1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //#define LOG_NDEBUG 0
18 #define LOG_TAG "szipinf"
19 #include <utils/Log.h>
20 
21 #include <androidfw/StreamingZipInflater.h>
22 #include <utils/FileMap.h>
23 #include <string.h>
24 #include <stddef.h>
25 #include <assert.h>
26 #include <unistd.h>
27 #include <errno.h>
28 
29 /*
30  * TEMP_FAILURE_RETRY is defined by some, but not all, versions of
31  * <unistd.h>. (Alas, it is not as standard as we'd hoped!) So, if it's
32  * not already defined, then define it here.
33  */
34 #ifndef TEMP_FAILURE_RETRY
35 /* Used to retry syscalls that can return EINTR. */
36 #define TEMP_FAILURE_RETRY(exp) ({         \
37     typeof (exp) _rc;                      \
38     do {                                   \
39         _rc = (exp);                       \
40     } while (_rc == -1 && errno == EINTR); \
41     _rc; })
42 #endif
43 
44 static const bool kIsDebug = false;
45 
min_of(size_t a,size_t b)46 static inline size_t min_of(size_t a, size_t b) { return (a < b) ? a : b; }
47 
48 using namespace android;
49 
50 /*
51  * Streaming access to compressed asset data in an open fd
52  */
StreamingZipInflater(int fd,off64_t compDataStart,size_t uncompSize,size_t compSize)53 StreamingZipInflater::StreamingZipInflater(int fd, off64_t compDataStart,
54         size_t uncompSize, size_t compSize) {
55     mFd = fd;
56     mDataMap = NULL;
57     mInFileStart = compDataStart;
58     mOutTotalSize = uncompSize;
59     mInTotalSize = compSize;
60 
61     mInBufSize = StreamingZipInflater::INPUT_CHUNK_SIZE;
62     mInBuf = new uint8_t[mInBufSize];
63 
64     mOutBufSize = StreamingZipInflater::OUTPUT_CHUNK_SIZE;
65     mOutBuf = new uint8_t[mOutBufSize];
66 
67     initInflateState();
68 }
69 
70 /*
71  * Streaming access to compressed data held in an mmapped region of memory
72  */
StreamingZipInflater(const incfs::IncFsFileMap * dataMap,size_t uncompSize)73 StreamingZipInflater::StreamingZipInflater(const incfs::IncFsFileMap* dataMap, size_t uncompSize) {
74     mFd = -1;
75     mDataMap = dataMap;
76     mOutTotalSize = uncompSize;
77     mInTotalSize = dataMap->length();
78 
79     mInBuf = (uint8_t*) dataMap->unsafe_data(); // IncFs safety handled in zlib.
80     mInBufSize = mInTotalSize;
81 
82     mOutBufSize = StreamingZipInflater::OUTPUT_CHUNK_SIZE;
83     mOutBuf = new uint8_t[mOutBufSize];
84 
85     initInflateState();
86 }
87 
~StreamingZipInflater()88 StreamingZipInflater::~StreamingZipInflater() {
89     // tear down the in-flight zip state just in case
90     ::inflateEnd(&mInflateState);
91 
92     if (mDataMap == NULL) {
93         delete [] mInBuf;
94     }
95     delete [] mOutBuf;
96 }
97 
initInflateState()98 void StreamingZipInflater::initInflateState() {
99     ALOGV("Initializing inflate state");
100 
101     memset(&mInflateState, 0, sizeof(mInflateState));
102     mInflateState.zalloc = Z_NULL;
103     mInflateState.zfree = Z_NULL;
104     mInflateState.opaque = Z_NULL;
105     mInflateState.next_in = (Bytef*)mInBuf;
106     mInflateState.next_out = (Bytef*) mOutBuf;
107     mInflateState.avail_out = mOutBufSize;
108     mInflateState.data_type = Z_UNKNOWN;
109 
110     mOutLastDecoded = mOutDeliverable = mOutCurPosition = 0;
111     mInNextChunkOffset = 0;
112     mStreamNeedsInit = true;
113 
114     if (mDataMap == NULL) {
115         ::lseek(mFd, mInFileStart, SEEK_SET);
116         mInflateState.avail_in = 0; // set when a chunk is read in
117     } else {
118         mInflateState.avail_in = mInBufSize;
119     }
120 }
121 
122 /*
123  * Basic approach:
124  *
125  * 1. If we have undelivered uncompressed data, send it.  At this point
126  *    either we've satisfied the request, or we've exhausted the available
127  *    output data in mOutBuf.
128  *
129  * 2. While we haven't sent enough data to satisfy the request:
130  *    0. if the request is for more data than exists, bail.
131  *    a. if there is no input data to decode, read some into the input buffer
132  *       and readjust the z_stream input pointers
133  *    b. point the output to the start of the output buffer and decode what we can
134  *    c. deliver whatever output data we can
135  */
read(void * outBuf,size_t count)136 ssize_t StreamingZipInflater::read(void* outBuf, size_t count) {
137     uint8_t* dest = (uint8_t*) outBuf;
138     size_t bytesRead = 0;
139     size_t toRead = min_of(count, size_t(mOutTotalSize - mOutCurPosition));
140     while (toRead > 0) {
141         // First, write from whatever we already have decoded and ready to go
142         size_t deliverable = min_of(toRead, mOutLastDecoded - mOutDeliverable);
143         if (deliverable > 0) {
144             if (outBuf != NULL) memcpy(dest, mOutBuf + mOutDeliverable, deliverable);
145             mOutDeliverable += deliverable;
146             mOutCurPosition += deliverable;
147             dest += deliverable;
148             bytesRead += deliverable;
149             toRead -= deliverable;
150         }
151 
152         // need more data?  time to decode some.
153         if (toRead > 0) {
154             // if we don't have any data to decode, read some in.  If we're working
155             // from mmapped data this won't happen, because the clipping to total size
156             // will prevent reading off the end of the mapped input chunk.
157             if ((mInflateState.avail_in == 0) && (mDataMap == NULL)) {
158                 int err = readNextChunk();
159                 if (err < 0) {
160                     ALOGE("Unable to access asset data: %d", err);
161                     if (!mStreamNeedsInit) {
162                         ::inflateEnd(&mInflateState);
163                         initInflateState();
164                     }
165                     return -1;
166                 }
167             }
168             // we know we've drained whatever is in the out buffer now, so just
169             // start from scratch there, reading all the input we have at present.
170             mInflateState.next_out = (Bytef*) mOutBuf;
171             mInflateState.avail_out = mOutBufSize;
172 
173             /*
174             ALOGV("Inflating to outbuf: avail_in=%u avail_out=%u next_in=%p next_out=%p",
175                     mInflateState.avail_in, mInflateState.avail_out,
176                     mInflateState.next_in, mInflateState.next_out);
177             */
178             int result = Z_OK;
179             if (mStreamNeedsInit) {
180                 ALOGV("Initializing zlib to inflate");
181                 result = inflateInit2(&mInflateState, -MAX_WBITS);
182                 mStreamNeedsInit = false;
183             }
184             if (result == Z_OK) result = ::inflate(&mInflateState, Z_SYNC_FLUSH);
185             if (result < 0) {
186                 // Whoops, inflation failed
187                 ALOGE("Error inflating asset: %d", result);
188                 ::inflateEnd(&mInflateState);
189                 initInflateState();
190                 return -1;
191             } else {
192                 if (result == Z_STREAM_END) {
193                     // we know we have to have reached the target size here and will
194                     // not try to read any further, so just wind things up.
195                     ::inflateEnd(&mInflateState);
196                 }
197 
198                 // Note how much data we got, and off we go
199                 mOutDeliverable = 0;
200                 mOutLastDecoded = mOutBufSize - mInflateState.avail_out;
201             }
202         }
203     }
204     return bytesRead;
205 }
206 
readNextChunk()207 int StreamingZipInflater::readNextChunk() {
208     assert(mDataMap == NULL);
209 
210     if (mInNextChunkOffset < mInTotalSize) {
211         size_t toRead = min_of(mInBufSize, mInTotalSize - mInNextChunkOffset);
212         if (toRead > 0) {
213             ssize_t didRead = TEMP_FAILURE_RETRY(::read(mFd, mInBuf, toRead));
214             if (kIsDebug) {
215                 ALOGV("Reading input chunk, size %08zx didread %08zx", toRead, didRead);
216             }
217             if (didRead < 0) {
218                 ALOGE("Error reading asset data: %s", strerror(errno));
219                 return didRead;
220             } else {
221                 mInNextChunkOffset += didRead;
222                 mInflateState.next_in = (Bytef*) mInBuf;
223                 mInflateState.avail_in = didRead;
224             }
225         }
226     }
227     return 0;
228 }
229 
230 // seeking backwards requires uncompressing fom the beginning, so is very
231 // expensive.  seeking forwards only requires uncompressing from the current
232 // position to the destination.
seekAbsolute(off64_t absoluteInputPosition)233 off64_t StreamingZipInflater::seekAbsolute(off64_t absoluteInputPosition) {
234     if (absoluteInputPosition < mOutCurPosition) {
235         // rewind and reprocess the data from the beginning
236         if (!mStreamNeedsInit) {
237             ::inflateEnd(&mInflateState);
238         }
239         initInflateState();
240         read(NULL, absoluteInputPosition);
241     } else if (absoluteInputPosition > mOutCurPosition) {
242         read(NULL, absoluteInputPosition - mOutCurPosition);
243     }
244     // else if the target position *is* our current position, do nothing
245     return absoluteInputPosition;
246 }
247