1 /*
2  * Copyright (C) 2019 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "private/bionic_elf_tls.h"
30 
31 #include <async_safe/CHECK.h>
32 #include <async_safe/log.h>
33 #include <string.h>
34 #include <sys/param.h>
35 #include <unistd.h>
36 
37 #include "platform/bionic/macros.h"
38 #include "platform/bionic/page.h"
39 #include "private/ScopedRWLock.h"
40 #include "private/ScopedSignalBlocker.h"
41 #include "private/bionic_globals.h"
42 #include "private/bionic_tls.h"
43 #include "pthread_internal.h"
44 
45 // Every call to __tls_get_addr needs to check the generation counter, so
46 // accesses to the counter need to be as fast as possible. Keep a copy of it in
47 // a hidden variable, which can be accessed without using the GOT. The linker
48 // will update this variable when it updates its counter.
49 //
50 // To allow the linker to update this variable, libc.so's constructor passes its
51 // address to the linker. To accommodate a possible __tls_get_addr call before
52 // libc.so's constructor, this local copy is initialized to SIZE_MAX, forcing
53 // __tls_get_addr to initially use the slow path.
54 __LIBC_HIDDEN__ _Atomic(size_t) __libc_tls_generation_copy = SIZE_MAX;
55 
56 // Search for a TLS segment in the given phdr table. Returns true if it has a
57 // TLS segment and false otherwise.
__bionic_get_tls_segment(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,TlsSegment * out)58 bool __bionic_get_tls_segment(const ElfW(Phdr)* phdr_table, size_t phdr_count,
59                               ElfW(Addr) load_bias, TlsSegment* out) {
60   for (size_t i = 0; i < phdr_count; ++i) {
61     const ElfW(Phdr)& phdr = phdr_table[i];
62     if (phdr.p_type == PT_TLS) {
63       *out = TlsSegment{
64           .aligned_size =
65               TlsAlignedSize{
66                   .size = phdr.p_memsz,
67                   .align =
68                       TlsAlign{
69                           .value = phdr.p_align ?: 1,  // 0 means "no alignment requirement"
70                           .skew = phdr.p_vaddr % MAX(1, phdr.p_align),
71                       },
72               },
73           .init_ptr = reinterpret_cast<void*>(load_bias + phdr.p_vaddr),
74           .init_size = phdr.p_filesz,
75       };
76       return true;
77     }
78   }
79   return false;
80 }
81 
82 // Return true if the alignment of a TLS segment is a valid power-of-two.
__bionic_check_tls_align(size_t align)83 bool __bionic_check_tls_align(size_t align) {
84   // Note: The size does not need to be a multiple of the alignment. With ld.bfd
85   // (or after using binutils' strip), the TLS segment's size isn't rounded up.
86   return powerof2(align);
87 }
88 
static_tls_layout_overflow()89 static void static_tls_layout_overflow() {
90   async_safe_fatal("error: TLS segments in static TLS overflowed");
91 }
92 
align_checked(size_t value,TlsAlign tls_align)93 static size_t align_checked(size_t value, TlsAlign tls_align) {
94   const size_t align = tls_align.value;
95   const size_t skew = tls_align.skew;
96   CHECK(align != 0 && powerof2(align + 0) && skew < align);
97   const size_t result = ((value - skew + align - 1) & ~(align - 1)) + skew;
98   if (result < value) static_tls_layout_overflow();
99   return result;
100 }
101 
offset_thread_pointer() const102 size_t StaticTlsLayout::offset_thread_pointer() const {
103   return offset_bionic_tcb_ + (-MIN_TLS_SLOT * sizeof(void*));
104 }
105 
106 // Allocates the Bionic TCB and the executable's TLS segment in the static TLS
107 // layout, satisfying alignment requirements for both.
108 //
109 // For an executable's TLS accesses (using the LocalExec model), the static
110 // linker bakes TLS offsets directly into the .text section, so the loader must
111 // place the executable segment at the same offset relative to the TP.
112 // Similarly, the Bionic TLS slots (bionic_tcb) must also be allocated at the
113 // correct offset relative to the TP.
114 //
115 // Returns the offset of the executable's TLS segment.
116 //
117 // Note: This function has unit tests, but they are in bionic-unit-tests-static,
118 // not bionic-unit-tests.
reserve_exe_segment_and_tcb(const TlsSegment * seg,const char * progname)119 size_t StaticTlsLayout::reserve_exe_segment_and_tcb(const TlsSegment* seg,
120                                                     const char* progname __attribute__((unused))) {
121   // Special case: if the executable has no TLS segment, then just allocate a
122   // TCB and skip the minimum alignment check on ARM.
123   if (seg == nullptr) {
124     offset_bionic_tcb_ = reserve_type<bionic_tcb>();
125     return 0;
126   }
127 
128 #if defined(__arm__) || defined(__aarch64__)
129   // ARM uses a "variant 1" TLS layout. The ABI specifies that the TP points at
130   // a 2-word TCB, followed by the executable's segment. In practice, libc
131   // implementations actually allocate a larger TCB at negative offsets from the
132   // TP.
133   //
134   // Historically, Bionic allocated an 8-word TCB starting at TP+0, so to keep
135   // the executable's TLS segment from overlapping the last 6 slots, Bionic
136   // requires that executables have an 8-word PT_TLS alignment to ensure that
137   // the TCB fits in the alignment padding, which it accomplishes using
138   // crtbegin.c. Bionic uses negative offsets for new TLS slots to avoid this
139   // problem.
140 
141   static_assert(MIN_TLS_SLOT <= 0 && MAX_TLS_SLOT >= 1);
142   static_assert(sizeof(bionic_tcb) == (MAX_TLS_SLOT - MIN_TLS_SLOT + 1) * sizeof(void*));
143   static_assert(alignof(bionic_tcb) == sizeof(void*));
144   const size_t max_align = MAX(alignof(bionic_tcb), seg->aligned_size.align.value);
145 
146   // Allocate the TCB first. Split it into negative and non-negative slots and
147   // ensure that TP (i.e. the first non-negative slot) is aligned to max_align.
148   const size_t tcb_size_pre = -MIN_TLS_SLOT * sizeof(void*);
149   const size_t tcb_size_post = (MAX_TLS_SLOT + 1) * sizeof(void*);
150   const auto pair =
151       reserve_tp_pair(TlsAlignedSize{.size = tcb_size_pre},
152                       TlsAlignedSize{.size = tcb_size_post, .align = TlsAlign{.value = max_align}});
153   offset_bionic_tcb_ = pair.before;
154   const size_t offset_tp = pair.tp;
155 
156   // Allocate the segment.
157   offset_exe_ = reserve(seg->aligned_size);
158 
159   // Verify that the ABI and Bionic tpoff values are equal, which is equivalent
160   // to checking whether the segment is sufficiently aligned.
161   const size_t abi_tpoff = align_checked(2 * sizeof(void*), seg->aligned_size.align);
162   const size_t actual_tpoff = align_checked(tcb_size_post, seg->aligned_size.align);
163   CHECK(actual_tpoff == offset_exe_ - offset_tp);
164 
165   if (abi_tpoff != actual_tpoff) {
166     async_safe_fatal(
167         "error: \"%s\": executable's TLS segment is underaligned: "
168         "alignment is %zu (skew %zu), needs to be at least %zu for %s Bionic",
169         progname, seg->aligned_size.align.value, seg->aligned_size.align.skew, tcb_size_post,
170         (sizeof(void*) == 4 ? "ARM" : "ARM64"));
171   }
172 
173 #elif defined(__i386__) || defined(__x86_64__)
174 
175   auto pair = reserve_tp_pair(seg->aligned_size, TlsAlignedSize::of_type<bionic_tcb>());
176   offset_exe_ = pair.before;
177   offset_bionic_tcb_ = pair.after;
178 
179 #elif defined(__riscv)
180   static_assert(MAX_TLS_SLOT == -1, "Last slot of bionic_tcb must be slot #(-1) on riscv");
181 
182   auto pair = reserve_tp_pair(TlsAlignedSize::of_type<bionic_tcb>(), seg->aligned_size);
183   offset_bionic_tcb_ = pair.before;
184   offset_exe_ = pair.after;
185 
186 #else
187 #error "Unrecognized architecture"
188 #endif
189 
190   return offset_exe_;
191 }
192 
reserve_bionic_tls()193 size_t StaticTlsLayout::reserve_bionic_tls() {
194   offset_bionic_tls_ = reserve_type<bionic_tls>();
195   return offset_bionic_tls_;
196 }
197 
finish_layout()198 void StaticTlsLayout::finish_layout() {
199   // Round the offset up to the alignment.
200   cursor_ = align_checked(cursor_, TlsAlign{.value = align_});
201 }
202 
align_cursor(TlsAlign align)203 size_t StaticTlsLayout::align_cursor(TlsAlign align) {
204   cursor_ = align_checked(cursor_, align);
205   align_ = MAX(align_, align.value);
206   return cursor_;
207 }
208 
align_cursor_unskewed(size_t align)209 size_t StaticTlsLayout::align_cursor_unskewed(size_t align) {
210   return align_cursor(TlsAlign{.value = align});
211 }
212 
213 // Reserve the requested number of bytes at the requested alignment. The
214 // requested size is not required to be a multiple of the alignment, nor is the
215 // cursor aligned after the allocation.
reserve(TlsAlignedSize aligned_size)216 size_t StaticTlsLayout::reserve(TlsAlignedSize aligned_size) {
217   align_cursor(aligned_size.align);
218   const size_t result = cursor_;
219   if (__builtin_add_overflow(cursor_, aligned_size.size, &cursor_)) static_tls_layout_overflow();
220   return result;
221 }
222 
223 // Calculate the TP offset and allocate something before it and something after
224 // it. The TP will be aligned to:
225 //
226 //     MAX(before.align.value, after.align.value)
227 //
228 // The `before` and `after` allocations are each allocated as closely as
229 // possible to the TP.
reserve_tp_pair(TlsAlignedSize before,TlsAlignedSize after)230 StaticTlsLayout::TpAllocations StaticTlsLayout::reserve_tp_pair(TlsAlignedSize before,
231                                                                 TlsAlignedSize after) {
232   // Tentative `before` allocation.
233   const size_t tentative_before = reserve(before);
234   const size_t tentative_before_end = align_cursor_unskewed(before.align.value);
235 
236   const size_t offset_tp = align_cursor_unskewed(MAX(before.align.value, after.align.value));
237 
238   const size_t offset_after = reserve(after);
239 
240   // If the `after` allocation has higher alignment than `before`, then there
241   // may be alignment padding to remove between `before` and the TP. Shift
242   // `before` forward to remove this padding.
243   CHECK(((offset_tp - tentative_before_end) & (before.align.value - 1)) == 0);
244   const size_t offset_before = tentative_before + (offset_tp - tentative_before_end);
245 
246   return TpAllocations{offset_before, offset_tp, offset_after};
247 }
248 
249 // Copy each TLS module's initialization image into a newly-allocated block of
250 // static TLS memory. To reduce dirty pages, this function only writes to pages
251 // within the static TLS that need initialization. The memory should already be
252 // zero-initialized on entry.
__init_static_tls(void * static_tls)253 void __init_static_tls(void* static_tls) {
254   // The part of the table we care about (i.e. static TLS modules) never changes
255   // after startup, but we still need the mutex because the table could grow,
256   // moving the initial part. If this locking is too slow, we can duplicate the
257   // static part of the table.
258   TlsModules& modules = __libc_shared_globals()->tls_modules;
259   ScopedSignalBlocker ssb;
260   ScopedReadLock locker(&modules.rwlock);
261 
262   for (size_t i = 0; i < modules.module_count; ++i) {
263     TlsModule& module = modules.module_table[i];
264     if (module.static_offset == SIZE_MAX) {
265       // All of the static modules come before all of the dynamic modules, so
266       // once we see the first dynamic module, we're done.
267       break;
268     }
269     if (module.segment.init_size == 0) {
270       // Skip the memcpy call for TLS segments with no initializer, which is
271       // common.
272       continue;
273     }
274     memcpy(static_cast<char*>(static_tls) + module.static_offset,
275            module.segment.init_ptr,
276            module.segment.init_size);
277   }
278 }
279 
dtv_size_in_bytes(size_t module_count)280 static inline size_t dtv_size_in_bytes(size_t module_count) {
281   return sizeof(TlsDtv) + module_count * sizeof(void*);
282 }
283 
284 // Calculates the number of module slots to allocate in a new DTV. For small
285 // objects (up to 1KiB), the TLS allocator allocates memory in power-of-2 sizes,
286 // so for better space usage, ensure that the DTV size (header + slots) is a
287 // power of 2.
288 //
289 // The lock on TlsModules must be held.
calculate_new_dtv_count()290 static size_t calculate_new_dtv_count() {
291   size_t loaded_cnt = __libc_shared_globals()->tls_modules.module_count;
292   size_t bytes = dtv_size_in_bytes(MAX(1, loaded_cnt));
293   if (!powerof2(bytes)) {
294     bytes = BIONIC_ROUND_UP_POWER_OF_2(bytes);
295   }
296   return (bytes - sizeof(TlsDtv)) / sizeof(void*);
297 }
298 
299 // This function must be called with signals blocked and a write lock on
300 // TlsModules held.
update_tls_dtv(bionic_tcb * tcb)301 static void update_tls_dtv(bionic_tcb* tcb) {
302   const TlsModules& modules = __libc_shared_globals()->tls_modules;
303   BionicAllocator& allocator = __libc_shared_globals()->tls_allocator;
304 
305   // Use the generation counter from the shared globals instead of the local
306   // copy, which won't be initialized yet if __tls_get_addr is called before
307   // libc.so's constructor.
308   if (__get_tcb_dtv(tcb)->generation == atomic_load(&modules.generation)) {
309     return;
310   }
311 
312   const size_t old_cnt = __get_tcb_dtv(tcb)->count;
313 
314   // If the DTV isn't large enough, allocate a larger one. Because a signal
315   // handler could interrupt the fast path of __tls_get_addr, we don't free the
316   // old DTV. Instead, we add the old DTV to a list, then free all of a thread's
317   // DTVs at thread-exit. Each time the DTV is reallocated, its size at least
318   // doubles.
319   if (modules.module_count > old_cnt) {
320     size_t new_cnt = calculate_new_dtv_count();
321     TlsDtv* const old_dtv = __get_tcb_dtv(tcb);
322     TlsDtv* const new_dtv = static_cast<TlsDtv*>(allocator.alloc(dtv_size_in_bytes(new_cnt)));
323     memcpy(new_dtv, old_dtv, dtv_size_in_bytes(old_cnt));
324     new_dtv->count = new_cnt;
325     new_dtv->next = old_dtv;
326     __set_tcb_dtv(tcb, new_dtv);
327   }
328 
329   TlsDtv* const dtv = __get_tcb_dtv(tcb);
330 
331   const StaticTlsLayout& layout = __libc_shared_globals()->static_tls_layout;
332   char* static_tls = reinterpret_cast<char*>(tcb) - layout.offset_bionic_tcb();
333 
334   // Initialize static TLS modules and free unloaded modules.
335   for (size_t i = 0; i < dtv->count; ++i) {
336     if (i < modules.module_count) {
337       const TlsModule& mod = modules.module_table[i];
338       if (mod.static_offset != SIZE_MAX) {
339         dtv->modules[i] = static_tls + mod.static_offset;
340         continue;
341       }
342       if (mod.first_generation != kTlsGenerationNone &&
343           mod.first_generation <= dtv->generation) {
344         continue;
345       }
346     }
347     if (modules.on_destruction_cb != nullptr) {
348       void* dtls_begin = dtv->modules[i];
349       void* dtls_end =
350           static_cast<void*>(static_cast<char*>(dtls_begin) + allocator.get_chunk_size(dtls_begin));
351       modules.on_destruction_cb(dtls_begin, dtls_end);
352     }
353     allocator.free(dtv->modules[i]);
354     dtv->modules[i] = nullptr;
355   }
356 
357   dtv->generation = atomic_load(&modules.generation);
358 }
359 
tls_get_addr_slow_path(const TlsIndex * ti)360 __attribute__((noinline)) static void* tls_get_addr_slow_path(const TlsIndex* ti) {
361   TlsModules& modules = __libc_shared_globals()->tls_modules;
362   bionic_tcb* tcb = __get_bionic_tcb();
363 
364   // Block signals and lock TlsModules. We may need the allocator, so take
365   // a write lock.
366   ScopedSignalBlocker ssb;
367   ScopedWriteLock locker(&modules.rwlock);
368 
369   update_tls_dtv(tcb);
370 
371   TlsDtv* dtv = __get_tcb_dtv(tcb);
372   const size_t module_idx = __tls_module_id_to_idx(ti->module_id);
373   void* mod_ptr = dtv->modules[module_idx];
374   if (mod_ptr == nullptr) {
375     const TlsSegment& segment = modules.module_table[module_idx].segment;
376     // TODO: Currently the aligned_size.align.skew property is ignored.
377     // That is, for a dynamic TLS block at addr A, (A % p_align) will be 0, not
378     // (p_vaddr % p_align).
379     mod_ptr = __libc_shared_globals()->tls_allocator.memalign(segment.aligned_size.align.value,
380                                                               segment.aligned_size.size);
381     if (segment.init_size > 0) {
382       memcpy(mod_ptr, segment.init_ptr, segment.init_size);
383     }
384     dtv->modules[module_idx] = mod_ptr;
385 
386     // Reports the allocation to the listener, if any.
387     if (modules.on_creation_cb != nullptr) {
388       modules.on_creation_cb(
389           mod_ptr, static_cast<void*>(static_cast<char*>(mod_ptr) + segment.aligned_size.size));
390     }
391   }
392 
393   return static_cast<char*>(mod_ptr) + ti->offset + TLS_DTV_OFFSET;
394 }
395 
396 // Returns the address of a thread's TLS memory given a module ID and an offset
397 // into that module's TLS segment. This function is called on every access to a
398 // dynamic TLS variable on targets that don't use TLSDESC. arm64 uses TLSDESC,
399 // so it only calls this function on a thread's first access to a module's TLS
400 // segment.
401 //
402 // On most targets, this accessor function is __tls_get_addr and
403 // TLS_GET_ADDR_CALLING_CONVENTION is unset, but 32-bit x86 uses
404 // ___tls_get_addr (with three underscores) instead, and a regparm
405 // calling convention.
TLS_GET_ADDR(const TlsIndex * ti)406 extern "C" void* TLS_GET_ADDR(const TlsIndex* ti) TLS_GET_ADDR_CALLING_CONVENTION {
407   TlsDtv* dtv = __get_tcb_dtv(__get_bionic_tcb());
408 
409   // TODO: See if we can use a relaxed memory ordering here instead.
410   size_t generation = atomic_load(&__libc_tls_generation_copy);
411   if (__predict_true(generation == dtv->generation)) {
412     void* mod_ptr = dtv->modules[__tls_module_id_to_idx(ti->module_id)];
413     if (__predict_true(mod_ptr != nullptr)) {
414       return static_cast<char*>(mod_ptr) + ti->offset + TLS_DTV_OFFSET;
415     }
416   }
417 
418   return tls_get_addr_slow_path(ti);
419 }
420 
421 // This function frees:
422 //  - TLS modules referenced by the current DTV.
423 //  - The list of DTV objects associated with the current thread.
424 //
425 // The caller must have already blocked signals.
__free_dynamic_tls(bionic_tcb * tcb)426 void __free_dynamic_tls(bionic_tcb* tcb) {
427   TlsModules& modules = __libc_shared_globals()->tls_modules;
428   BionicAllocator& allocator = __libc_shared_globals()->tls_allocator;
429 
430   // If we didn't allocate any dynamic memory, skip out early without taking
431   // the lock.
432   TlsDtv* dtv = __get_tcb_dtv(tcb);
433   if (dtv->generation == kTlsGenerationNone) {
434     return;
435   }
436 
437   // We need the write lock to use the allocator.
438   ScopedWriteLock locker(&modules.rwlock);
439 
440   // First free everything in the current DTV.
441   for (size_t i = 0; i < dtv->count; ++i) {
442     if (i < modules.module_count && modules.module_table[i].static_offset != SIZE_MAX) {
443       // This module's TLS memory is allocated statically, so don't free it here.
444       continue;
445     }
446 
447     if (modules.on_destruction_cb != nullptr) {
448       void* dtls_begin = dtv->modules[i];
449       void* dtls_end =
450           static_cast<void*>(static_cast<char*>(dtls_begin) + allocator.get_chunk_size(dtls_begin));
451       modules.on_destruction_cb(dtls_begin, dtls_end);
452     }
453 
454     allocator.free(dtv->modules[i]);
455   }
456 
457   // Now free the thread's list of DTVs.
458   while (dtv->generation != kTlsGenerationNone) {
459     TlsDtv* next = dtv->next;
460     allocator.free(dtv);
461     dtv = next;
462   }
463 
464   // Clear the DTV slot. The DTV must not be used again with this thread.
465   tcb->tls_slot(TLS_SLOT_DTV) = nullptr;
466 }
467 
468 // Invokes all the registered thread_exit callbacks, if any.
__notify_thread_exit_callbacks()469 void __notify_thread_exit_callbacks() {
470   TlsModules& modules = __libc_shared_globals()->tls_modules;
471   if (modules.first_thread_exit_callback == nullptr) {
472     // If there is no first_thread_exit_callback, there shouldn't be a tail.
473     CHECK(modules.thread_exit_callback_tail_node == nullptr);
474     return;
475   }
476 
477   // Callbacks are supposed to be invoked in the reverse order
478   // in which they were registered.
479   CallbackHolder* node = modules.thread_exit_callback_tail_node;
480   while (node != nullptr) {
481     node->cb();
482     node = node->prev;
483   }
484   modules.first_thread_exit_callback();
485 }
486