
2009     }
2010 
2011     /**
2012      * Returns the absolute value of an {@code int} value.
2013      * If the argument is not negative, the argument is returned.
2014      * If the argument is negative, the negation of the argument is returned.
2015      *
2016      * <p>Note that if the argument is equal to the value of {@link
2017      * Integer#MIN_VALUE}, the most negative representable {@code int}
2018      * value, the result is that same value, which is negative. In
2019      * contrast, the {@link Math#absExact(int)} method throws an
2020      * {@code ArithmeticException} for this value.
2021      *
2022      * @param   a   the argument whose absolute value is to be determined
2023      * @return  the absolute value of the argument.
2024      * @see Math#absExact(int)
2025      */
2026     @IntrinsicCandidate
abs(int a)2027     public static int abs(int a) {
2028         return (a < 0) ? -a : a;
2029     }
2030 
2031     /**
2032      * Returns the mathematical absolute value of an {@code int} value
2033      * if it is exactly representable as an {@code int}, throwing
2034      * {@code ArithmeticException} if the result overflows the
2035      * positive {@code int} range.
2036      *
2037      * <p>Since the range of two's complement integers is asymmetric
2038      * with one additional negative value (JLS {@jls 4.2.1}), the
2039      * mathematical absolute value of {@link Integer#MIN_VALUE}
2040      * overflows the positive {@code int} range, so an exception is
2041      * thrown for that argument.
2042      *
2043      * @param  a  the argument whose absolute value is to be determined
2044      * @return the absolute value of the argument, unless overflow occurs
2045      * @throws ArithmeticException if the argument is {@link Integer#MIN_VALUE}
2046      * @see Math#abs(int)
2047      * @since 15
2048      */
absExact(int a)2049     public static int absExact(int a) {
2050         if (a == Integer.MIN_VALUE)
2051             throw new ArithmeticException(
2052                 "Overflow to represent absolute value of Integer.MIN_VALUE");
2053         else
2054             return abs(a);
2055     }
2056 
2057     /**
2058      * Returns the absolute value of a {@code long} value.
2059      * If the argument is not negative, the argument is returned.
2060      * If the argument is negative, the negation of the argument is returned.
2061      *
2062      * <p>Note that if the argument is equal to the value of {@link
2063      * Long#MIN_VALUE}, the most negative representable {@code long}
2064      * value, the result is that same value, which is negative. In
2065      * contrast, the {@link Math#absExact(long)} method throws an
2066      * {@code ArithmeticException} for this value.
2067      *
2068      * @param   a   the argument whose absolute value is to be determined
2069      * @return  the absolute value of the argument.
2070      * @see Math#absExact(long)
2071      */
2072     @IntrinsicCandidate
abs(long a)2073     public static long abs(long a) {
2074         return (a < 0) ? -a : a;
2075     }
2076 
2077     /**
2078      * Returns the mathematical absolute value of an {@code long} value
2079      * if it is exactly representable as an {@code long}, throwing
2080      * {@code ArithmeticException} if the result overflows the
2081      * positive {@code long} range.
2082      *
2083      * <p>Since the range of two's complement integers is asymmetric
2084      * with one additional negative value (JLS {@jls 4.2.1}), the
2085      * mathematical absolute value of {@link Long#MIN_VALUE} overflows
2086      * the positive {@code long} range, so an exception is thrown for
2087      * that argument.
2088      *
2089      * @param  a  the argument whose absolute value is to be determined
2090      * @return the absolute value of the argument, unless overflow occurs
2091      * @throws ArithmeticException if the argument is {@link Long#MIN_VALUE}
2092      * @see Math#abs(long)
2093      * @since 15
2094      */
absExact(long a)2095     public static long absExact(long a) {
2096         if (a == Long.MIN_VALUE)
2097             throw new ArithmeticException(
2098                 "Overflow to represent absolute value of Long.MIN_VALUE");
2099         else
2100             return abs(a);
2101     }
2102 
2103     /**
2104      * Returns the absolute value of a {@code float} value.
2105      * If the argument is not negative, the argument is returned.
2106      * If the argument is negative, the negation of the argument is returned.
2107      * Special cases:
2108      * <ul><li>If the argument is positive zero or negative zero, the
2109      * result is positive zero.
2110      * <li>If the argument is infinite, the result is positive infinity.
2111      * <li>If the argument is NaN, the result is NaN.</ul>
2112      *
2113      * @apiNote As implied by the above, one valid implementation of
2114      * this method is given by the expression below which computes a
2115      * {@code float} with the same exponent and significand as the
2116      * argument but with a guaranteed zero sign bit indicating a
2117      * positive value:<br>
2118      * {@code Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a))}
2119      *
2120      * @param   a   the argument whose absolute value is to be determined
2121      * @return  the absolute value of the argument.
2122      */
2123     @IntrinsicCandidate
abs(float a)2124     public static float abs(float a) {
2125         // Convert to bit field form, zero the sign bit, and convert back
2126         return Float.intBitsToFloat(Float.floatToRawIntBits(a) & FloatConsts.MAG_BIT_MASK);
2127     }
2128 
2129     /**
2130      * Returns the absolute value of a {@code double} value.
2131      * If the argument is not negative, the argument is returned.
2132      * If the argument is negative, the negation of the argument is returned.
2133      * Special cases:
2134      * <ul><li>If the argument is positive zero or negative zero, the result
2135      * is positive zero.
2136      * <li>If the argument is infinite, the result is positive infinity.
2137      * <li>If the argument is NaN, the result is NaN.</ul>
2138      *
2139      * @apiNote As implied by the above, one valid implementation of
2140      * this method is given by the expression below which computes a
2141      * {@code double} with the same exponent and significand as the
2142      * argument but with a guaranteed zero sign bit indicating a
2143      * positive value:<br>
2144      * {@code Double.longBitsToDouble((Double.doubleToRawLongBits(a)<<1)>>>1)}
2145      *
2146      * @param   a   the argument whose absolute value is to be determined
2147      * @return  the absolute value of the argument.
2148      */
2149     @IntrinsicCandidate
abs(double a)2150     public static double abs(double a) {
2151         // Convert to bit field form, zero the sign bit, and convert back
2152         return Double.longBitsToDouble(Double.doubleToRawLongBits(a) & DoubleConsts.MAG_BIT_MASK);
2153     }
2154 
2155     /**
2156      * Returns the greater of two {@code int} values. That is, the
2157      * result is the argument closer to the value of
2158      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
2159      * the result is that same value.
2160      *
2161      * @param   a   an argument.
2162      * @param   b   another argument.
2163      * @return  the larger of {@code a} and {@code b}.
2164      */
2165     @IntrinsicCandidate
max(int a, int b)2166     public static int max(int a, int b) {
2167         return (a >= b) ? a : b;
2168     }
2169 
2170     /**
2171      * Returns the greater of two {@code long} values. That is, the
2172      * result is the argument closer to the value of
2173      * {@link Long#MAX_VALUE}. If the arguments have the same value,
2174      * the result is that same value.
2175      *
2176      * @param   a   an argument.
2177      * @param   b   another argument.
2178      * @return  the larger of {@code a} and {@code b}.
2179      */
max(long a, long b)2180     public static long max(long a, long b) {
2181         return (a >= b) ? a : b;
2182     }
2183 
2184     // Use raw bit-wise conversions on guaranteed non-NaN arguments.
2185     private static final long negativeZeroFloatBits  = Float.floatToRawIntBits(-0.0f);
2186     private static final long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d);
2187 
2188     /**
2189      * Returns the greater of two {@code float} values.  That is,
2190      * the result is the argument closer to positive infinity. If the
2191      * arguments have the same value, the result is that same
2192      * value. If either value is NaN, then the result is NaN.  Unlike
2193      * the numerical comparison operators, this method considers
2194      * negative zero to be strictly smaller than positive zero. If one
2195      * argument is positive zero and the other negative zero, the
2196      * result is positive zero.
2197      *
2198      * @apiNote
2199      * This method corresponds to the maximum operation defined in
2200      * IEEE 754.
2201      *
2202      * @param   a   an argument.
2203      * @param   b   another argument.
2204      * @return  the larger of {@code a} and {@code b}.
2205      */
2206     @IntrinsicCandidate
max(float a, float b)2207     public static float max(float a, float b) {
2208         if (a != a)
2209             return a;   // a is NaN
2210         if ((a == 0.0f) &&
2211             (b == 0.0f) &&
2212             (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) {
2213             // Raw conversion ok since NaN can't map to -0.0.
2214             return b;
2215         }
2216         return (a >= b) ? a : b;
2217     }
2218 
2219     /**
2220      * Returns the greater of two {@code double} values.  That
2221      * is, the result is the argument closer to positive infinity. If
2222      * the arguments have the same value, the result is that same
2223      * value. If either value is NaN, then the result is NaN.  Unlike
2224      * the numerical comparison operators, this method considers
2225      * negative zero to be strictly smaller than positive zero. If one
2226      * argument is positive zero and the other negative zero, the
2227      * result is positive zero.
2228      *
2229      * @apiNote
2230      * This method corresponds to the maximum operation defined in
2231      * IEEE 754.
2232      *
2233      * @param   a   an argument.
2234      * @param   b   another argument.
2235      * @return  the larger of {@code a} and {@code b}.
2236      */
2237     @IntrinsicCandidate
max(double a, double b)2238     public static double max(double a, double b) {
2239         if (a != a)
2240             return a;   // a is NaN
2241         if ((a == 0.0d) &&
2242             (b == 0.0d) &&
2243             (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) {
2244             // Raw conversion ok since NaN can't map to -0.0.
2245             return b;
2246         }
2247         return (a >= b) ? a : b;
2248     }
2249 
2250     /**
2251      * Returns the smaller of two {@code int} values. That is,
2252      * the result the argument closer to the value of
2253      * {@link Integer#MIN_VALUE}.  If the arguments have the same
2254      * value, the result is that same value.
2255      *
2256      * @param   a   an argument.
2257      * @param   b   another argument.
2258      * @return  the smaller of {@code a} and {@code b}.
2259      */
2260     @IntrinsicCandidate
min(int a, int b)2261     public static int min(int a, int b) {
2262         return (a <= b) ? a : b;
2263     }
2264 
2265     /**
2266      * Returns the smaller of two {@code long} values. That is,
2267      * the result is the argument closer to the value of
2268      * {@link Long#MIN_VALUE}. If the arguments have the same
2269      * value, the result is that same value.
2270      *
2271      * @param   a   an argument.
2272      * @param   b   another argument.
2273      * @return  the smaller of {@code a} and {@code b}.
2274      */
min(long a, long b)2275     public static long min(long a, long b) {
2276         return (a <= b) ? a : b;
2277     }
2278 
2279     /**
2280      * Returns the smaller of two {@code float} values.  That is,
2281      * the result is the value closer to negative infinity. If the
2282      * arguments have the same value, the result is that same
2283      * value. If either value is NaN, then the result is NaN.  Unlike
2284      * the numerical comparison operators, this method considers
2285      * negative zero to be strictly smaller than positive zero.  If
2286      * one argument is positive zero and the other is negative zero,
2287      * the result is negative zero.
2288      *
2289      * @apiNote
2290      * This method corresponds to the minimum operation defined in
2291      * IEEE 754.
2292      *
2293      * @param   a   an argument.
2294      * @param   b   another argument.
2295      * @return  the smaller of {@code a} and {@code b}.
2296      */
2297     @IntrinsicCandidate
min(float a, float b)2298     public static float min(float a, float b) {
2299         if (a != a)
2300             return a;   // a is NaN
2301         if ((a == 0.0f) &&
2302             (b == 0.0f) &&
2303             (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) {
2304             // Raw conversion ok since NaN can't map to -0.0.
2305             return b;
2306         }
2307         return (a <= b) ? a : b;
2308     }
2309 
2310     /**
2311      * Returns the smaller of two {@code double} values.  That
2312      * is, the result is the value closer to negative infinity. If the
2313      * arguments have the same value, the result is that same
2314      * value. If either value is NaN, then the result is NaN.  Unlike
2315      * the numerical comparison operators, this method considers
2316      * negative zero to be strictly smaller than positive zero. If one
2317      * argument is positive zero and the other is negative zero, the
2318      * result is negative zero.
2319      *
2320      * @apiNote
2321      * This method corresponds to the minimum operation defined in
2322      * IEEE 754.
2323      *
2324      * @param   a   an argument.
2325      * @param   b   another argument.
2326      * @return  the smaller of {@code a} and {@code b}.
2327      */
2328     @IntrinsicCandidate
min(double a, double b)2329     public static double min(double a, double b) {
2330         if (a != a)
2331             return a;   // a is NaN
2332         if ((a == 0.0d) &&
2333             (b == 0.0d) &&
2334             (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) {
2335             // Raw conversion ok since NaN can't map to -0.0.
2336             return b;
2337         }
2338         return (a <= b) ? a : b;
2339     }
2340 
2341     /**
2342      * Clamps the value to fit between min and max. If the value is less
2343      * than {@code min}, then {@code min} is returned. If the value is greater
2344      * than {@code max}, then {@code max} is returned. Otherwise, the original
2345      * value is returned.
2346      * <p>
2347      * While the original value of type long may not fit into the int type,
2348      * the bounds have the int type, so the result always fits the int type.
2349      * This allows to use method to safely cast long value to int with
2350      * saturation.
2351      *
2352      * @param value value to clamp
2353      * @param min minimal allowed value
2354      * @param max maximal allowed value
2355      * @return a clamped value that fits into {@code min..max} interval
2356      * @throws IllegalArgumentException if {@code min > max}
2357      *
2358      * @since 21
2359      */
clamp(long value, int min, int max)2360     public static int clamp(long value, int min, int max) {
2361         if (min > max) {
2362             throw new IllegalArgumentException(min + " > " + max);
2363         }
2364         return (int) Math.min(max, Math.max(value, min));
2365     }
2366 
2367     /**
2368      * Clamps the value to fit between min and max. If the value is less
2369      * than {@code min}, then {@code min} is returned. If the value is greater
2370      * than {@code max}, then {@code max} is returned. Otherwise, the original
2371      * value is returned.
2372      *
2373      * @param value value to clamp
2374      * @param min minimal allowed value
2375      * @param max maximal allowed value
2376      * @return a clamped value that fits into {@code min..max} interval
2377      * @throws IllegalArgumentException if {@code min > max}
2378      *
2379      * @since 21
2380      */
clamp(long value, long min, long max)2381     public static long clamp(long value, long min, long max) {
2382         if (min > max) {
2383             throw new IllegalArgumentException(min + " > " + max);
2384         }
2385         return Math.min(max, Math.max(value, min));
2386     }
2387 
2388     /**
2389      * Clamps the value to fit between min and max. If the value is less
2390      * than {@code min}, then {@code min} is returned. If the value is greater
2391      * than {@code max}, then {@code max} is returned. Otherwise, the original
2392      * value is returned. If value is NaN, the result is also NaN.
2393      * <p>
2394      * Unlike the numerical comparison operators, this method considers
2395      * negative zero to be strictly smaller than positive zero.
2396      * E.g., {@code clamp(-0.0, 0.0, 1.0)} returns 0.0.
2397      *
2398      * @param value value to clamp
2399      * @param min minimal allowed value
2400      * @param max maximal allowed value
2401      * @return a clamped value that fits into {@code min..max} interval
2402      * @throws IllegalArgumentException if either of {@code min} and {@code max}
2403      * arguments is NaN, or {@code min > max}, or {@code min} is +0.0, and
2404      * {@code max} is -0.0.
2405      *
2406      * @since 21
2407      */
clamp(double value, double min, double max)2408     public static double clamp(double value, double min, double max) {
2409         // This unusual condition allows keeping only one branch
2410         // on common path when min < max and neither of them is NaN.
2411         // If min == max, we should additionally check for +0.0/-0.0 case,
2412         // so we're still visiting the if statement.
2413         if (!(min < max)) { // min greater than, equal to, or unordered with respect to max; NaN values are unordered
2414             if (Double.isNaN(min)) {
2415                 throw new IllegalArgumentException("min is NaN");
2416             }
2417             if (Double.isNaN(max)) {
2418                 throw new IllegalArgumentException("max is NaN");
2419             }
2420             if (Double.compare(min, max) > 0) {
2421                 throw new IllegalArgumentException(min + " > " + max);
2422             }
2423             // Fall-through if min and max are exactly equal (or min = -0.0 and max = +0.0)
2424             // and none of them is NaN
2425         }
2426         return Math.min(max, Math.max(value, min));
2427     }
2428 
2429     /**
2430      * Clamps the value to fit between min and max. If the value is less
2431      * than {@code min}, then {@code min} is returned. If the value is greater
2432      * than {@code max}, then {@code max} is returned. Otherwise, the original
2433      * value is returned. If value is NaN, the result is also NaN.
2434      * <p>
2435      * Unlike the numerical comparison operators, this method considers
2436      * negative zero to be strictly smaller than positive zero.
2437      * E.g., {@code clamp(-0.0f, 0.0f, 1.0f)} returns 0.0f.
2438      *
2439      * @param value value to clamp
2440      * @param min minimal allowed value
2441      * @param max maximal allowed value
2442      * @return a clamped value that fits into {@code min..max} interval
2443      * @throws IllegalArgumentException if either of {@code min} and {@code max}
2444      * arguments is NaN, or {@code min > max}, or {@code min} is +0.0f, and
2445      * {@code max} is -0.0f.
2446      *
2447      * @since 21
2448      */
clamp(float value, float min, float max)2449     public static float clamp(float value, float min, float max) {
2450         // This unusual condition allows keeping only one branch
2451         // on common path when min < max and neither of them is NaN.
2452         // If min == max, we should additionally check for +0.0/-0.0 case,
2453         // so we're still visiting the if statement.
2454         if (!(min < max)) { // min greater than, equal to, or unordered with respect to max; NaN values are unordered
2455             if (Float.isNaN(min)) {
2456                 throw new IllegalArgumentException("min is NaN");
2457             }
2458             if (Float.isNaN(max)) {
2459                 throw new IllegalArgumentException("max is NaN");
2460             }
2461             if (Float.compare(min, max) > 0) {
2462                 throw new IllegalArgumentException(min + " > " + max);
2463             }
2464             // Fall-through if min and max are exactly equal (or min = -0.0 and max = +0.0)
2465             // and none of them is NaN
2466         }
2467         return Math.min(max, Math.max(value, min));
2468     }
2469 
2470     /**
2471      * Returns the fused multiply add of the three arguments; that is,
2472      * returns the exact product of the first two arguments summed
2473      * with the third argument and then rounded once to the nearest
2474      * {@code double}.
2475      *
2476      * The rounding is done using the {@linkplain
2477      * java.math.RoundingMode#HALF_EVEN round to nearest even
2478      * rounding mode}.
2479      *
2480      * In contrast, if {@code a * b + c} is evaluated as a regular
2481      * floating-point expression, two rounding errors are involved,
2482      * the first for the multiply operation, the second for the
2483      * addition operation.
2484      *
2485      * <p>Special cases:
2486      * <ul>
2487      * <li> If any argument is NaN, the result is NaN.
2488      *
2489      * <li> If one of the first two arguments is infinite and the
2490      * other is zero, the result is NaN.
2491      *
2492      * <li> If the exact product of the first two arguments is infinite
2493      * (in other words, at least one of the arguments is infinite and
2494      * the other is neither zero nor NaN) and the third argument is an
2495      * infinity of the opposite sign, the result is NaN.
2496      *
2497      * </ul>
2498      *
2499      * <p>Note that {@code fma(a, 1.0, c)} returns the same
2500      * result as ({@code a + c}).  However,
2501      * {@code fma(a, b, +0.0)} does <em>not</em> always return the
2502      * same result as ({@code a * b}) since
2503      * {@code fma(-0.0, +0.0, +0.0)} is {@code +0.0} while
2504      * ({@code -0.0 * +0.0}) is {@code -0.0}; {@code fma(a, b, -0.0)} is
2505      * equivalent to ({@code a * b}) however.
2506      *
2507      * @apiNote This method corresponds to the fusedMultiplyAdd
2508      * operation defined in IEEE 754.
2509      *
2510      * @param a a value
2511      * @param b a value
2512      * @param c a value
2513      *
2514      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
2515      * computed, as if with unlimited range and precision, and rounded
2516      * once to the nearest {@code double} value
2517      *
2518      * @since 9
2519      */
2520     @IntrinsicCandidate
fma(double a, double b, double c)2521     public static double fma(double a, double b, double c) {
2522         /*
2523          * Infinity and NaN arithmetic is not quite the same with two
2524          * roundings as opposed to just one so the simple expression
2525          * "a * b + c" cannot always be used to compute the correct
2526          * result.  With two roundings, the product can overflow and
2527          * if the addend is infinite, a spurious NaN can be produced
2528          * if the infinity from the overflow and the infinite addend
2529          * have opposite signs.
2530          */
2531 
2532         // First, screen for and handle non-finite input values whose
2533         // arithmetic is not supported by BigDecimal.
2534         if (Double.isNaN(a) || Double.isNaN(b) || Double.isNaN(c)) {
2535             return Double.NaN;
2536         } else { // All inputs non-NaN
2537             boolean infiniteA = Double.isInfinite(a);
2538             boolean infiniteB = Double.isInfinite(b);
2539             boolean infiniteC = Double.isInfinite(c);
2540             double result;
2541 
2542             if (infiniteA || infiniteB || infiniteC) {
2543                 if (infiniteA && b == 0.0 ||
2544                     infiniteB && a == 0.0 ) {
2545                     return Double.NaN;
2546                 }
2547                 // Store product in a double field to cause an
2548                 // overflow even if non-strictfp evaluation is being
2549                 // used.
2550                 double product = a * b;
2551                 if (Double.isInfinite(product) && !infiniteA && !infiniteB) {
2552                     // Intermediate overflow; might cause a
2553                     // spurious NaN if added to infinite c.
2554                     assert Double.isInfinite(c);
2555                     return c;
2556                 } else {
2557                     result = product + c;
2558                     assert !Double.isFinite(result);
2559                     return result;
2560                 }
2561             } else { // All inputs finite
2562                 BigDecimal product = (new BigDecimal(a)).multiply(new BigDecimal(b));
2563                 if (c == 0.0) { // Positive or negative zero
2564                     // If the product is an exact zero, use a
2565                     // floating-point expression to compute the sign
2566                     // of the zero final result. The product is an
2567                     // exact zero if and only if at least one of a and
2568                     // b is zero.
2569                     if (a == 0.0 || b == 0.0) {
2570                         return a * b + c;
2571                     } else {
2572                         // The sign of a zero addend doesn't matter if
2573                         // the product is nonzero. The sign of a zero
2574                         // addend is not factored in the result if the
2575                         // exact product is nonzero but underflows to
2576                         // zero; see IEEE-754 2008 section 6.3 "The
2577                         // sign bit".
2578                         return product.doubleValue();
2579                     }
2580                 } else {
2581                     return product.add(new BigDecimal(c)).doubleValue();
2582                 }
2583             }
2584         }
2585     }
2586 
2587     /**
2588      * Returns the fused multiply add of the three arguments; that is,
2589      * returns the exact product of the first two arguments summed
2590      * with the third argument and then rounded once to the nearest
2591      * {@code float}.
2592      *
2593      * The rounding is done using the {@linkplain
2594      * java.math.RoundingMode#HALF_EVEN round to nearest even
2595      * rounding mode}.
2596      *
2597      * In contrast, if {@code a * b + c} is evaluated as a regular
2598      * floating-point expression, two rounding errors are involved,
2599      * the first for the multiply operation, the second for the
2600      * addition operation.
2601      *
2602      * <p>Special cases:
2603      * <ul>
2604      * <li> If any argument is NaN, the result is NaN.
2605      *
2606      * <li> If one of the first two arguments is infinite and the
2607      * other is zero, the result is NaN.
2608      *
2609      * <li> If the exact product of the first two arguments is infinite
2610      * (in other words, at least one of the arguments is infinite and
2611      * the other is neither zero nor NaN) and the third argument is an
2612      * infinity of the opposite sign, the result is NaN.
2613      *
2614      * </ul>
2615      *
2616      * <p>Note that {@code fma(a, 1.0f, c)} returns the same
2617      * result as ({@code a + c}).  However,
2618      * {@code fma(a, b, +0.0f)} does <em>not</em> always return the
2619      * same result as ({@code a * b}) since
2620      * {@code fma(-0.0f, +0.0f, +0.0f)} is {@code +0.0f} while
2621      * ({@code -0.0f * +0.0f}) is {@code -0.0f}; {@code fma(a, b, -0.0f)} is
2622      * equivalent to ({@code a * b}) however.
2623      *
2624      * @apiNote This method corresponds to the fusedMultiplyAdd
2625      * operation defined in IEEE 754.
2626      *
2627      * @param a a value
2628      * @param b a value
2629      * @param c a value
2630      *
2631      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
2632      * computed, as if with unlimited range and precision, and rounded
2633      * once to the nearest {@code float} value
2634      *
2635      * @since 9
2636      */
2637     @IntrinsicCandidate
fma(float a, float b, float c)2638     public static float fma(float a, float b, float c) {
2639         if (Float.isFinite(a) && Float.isFinite(b) && Float.isFinite(c)) {
2640             if (a == 0.0 || b == 0.0) {
2641                 return a * b + c; // Handled signed zero cases
2642             } else {
2643                 return (new BigDecimal((double)a * (double)b) // Exact multiply
2644                         .add(new BigDecimal((double)c)))      // Exact sum
2645                     .floatValue();                            // One rounding
2646                                                               // to a float value
2647             }
2648         } else {
2649             // At least one of a,b, and c is non-finite. The result
2650             // will be non-finite as well and will be the same
2651             // non-finite value under double as float arithmetic.
2652             return (float)fma((double)a, (double)b, (double)c);
2653         }
2654     }
2655 
2656     /**
2657      * Returns the size of an ulp of the argument.  An ulp, unit in
2658      * the last place, of a {@code double} value is the positive
2659      * distance between this floating-point value and the {@code
2660      * double} value next larger in magnitude.  Note that for non-NaN
2661      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
2662      *
2663      * <p>Special Cases:
2664      * <ul>
2665      * <li> If the argument is NaN, then the result is NaN.
2666      * <li> If the argument is positive or negative infinity, then the
2667      * result is positive infinity.
2668      * <li> If the argument is positive or negative zero, then the result is
2669      * {@code Double.MIN_VALUE}.
2670      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
2671      * the result is equal to 2<sup>971</sup>.
2672      * </ul>
2673      *
2674      * @param d the floating-point value whose ulp is to be returned
2675      * @return the size of an ulp of the argument
2676      * @author Joseph D. Darcy
2677      * @since 1.5
2678      */
ulp(double d)2679     public static double ulp(double d) {
2680         int exp = getExponent(d);
2681 
2682         return switch(exp) {
2683             case Double.MAX_EXPONENT + 1 -> Math.abs(d);      // NaN or infinity
2684             case Double.MIN_EXPONENT - 1 -> Double.MIN_VALUE; // zero or subnormal
2685             default -> {
2686                 assert exp <= Double.MAX_EXPONENT && exp >= Double.MIN_EXPONENT;
2687 
2688                 // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
2689                 exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH - 1);
2690                 if (exp >= Double.MIN_EXPONENT) {
2691                     yield powerOfTwoD(exp);
2692                 } else {
2693                     // return a subnormal result; left shift integer
2694                     // representation of Double.MIN_VALUE appropriate
2695                     // number of positions
2696                     yield Double.longBitsToDouble(1L <<
2697                             (exp - (Double.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH - 1))));
2698                 }
2699             }
2700         };
2701     }
2702 
2703     /**
2704      * Returns the size of an ulp of the argument.  An ulp, unit in
2705      * the last place, of a {@code float} value is the positive
2706      * distance between this floating-point value and the {@code
2707      * float} value next larger in magnitude.  Note that for non-NaN
2708      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
2709      *
2710      * <p>Special Cases:
2711      * <ul>
2712      * <li> If the argument is NaN, then the result is NaN.
2713      * <li> If the argument is positive or negative infinity, then the
2714      * result is positive infinity.
2715      * <li> If the argument is positive or negative zero, then the result is
2716      * {@code Float.MIN_VALUE}.
2717      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
2718      * the result is equal to 2<sup>104</sup>.
2719      * </ul>
2720      *
2721      * @param f the floating-point value whose ulp is to be returned
2722      * @return the size of an ulp of the argument
2723      * @author Joseph D. Darcy
2724      * @since 1.5
2725      */
ulp(float f)2726     public static float ulp(float f) {
2727         int exp = getExponent(f);
2728 
2729         return switch(exp) {
2730             case Float.MAX_EXPONENT + 1 -> Math.abs(f);     // NaN or infinity
2731             case Float.MIN_EXPONENT - 1 -> Float.MIN_VALUE; // zero or subnormal
2732             default -> {
2733                 assert exp <= Float.MAX_EXPONENT && exp >= Float.MIN_EXPONENT;
2734 
2735                 // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x))
2736                 exp = exp - (FloatConsts.SIGNIFICAND_WIDTH - 1);
2737                 if (exp >= Float.MIN_EXPONENT) {
2738                     yield powerOfTwoF(exp);
2739                 } else {
2740                     // return a subnormal result; left shift integer
2741                     // representation of FloatConsts.MIN_VALUE appropriate
2742                     // number of positions
2743                     yield Float.intBitsToFloat(1 <<
2744                             (exp - (Float.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH - 1))));
2745                 }
2746             }
2747         };
2748     }
2749 
2750     /**
2751      * Returns the signum function of the argument; zero if the argument
2752      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
2753      * argument is less than zero.
2754      *
2755      * <p>Special Cases:
2756      * <ul>
2757      * <li> If the argument is NaN, then the result is NaN.
2758      * <li> If the argument is positive zero or negative zero, then the
2759      *      result is the same as the argument.
2760      * </ul>
2761      *
2762      * @param d the floating-point value whose signum is to be returned
2763      * @return the signum function of the argument
2764      * @author Joseph D. Darcy
2765      * @since 1.5
2766      */
2767     @IntrinsicCandidate
2768     public static double signum(double d) {
2769         // Android-changed: Optimize the compiled code by inlining 1.0d value. http://b/316160813
2770         // return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d);
2771         if (d == 0.0 || Double.isNaN(d)) {
2772             return d;
2773         } else {
2774             return Double.longBitsToDouble((Double.doubleToRawLongBits(d) &
2775                     DoubleConsts.SIGN_BIT_MASK) |
2776                     0x3FF0000000000000L); // 1.0d
2777         }
2778     }
2779 
2780     /**
2781      * Returns the signum function of the argument; zero if the argument
2782      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
2783      * argument is less than zero.
2784      *
2785      * <p>Special Cases:
2786      * <ul>
2787      * <li> If the argument is NaN, then the result is NaN.
2788      * <li> If the argument is positive zero or negative zero, then the
2789      *      result is the same as the argument.
2790      * </ul>
2791      *
2792      * @param f the floating-point value whose signum is to be returned
2793      * @return the signum function of the argument
2794      * @author Joseph D. Darcy
2795      * @since 1.5
2796      */
2797     @IntrinsicCandidate
2798     public static float signum(float f) {
2799         // Android-changed: Optimize the compiled code by inlining 1.0f value. http://b/316160813
2800         // return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f);
2801         if (f == 0.0f || Float.isNaN(f)) {
2802             return f;
2803         } else {
2804             return Float.intBitsToFloat((Float.floatToRawIntBits(f) & FloatConsts.SIGN_BIT_MASK) |
2805                     0x3F800000); // 1.0f
2806         }
2807     }
2808 
2809     /**
2810      * Returns the hyperbolic sine of a {@code double} value.
2811      * The hyperbolic sine of <i>x</i> is defined to be
2812      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
2813      * where <i>e</i> is {@linkplain Math#E Euler's number}.
2814      *
2815      * <p>Special cases:
2816      * <ul>
2817      *
2818      * <li>If the argument is NaN, then the result is NaN.
2819      *
2820      * <li>If the argument is infinite, then the result is an infinity
2821      * with the same sign as the argument.
2822      *
2823      * <li>If the argument is zero, then the result is a zero with the
2824      * same sign as the argument.
2825      *
2826      * </ul>
2827      *
2828      * <p>The computed result must be within 2.5 ulps of the exact result.
2829      *
2830      * @param   x The number whose hyperbolic sine is to be returned.
2831      * @return  The hyperbolic sine of {@code x}.
2832      * @since 1.5
2833      */
2834     // BEGIN Android-changed: Reimplement in native
2835     /*
2836     public static double sinh(double x) {
2837         return StrictMath.sinh(x);
2838     }
2839     */
2840     // END Android-changed: Reimplement in native
2841     @CriticalNative
2842     public static native double sinh(double x);
2843 
2844     /**
2845      * Returns the hyperbolic cosine of a {@code double} value.
2846      * The hyperbolic cosine of <i>x</i> is defined to be
2847      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
2848      * where <i>e</i> is {@linkplain Math#E Euler's number}.
2849      *
2850      * <p>Special cases:
2851      * <ul>
2852      *
2853      * <li>If the argument is NaN, then the result is NaN.
2854      *
2855      * <li>If the argument is infinite, then the result is positive
2856      * infinity.
2857      *
2858      * <li>If the argument is zero, then the result is {@code 1.0}.
2859      *
2860      * </ul>
2861      *
2862      * <p>The computed result must be within 2.5 ulps of the exact result.
2863      *
2864      * @param   x The number whose hyperbolic cosine is to be returned.
2865      * @return  The hyperbolic cosine of {@code x}.
2866      * @since 1.5
2867      */
2868     // BEGIN Android-changed: Reimplement in native
2869     /*
2870     public static double cosh(double x) {
2871         return StrictMath.cosh(x);
2872     }
2873     */
2874     // END Android-changed: Reimplement in native
2875     @CriticalNative
2876     public static native double cosh(double x);
2877 
2878     /**
2879      * Returns the hyperbolic tangent of a {@code double} value.
2880      * The hyperbolic tangent of <i>x</i> is defined to be
2881      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
2882      * in other words, {@linkplain Math#sinh
2883      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
2884      * that the absolute value of the exact tanh is always less than
2885      * 1.
2886      *
2887      * <p>Special cases:
2888      * <ul>
2889      *
2890      * <li>If the argument is NaN, then the result is NaN.
2891      *
2892      * <li>If the argument is zero, then the result is a zero with the
2893      * same sign as the argument.
2894      *
2895      * <li>If the argument is positive infinity, then the result is
2896      * {@code +1.0}.
2897      *
2898      * <li>If the argument is negative infinity, then the result is
2899      * {@code -1.0}.
2900      *
2901      * </ul>
2902      *
2903      * <p>The computed result must be within 2.5 ulps of the exact result.
2904      * The result of {@code tanh} for any finite input must have
2905      * an absolute value less than or equal to 1.  Note that once the
2906      * exact result of tanh is within 1/2 of an ulp of the limit value
2907      * of &plusmn;1, correctly signed &plusmn;{@code 1.0} should
2908      * be returned.
2909      *
2910      * @param   x The number whose hyperbolic tangent is to be returned.
2911      * @return  The hyperbolic tangent of {@code x}.
2912      * @since 1.5
2913      */
2914     // BEGIN Android-changed: Reimplement in native
2915     /*
2916     public static double tanh(double x) {
2917         return StrictMath.tanh(x);
2918     }
2919     */
2920     // END Android-changed: Reimplement in native
2921     @CriticalNative
2922     public static native double tanh(double x);
2923 
2924     /**
2925      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
2926      * without intermediate overflow or underflow.
2927      *
2928      * <p>Special cases:
2929      * <ul>
2930      *
2931      * <li> If either argument is infinite, then the result
2932      * is positive infinity.
2933      *
2934      * <li> If either argument is NaN and neither argument is infinite,
2935      * then the result is NaN.
2936      *
2937      * <li> If both arguments are zero, the result is positive zero.
2938      * </ul>
2939      *
2940      * <p>The computed result must be within 1 ulp of the exact
2941      * result.  If one parameter is held constant, the results must be
2942      * semi-monotonic in the other parameter.
2943      *
2944      * @param x a value
2945      * @param y a value
2946      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
2947      * without intermediate overflow or underflow
2948      * @since 1.5
2949      */
2950     // BEGIN Android-changed: Reimplement in native
2951     /*
2952     public static double hypot(double x, double y) {
2953         return StrictMath.hypot(x, y);
2954     }
2955     */
2956     // END Android-changed: Reimplement in native
2957     @CriticalNative
2958     public static native double hypot(double x, double y);
2959 
2960     /**
2961      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
2962      * <i>x</i> near 0, the exact sum of
2963      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
2964      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
2965      *
2966      * <p>Special cases:
2967      * <ul>
2968      * <li>If the argument is NaN, the result is NaN.
2969      *
2970      * <li>If the argument is positive infinity, then the result is
2971      * positive infinity.
2972      *
2973      * <li>If the argument is negative infinity, then the result is
2974      * -1.0.
2975      *
2976      * <li>If the argument is zero, then the result is a zero with the
2977      * same sign as the argument.
2978      *
2979      * </ul>
2980      *
2981      * <p>The computed result must be within 1 ulp of the exact result.
2982      * Results must be semi-monotonic.  The result of
2983      * {@code expm1} for any finite input must be greater than or
2984      * equal to {@code -1.0}.  Note that once the exact result of
2985      * <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1 is within 1/2
2986      * ulp of the limit value -1, {@code -1.0} should be
2987      * returned.
2988      *
2989      * @param   x   the exponent to raise <i>e</i> to in the computation of
2990      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
2991      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
2992      * @since 1.5
2993      */
2994     // BEGIN Android-changed: Reimplement in native
2995     /*
2996     public static double expm1(double x) {
2997         return StrictMath.expm1(x);
2998     }
2999     */
3000     // END Android-changed: Reimplement in native
3001     @CriticalNative
3002     public static native double expm1(double x);
3003 
3004     /**
3005      * Returns the natural logarithm of the sum of the argument and 1.
3006      * Note that for small values {@code x}, the result of
3007      * {@code log1p(x)} is much closer to the true result of ln(1
3008      * + {@code x}) than the floating-point evaluation of
3009      * {@code log(1.0+x)}.
3010      *
3011      * <p>Special cases:
3012      *
3013      * <ul>
3014      *
3015      * <li>If the argument is NaN or less than -1, then the result is
3016      * NaN.
3017      *
3018      * <li>If the argument is positive infinity, then the result is
3019      * positive infinity.
3020      *
3021      * <li>If the argument is negative one, then the result is
3022      * negative infinity.
3023      *
3024      * <li>If the argument is zero, then the result is a zero with the
3025      * same sign as the argument.
3026      *
3027      * </ul>
3028      *
3029      * <p>The computed result must be within 1 ulp of the exact result.
3030      * Results must be semi-monotonic.
3031      *
3032      * @param   x   a value
3033      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
3034      * log of {@code x}&nbsp;+&nbsp;1
3035      * @since 1.5
3036      */
3037     // BEGIN Android-changed: Reimplement in native
3038     /*
3039     public static double log1p(double x) {
3040         return StrictMath.log1p(x);
3041     }
3042     */
3043     // END Android-changed: Reimplement in native
3044     @CriticalNative
3045     public static native double log1p(double x);
3046 
3047     /**
3048      * Returns the first floating-point argument with the sign of the
3049      * second floating-point argument.  Note that unlike the {@link
3050      * StrictMath#copySign(double, double) StrictMath.copySign}
3051      * method, this method does not require NaN {@code sign}
3052      * arguments to be treated as positive values; implementations are
3053      * permitted to treat some NaN arguments as positive and other NaN
3054      * arguments as negative to allow greater performance.
3055      *
3056      * @apiNote
3057      * This method corresponds to the copySign operation defined in
3058      * IEEE 754.
3059      *
3060      * @param magnitude  the parameter providing the magnitude of the result
3061      * @param sign   the parameter providing the sign of the result
3062      * @return a value with the magnitude of {@code magnitude}
3063      * and the sign of {@code sign}.
3064      * @since 1.6
3065      */
3066     @IntrinsicCandidate
3067     public static double copySign(double magnitude, double sign) {
3068         return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) &
3069                                         (DoubleConsts.SIGN_BIT_MASK)) |
3070                                        (Double.doubleToRawLongBits(magnitude) &
3071                                         (DoubleConsts.EXP_BIT_MASK |
3072                                          DoubleConsts.SIGNIF_BIT_MASK)));
3073     }
3074 
3075     /**
3076      * Returns the first floating-point argument with the sign of the
3077      * second floating-point argument.  Note that unlike the {@link
3078      * StrictMath#copySign(float, float) StrictMath.copySign}
3079      * method, this method does not require NaN {@code sign}
3080      * arguments to be treated as positive values; implementations are
3081      * permitted to treat some NaN arguments as positive and other NaN
3082      * arguments as negative to allow greater performance.
3083      *
3084      * @apiNote
3085      * This method corresponds to the copySign operation defined in
3086      * IEEE 754.
3087      *
3088      * @param magnitude  the parameter providing the magnitude of the result
3089      * @param sign   the parameter providing the sign of the result
3090      * @return a value with the magnitude of {@code magnitude}
3091      * and the sign of {@code sign}.
3092      * @since 1.6
3093      */
3094     @IntrinsicCandidate
3095     public static float copySign(float magnitude, float sign) {
3096         return Float.intBitsToFloat((Float.floatToRawIntBits(sign) &
3097                                      (FloatConsts.SIGN_BIT_MASK)) |
3098                                     (Float.floatToRawIntBits(magnitude) &
3099                                      (FloatConsts.EXP_BIT_MASK |
3100                                       FloatConsts.SIGNIF_BIT_MASK)));
3101     }
3102 
3103     /**
3104      * Returns the unbiased exponent used in the representation of a
3105      * {@code float}.  Special cases:
3106      *
3107      * <ul>
3108      * <li>If the argument is NaN or infinite, then the result is
3109      * {@link Float#MAX_EXPONENT} + 1.
3110      * <li>If the argument is zero or subnormal, then the result is
3111      * {@link Float#MIN_EXPONENT} - 1.
3112      * </ul>
3113      * @apiNote
3114      * This method is analogous to the logB operation defined in IEEE
3115      * 754, but returns a different value on subnormal arguments.
3116      *
3117      * @param f a {@code float} value
3118      * @return the unbiased exponent of the argument
3119      * @since 1.6
3120      */
3121     public static int getExponent(float f) {
3122         /*
3123          * Bitwise convert f to integer, mask out exponent bits, shift
3124          * to the right and then subtract out float's bias adjust to
3125          * get true exponent value
3126          */
3127         return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >>
3128                 (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS;
3129     }
3130 
3131     /**
3132      * Returns the unbiased exponent used in the representation of a
3133      * {@code double}.  Special cases:
3134      *
3135      * <ul>
3136      * <li>If the argument is NaN or infinite, then the result is
3137      * {@link Double#MAX_EXPONENT} + 1.
3138      * <li>If the argument is zero or subnormal, then the result is
3139      * {@link Double#MIN_EXPONENT} - 1.
3140      * </ul>
3141      * @apiNote
3142      * This method is analogous to the logB operation defined in IEEE
3143      * 754, but returns a different value on subnormal arguments.
3144      *
3145      * @param d a {@code double} value
3146      * @return the unbiased exponent of the argument
3147      * @since 1.6
3148      */
3149     public static int getExponent(double d) {
3150         /*
3151          * Bitwise convert d to long, mask out exponent bits, shift
3152          * to the right and then subtract out double's bias adjust to
3153          * get true exponent value.
3154          */
3155         return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >>
3156                       (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS);
3157     }
3158 
3159     /**
3160      * Returns the floating-point number adjacent to the first
3161      * argument in the direction of the second argument.  If both
3162      * arguments compare as equal the second argument is returned.
3163      *
3164      * <p>
3165      * Special cases:
3166      * <ul>
3167      * <li> If either argument is a NaN, then NaN is returned.
3168      *
3169      * <li> If both arguments are signed zeros, {@code direction}
3170      * is returned unchanged (as implied by the requirement of
3171      * returning the second argument if the arguments compare as
3172      * equal).
3173      *
3174      * <li> If {@code start} is
3175      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
3176      * has a value such that the result should have a smaller
3177      * magnitude, then a zero with the same sign as {@code start}
3178      * is returned.
3179      *
3180      * <li> If {@code start} is infinite and
3181      * {@code direction} has a value such that the result should
3182      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
3183      * same sign as {@code start} is returned.
3184      *
3185      * <li> If {@code start} is equal to &plusmn;
3186      * {@link Double#MAX_VALUE} and {@code direction} has a
3187      * value such that the result should have a larger magnitude, an
3188      * infinity with same sign as {@code start} is returned.
3189      * </ul>
3190      *
3191      * @param start  starting floating-point value
3192      * @param direction value indicating which of
3193      * {@code start}'s neighbors or {@code start} should
3194      * be returned
3195      * @return The floating-point number adjacent to {@code start} in the
3196      * direction of {@code direction}.
3197      * @since 1.6
3198      */
3199     public static double nextAfter(double start, double direction) {
3200         /*
3201          * The cases:
3202          *
3203          * nextAfter(+infinity, 0)  == MAX_VALUE
3204          * nextAfter(+infinity, +infinity)  == +infinity
3205          * nextAfter(-infinity, 0)  == -MAX_VALUE
3206          * nextAfter(-infinity, -infinity)  == -infinity
3207          *
3208          * are naturally handled without any additional testing
3209          */
3210 
3211         /*
3212          * IEEE 754 floating-point numbers are lexicographically
3213          * ordered if treated as signed-magnitude integers.
3214          * Since Java's integers are two's complement,
3215          * incrementing the two's complement representation of a
3216          * logically negative floating-point value *decrements*
3217          * the signed-magnitude representation. Therefore, when
3218          * the integer representation of a floating-point value
3219          * is negative, the adjustment to the representation is in
3220          * the opposite direction from what would initially be expected.
3221          */
3222 
3223         // Branch to descending case first as it is more costly than ascending
3224         // case due to start != 0.0d conditional.
3225         if (start > direction) { // descending
3226             if (start != 0.0d) {
3227                 final long transducer = Double.doubleToRawLongBits(start);
3228                 return Double.longBitsToDouble(transducer + ((transducer > 0L) ? -1L : 1L));
3229             } else { // start == 0.0d && direction < 0.0d
3230                 return -Double.MIN_VALUE;
3231             }
3232         } else if (start < direction) { // ascending
3233             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
3234             // then bitwise convert start to integer.
3235             final long transducer = Double.doubleToRawLongBits(start + 0.0d);
3236             return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L));
3237         } else if (start == direction) {
3238             return direction;
3239         } else { // isNaN(start) || isNaN(direction)
3240             return start + direction;
3241         }
3242     }
3243 
3244     /**
3245      * Returns the floating-point number adjacent to the first
3246      * argument in the direction of the second argument.  If both
3247      * arguments compare as equal a value equivalent to the second argument
3248      * is returned.
3249      *
3250      * <p>
3251      * Special cases:
3252      * <ul>
3253      * <li> If either argument is a NaN, then NaN is returned.
3254      *
3255      * <li> If both arguments are signed zeros, a value equivalent
3256      * to {@code direction} is returned.
3257      *
3258      * <li> If {@code start} is
3259      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
3260      * has a value such that the result should have a smaller
3261      * magnitude, then a zero with the same sign as {@code start}
3262      * is returned.
3263      *
3264      * <li> If {@code start} is infinite and
3265      * {@code direction} has a value such that the result should
3266      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
3267      * same sign as {@code start} is returned.
3268      *
3269      * <li> If {@code start} is equal to &plusmn;
3270      * {@link Float#MAX_VALUE} and {@code direction} has a
3271      * value such that the result should have a larger magnitude, an
3272      * infinity with same sign as {@code start} is returned.
3273      * </ul>
3274      *
3275      * @param start  starting floating-point value
3276      * @param direction value indicating which of
3277      * {@code start}'s neighbors or {@code start} should
3278      * be returned
3279      * @return The floating-point number adjacent to {@code start} in the
3280      * direction of {@code direction}.
3281      * @since 1.6
3282      */
3283     public static float nextAfter(float start, double direction) {
3284         /*
3285          * The cases:
3286          *
3287          * nextAfter(+infinity, 0)  == MAX_VALUE
3288          * nextAfter(+infinity, +infinity)  == +infinity
3289          * nextAfter(-infinity, 0)  == -MAX_VALUE
3290          * nextAfter(-infinity, -infinity)  == -infinity
3291          *
3292          * are naturally handled without any additional testing
3293          */
3294 
3295         /*
3296          * IEEE 754 floating-point numbers are lexicographically
3297          * ordered if treated as signed-magnitude integers.
3298          * Since Java's integers are two's complement,
3299          * incrementing the two's complement representation of a
3300          * logically negative floating-point value *decrements*
3301          * the signed-magnitude representation. Therefore, when
3302          * the integer representation of a floating-point value
3303          * is negative, the adjustment to the representation is in
3304          * the opposite direction from what would initially be expected.
3305          */
3306 
3307         // Branch to descending case first as it is more costly than ascending
3308         // case due to start != 0.0f conditional.
3309         if (start > direction) { // descending
3310             if (start != 0.0f) {
3311                 final int transducer = Float.floatToRawIntBits(start);
3312                 return Float.intBitsToFloat(transducer + ((transducer > 0) ? -1 : 1));
3313             } else { // start == 0.0f && direction < 0.0f
3314                 return -Float.MIN_VALUE;
3315             }
3316         } else if (start < direction) { // ascending
3317             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0)
3318             // then bitwise convert start to integer.
3319             final int transducer = Float.floatToRawIntBits(start + 0.0f);
3320             return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1));
3321         } else if (start == direction) {
3322             return (float)direction;
3323         } else { // isNaN(start) || isNaN(direction)
3324             return start + (float)direction;
3325         }
3326     }
3327 
3328     /**
3329      * Returns the floating-point value adjacent to {@code d} in
3330      * the direction of positive infinity.  This method is
3331      * semantically equivalent to {@code nextAfter(d,
3332      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
3333      * implementation may run faster than its equivalent
3334      * {@code nextAfter} call.
3335      *
3336      * <p>Special Cases:
3337      * <ul>
3338      * <li> If the argument is NaN, the result is NaN.
3339      *
3340      * <li> If the argument is positive infinity, the result is
3341      * positive infinity.
3342      *
3343      * <li> If the argument is zero, the result is
3344      * {@link Double#MIN_VALUE}
3345      *
3346      * </ul>
3347      *
3348      * @apiNote This method corresponds to the nextUp
3349      * operation defined in IEEE 754.
3350      *
3351      * @param d starting floating-point value
3352      * @return The adjacent floating-point value closer to positive
3353      * infinity.
3354      * @since 1.6
3355      */
3356     public static double nextUp(double d) {
3357         // Use a single conditional and handle the likely cases first.
3358         if (d < Double.POSITIVE_INFINITY) {
3359             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0).
3360             final long transducer = Double.doubleToRawLongBits(d + 0.0D);
3361             return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L));
3362         } else { // d is NaN or +Infinity
3363             return d;
3364         }
3365     }
3366 
3367     /**
3368      * Returns the floating-point value adjacent to {@code f} in
3369      * the direction of positive infinity.  This method is
3370      * semantically equivalent to {@code nextAfter(f,
3371      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
3372      * implementation may run faster than its equivalent
3373      * {@code nextAfter} call.
3374      *
3375      * <p>Special Cases:
3376      * <ul>
3377      * <li> If the argument is NaN, the result is NaN.
3378      *
3379      * <li> If the argument is positive infinity, the result is
3380      * positive infinity.
3381      *
3382      * <li> If the argument is zero, the result is
3383      * {@link Float#MIN_VALUE}
3384      *
3385      * </ul>
3386      *
3387      * @apiNote This method corresponds to the nextUp
3388      * operation defined in IEEE 754.
3389      *
3390      * @param f starting floating-point value
3391      * @return The adjacent floating-point value closer to positive
3392      * infinity.
3393      * @since 1.6
3394      */
3395     public static float nextUp(float f) {
3396         // Use a single conditional and handle the likely cases first.
3397         if (f < Float.POSITIVE_INFINITY) {
3398             // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0).
3399             final int transducer = Float.floatToRawIntBits(f + 0.0F);
3400             return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1));
3401         } else { // f is NaN or +Infinity
3402             return f;
3403         }
3404     }
3405 
3406     /**
3407      * Returns the floating-point value adjacent to {@code d} in
3408      * the direction of negative infinity.  This method is
3409      * semantically equivalent to {@code nextAfter(d,
3410      * Double.NEGATIVE_INFINITY)}; however, a
3411      * {@code nextDown} implementation may run faster than its
3412      * equivalent {@code nextAfter} call.
3413      *
3414      * <p>Special Cases:
3415      * <ul>
3416      * <li> If the argument is NaN, the result is NaN.
3417      *
3418      * <li> If the argument is negative infinity, the result is
3419      * negative infinity.
3420      *
3421      * <li> If the argument is zero, the result is
3422      * {@code -Double.MIN_VALUE}
3423      *
3424      * </ul>
3425      *
3426      * @apiNote This method corresponds to the nextDown
3427      * operation defined in IEEE 754.
3428      *
3429      * @param d  starting floating-point value
3430      * @return The adjacent floating-point value closer to negative
3431      * infinity.
3432      * @since 1.8
3433      */
3434     public static double nextDown(double d) {
3435         if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY)
3436             return d;
3437         else {
3438             if (d == 0.0)
3439                 return -Double.MIN_VALUE;
3440             else
3441                 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) +
3442                                                ((d > 0.0d)?-1L:+1L));
3443         }
3444     }
3445 
3446     /**
3447      * Returns the floating-point value adjacent to {@code f} in
3448      * the direction of negative infinity.  This method is
3449      * semantically equivalent to {@code nextAfter(f,
3450      * Float.NEGATIVE_INFINITY)}; however, a
3451      * {@code nextDown} implementation may run faster than its
3452      * equivalent {@code nextAfter} call.
3453      *
3454      * <p>Special Cases:
3455      * <ul>
3456      * <li> If the argument is NaN, the result is NaN.
3457      *
3458      * <li> If the argument is negative infinity, the result is
3459      * negative infinity.
3460      *
3461      * <li> If the argument is zero, the result is
3462      * {@code -Float.MIN_VALUE}
3463      *
3464      * </ul>
3465      *
3466      * @apiNote This method corresponds to the nextDown
3467      * operation defined in IEEE 754.
3468      *
3469      * @param f  starting floating-point value
3470      * @return The adjacent floating-point value closer to negative
3471      * infinity.
3472      * @since 1.8
3473      */
3474     public static float nextDown(float f) {
3475         if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY)
3476             return f;
3477         else {
3478             if (f == 0.0f)
3479                 return -Float.MIN_VALUE;
3480             else
3481                 return Float.intBitsToFloat(Float.floatToRawIntBits(f) +
3482                                             ((f > 0.0f)?-1:+1));
3483         }
3484     }
3485 
3486     /**
3487      * Returns {@code d} &times; 2<sup>{@code scaleFactor}</sup>
3488      * rounded as if performed by a single correctly rounded
3489      * floating-point multiply.  If the exponent of the result is
3490      * between {@link Double#MIN_EXPONENT} and {@link
3491      * Double#MAX_EXPONENT}, the answer is calculated exactly.  If the
3492      * exponent of the result would be larger than {@code
3493      * Double.MAX_EXPONENT}, an infinity is returned.  Note that if
3494      * the result is subnormal, precision may be lost; that is, when
3495      * {@code scalb(x, n)} is subnormal, {@code scalb(scalb(x, n),
3496      * -n)} may not equal <i>x</i>.  When the result is non-NaN, the
3497      * result has the same sign as {@code d}.
3498      *
3499      * <p>Special cases:
3500      * <ul>
3501      * <li> If the first argument is NaN, NaN is returned.
3502      * <li> If the first argument is infinite, then an infinity of the
3503      * same sign is returned.
3504      * <li> If the first argument is zero, then a zero of the same
3505      * sign is returned.
3506      * </ul>
3507      *
3508      * @apiNote This method corresponds to the scaleB operation
3509      * defined in IEEE 754.
3510      *
3511      * @param d number to be scaled by a power of two.
3512      * @param scaleFactor power of 2 used to scale {@code d}
3513      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
3514      * @since 1.6
3515      */
3516     public static double scalb(double d, int scaleFactor) {
3517         /*
3518          * When scaling up, it does not matter what order the
3519          * multiply-store operations are done; the result will be
3520          * finite or overflow regardless of the operation ordering.
3521          * However, to get the correct result when scaling down, a
3522          * particular ordering must be used.
3523          *
3524          * When scaling down, the multiply-store operations are
3525          * sequenced so that it is not possible for two consecutive
3526          * multiply-stores to return subnormal results.  If one
3527          * multiply-store result is subnormal, the next multiply will
3528          * round it away to zero.  This is done by first multiplying
3529          * by 2 ^ (scaleFactor % n) and then multiplying several
3530          * times by 2^n as needed where n is the exponent of number
3531          * that is a convenient power of two.  In this way, at most one
3532          * real rounding error occurs.
3533          */
3534 
3535         // magnitude of a power of two so large that scaling a finite
3536         // nonzero value by it would be guaranteed to over or
3537         // underflow; due to rounding, scaling down takes an
3538         // additional power of two which is reflected here
3539         final int MAX_SCALE = Double.MAX_EXPONENT + -Double.MIN_EXPONENT +
3540                               DoubleConsts.SIGNIFICAND_WIDTH + 1;
3541         int exp_adjust = 0;
3542         int scale_increment = 0;
3543         double exp_delta = Double.NaN;
3544 
3545         // Make sure scaling factor is in a reasonable range
3546 
3547         if(scaleFactor < 0) {
3548             scaleFactor = Math.max(scaleFactor, -MAX_SCALE);
3549             scale_increment = -512;
3550             exp_delta = twoToTheDoubleScaleDown;
3551         }
3552         else {
3553             scaleFactor = Math.min(scaleFactor, MAX_SCALE);
3554             scale_increment = 512;
3555             exp_delta = twoToTheDoubleScaleUp;
3556         }
3557 
3558         // Calculate (scaleFactor % +/-512), 512 = 2^9, using
3559         // technique from "Hacker's Delight" section 10-2.
3560         int t = (scaleFactor >> 9-1) >>> 32 - 9;
3561         exp_adjust = ((scaleFactor + t) & (512 -1)) - t;
3562 
3563         d *= powerOfTwoD(exp_adjust);
3564         scaleFactor -= exp_adjust;
3565 
3566         while(scaleFactor != 0) {
3567             d *= exp_delta;
3568             scaleFactor -= scale_increment;
3569         }
3570         return d;
3571     }
3572 
3573     /**
3574      * Returns {@code f} &times; 2<sup>{@code scaleFactor}</sup>
3575      * rounded as if performed by a single correctly rounded
3576      * floating-point multiply.  If the exponent of the result is
3577      * between {@link Float#MIN_EXPONENT} and {@link
3578      * Float#MAX_EXPONENT}, the answer is calculated exactly.  If the
3579      * exponent of the result would be larger than {@code
3580      * Float.MAX_EXPONENT}, an infinity is returned.  Note that if the
3581      * result is subnormal, precision may be lost; that is, when
3582      * {@code scalb(x, n)} is subnormal, {@code scalb(scalb(x, n),
3583      * -n)} may not equal <i>x</i>.  When the result is non-NaN, the
3584      * result has the same sign as {@code f}.
3585      *
3586      * <p>Special cases:
3587      * <ul>
3588      * <li> If the first argument is NaN, NaN is returned.
3589      * <li> If the first argument is infinite, then an infinity of the
3590      * same sign is returned.
3591      * <li> If the first argument is zero, then a zero of the same
3592      * sign is returned.
3593      * </ul>
3594      *
3595      * @apiNote This method corresponds to the scaleB operation
3596      * defined in IEEE 754.
3597      *
3598      * @param f number to be scaled by a power of two.
3599      * @param scaleFactor power of 2 used to scale {@code f}
3600      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
3601      * @since 1.6
3602      */
3603     public static float scalb(float f, int scaleFactor) {
3604         // magnitude of a power of two so large that scaling a finite
3605         // nonzero value by it would be guaranteed to over or
3606         // underflow; due to rounding, scaling down takes an
3607         // additional power of two which is reflected here
3608         final int MAX_SCALE = Float.MAX_EXPONENT + -Float.MIN_EXPONENT +
3609                               FloatConsts.SIGNIFICAND_WIDTH + 1;
3610 
3611         // Make sure scaling factor is in a reasonable range
3612         scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE);
3613 
3614         /*
3615          * Since + MAX_SCALE for float fits well within the double
3616          * exponent range and + float -> double conversion is exact
3617          * the multiplication below will be exact. Therefore, the
3618          * rounding that occurs when the double product is cast to
3619          * float will be the correctly rounded float result.
3620          */
3621         return (float)((double)f*powerOfTwoD(scaleFactor));
3622     }
3623 
3624     // Constants used in scalb
3625     static double twoToTheDoubleScaleUp = powerOfTwoD(512);
3626     static double twoToTheDoubleScaleDown = powerOfTwoD(-512);
3627 
3628     /**
3629      * Returns a floating-point power of two in the normal range.
3630      */
3631     static double powerOfTwoD(int n) {
3632         assert(n >= Double.MIN_EXPONENT && n <= Double.MAX_EXPONENT);
3633         return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) <<
3634                                         (DoubleConsts.SIGNIFICAND_WIDTH-1))
3635                                        & DoubleConsts.EXP_BIT_MASK);
3636     }
3637 
3638     /**
3639      * Returns a floating-point power of two in the normal range.
3640      */
3641     static float powerOfTwoF(int n) {
3642         assert(n >= Float.MIN_EXPONENT && n <= Float.MAX_EXPONENT);
3643         return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) <<
3644                                      (FloatConsts.SIGNIFICAND_WIDTH-1))
3645                                     & FloatConsts.EXP_BIT_MASK);
3646     }
3647 }
3648