1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "instruction_builder.h"
18 
19 #include "art_method-inl.h"
20 #include "base/arena_bit_vector.h"
21 #include "base/bit_vector-inl.h"
22 #include "base/logging.h"
23 #include "block_builder.h"
24 #include "class_linker-inl.h"
25 #include "code_generator.h"
26 #include "data_type-inl.h"
27 #include "dex/bytecode_utils.h"
28 #include "dex/dex_instruction-inl.h"
29 #include "driver/dex_compilation_unit.h"
30 #include "driver/compiler_options.h"
31 #include "entrypoints/entrypoint_utils-inl.h"
32 #include "imtable-inl.h"
33 #include "intrinsics.h"
34 #include "intrinsics_utils.h"
35 #include "jit/jit.h"
36 #include "jit/profiling_info.h"
37 #include "mirror/dex_cache.h"
38 #include "oat/oat_file.h"
39 #include "optimizing_compiler_stats.h"
40 #include "reflective_handle_scope-inl.h"
41 #include "scoped_thread_state_change-inl.h"
42 #include "sharpening.h"
43 #include "ssa_builder.h"
44 #include "well_known_classes.h"
45 
46 namespace art HIDDEN {
47 
48 namespace {
49 
50 class SamePackageCompare {
51  public:
SamePackageCompare(const DexCompilationUnit & dex_compilation_unit)52   explicit SamePackageCompare(const DexCompilationUnit& dex_compilation_unit)
53       : dex_compilation_unit_(dex_compilation_unit) {}
54 
operator ()(ObjPtr<mirror::Class> klass)55   bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
56     if (klass->GetClassLoader() != dex_compilation_unit_.GetClassLoader().Get()) {
57       return false;
58     }
59     if (referrers_descriptor_ == nullptr) {
60       const DexFile* dex_file = dex_compilation_unit_.GetDexFile();
61       uint32_t referrers_method_idx = dex_compilation_unit_.GetDexMethodIndex();
62       referrers_descriptor_ =
63           dex_file->GetMethodDeclaringClassDescriptor(dex_file->GetMethodId(referrers_method_idx));
64       referrers_package_length_ = PackageLength(referrers_descriptor_);
65     }
66     std::string temp;
67     const char* klass_descriptor = klass->GetDescriptor(&temp);
68     size_t klass_package_length = PackageLength(klass_descriptor);
69     return (referrers_package_length_ == klass_package_length) &&
70            memcmp(referrers_descriptor_, klass_descriptor, referrers_package_length_) == 0;
71   };
72 
73  private:
PackageLength(const char * descriptor)74   static size_t PackageLength(const char* descriptor) {
75     const char* slash_pos = strrchr(descriptor, '/');
76     return (slash_pos != nullptr) ? static_cast<size_t>(slash_pos - descriptor) : 0u;
77   }
78 
79   const DexCompilationUnit& dex_compilation_unit_;
80   const char* referrers_descriptor_ = nullptr;
81   size_t referrers_package_length_ = 0u;
82 };
83 
84 }  // anonymous namespace
85 
HInstructionBuilder(HGraph * graph,HBasicBlockBuilder * block_builder,SsaBuilder * ssa_builder,const DexFile * dex_file,const CodeItemDebugInfoAccessor & accessor,DataType::Type return_type,const DexCompilationUnit * dex_compilation_unit,const DexCompilationUnit * outer_compilation_unit,CodeGenerator * code_generator,OptimizingCompilerStats * compiler_stats,ScopedArenaAllocator * local_allocator)86 HInstructionBuilder::HInstructionBuilder(HGraph* graph,
87                                          HBasicBlockBuilder* block_builder,
88                                          SsaBuilder* ssa_builder,
89                                          const DexFile* dex_file,
90                                          const CodeItemDebugInfoAccessor& accessor,
91                                          DataType::Type return_type,
92                                          const DexCompilationUnit* dex_compilation_unit,
93                                          const DexCompilationUnit* outer_compilation_unit,
94                                          CodeGenerator* code_generator,
95                                          OptimizingCompilerStats* compiler_stats,
96                                          ScopedArenaAllocator* local_allocator)
97     : allocator_(graph->GetAllocator()),
98       graph_(graph),
99       dex_file_(dex_file),
100       code_item_accessor_(accessor),
101       return_type_(return_type),
102       block_builder_(block_builder),
103       ssa_builder_(ssa_builder),
104       code_generator_(code_generator),
105       dex_compilation_unit_(dex_compilation_unit),
106       outer_compilation_unit_(outer_compilation_unit),
107       compilation_stats_(compiler_stats),
108       local_allocator_(local_allocator),
109       locals_for_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
110       current_block_(nullptr),
111       current_locals_(nullptr),
112       latest_result_(nullptr),
113       current_this_parameter_(nullptr),
114       loop_headers_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
115       class_cache_(std::less<dex::TypeIndex>(), local_allocator->Adapter(kArenaAllocGraphBuilder)) {
116   loop_headers_.reserve(kDefaultNumberOfLoops);
117 }
118 
FindBlockStartingAt(uint32_t dex_pc) const119 HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
120   return block_builder_->GetBlockAt(dex_pc);
121 }
122 
GetLocalsFor(HBasicBlock * block)123 inline ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
124   ScopedArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
125   const size_t vregs = graph_->GetNumberOfVRegs();
126   if (locals->size() == vregs) {
127     return locals;
128   }
129   return GetLocalsForWithAllocation(block, locals, vregs);
130 }
131 
GetLocalsForWithAllocation(HBasicBlock * block,ScopedArenaVector<HInstruction * > * locals,const size_t vregs)132 ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation(
133     HBasicBlock* block,
134     ScopedArenaVector<HInstruction*>* locals,
135     const size_t vregs) {
136   DCHECK_NE(locals->size(), vregs);
137   locals->resize(vregs, nullptr);
138   if (block->IsCatchBlock()) {
139     // We record incoming inputs of catch phis at throwing instructions and
140     // must therefore eagerly create the phis. Phis for undefined vregs will
141     // be deleted when the first throwing instruction with the vreg undefined
142     // is encountered. Unused phis will be removed by dead phi analysis.
143     for (size_t i = 0; i < vregs; ++i) {
144       // No point in creating the catch phi if it is already undefined at
145       // the first throwing instruction.
146       HInstruction* current_local_value = (*current_locals_)[i];
147       if (current_local_value != nullptr) {
148         HPhi* phi = new (allocator_) HPhi(
149             allocator_,
150             i,
151             0,
152             current_local_value->GetType());
153         block->AddPhi(phi);
154         (*locals)[i] = phi;
155       }
156     }
157   }
158   return locals;
159 }
160 
ValueOfLocalAt(HBasicBlock * block,size_t local)161 inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
162   ScopedArenaVector<HInstruction*>* locals = GetLocalsFor(block);
163   return (*locals)[local];
164 }
165 
InitializeBlockLocals()166 void HInstructionBuilder::InitializeBlockLocals() {
167   current_locals_ = GetLocalsFor(current_block_);
168 
169   if (current_block_->IsCatchBlock()) {
170     // Catch phis were already created and inputs collected from throwing sites.
171     if (kIsDebugBuild) {
172       // Make sure there was at least one throwing instruction which initialized
173       // locals (guaranteed by HGraphBuilder) and that all try blocks have been
174       // visited already (from HTryBoundary scoping and reverse post order).
175       bool catch_block_visited = false;
176       for (HBasicBlock* current : graph_->GetReversePostOrder()) {
177         if (current == current_block_) {
178           catch_block_visited = true;
179         } else if (current->IsTryBlock()) {
180           const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
181           if (try_entry.HasExceptionHandler(*current_block_)) {
182             DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
183           }
184         }
185       }
186       DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
187           << "No instructions throwing into a live catch block.";
188     }
189   } else if (current_block_->IsLoopHeader()) {
190     // If the block is a loop header, we know we only have visited the pre header
191     // because we are visiting in reverse post order. We create phis for all initialized
192     // locals from the pre header. Their inputs will be populated at the end of
193     // the analysis.
194     for (size_t local = 0; local < current_locals_->size(); ++local) {
195       HInstruction* incoming =
196           ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
197       if (incoming != nullptr) {
198         HPhi* phi = new (allocator_) HPhi(
199             allocator_,
200             local,
201             0,
202             incoming->GetType());
203         current_block_->AddPhi(phi);
204         (*current_locals_)[local] = phi;
205       }
206     }
207 
208     // Save the loop header so that the last phase of the analysis knows which
209     // blocks need to be updated.
210     loop_headers_.push_back(current_block_);
211   } else if (current_block_->GetPredecessors().size() > 0) {
212     // All predecessors have already been visited because we are visiting in reverse post order.
213     // We merge the values of all locals, creating phis if those values differ.
214     for (size_t local = 0; local < current_locals_->size(); ++local) {
215       bool one_predecessor_has_no_value = false;
216       bool is_different = false;
217       HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
218 
219       for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
220         HInstruction* current = ValueOfLocalAt(predecessor, local);
221         if (current == nullptr) {
222           one_predecessor_has_no_value = true;
223           break;
224         } else if (current != value) {
225           is_different = true;
226         }
227       }
228 
229       if (one_predecessor_has_no_value) {
230         // If one predecessor has no value for this local, we trust the verifier has
231         // successfully checked that there is a store dominating any read after this block.
232         continue;
233       }
234 
235       if (is_different) {
236         HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
237         HPhi* phi = new (allocator_) HPhi(
238             allocator_,
239             local,
240             current_block_->GetPredecessors().size(),
241             first_input->GetType());
242         for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
243           HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
244           phi->SetRawInputAt(i, pred_value);
245         }
246         current_block_->AddPhi(phi);
247         value = phi;
248       }
249       (*current_locals_)[local] = value;
250     }
251   }
252 }
253 
PropagateLocalsToCatchBlocks()254 void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
255   const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
256   for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
257     ScopedArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
258     DCHECK_EQ(handler_locals->size(), current_locals_->size());
259     for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
260       HInstruction* handler_value = (*handler_locals)[vreg];
261       if (handler_value == nullptr) {
262         // Vreg was undefined at a previously encountered throwing instruction
263         // and the catch phi was deleted. Do not record the local value.
264         continue;
265       }
266       DCHECK(handler_value->IsPhi());
267 
268       HInstruction* local_value = (*current_locals_)[vreg];
269       if (local_value == nullptr) {
270         // This is the first instruction throwing into `catch_block` where
271         // `vreg` is undefined. Delete the catch phi.
272         catch_block->RemovePhi(handler_value->AsPhi());
273         (*handler_locals)[vreg] = nullptr;
274       } else {
275         // Vreg has been defined at all instructions throwing into `catch_block`
276         // encountered so far. Record the local value in the catch phi.
277         handler_value->AsPhi()->AddInput(local_value);
278       }
279     }
280   }
281 }
282 
AppendInstruction(HInstruction * instruction)283 void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
284   current_block_->AddInstruction(instruction);
285   InitializeInstruction(instruction);
286 }
287 
InsertInstructionAtTop(HInstruction * instruction)288 void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
289   if (current_block_->GetInstructions().IsEmpty()) {
290     current_block_->AddInstruction(instruction);
291   } else {
292     current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
293   }
294   InitializeInstruction(instruction);
295 }
296 
InitializeInstruction(HInstruction * instruction)297 void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
298   if (instruction->NeedsEnvironment()) {
299     HEnvironment* environment = new (allocator_) HEnvironment(
300         allocator_,
301         current_locals_->size(),
302         graph_->GetArtMethod(),
303         instruction->GetDexPc(),
304         instruction);
305     environment->CopyFrom(ArrayRef<HInstruction* const>(*current_locals_));
306     instruction->SetRawEnvironment(environment);
307   }
308 }
309 
LoadNullCheckedLocal(uint32_t register_index,uint32_t dex_pc)310 HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) {
311   HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference);
312   if (!ref->CanBeNull()) {
313     return ref;
314   }
315 
316   HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc);
317   AppendInstruction(null_check);
318   return null_check;
319 }
320 
SetLoopHeaderPhiInputs()321 void HInstructionBuilder::SetLoopHeaderPhiInputs() {
322   for (size_t i = loop_headers_.size(); i > 0; --i) {
323     HBasicBlock* block = loop_headers_[i - 1];
324     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
325       HPhi* phi = it.Current()->AsPhi();
326       size_t vreg = phi->GetRegNumber();
327       for (HBasicBlock* predecessor : block->GetPredecessors()) {
328         HInstruction* value = ValueOfLocalAt(predecessor, vreg);
329         if (value == nullptr) {
330           // Vreg is undefined at this predecessor. Mark it dead and leave with
331           // fewer inputs than predecessors. SsaChecker will fail if not removed.
332           phi->SetDead();
333           break;
334         } else {
335           phi->AddInput(value);
336         }
337       }
338     }
339   }
340 }
341 
IsBlockPopulated(HBasicBlock * block)342 static bool IsBlockPopulated(HBasicBlock* block) {
343   if (block->IsLoopHeader()) {
344     // Suspend checks were inserted into loop headers during building of dominator tree.
345     DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
346     return block->GetFirstInstruction() != block->GetLastInstruction();
347   } else if (block->IsCatchBlock()) {
348     // Nops were inserted into the beginning of catch blocks.
349     DCHECK(block->GetFirstInstruction()->IsNop());
350     return block->GetFirstInstruction() != block->GetLastInstruction();
351   } else {
352     return !block->GetInstructions().IsEmpty();
353   }
354 }
355 
Build()356 bool HInstructionBuilder::Build() {
357   DCHECK(code_item_accessor_.HasCodeItem());
358   locals_for_.resize(
359       graph_->GetBlocks().size(),
360       ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
361 
362   // Find locations where we want to generate extra stackmaps for native debugging.
363   // This allows us to generate the info only at interesting points (for example,
364   // at start of java statement) rather than before every dex instruction.
365   const bool native_debuggable = code_generator_ != nullptr &&
366                                  code_generator_->GetCompilerOptions().GetNativeDebuggable();
367   ArenaBitVector* native_debug_info_locations = nullptr;
368   if (native_debuggable) {
369     native_debug_info_locations = FindNativeDebugInfoLocations();
370   }
371 
372   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
373     current_block_ = block;
374     uint32_t block_dex_pc = current_block_->GetDexPc();
375 
376     InitializeBlockLocals();
377 
378     if (current_block_->IsEntryBlock()) {
379       InitializeParameters();
380       AppendInstruction(new (allocator_) HSuspendCheck(0u));
381       if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
382         AppendInstruction(new (allocator_) HMethodEntryHook(0u));
383       }
384       AppendInstruction(new (allocator_) HGoto(0u));
385       continue;
386     } else if (current_block_->IsExitBlock()) {
387       AppendInstruction(new (allocator_) HExit());
388       continue;
389     } else if (current_block_->IsLoopHeader()) {
390       HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc());
391       current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
392       // This is slightly odd because the loop header might not be empty (TryBoundary).
393       // But we're still creating the environment with locals from the top of the block.
394       InsertInstructionAtTop(suspend_check);
395     } else if (current_block_->IsCatchBlock()) {
396       // We add an environment emitting instruction at the beginning of each catch block, in order
397       // to support try catch inlining.
398       // This is slightly odd because the catch block might not be empty (TryBoundary).
399       InsertInstructionAtTop(new (allocator_) HNop(block_dex_pc, /* needs_environment= */ true));
400     }
401 
402     if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
403       // Synthetic block that does not need to be populated.
404       DCHECK(IsBlockPopulated(current_block_));
405       continue;
406     }
407 
408     DCHECK(!IsBlockPopulated(current_block_));
409 
410     for (const DexInstructionPcPair& pair : code_item_accessor_.InstructionsFrom(block_dex_pc)) {
411       if (current_block_ == nullptr) {
412         // The previous instruction ended this block.
413         break;
414       }
415 
416       const uint32_t dex_pc = pair.DexPc();
417       if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
418         // This dex_pc starts a new basic block.
419         break;
420       }
421 
422       if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) {
423         PropagateLocalsToCatchBlocks();
424       }
425 
426       if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
427         AppendInstruction(new (allocator_) HNop(dex_pc, /* needs_environment= */ true));
428       }
429 
430       // Note: There may be no Thread for gtests.
431       DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending())
432           << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
433           << " " << pair.Inst().Name() << "@" << dex_pc;
434       if (!ProcessDexInstruction(pair.Inst(), dex_pc)) {
435         return false;
436       }
437       DCHECK(Thread::Current() == nullptr || !Thread::Current()->IsExceptionPending())
438           << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
439           << " " << pair.Inst().Name() << "@" << dex_pc;
440     }
441 
442     if (current_block_ != nullptr) {
443       // Branching instructions clear current_block, so we know the last
444       // instruction of the current block is not a branching instruction.
445       // We add an unconditional Goto to the next block.
446       DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
447       AppendInstruction(new (allocator_) HGoto());
448     }
449   }
450 
451   SetLoopHeaderPhiInputs();
452 
453   return true;
454 }
455 
BuildIntrinsic(ArtMethod * method)456 void HInstructionBuilder::BuildIntrinsic(ArtMethod* method) {
457   DCHECK(!code_item_accessor_.HasCodeItem());
458   DCHECK(method->IsIntrinsic());
459   if (kIsDebugBuild) {
460     ScopedObjectAccess soa(Thread::Current());
461     CHECK(!method->IsSignaturePolymorphic());
462   }
463 
464   locals_for_.resize(
465       graph_->GetBlocks().size(),
466       ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
467 
468   // Fill the entry block. Do not add suspend check, we do not want a suspend
469   // check in intrinsics; intrinsic methods are supposed to be fast.
470   current_block_ = graph_->GetEntryBlock();
471   InitializeBlockLocals();
472   InitializeParameters();
473   if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
474     AppendInstruction(new (allocator_) HMethodEntryHook(0u));
475   }
476   AppendInstruction(new (allocator_) HGoto(0u));
477 
478   // Fill the body.
479   current_block_ = current_block_->GetSingleSuccessor();
480   InitializeBlockLocals();
481   DCHECK(!IsBlockPopulated(current_block_));
482 
483   // Add the intermediate representation, if available, or invoke instruction.
484   size_t in_vregs = graph_->GetNumberOfInVRegs();
485   size_t number_of_arguments =
486       in_vregs - std::count(current_locals_->end() - in_vregs, current_locals_->end(), nullptr);
487   uint32_t method_idx = dex_compilation_unit_->GetDexMethodIndex();
488   const char* shorty = dex_file_->GetMethodShorty(method_idx);
489   RangeInstructionOperands operands(graph_->GetNumberOfVRegs() - in_vregs, in_vregs);
490   if (!BuildSimpleIntrinsic(method, kNoDexPc, operands, shorty)) {
491     // Some intrinsics without intermediate representation still yield a leaf method,
492     // so build the invoke. Use HInvokeStaticOrDirect even for methods that would
493     // normally use an HInvokeVirtual (sharpen the call).
494     MethodReference target_method(dex_file_, method_idx);
495     HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
496         MethodLoadKind::kRuntimeCall,
497         CodePtrLocation::kCallArtMethod,
498         /* method_load_data= */ 0u
499     };
500     InvokeType invoke_type = dex_compilation_unit_->IsStatic() ? kStatic : kDirect;
501     HInvokeStaticOrDirect* invoke = new (allocator_) HInvokeStaticOrDirect(
502         allocator_,
503         number_of_arguments,
504         return_type_,
505         kNoDexPc,
506         target_method,
507         method,
508         dispatch_info,
509         invoke_type,
510         target_method,
511         HInvokeStaticOrDirect::ClinitCheckRequirement::kNone,
512         !graph_->IsDebuggable());
513     HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
514   }
515 
516   // Add the return instruction.
517   if (return_type_ == DataType::Type::kVoid) {
518     if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
519       AppendInstruction(new (allocator_) HMethodExitHook(graph_->GetNullConstant(), kNoDexPc));
520     }
521     AppendInstruction(new (allocator_) HReturnVoid());
522   } else {
523     if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
524       AppendInstruction(new (allocator_) HMethodExitHook(latest_result_, kNoDexPc));
525     }
526     AppendInstruction(new (allocator_) HReturn(latest_result_));
527   }
528 
529   // Fill the exit block.
530   DCHECK_EQ(current_block_->GetSingleSuccessor(), graph_->GetExitBlock());
531   current_block_ = graph_->GetExitBlock();
532   InitializeBlockLocals();
533   AppendInstruction(new (allocator_) HExit());
534 }
535 
FindNativeDebugInfoLocations()536 ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() {
537   ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_,
538                                                      code_item_accessor_.InsnsSizeInCodeUnits(),
539                                                      /* expandable= */ false,
540                                                      kArenaAllocGraphBuilder);
541   // The visitor gets called when the line number changes.
542   // In other words, it marks the start of new java statement.
543   code_item_accessor_.DecodeDebugPositionInfo([&](const DexFile::PositionInfo& entry) {
544     locations->SetBit(entry.address_);
545     return false;
546   });
547   // Instruction-specific tweaks.
548   for (const DexInstructionPcPair& inst : code_item_accessor_) {
549     switch (inst->Opcode()) {
550       case Instruction::MOVE_EXCEPTION: {
551         // Stop in native debugger after the exception has been moved.
552         // The compiler also expects the move at the start of basic block so
553         // we do not want to interfere by inserting native-debug-info before it.
554         locations->ClearBit(inst.DexPc());
555         DexInstructionIterator next = std::next(DexInstructionIterator(inst));
556         DCHECK(next.DexPc() != inst.DexPc());
557         if (next != code_item_accessor_.end()) {
558           locations->SetBit(next.DexPc());
559         }
560         break;
561       }
562       default:
563         break;
564     }
565   }
566   return locations;
567 }
568 
LoadLocal(uint32_t reg_number,DataType::Type type) const569 HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const {
570   HInstruction* value = (*current_locals_)[reg_number];
571   DCHECK(value != nullptr);
572 
573   // If the operation requests a specific type, we make sure its input is of that type.
574   if (type != value->GetType()) {
575     if (DataType::IsFloatingPointType(type)) {
576       value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
577     } else if (type == DataType::Type::kReference) {
578       value = ssa_builder_->GetReferenceTypeEquivalent(value);
579     }
580     DCHECK(value != nullptr);
581   }
582 
583   return value;
584 }
585 
UpdateLocal(uint32_t reg_number,HInstruction * stored_value)586 void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
587   DataType::Type stored_type = stored_value->GetType();
588   DCHECK_NE(stored_type, DataType::Type::kVoid);
589 
590   // Storing into vreg `reg_number` may implicitly invalidate the surrounding
591   // registers. Consider the following cases:
592   // (1) Storing a wide value must overwrite previous values in both `reg_number`
593   //     and `reg_number+1`. We store `nullptr` in `reg_number+1`.
594   // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
595   //     must invalidate it. We store `nullptr` in `reg_number-1`.
596   // Consequently, storing a wide value into the high vreg of another wide value
597   // will invalidate both `reg_number-1` and `reg_number+1`.
598 
599   if (reg_number != 0) {
600     HInstruction* local_low = (*current_locals_)[reg_number - 1];
601     if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) {
602       // The vreg we are storing into was previously the high vreg of a pair.
603       // We need to invalidate its low vreg.
604       DCHECK((*current_locals_)[reg_number] == nullptr);
605       (*current_locals_)[reg_number - 1] = nullptr;
606     }
607   }
608 
609   (*current_locals_)[reg_number] = stored_value;
610   if (DataType::Is64BitType(stored_type)) {
611     // We are storing a pair. Invalidate the instruction in the high vreg.
612     (*current_locals_)[reg_number + 1] = nullptr;
613   }
614 }
615 
InitializeParameters()616 void HInstructionBuilder::InitializeParameters() {
617   DCHECK(current_block_->IsEntryBlock());
618 
619   // outer_compilation_unit_ is null only when unit testing.
620   if (outer_compilation_unit_ == nullptr) {
621     return;
622   }
623 
624   const char* shorty = dex_compilation_unit_->GetShorty();
625   uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
626   uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
627   uint16_t parameter_index = 0;
628 
629   const dex::MethodId& referrer_method_id =
630       dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
631   if (!dex_compilation_unit_->IsStatic()) {
632     // Add the implicit 'this' argument, not expressed in the signature.
633     HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_,
634                                                               referrer_method_id.class_idx_,
635                                                               parameter_index++,
636                                                               DataType::Type::kReference,
637                                                               /* is_this= */ true);
638     AppendInstruction(parameter);
639     UpdateLocal(locals_index++, parameter);
640     number_of_parameters--;
641     current_this_parameter_ = parameter;
642   } else {
643     DCHECK(current_this_parameter_ == nullptr);
644   }
645 
646   const dex::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
647   const dex::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
648   for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
649     HParameterValue* parameter = new (allocator_) HParameterValue(
650         *dex_file_,
651         arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
652         parameter_index++,
653         DataType::FromShorty(shorty[shorty_pos]),
654         /* is_this= */ false);
655     ++shorty_pos;
656     AppendInstruction(parameter);
657     // Store the parameter value in the local that the dex code will use
658     // to reference that parameter.
659     UpdateLocal(locals_index++, parameter);
660     if (DataType::Is64BitType(parameter->GetType())) {
661       i++;
662       locals_index++;
663       parameter_index++;
664     }
665   }
666 }
667 
668 template<typename T, bool kCompareWithZero>
If_21_22t(const Instruction & instruction,uint32_t dex_pc)669 void HInstructionBuilder::If_21_22t(const Instruction& instruction, uint32_t dex_pc) {
670   HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
671   T* comparison = nullptr;
672   if (kCompareWithZero) {
673     comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
674   } else {
675     HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
676     comparison = new (allocator_) T(value, second, dex_pc);
677   }
678   AppendInstruction(comparison);
679   HIf* if_instr = new (allocator_) HIf(comparison, dex_pc);
680 
681   ProfilingInfo* info = graph_->GetProfilingInfo();
682   if (info != nullptr && !graph_->IsCompilingBaseline()) {
683     BranchCache* cache = info->GetBranchCache(dex_pc);
684     if (cache != nullptr) {
685       if_instr->SetTrueCount(cache->GetTrue());
686       if_instr->SetFalseCount(cache->GetFalse());
687     }
688   }
689 
690   // Append after setting true/false count, so that the builder knows if the
691   // instruction needs an environment.
692   AppendInstruction(if_instr);
693   current_block_ = nullptr;
694 }
695 
696 template<typename T>
Unop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)697 void HInstructionBuilder::Unop_12x(const Instruction& instruction,
698                                    DataType::Type type,
699                                    uint32_t dex_pc) {
700   HInstruction* first = LoadLocal(instruction.VRegB(), type);
701   AppendInstruction(new (allocator_) T(type, first, dex_pc));
702   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
703 }
704 
Conversion_12x(const Instruction & instruction,DataType::Type input_type,DataType::Type result_type,uint32_t dex_pc)705 void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
706                                          DataType::Type input_type,
707                                          DataType::Type result_type,
708                                          uint32_t dex_pc) {
709   HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
710   AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc));
711   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
712 }
713 
714 template<typename T>
Binop_23x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)715 void HInstructionBuilder::Binop_23x(const Instruction& instruction,
716                                     DataType::Type type,
717                                     uint32_t dex_pc) {
718   HInstruction* first = LoadLocal(instruction.VRegB(), type);
719   HInstruction* second = LoadLocal(instruction.VRegC(), type);
720   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
721   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
722 }
723 
724 template<typename T>
Binop_23x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)725 void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
726                                           DataType::Type type,
727                                           uint32_t dex_pc) {
728   HInstruction* first = LoadLocal(instruction.VRegB(), type);
729   HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32);
730   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
731   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
732 }
733 
Binop_23x_cmp(const Instruction & instruction,DataType::Type type,ComparisonBias bias,uint32_t dex_pc)734 void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
735                                         DataType::Type type,
736                                         ComparisonBias bias,
737                                         uint32_t dex_pc) {
738   HInstruction* first = LoadLocal(instruction.VRegB(), type);
739   HInstruction* second = LoadLocal(instruction.VRegC(), type);
740   AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc));
741   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
742 }
743 
744 template<typename T>
Binop_12x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)745 void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
746                                           DataType::Type type,
747                                           uint32_t dex_pc) {
748   HInstruction* first = LoadLocal(instruction.VRegA(), type);
749   HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
750   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
751   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
752 }
753 
754 template<typename T>
Binop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)755 void HInstructionBuilder::Binop_12x(const Instruction& instruction,
756                                     DataType::Type type,
757                                     uint32_t dex_pc) {
758   HInstruction* first = LoadLocal(instruction.VRegA(), type);
759   HInstruction* second = LoadLocal(instruction.VRegB(), type);
760   AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
761   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
762 }
763 
764 template<typename T>
Binop_22s(const Instruction & instruction,bool reverse,uint32_t dex_pc)765 void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
766   HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
767   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
768   if (reverse) {
769     std::swap(first, second);
770   }
771   AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
772   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
773 }
774 
775 template<typename T>
Binop_22b(const Instruction & instruction,bool reverse,uint32_t dex_pc)776 void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
777   HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
778   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
779   if (reverse) {
780     std::swap(first, second);
781   }
782   AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
783   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
784 }
785 
786 // Does the method being compiled need any constructor barriers being inserted?
787 // (Always 'false' for methods that aren't <init>.)
RequiresConstructorBarrier(const DexCompilationUnit * cu)788 static bool RequiresConstructorBarrier(const DexCompilationUnit* cu) {
789   // Can be null in unit tests only.
790   if (UNLIKELY(cu == nullptr)) {
791     return false;
792   }
793 
794   // Constructor barriers are applicable only for <init> methods.
795   if (LIKELY(!cu->IsConstructor() || cu->IsStatic())) {
796     return false;
797   }
798 
799   return cu->RequiresConstructorBarrier();
800 }
801 
802 // Returns true if `block` has only one successor which starts at the next
803 // dex_pc after `instruction` at `dex_pc`.
IsFallthroughInstruction(const Instruction & instruction,uint32_t dex_pc,HBasicBlock * block)804 static bool IsFallthroughInstruction(const Instruction& instruction,
805                                      uint32_t dex_pc,
806                                      HBasicBlock* block) {
807   uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
808   return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
809 }
810 
BuildSwitch(const Instruction & instruction,uint32_t dex_pc)811 void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
812   HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
813   DexSwitchTable table(instruction, dex_pc);
814 
815   if (table.GetNumEntries() == 0) {
816     // Empty Switch. Code falls through to the next block.
817     DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
818     AppendInstruction(new (allocator_) HGoto(dex_pc));
819   } else if (table.ShouldBuildDecisionTree()) {
820     for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
821       HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
822       HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc);
823       AppendInstruction(comparison);
824       AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
825 
826       if (!it.IsLast()) {
827         current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
828       }
829     }
830   } else {
831     AppendInstruction(
832         new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
833   }
834 
835   current_block_ = nullptr;
836 }
837 
BuildReturn(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)838 void HInstructionBuilder::BuildReturn(const Instruction& instruction,
839                                       DataType::Type type,
840                                       uint32_t dex_pc) {
841   if (type == DataType::Type::kVoid) {
842     // Only <init> (which is a return-void) could possibly have a constructor fence.
843     // This may insert additional redundant constructor fences from the super constructors.
844     // TODO: remove redundant constructor fences (b/36656456).
845     if (RequiresConstructorBarrier(dex_compilation_unit_)) {
846       // Compiling instance constructor.
847       DCHECK_STREQ("<init>", graph_->GetMethodName());
848 
849       HInstruction* fence_target = current_this_parameter_;
850       DCHECK(fence_target != nullptr);
851 
852       AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_));
853       MaybeRecordStat(
854           compilation_stats_,
855           MethodCompilationStat::kConstructorFenceGeneratedFinal);
856     }
857     if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
858       // Return value is not used for void functions. We pass NullConstant to
859       // avoid special cases when generating code.
860       AppendInstruction(new (allocator_) HMethodExitHook(graph_->GetNullConstant(), dex_pc));
861     }
862     AppendInstruction(new (allocator_) HReturnVoid(dex_pc));
863   } else {
864     DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_));
865     HInstruction* value = LoadLocal(instruction.VRegA(), type);
866     if (graph_->IsDebuggable() && code_generator_->GetCompilerOptions().IsJitCompiler()) {
867       AppendInstruction(new (allocator_) HMethodExitHook(value, dex_pc));
868     }
869     AppendInstruction(new (allocator_) HReturn(value, dex_pc));
870   }
871   current_block_ = nullptr;
872 }
873 
GetInvokeTypeFromOpCode(Instruction::Code opcode)874 static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
875   switch (opcode) {
876     case Instruction::INVOKE_STATIC:
877     case Instruction::INVOKE_STATIC_RANGE:
878       return kStatic;
879     case Instruction::INVOKE_DIRECT:
880     case Instruction::INVOKE_DIRECT_RANGE:
881       return kDirect;
882     case Instruction::INVOKE_VIRTUAL:
883     case Instruction::INVOKE_VIRTUAL_RANGE:
884       return kVirtual;
885     case Instruction::INVOKE_INTERFACE:
886     case Instruction::INVOKE_INTERFACE_RANGE:
887       return kInterface;
888     case Instruction::INVOKE_SUPER_RANGE:
889     case Instruction::INVOKE_SUPER:
890       return kSuper;
891     default:
892       LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
893       UNREACHABLE();
894   }
895 }
896 
897 // Try to resolve a method using the class linker. Return null if a method could
898 // not be resolved or the resolved method cannot be used for some reason.
899 // Also retrieve method data needed for creating the invoke intermediate
900 // representation while we hold the mutator lock here.
ResolveMethod(uint16_t method_idx,ArtMethod * referrer,const DexCompilationUnit & dex_compilation_unit,InvokeType * invoke_type,MethodReference * resolved_method_info,uint16_t * imt_or_vtable_index,bool * is_string_constructor)901 static ArtMethod* ResolveMethod(uint16_t method_idx,
902                                 ArtMethod* referrer,
903                                 const DexCompilationUnit& dex_compilation_unit,
904                                 /*inout*/InvokeType* invoke_type,
905                                 /*out*/MethodReference* resolved_method_info,
906                                 /*out*/uint16_t* imt_or_vtable_index,
907                                 /*out*/bool* is_string_constructor) {
908   ScopedObjectAccess soa(Thread::Current());
909 
910   ClassLinker* class_linker = dex_compilation_unit.GetClassLinker();
911   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit.GetClassLoader();
912 
913   ArtMethod* resolved_method =
914       class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
915           method_idx,
916           dex_compilation_unit.GetDexCache(),
917           class_loader,
918           referrer,
919           *invoke_type);
920 
921   if (UNLIKELY(resolved_method == nullptr)) {
922     // Clean up any exception left by type resolution.
923     soa.Self()->ClearException();
924     return nullptr;
925   }
926   DCHECK(!soa.Self()->IsExceptionPending());
927 
928   // The referrer may be unresolved for AOT if we're compiling a class that cannot be
929   // resolved because, for example, we don't find a superclass in the classpath.
930   if (referrer == nullptr) {
931     // The class linker cannot check access without a referrer, so we have to do it.
932     // Check if the declaring class or referencing class is accessible.
933     SamePackageCompare same_package(dex_compilation_unit);
934     ObjPtr<mirror::Class> declaring_class = resolved_method->GetDeclaringClass();
935     bool declaring_class_accessible = declaring_class->IsPublic() || same_package(declaring_class);
936     if (!declaring_class_accessible) {
937       // It is possible to access members from an inaccessible superclass
938       // by referencing them through an accessible subclass.
939       ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
940           dex_compilation_unit.GetDexFile()->GetMethodId(method_idx).class_idx_,
941           dex_compilation_unit.GetDexCache().Get(),
942           class_loader.Get());
943       DCHECK(referenced_class != nullptr);  // Must have been resolved when resolving the method.
944       if (!referenced_class->IsPublic() && !same_package(referenced_class)) {
945         return nullptr;
946       }
947     }
948     // Check whether the method itself is accessible.
949     // Since the referrer is unresolved but the method is resolved, it cannot be
950     // inside the same class, so a private method is known to be inaccessible.
951     // And without a resolved referrer, we cannot check for protected member access
952     // in superlass, so we handle only access to public member or within the package.
953     if (resolved_method->IsPrivate() ||
954         (!resolved_method->IsPublic() && !declaring_class_accessible)) {
955       return nullptr;
956     }
957   }
958 
959   // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
960   // We need to look at the referrer's super class vtable. We need to do this to know if we need to
961   // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
962   // which require runtime handling.
963   if (*invoke_type == kSuper) {
964     if (referrer == nullptr) {
965       // We could not determine the method's class we need to wait until runtime.
966       DCHECK(Runtime::Current()->IsAotCompiler());
967       return nullptr;
968     }
969     ArtMethod* actual_method = FindSuperMethodToCall</*access_check=*/true>(
970         method_idx, resolved_method, referrer, soa.Self());
971     if (actual_method == nullptr) {
972       // Clean up any exception left by method resolution.
973       soa.Self()->ClearException();
974       return nullptr;
975     }
976     if (!actual_method->IsInvokable()) {
977       // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
978       // could resolve the callee to the wrong method.
979       return nullptr;
980     }
981     // Call GetCanonicalMethod in case the resolved method is a copy: for super calls, the encoding
982     // of ArtMethod in BSS relies on not having copies there.
983     resolved_method = actual_method->GetCanonicalMethod(class_linker->GetImagePointerSize());
984   }
985 
986   if (*invoke_type == kInterface) {
987     if (resolved_method->GetDeclaringClass()->IsObjectClass()) {
988       // If the resolved method is from j.l.Object, emit a virtual call instead.
989       // The IMT conflict stub only handles interface methods.
990       *invoke_type = kVirtual;
991     } else {
992       DCHECK(resolved_method->GetDeclaringClass()->IsInterface());
993     }
994   }
995 
996   *resolved_method_info =
997         MethodReference(resolved_method->GetDexFile(), resolved_method->GetDexMethodIndex());
998   if (*invoke_type == kVirtual) {
999     // For HInvokeVirtual we need the vtable index.
1000     *imt_or_vtable_index = resolved_method->GetVtableIndex();
1001   } else if (*invoke_type == kInterface) {
1002     // For HInvokeInterface we need the IMT index.
1003     *imt_or_vtable_index = resolved_method->GetImtIndex();
1004     DCHECK_EQ(*imt_or_vtable_index, ImTable::GetImtIndex(resolved_method));
1005   }
1006 
1007   *is_string_constructor = resolved_method->IsStringConstructor();
1008 
1009   return resolved_method;
1010 }
1011 
BuildInvoke(const Instruction & instruction,uint32_t dex_pc,uint32_t method_idx,const InstructionOperands & operands)1012 bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
1013                                       uint32_t dex_pc,
1014                                       uint32_t method_idx,
1015                                       const InstructionOperands& operands) {
1016   InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
1017   const char* shorty = dex_file_->GetMethodShorty(method_idx);
1018   DataType::Type return_type = DataType::FromShorty(shorty[0]);
1019 
1020   // Remove the return type from the 'proto'.
1021   size_t number_of_arguments = strlen(shorty) - 1;
1022   if (invoke_type != kStatic) {  // instance call
1023     // One extra argument for 'this'.
1024     number_of_arguments++;
1025   }
1026 
1027   MethodReference resolved_method_reference(nullptr, 0u);
1028   bool is_string_constructor = false;
1029   uint16_t imt_or_vtable_index = DexFile::kDexNoIndex16;
1030   ArtMethod* resolved_method = ResolveMethod(method_idx,
1031                                              graph_->GetArtMethod(),
1032                                              *dex_compilation_unit_,
1033                                              &invoke_type,
1034                                              &resolved_method_reference,
1035                                              &imt_or_vtable_index,
1036                                              &is_string_constructor);
1037 
1038   MethodReference method_reference(&graph_->GetDexFile(), method_idx);
1039   if (UNLIKELY(resolved_method == nullptr)) {
1040     DCHECK(!Thread::Current()->IsExceptionPending());
1041     MaybeRecordStat(compilation_stats_,
1042                     MethodCompilationStat::kUnresolvedMethod);
1043     HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_,
1044                                                          number_of_arguments,
1045                                                          return_type,
1046                                                          dex_pc,
1047                                                          method_reference,
1048                                                          invoke_type);
1049     return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ true);
1050   }
1051 
1052   // Replace calls to String.<init> with StringFactory.
1053   if (is_string_constructor) {
1054     uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method);
1055     HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
1056         MethodLoadKind::kStringInit,
1057         CodePtrLocation::kCallArtMethod,
1058         dchecked_integral_cast<uint64_t>(string_init_entry_point)
1059     };
1060     // We pass null for the resolved_method to ensure optimizations
1061     // don't rely on it.
1062     HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect(
1063         allocator_,
1064         number_of_arguments - 1,
1065         /* return_type= */ DataType::Type::kReference,
1066         dex_pc,
1067         method_reference,
1068         /* resolved_method= */ nullptr,
1069         dispatch_info,
1070         invoke_type,
1071         resolved_method_reference,
1072         HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit,
1073         !graph_->IsDebuggable());
1074     return HandleStringInit(invoke, operands, shorty);
1075   }
1076 
1077   // Potential class initialization check, in the case of a static method call.
1078   HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement =
1079       HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1080   HClinitCheck* clinit_check = nullptr;
1081   if (invoke_type == kStatic) {
1082     clinit_check = ProcessClinitCheckForInvoke(dex_pc, resolved_method, &clinit_check_requirement);
1083   }
1084 
1085   // Try to build an HIR replacement for the intrinsic.
1086   if (UNLIKELY(resolved_method->IsIntrinsic()) && !graph_->IsDebuggable()) {
1087     // All intrinsics are in the primary boot image, so their class can always be referenced
1088     // and we do not need to rely on the implicit class initialization check. The class should
1089     // be initialized but we do not require that here.
1090     DCHECK_NE(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
1091     if (BuildSimpleIntrinsic(resolved_method, dex_pc, operands, shorty)) {
1092       return true;
1093     }
1094   }
1095 
1096   HInvoke* invoke = nullptr;
1097   if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
1098     // For sharpening, we create another MethodReference, to account for the
1099     // kSuper case below where we cannot find a dex method index.
1100     bool has_method_id = true;
1101     if (invoke_type == kSuper) {
1102       uint32_t dex_method_index = method_reference.index;
1103       if (IsSameDexFile(*resolved_method_reference.dex_file,
1104                         *dex_compilation_unit_->GetDexFile())) {
1105         // Update the method index to the one resolved. Note that this may be a no-op if
1106         // we resolved to the method referenced by the instruction.
1107         dex_method_index = resolved_method_reference.index;
1108       } else {
1109         // Try to find a dex method index in this caller's dex file.
1110         ScopedObjectAccess soa(Thread::Current());
1111         dex_method_index = resolved_method->FindDexMethodIndexInOtherDexFile(
1112             *dex_compilation_unit_->GetDexFile(), method_idx);
1113       }
1114       if (dex_method_index == dex::kDexNoIndex) {
1115         has_method_id = false;
1116       } else {
1117         method_reference.index = dex_method_index;
1118       }
1119     }
1120     HInvokeStaticOrDirect::DispatchInfo dispatch_info =
1121         HSharpening::SharpenLoadMethod(resolved_method,
1122                                        has_method_id,
1123                                        /* for_interface_call= */ false,
1124                                        code_generator_);
1125     if (dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative) {
1126       graph_->SetHasDirectCriticalNativeCall(true);
1127     }
1128     invoke = new (allocator_) HInvokeStaticOrDirect(allocator_,
1129                                                     number_of_arguments,
1130                                                     return_type,
1131                                                     dex_pc,
1132                                                     method_reference,
1133                                                     resolved_method,
1134                                                     dispatch_info,
1135                                                     invoke_type,
1136                                                     resolved_method_reference,
1137                                                     clinit_check_requirement,
1138                                                     !graph_->IsDebuggable());
1139     if (clinit_check != nullptr) {
1140       // Add the class initialization check as last input of `invoke`.
1141       DCHECK_EQ(clinit_check_requirement, HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
1142       size_t clinit_check_index = invoke->InputCount() - 1u;
1143       DCHECK(invoke->InputAt(clinit_check_index) == nullptr);
1144       invoke->SetArgumentAt(clinit_check_index, clinit_check);
1145     }
1146   } else if (invoke_type == kVirtual) {
1147     invoke = new (allocator_) HInvokeVirtual(allocator_,
1148                                              number_of_arguments,
1149                                              return_type,
1150                                              dex_pc,
1151                                              method_reference,
1152                                              resolved_method,
1153                                              resolved_method_reference,
1154                                              /*vtable_index=*/ imt_or_vtable_index,
1155                                              !graph_->IsDebuggable());
1156   } else {
1157     DCHECK_EQ(invoke_type, kInterface);
1158     if (kIsDebugBuild) {
1159       ScopedObjectAccess soa(Thread::Current());
1160       DCHECK(resolved_method->GetDeclaringClass()->IsInterface());
1161     }
1162     MethodLoadKind load_kind = HSharpening::SharpenLoadMethod(
1163         resolved_method,
1164         /* has_method_id= */ true,
1165         /* for_interface_call= */ true,
1166         code_generator_)
1167             .method_load_kind;
1168     invoke = new (allocator_) HInvokeInterface(allocator_,
1169                                                number_of_arguments,
1170                                                return_type,
1171                                                dex_pc,
1172                                                method_reference,
1173                                                resolved_method,
1174                                                resolved_method_reference,
1175                                                /*imt_index=*/ imt_or_vtable_index,
1176                                                load_kind,
1177                                                !graph_->IsDebuggable());
1178   }
1179   return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1180 }
1181 
VarHandleAccessorNeedsReturnTypeCheck(HInvoke * invoke,DataType::Type return_type)1182 static bool VarHandleAccessorNeedsReturnTypeCheck(HInvoke* invoke, DataType::Type return_type) {
1183   mirror::VarHandle::AccessModeTemplate access_mode_template =
1184       mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic());
1185 
1186   switch (access_mode_template) {
1187     case mirror::VarHandle::AccessModeTemplate::kGet:
1188     case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate:
1189     case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange:
1190       return return_type == DataType::Type::kReference;
1191     case mirror::VarHandle::AccessModeTemplate::kSet:
1192     case mirror::VarHandle::AccessModeTemplate::kCompareAndSet:
1193       return false;
1194   }
1195 }
1196 
1197 // This function initializes `VarHandleOptimizations`, does a number of static checks and disables
1198 // the intrinsic if some of the checks fail. This is necessary for the code generator to work (for
1199 // both the baseline and the optimizing compiler).
DecideVarHandleIntrinsic(HInvoke * invoke)1200 static void DecideVarHandleIntrinsic(HInvoke* invoke) {
1201   switch (invoke->GetIntrinsic()) {
1202     case Intrinsics::kVarHandleCompareAndExchange:
1203     case Intrinsics::kVarHandleCompareAndExchangeAcquire:
1204     case Intrinsics::kVarHandleCompareAndExchangeRelease:
1205     case Intrinsics::kVarHandleCompareAndSet:
1206     case Intrinsics::kVarHandleGet:
1207     case Intrinsics::kVarHandleGetAcquire:
1208     case Intrinsics::kVarHandleGetAndAdd:
1209     case Intrinsics::kVarHandleGetAndAddAcquire:
1210     case Intrinsics::kVarHandleGetAndAddRelease:
1211     case Intrinsics::kVarHandleGetAndBitwiseAnd:
1212     case Intrinsics::kVarHandleGetAndBitwiseAndAcquire:
1213     case Intrinsics::kVarHandleGetAndBitwiseAndRelease:
1214     case Intrinsics::kVarHandleGetAndBitwiseOr:
1215     case Intrinsics::kVarHandleGetAndBitwiseOrAcquire:
1216     case Intrinsics::kVarHandleGetAndBitwiseOrRelease:
1217     case Intrinsics::kVarHandleGetAndBitwiseXor:
1218     case Intrinsics::kVarHandleGetAndBitwiseXorAcquire:
1219     case Intrinsics::kVarHandleGetAndBitwiseXorRelease:
1220     case Intrinsics::kVarHandleGetAndSet:
1221     case Intrinsics::kVarHandleGetAndSetAcquire:
1222     case Intrinsics::kVarHandleGetAndSetRelease:
1223     case Intrinsics::kVarHandleGetOpaque:
1224     case Intrinsics::kVarHandleGetVolatile:
1225     case Intrinsics::kVarHandleSet:
1226     case Intrinsics::kVarHandleSetOpaque:
1227     case Intrinsics::kVarHandleSetRelease:
1228     case Intrinsics::kVarHandleSetVolatile:
1229     case Intrinsics::kVarHandleWeakCompareAndSet:
1230     case Intrinsics::kVarHandleWeakCompareAndSetAcquire:
1231     case Intrinsics::kVarHandleWeakCompareAndSetPlain:
1232     case Intrinsics::kVarHandleWeakCompareAndSetRelease:
1233       break;
1234     default:
1235       return;  // Not a VarHandle intrinsic, skip.
1236   }
1237 
1238   DCHECK(invoke->IsInvokePolymorphic());
1239   VarHandleOptimizations optimizations(invoke);
1240 
1241   // Do only simple static checks here (those for which we have enough information). More complex
1242   // checks should be done in instruction simplifier, which runs after other optimization passes
1243   // that may provide useful information.
1244 
1245   size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
1246   if (expected_coordinates_count > 2u) {
1247     optimizations.SetDoNotIntrinsify();
1248     return;
1249   }
1250   if (expected_coordinates_count != 0u) {
1251     // Except for static fields (no coordinates), the first coordinate must be a reference.
1252     // Do not intrinsify if the reference is null as we would always go to slow path anyway.
1253     HInstruction* object = invoke->InputAt(1);
1254     if (object->GetType() != DataType::Type::kReference || object->IsNullConstant()) {
1255       optimizations.SetDoNotIntrinsify();
1256       return;
1257     }
1258   }
1259   if (expected_coordinates_count == 2u) {
1260     // For arrays and views, the second coordinate must be convertible to `int`.
1261     // In this context, `boolean` is not convertible but we have to look at the shorty
1262     // as compiler transformations can give the invoke a valid boolean input.
1263     DataType::Type index_type = GetDataTypeFromShorty(invoke, 2);
1264     if (index_type == DataType::Type::kBool ||
1265         DataType::Kind(index_type) != DataType::Type::kInt32) {
1266       optimizations.SetDoNotIntrinsify();
1267       return;
1268     }
1269   }
1270 
1271   uint32_t number_of_arguments = invoke->GetNumberOfArguments();
1272   DataType::Type return_type = invoke->GetType();
1273   mirror::VarHandle::AccessModeTemplate access_mode_template =
1274       mirror::VarHandle::GetAccessModeTemplateByIntrinsic(invoke->GetIntrinsic());
1275   switch (access_mode_template) {
1276     case mirror::VarHandle::AccessModeTemplate::kGet:
1277       // The return type should be the same as varType, so it shouldn't be void.
1278       if (return_type == DataType::Type::kVoid) {
1279         optimizations.SetDoNotIntrinsify();
1280         return;
1281       }
1282       break;
1283     case mirror::VarHandle::AccessModeTemplate::kSet:
1284       if (return_type != DataType::Type::kVoid) {
1285         optimizations.SetDoNotIntrinsify();
1286         return;
1287       }
1288       break;
1289     case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: {
1290       if (return_type != DataType::Type::kBool) {
1291         optimizations.SetDoNotIntrinsify();
1292         return;
1293       }
1294       uint32_t expected_value_index = number_of_arguments - 2;
1295       uint32_t new_value_index = number_of_arguments - 1;
1296       DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index);
1297       DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index);
1298       if (expected_value_type != new_value_type) {
1299         optimizations.SetDoNotIntrinsify();
1300         return;
1301       }
1302       break;
1303     }
1304     case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: {
1305       uint32_t expected_value_index = number_of_arguments - 2;
1306       uint32_t new_value_index = number_of_arguments - 1;
1307       DataType::Type expected_value_type = GetDataTypeFromShorty(invoke, expected_value_index);
1308       DataType::Type new_value_type = GetDataTypeFromShorty(invoke, new_value_index);
1309       if (expected_value_type != new_value_type || return_type != expected_value_type) {
1310         optimizations.SetDoNotIntrinsify();
1311         return;
1312       }
1313       break;
1314     }
1315     case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: {
1316       DataType::Type value_type = GetDataTypeFromShorty(invoke, number_of_arguments - 1);
1317       if (IsVarHandleGetAndAdd(invoke) &&
1318           (value_type == DataType::Type::kReference || value_type == DataType::Type::kBool)) {
1319         // We should only add numerical types.
1320         //
1321         // For byte array views floating-point types are not allowed, see javadoc comments for
1322         // java.lang.invoke.MethodHandles.byteArrayViewVarHandle(). But ART treats them as numeric
1323         // types in ByteArrayViewVarHandle::Access(). Consequently we do generate intrinsic code,
1324         // but it always fails access mode check at runtime.
1325         optimizations.SetDoNotIntrinsify();
1326         return;
1327       } else if (IsVarHandleGetAndBitwiseOp(invoke) && !DataType::IsIntegralType(value_type)) {
1328         // We can only apply operators to bitwise integral types.
1329         // Note that bitwise VarHandle operations accept a non-integral boolean type and
1330         // perform the appropriate logical operation. However, the result is the same as
1331         // using the bitwise operation on our boolean representation and this fits well
1332         // with DataType::IsIntegralType() treating the compiler type kBool as integral.
1333         optimizations.SetDoNotIntrinsify();
1334         return;
1335       }
1336       if (value_type != return_type) {
1337         optimizations.SetDoNotIntrinsify();
1338         return;
1339       }
1340       break;
1341     }
1342   }
1343 }
1344 
BuildInvokePolymorphic(uint32_t dex_pc,uint32_t method_idx,dex::ProtoIndex proto_idx,const InstructionOperands & operands)1345 bool HInstructionBuilder::BuildInvokePolymorphic(uint32_t dex_pc,
1346                                                  uint32_t method_idx,
1347                                                  dex::ProtoIndex proto_idx,
1348                                                  const InstructionOperands& operands) {
1349   const char* shorty = dex_file_->GetShorty(proto_idx);
1350   DCHECK_EQ(1 + ArtMethod::NumArgRegisters(shorty), operands.GetNumberOfOperands());
1351   DataType::Type return_type = DataType::FromShorty(shorty[0]);
1352   size_t number_of_arguments = strlen(shorty);
1353   // We use ResolveMethod which is also used in BuildInvoke in order to
1354   // not duplicate code. As such, we need to provide is_string_constructor
1355   // even if we don't need it afterwards.
1356   InvokeType invoke_type = InvokeType::kPolymorphic;
1357   bool is_string_constructor = false;
1358   uint16_t imt_or_vtable_index = DexFile::kDexNoIndex16;
1359   MethodReference resolved_method_reference(nullptr, 0u);
1360   ArtMethod* resolved_method = ResolveMethod(method_idx,
1361                                             graph_->GetArtMethod(),
1362                                             *dex_compilation_unit_,
1363                                             &invoke_type,
1364                                             &resolved_method_reference,
1365                                             &imt_or_vtable_index,
1366                                             &is_string_constructor);
1367 
1368   MethodReference method_reference(&graph_->GetDexFile(), method_idx);
1369   HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_,
1370                                                         number_of_arguments,
1371                                                         return_type,
1372                                                         dex_pc,
1373                                                         method_reference,
1374                                                         resolved_method,
1375                                                         resolved_method_reference,
1376                                                         proto_idx);
1377   if (!HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false)) {
1378     return false;
1379   }
1380 
1381   if (invoke->GetIntrinsic() != Intrinsics::kNone &&
1382       invoke->GetIntrinsic() != Intrinsics::kMethodHandleInvoke &&
1383       invoke->GetIntrinsic() != Intrinsics::kMethodHandleInvokeExact &&
1384       VarHandleAccessorNeedsReturnTypeCheck(invoke, return_type)) {
1385     // Type check is needed because VarHandle intrinsics do not type check the retrieved reference.
1386     ScopedObjectAccess soa(Thread::Current());
1387     ArtMethod* referrer = graph_->GetArtMethod();
1388     dex::TypeIndex return_type_index =
1389         referrer->GetDexFile()->GetProtoId(proto_idx).return_type_idx_;
1390 
1391     BuildTypeCheck(/* is_instance_of= */ false, invoke, return_type_index, dex_pc);
1392     latest_result_ = current_block_->GetLastInstruction();
1393   }
1394 
1395   DecideVarHandleIntrinsic(invoke);
1396 
1397   return true;
1398 }
1399 
1400 
BuildInvokeCustom(uint32_t dex_pc,uint32_t call_site_idx,const InstructionOperands & operands)1401 bool HInstructionBuilder::BuildInvokeCustom(uint32_t dex_pc,
1402                                             uint32_t call_site_idx,
1403                                             const InstructionOperands& operands) {
1404   dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
1405   const char* shorty = dex_file_->GetShorty(proto_idx);
1406   DataType::Type return_type = DataType::FromShorty(shorty[0]);
1407   size_t number_of_arguments = strlen(shorty) - 1;
1408   // HInvokeCustom takes a DexNoNoIndex method reference.
1409   MethodReference method_reference(&graph_->GetDexFile(), dex::kDexNoIndex);
1410   HInvoke* invoke = new (allocator_) HInvokeCustom(allocator_,
1411                                                    number_of_arguments,
1412                                                    call_site_idx,
1413                                                    return_type,
1414                                                    dex_pc,
1415                                                    method_reference,
1416                                                    !graph_->IsDebuggable());
1417   return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1418 }
1419 
BuildNewInstance(dex::TypeIndex type_index,uint32_t dex_pc)1420 HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) {
1421   ScopedObjectAccess soa(Thread::Current());
1422 
1423   HLoadClass* load_class = BuildLoadClass(type_index, dex_pc);
1424 
1425   HInstruction* cls = load_class;
1426   Handle<mirror::Class> klass = load_class->GetClass();
1427 
1428   if (!IsInitialized(klass.Get())) {
1429     cls = new (allocator_) HClinitCheck(load_class, dex_pc);
1430     AppendInstruction(cls);
1431   }
1432 
1433   // Only the access check entrypoint handles the finalizable class case. If we
1434   // need access checks, then we haven't resolved the method and the class may
1435   // again be finalizable.
1436   QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized;
1437   if (load_class->NeedsAccessCheck() ||
1438       klass == nullptr ||  // Finalizable/instantiable is unknown.
1439       klass->IsFinalizable() ||
1440       klass.Get() == klass->GetClass() ||  // Classes cannot be allocated in code
1441       !klass->IsInstantiable()) {
1442     entrypoint = kQuickAllocObjectWithChecks;
1443   }
1444   // We will always be able to resolve the string class since it is in the BCP.
1445   if (!klass.IsNull() && klass->IsStringClass()) {
1446     entrypoint = kQuickAllocStringObject;
1447   }
1448 
1449   // Consider classes we haven't resolved as potentially finalizable.
1450   bool finalizable = (klass == nullptr) || klass->IsFinalizable();
1451 
1452   HNewInstance* new_instance = new (allocator_) HNewInstance(
1453       cls,
1454       dex_pc,
1455       type_index,
1456       *dex_compilation_unit_->GetDexFile(),
1457       finalizable,
1458       entrypoint);
1459   AppendInstruction(new_instance);
1460 
1461   return new_instance;
1462 }
1463 
BuildConstructorFenceForAllocation(HInstruction * allocation)1464 void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) {
1465   DCHECK(allocation != nullptr &&
1466              (allocation->IsNewInstance() ||
1467               allocation->IsNewArray()));  // corresponding to "new" keyword in JLS.
1468 
1469   if (allocation->IsNewInstance()) {
1470     // STRING SPECIAL HANDLING:
1471     // -------------------------------
1472     // Strings have a real HNewInstance node but they end up always having 0 uses.
1473     // All uses of a String HNewInstance are always transformed to replace their input
1474     // of the HNewInstance with an input of the invoke to StringFactory.
1475     //
1476     // Do not emit an HConstructorFence here since it can inhibit some String new-instance
1477     // optimizations (to pass checker tests that rely on those optimizations).
1478     HNewInstance* new_inst = allocation->AsNewInstance();
1479     HLoadClass* load_class = new_inst->GetLoadClass();
1480 
1481     Thread* self = Thread::Current();
1482     ScopedObjectAccess soa(self);
1483     StackHandleScope<1> hs(self);
1484     Handle<mirror::Class> klass = load_class->GetClass();
1485     if (klass != nullptr && klass->IsStringClass()) {
1486       return;
1487       // Note: Do not use allocation->IsStringAlloc which requires
1488       // a valid ReferenceTypeInfo, but that doesn't get made until after reference type
1489       // propagation (and instruction builder is too early).
1490     }
1491     // (In terms of correctness, the StringFactory needs to provide its own
1492     // default initialization barrier, see below.)
1493   }
1494 
1495   // JLS 17.4.5 "Happens-before Order" describes:
1496   //
1497   //   The default initialization of any object happens-before any other actions (other than
1498   //   default-writes) of a program.
1499   //
1500   // In our implementation the default initialization of an object to type T means
1501   // setting all of its initial data (object[0..size)) to 0, and setting the
1502   // object's class header (i.e. object.getClass() == T.class).
1503   //
1504   // In practice this fence ensures that the writes to the object header
1505   // are visible to other threads if this object escapes the current thread.
1506   // (and in theory the 0-initializing, but that happens automatically
1507   // when new memory pages are mapped in by the OS).
1508   HConstructorFence* ctor_fence =
1509       new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_);
1510   AppendInstruction(ctor_fence);
1511   MaybeRecordStat(
1512       compilation_stats_,
1513       MethodCompilationStat::kConstructorFenceGeneratedNew);
1514 }
1515 
IsInImage(ObjPtr<mirror::Class> cls,const CompilerOptions & compiler_options)1516 static bool IsInImage(ObjPtr<mirror::Class> cls, const CompilerOptions& compiler_options)
1517     REQUIRES_SHARED(Locks::mutator_lock_) {
1518   if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls)) {
1519     return true;
1520   }
1521   if (compiler_options.IsGeneratingImage()) {
1522     std::string temp;
1523     const char* descriptor = cls->GetDescriptor(&temp);
1524     return compiler_options.IsImageClass(descriptor);
1525   } else {
1526     return false;
1527   }
1528 }
1529 
IsSubClass(ObjPtr<mirror::Class> to_test,ObjPtr<mirror::Class> super_class)1530 static bool IsSubClass(ObjPtr<mirror::Class> to_test, ObjPtr<mirror::Class> super_class)
1531     REQUIRES_SHARED(Locks::mutator_lock_) {
1532   return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
1533 }
1534 
HasTrivialClinit(ObjPtr<mirror::Class> klass,PointerSize pointer_size)1535 static bool HasTrivialClinit(ObjPtr<mirror::Class> klass, PointerSize pointer_size)
1536     REQUIRES_SHARED(Locks::mutator_lock_) {
1537   // Check if the class has encoded fields that trigger bytecode execution.
1538   // (Encoded fields are just a different representation of <clinit>.)
1539   if (klass->NumStaticFields() != 0u) {
1540     DCHECK(klass->GetClassDef() != nullptr);
1541     EncodedStaticFieldValueIterator it(klass->GetDexFile(), *klass->GetClassDef());
1542     for (; it.HasNext(); it.Next()) {
1543       switch (it.GetValueType()) {
1544         case EncodedArrayValueIterator::ValueType::kBoolean:
1545         case EncodedArrayValueIterator::ValueType::kByte:
1546         case EncodedArrayValueIterator::ValueType::kShort:
1547         case EncodedArrayValueIterator::ValueType::kChar:
1548         case EncodedArrayValueIterator::ValueType::kInt:
1549         case EncodedArrayValueIterator::ValueType::kLong:
1550         case EncodedArrayValueIterator::ValueType::kFloat:
1551         case EncodedArrayValueIterator::ValueType::kDouble:
1552         case EncodedArrayValueIterator::ValueType::kNull:
1553         case EncodedArrayValueIterator::ValueType::kString:
1554           // Primitive, null or j.l.String initialization is permitted.
1555           break;
1556         case EncodedArrayValueIterator::ValueType::kType:
1557           // Type initialization can load classes and execute bytecode through a class loader
1558           // which can execute arbitrary bytecode. We do not optimize for known class loaders;
1559           // kType is rarely used (if ever).
1560           return false;
1561         default:
1562           // Other types in the encoded static field list are rejected by the DexFileVerifier.
1563           LOG(FATAL) << "Unexpected type " << it.GetValueType();
1564           UNREACHABLE();
1565       }
1566     }
1567   }
1568   // Check if the class has <clinit> that executes arbitrary code.
1569   // Initialization of static fields of the class itself with constants is allowed.
1570   ArtMethod* clinit = klass->FindClassInitializer(pointer_size);
1571   if (clinit != nullptr) {
1572     const DexFile& dex_file = *clinit->GetDexFile();
1573     CodeItemInstructionAccessor accessor(dex_file, clinit->GetCodeItem());
1574     for (DexInstructionPcPair it : accessor) {
1575       switch (it->Opcode()) {
1576         case Instruction::CONST_4:
1577         case Instruction::CONST_16:
1578         case Instruction::CONST:
1579         case Instruction::CONST_HIGH16:
1580         case Instruction::CONST_WIDE_16:
1581         case Instruction::CONST_WIDE_32:
1582         case Instruction::CONST_WIDE:
1583         case Instruction::CONST_WIDE_HIGH16:
1584         case Instruction::CONST_STRING:
1585         case Instruction::CONST_STRING_JUMBO:
1586           // Primitive, null or j.l.String initialization is permitted.
1587           break;
1588         case Instruction::RETURN_VOID:
1589           break;
1590         case Instruction::SPUT:
1591         case Instruction::SPUT_WIDE:
1592         case Instruction::SPUT_OBJECT:
1593         case Instruction::SPUT_BOOLEAN:
1594         case Instruction::SPUT_BYTE:
1595         case Instruction::SPUT_CHAR:
1596         case Instruction::SPUT_SHORT:
1597           // Only initialization of a static field of the same class is permitted.
1598           if (dex_file.GetFieldId(it->VRegB_21c()).class_idx_ != klass->GetDexTypeIndex()) {
1599             return false;
1600           }
1601           break;
1602         case Instruction::NEW_ARRAY:
1603           // Only primitive arrays are permitted.
1604           if (Primitive::GetType(dex_file.GetTypeDescriptor(dex_file.GetTypeId(
1605                   dex::TypeIndex(it->VRegC_22c())))[1]) == Primitive::kPrimNot) {
1606             return false;
1607           }
1608           break;
1609         case Instruction::APUT:
1610         case Instruction::APUT_WIDE:
1611         case Instruction::APUT_BOOLEAN:
1612         case Instruction::APUT_BYTE:
1613         case Instruction::APUT_CHAR:
1614         case Instruction::APUT_SHORT:
1615         case Instruction::FILL_ARRAY_DATA:
1616         case Instruction::NOP:
1617           // Allow initialization of primitive arrays (only constants can be stored).
1618           // Note: We expect NOPs used for fill-array-data-payload but accept all NOPs
1619           // (even unreferenced switch payloads if they make it through the verifier).
1620           break;
1621         default:
1622           return false;
1623       }
1624     }
1625   }
1626   return true;
1627 }
1628 
HasTrivialInitialization(ObjPtr<mirror::Class> cls,const CompilerOptions & compiler_options)1629 static bool HasTrivialInitialization(ObjPtr<mirror::Class> cls,
1630                                      const CompilerOptions& compiler_options)
1631     REQUIRES_SHARED(Locks::mutator_lock_) {
1632   Runtime* runtime = Runtime::Current();
1633   PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
1634 
1635   // Check the superclass chain.
1636   for (ObjPtr<mirror::Class> klass = cls; klass != nullptr; klass = klass->GetSuperClass()) {
1637     if (klass->IsInitialized() && IsInImage(klass, compiler_options)) {
1638       break;  // `klass` and its superclasses are already initialized in the boot or app image.
1639     }
1640     if (!HasTrivialClinit(klass, pointer_size)) {
1641       return false;
1642     }
1643   }
1644 
1645   // Also check interfaces with default methods as they need to be initialized as well.
1646   ObjPtr<mirror::IfTable> iftable = cls->GetIfTable();
1647   DCHECK(iftable != nullptr);
1648   for (int32_t i = 0, count = iftable->Count(); i != count; ++i) {
1649     ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
1650     if (!iface->HasDefaultMethods()) {
1651       continue;  // Initializing `cls` does not initialize this interface.
1652     }
1653     if (iface->IsInitialized() && IsInImage(iface, compiler_options)) {
1654       continue;  // This interface is already initialized in the boot or app image.
1655     }
1656     if (!HasTrivialClinit(iface, pointer_size)) {
1657       return false;
1658     }
1659   }
1660   return true;
1661 }
1662 
IsInitialized(ObjPtr<mirror::Class> cls) const1663 bool HInstructionBuilder::IsInitialized(ObjPtr<mirror::Class> cls) const {
1664   if (cls == nullptr) {
1665     return false;
1666   }
1667 
1668   // Check if the class will be initialized at runtime.
1669   if (cls->IsInitialized()) {
1670     const CompilerOptions& compiler_options = code_generator_->GetCompilerOptions();
1671     if (compiler_options.IsAotCompiler()) {
1672       // Assume loaded only if klass is in the boot or app image.
1673       if (IsInImage(cls, compiler_options)) {
1674         return true;
1675       }
1676     } else {
1677       DCHECK(compiler_options.IsJitCompiler());
1678       if (Runtime::Current()->GetJit()->CanAssumeInitialized(
1679               cls,
1680               compiler_options.IsJitCompilerForSharedCode())) {
1681         // For JIT, the class cannot revert to an uninitialized state.
1682         return true;
1683       }
1684     }
1685   }
1686 
1687   // We can avoid the class initialization check for `cls` in static methods and constructors
1688   // in the very same class; invoking a static method involves a class initialization check
1689   // and so does the instance allocation that must be executed before invoking a constructor.
1690   // Other instance methods of the same class can run on an escaped instance
1691   // of an erroneous class. Even a superclass may need to be checked as the subclass
1692   // can be completely initialized while the superclass is initializing and the subclass
1693   // remains initialized when the superclass initializer throws afterwards. b/62478025
1694   // Note: The HClinitCheck+HInvokeStaticOrDirect merging can still apply.
1695   auto is_static_method_or_constructor_of_cls = [cls](const DexCompilationUnit& compilation_unit)
1696       REQUIRES_SHARED(Locks::mutator_lock_) {
1697     return (compilation_unit.GetAccessFlags() & (kAccStatic | kAccConstructor)) != 0u &&
1698            compilation_unit.GetCompilingClass().Get() == cls;
1699   };
1700   if (is_static_method_or_constructor_of_cls(*outer_compilation_unit_) ||
1701       // Check also the innermost method. Though excessive copies of ClinitCheck can be
1702       // eliminated by GVN, that happens only after the decision whether to inline the
1703       // graph or not and that may depend on the presence of the ClinitCheck.
1704       // TODO: We should walk over the entire inlined method chain, but we don't pass that
1705       // information to the builder.
1706       is_static_method_or_constructor_of_cls(*dex_compilation_unit_)) {
1707     return true;
1708   }
1709 
1710   // Otherwise, we may be able to avoid the check if `cls` is a superclass of a method being
1711   // compiled here (anywhere in the inlining chain) as the `cls` must have started initializing
1712   // before calling any `cls` or subclass methods. Static methods require a clinit check and
1713   // instance methods require an instance which cannot be created before doing a clinit check.
1714   // When a subclass of `cls` starts initializing, it starts initializing its superclass
1715   // chain up to `cls` without running any bytecode, i.e. without any opportunity for circular
1716   // initialization weirdness.
1717   //
1718   // If the initialization of `cls` is trivial (`cls` and its superclasses and superinterfaces
1719   // with default methods initialize only their own static fields using constant values), it must
1720   // complete, either successfully or by throwing and marking `cls` erroneous, without allocating
1721   // any instances of `cls` or subclasses (or any other class) and without calling any methods.
1722   // If it completes by throwing, no instances of `cls` shall be created and no subclass method
1723   // bytecode shall execute (see above), therefore the instruction we're building shall be
1724   // unreachable. By reaching the instruction, we know that `cls` was initialized successfully.
1725   //
1726   // TODO: We should walk over the entire inlined methods chain, but we don't pass that
1727   // information to the builder. (We could also check if we're guaranteed a non-null instance
1728   // of `cls` at this location but that's outside the scope of the instruction builder.)
1729   bool is_subclass = IsSubClass(outer_compilation_unit_->GetCompilingClass().Get(), cls);
1730   if (dex_compilation_unit_ != outer_compilation_unit_) {
1731     is_subclass = is_subclass ||
1732                   IsSubClass(dex_compilation_unit_->GetCompilingClass().Get(), cls);
1733   }
1734   if (is_subclass && HasTrivialInitialization(cls, code_generator_->GetCompilerOptions())) {
1735     return true;
1736   }
1737 
1738   return false;
1739 }
1740 
ProcessClinitCheckForInvoke(uint32_t dex_pc,ArtMethod * resolved_method,HInvokeStaticOrDirect::ClinitCheckRequirement * clinit_check_requirement)1741 HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
1742     uint32_t dex_pc,
1743     ArtMethod* resolved_method,
1744     HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
1745   ScopedObjectAccess soa(Thread::Current());
1746   ObjPtr<mirror::Class> klass = resolved_method->GetDeclaringClass();
1747 
1748   HClinitCheck* clinit_check = nullptr;
1749   if (IsInitialized(klass)) {
1750     *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1751   } else {
1752     Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass);
1753     HLoadClass* cls = BuildLoadClass(h_klass->GetDexTypeIndex(),
1754                                      h_klass->GetDexFile(),
1755                                      h_klass,
1756                                      dex_pc,
1757                                      /* needs_access_check= */ false);
1758     if (cls != nullptr) {
1759       *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
1760       clinit_check = new (allocator_) HClinitCheck(cls, dex_pc);
1761       AppendInstruction(clinit_check);
1762     } else {
1763       // Let the invoke handle this with an implicit class initialization check.
1764       *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
1765     }
1766   }
1767   return clinit_check;
1768 }
1769 
SetupInvokeArguments(HInstruction * invoke,const InstructionOperands & operands,const char * shorty,ReceiverArg receiver_arg)1770 bool HInstructionBuilder::SetupInvokeArguments(HInstruction* invoke,
1771                                                const InstructionOperands& operands,
1772                                                const char* shorty,
1773                                                ReceiverArg receiver_arg) {
1774   // Note: The `invoke` can be an intrinsic replacement, so not necessaritly HInvoke.
1775   // In that case, do not log errors, they shall be reported when we try to build the HInvoke.
1776   uint32_t shorty_index = 1;  // Skip the return type.
1777   const size_t number_of_operands = operands.GetNumberOfOperands();
1778   bool argument_length_error = false;
1779 
1780   size_t start_index = 0u;
1781   size_t argument_index = 0u;
1782   if (receiver_arg != ReceiverArg::kNone) {
1783     if (number_of_operands == 0u) {
1784       argument_length_error = true;
1785     } else {
1786       start_index = 1u;
1787       if (receiver_arg != ReceiverArg::kIgnored) {
1788         uint32_t obj_reg = operands.GetOperand(0u);
1789         HInstruction* arg = (receiver_arg == ReceiverArg::kPlainArg)
1790             ? LoadLocal(obj_reg, DataType::Type::kReference)
1791             : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc());
1792         if (receiver_arg != ReceiverArg::kNullCheckedOnly) {
1793           invoke->SetRawInputAt(0u, arg);
1794           argument_index = 1u;
1795         }
1796       }
1797     }
1798   }
1799 
1800   for (size_t i = start_index; i < number_of_operands; ++i, ++argument_index) {
1801     // Make sure we don't go over the expected arguments or over the number of
1802     // dex registers given. If the instruction was seen as dead by the verifier,
1803     // it hasn't been properly checked.
1804     if (UNLIKELY(shorty[shorty_index] == 0)) {
1805       argument_length_error = true;
1806       break;
1807     }
1808     DataType::Type type = DataType::FromShorty(shorty[shorty_index++]);
1809     bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
1810     if (is_wide && ((i + 1 == number_of_operands) ||
1811                     (operands.GetOperand(i) + 1 != operands.GetOperand(i + 1)))) {
1812       if (invoke->IsInvoke()) {
1813         // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
1814         // reject any class where this is violated. However, the verifier only does these checks
1815         // on non trivially dead instructions, so we just bailout the compilation.
1816         VLOG(compiler) << "Did not compile "
1817                        << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1818                        << " because of non-sequential dex register pair in wide argument";
1819         MaybeRecordStat(compilation_stats_,
1820                         MethodCompilationStat::kNotCompiledMalformedOpcode);
1821       }
1822       return false;
1823     }
1824     HInstruction* arg = LoadLocal(operands.GetOperand(i), type);
1825     DCHECK(invoke->InputAt(argument_index) == nullptr);
1826     invoke->SetRawInputAt(argument_index, arg);
1827     if (is_wide) {
1828       ++i;
1829     }
1830   }
1831 
1832   argument_length_error = argument_length_error || shorty[shorty_index] != 0;
1833   if (argument_length_error) {
1834     if (invoke->IsInvoke()) {
1835       VLOG(compiler) << "Did not compile "
1836                      << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1837                      << " because of wrong number of arguments in invoke instruction";
1838       MaybeRecordStat(compilation_stats_,
1839                       MethodCompilationStat::kNotCompiledMalformedOpcode);
1840     }
1841     return false;
1842   }
1843 
1844   if (invoke->IsInvokeStaticOrDirect() &&
1845       HInvokeStaticOrDirect::NeedsCurrentMethodInput(
1846           invoke->AsInvokeStaticOrDirect()->GetDispatchInfo())) {
1847     DCHECK_EQ(argument_index, invoke->AsInvokeStaticOrDirect()->GetCurrentMethodIndex());
1848     DCHECK(invoke->InputAt(argument_index) == nullptr);
1849     invoke->SetRawInputAt(argument_index, graph_->GetCurrentMethod());
1850   }
1851 
1852   if (invoke->IsInvokeInterface() &&
1853       (invoke->AsInvokeInterface()->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive)) {
1854     invoke->SetRawInputAt(invoke->AsInvokeInterface()->GetNumberOfArguments() - 1,
1855                           graph_->GetCurrentMethod());
1856   }
1857 
1858   return true;
1859 }
1860 
HandleInvoke(HInvoke * invoke,const InstructionOperands & operands,const char * shorty,bool is_unresolved)1861 bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
1862                                        const InstructionOperands& operands,
1863                                        const char* shorty,
1864                                        bool is_unresolved) {
1865   DCHECK_IMPLIES(invoke->IsInvokeStaticOrDirect(),
1866                  !invoke->AsInvokeStaticOrDirect()->IsStringInit());
1867 
1868   ReceiverArg receiver_arg = (invoke->GetInvokeType() == InvokeType::kStatic)
1869       ? ReceiverArg::kNone
1870       : (is_unresolved ? ReceiverArg::kPlainArg : ReceiverArg::kNullCheckedArg);
1871   if (!SetupInvokeArguments(invoke, operands, shorty, receiver_arg)) {
1872     return false;
1873   }
1874 
1875   AppendInstruction(invoke);
1876   latest_result_ = invoke;
1877 
1878   return true;
1879 }
1880 
BuildSimpleIntrinsic(ArtMethod * method,uint32_t dex_pc,const InstructionOperands & operands,const char * shorty)1881 bool HInstructionBuilder::BuildSimpleIntrinsic(ArtMethod* method,
1882                                                uint32_t dex_pc,
1883                                                const InstructionOperands& operands,
1884                                                const char* shorty) {
1885   Intrinsics intrinsic = static_cast<Intrinsics>(method->GetIntrinsic());
1886   DCHECK_NE(intrinsic, Intrinsics::kNone);
1887   constexpr DataType::Type kInt32 = DataType::Type::kInt32;
1888   constexpr DataType::Type kInt64 = DataType::Type::kInt64;
1889   constexpr DataType::Type kFloat32 = DataType::Type::kFloat32;
1890   constexpr DataType::Type kFloat64 = DataType::Type::kFloat64;
1891   ReceiverArg receiver_arg = method->IsStatic() ? ReceiverArg::kNone : ReceiverArg::kNullCheckedArg;
1892   HInstruction* instruction = nullptr;
1893   switch (intrinsic) {
1894     case Intrinsics::kIntegerRotateRight:
1895     case Intrinsics::kIntegerRotateLeft:
1896       // For rotate left, we negate the distance below.
1897       instruction = new (allocator_) HRor(kInt32, /*value=*/ nullptr, /*distance=*/ nullptr);
1898       break;
1899     case Intrinsics::kLongRotateRight:
1900     case Intrinsics::kLongRotateLeft:
1901       // For rotate left, we negate the distance below.
1902       instruction = new (allocator_) HRor(kInt64, /*value=*/ nullptr, /*distance=*/ nullptr);
1903       break;
1904     case Intrinsics::kIntegerCompare:
1905       instruction = new (allocator_) HCompare(
1906           kInt32, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc);
1907       break;
1908     case Intrinsics::kLongCompare:
1909       instruction = new (allocator_) HCompare(
1910           kInt64, /*first=*/ nullptr, /*second=*/ nullptr, ComparisonBias::kNoBias, dex_pc);
1911       break;
1912     case Intrinsics::kIntegerSignum:
1913       instruction = new (allocator_) HCompare(
1914           kInt32, /*first=*/ nullptr, graph_->GetIntConstant(0), ComparisonBias::kNoBias, dex_pc);
1915       break;
1916     case Intrinsics::kLongSignum:
1917       instruction = new (allocator_) HCompare(
1918           kInt64, /*first=*/ nullptr, graph_->GetLongConstant(0), ComparisonBias::kNoBias, dex_pc);
1919       break;
1920     case Intrinsics::kFloatIsNaN:
1921     case Intrinsics::kDoubleIsNaN: {
1922       // IsNaN(x) is the same as x != x.
1923       instruction = new (allocator_) HNotEqual(/*first=*/ nullptr, /*second=*/ nullptr, dex_pc);
1924       instruction->AsCondition()->SetBias(ComparisonBias::kLtBias);
1925       break;
1926     }
1927     case Intrinsics::kStringCharAt:
1928       // We treat String as an array to allow DCE and BCE to seamlessly work on strings.
1929       instruction = new (allocator_) HArrayGet(/*array=*/ nullptr,
1930                                                /*index=*/ nullptr,
1931                                                DataType::Type::kUint16,
1932                                                SideEffects::None(),  // Strings are immutable.
1933                                                dex_pc,
1934                                                /*is_string_char_at=*/ true);
1935       break;
1936     case Intrinsics::kStringIsEmpty:
1937     case Intrinsics::kStringLength:
1938       // We treat String as an array to allow DCE and BCE to seamlessly work on strings.
1939       // For String.isEmpty(), we add a comparison with 0 below.
1940       instruction =
1941           new (allocator_) HArrayLength(/*array=*/ nullptr, dex_pc, /* is_string_length= */ true);
1942       break;
1943     case Intrinsics::kUnsafeLoadFence:
1944     case Intrinsics::kJdkUnsafeLoadFence:
1945       receiver_arg = ReceiverArg::kNullCheckedOnly;
1946       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1947       break;
1948     case Intrinsics::kUnsafeStoreFence:
1949     case Intrinsics::kJdkUnsafeStoreFence:
1950       receiver_arg = ReceiverArg::kNullCheckedOnly;
1951       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc);
1952       break;
1953     case Intrinsics::kUnsafeFullFence:
1954     case Intrinsics::kJdkUnsafeFullFence:
1955       receiver_arg = ReceiverArg::kNullCheckedOnly;
1956       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc);
1957       break;
1958     case Intrinsics::kVarHandleFullFence:
1959       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyAny, dex_pc);
1960       break;
1961     case Intrinsics::kVarHandleAcquireFence:
1962       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1963       break;
1964     case Intrinsics::kVarHandleReleaseFence:
1965       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kAnyStore, dex_pc);
1966       break;
1967     case Intrinsics::kVarHandleLoadLoadFence:
1968       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kLoadAny, dex_pc);
1969       break;
1970     case Intrinsics::kVarHandleStoreStoreFence:
1971       instruction = new (allocator_) HMemoryBarrier(MemBarrierKind::kStoreStore, dex_pc);
1972       break;
1973     case Intrinsics::kMathMinIntInt:
1974       instruction = new (allocator_) HMin(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1975       break;
1976     case Intrinsics::kMathMinLongLong:
1977       instruction = new (allocator_) HMin(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1978       break;
1979     case Intrinsics::kMathMinFloatFloat:
1980       instruction = new (allocator_) HMin(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1981       break;
1982     case Intrinsics::kMathMinDoubleDouble:
1983       instruction = new (allocator_) HMin(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1984       break;
1985     case Intrinsics::kMathMaxIntInt:
1986       instruction = new (allocator_) HMax(kInt32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1987       break;
1988     case Intrinsics::kMathMaxLongLong:
1989       instruction = new (allocator_) HMax(kInt64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1990       break;
1991     case Intrinsics::kMathMaxFloatFloat:
1992       instruction = new (allocator_) HMax(kFloat32, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1993       break;
1994     case Intrinsics::kMathMaxDoubleDouble:
1995       instruction = new (allocator_) HMax(kFloat64, /*left=*/ nullptr, /*right=*/ nullptr, dex_pc);
1996       break;
1997     case Intrinsics::kMathAbsInt:
1998       instruction = new (allocator_) HAbs(kInt32, /*input=*/ nullptr, dex_pc);
1999       break;
2000     case Intrinsics::kMathAbsLong:
2001       instruction = new (allocator_) HAbs(kInt64, /*input=*/ nullptr, dex_pc);
2002       break;
2003     case Intrinsics::kMathAbsFloat:
2004       instruction = new (allocator_) HAbs(kFloat32, /*input=*/ nullptr, dex_pc);
2005       break;
2006     case Intrinsics::kMathAbsDouble:
2007       instruction = new (allocator_) HAbs(kFloat64, /*input=*/ nullptr, dex_pc);
2008       break;
2009     default:
2010       // We do not have intermediate representation for other intrinsics.
2011       DCHECK(!IsIntrinsicWithSpecializedHir(intrinsic));
2012       return false;
2013   }
2014   DCHECK(instruction != nullptr);
2015   if (!SetupInvokeArguments(instruction, operands, shorty, receiver_arg)) {
2016     return false;
2017   }
2018 
2019   switch (intrinsic) {
2020     case Intrinsics::kIntegerRotateLeft:
2021     case Intrinsics::kLongRotateLeft: {
2022       // Negate the distance value for rotate left.
2023       DCHECK(instruction->IsRor());
2024       HNeg* neg = new (allocator_) HNeg(kInt32, instruction->InputAt(1u));
2025       AppendInstruction(neg);
2026       instruction->SetRawInputAt(1u, neg);
2027       break;
2028     }
2029     case Intrinsics::kFloatIsNaN:
2030     case Intrinsics::kDoubleIsNaN:
2031       // Set the second input to be the same as first.
2032       DCHECK(instruction->IsNotEqual());
2033       DCHECK(instruction->InputAt(1u) == nullptr);
2034       instruction->SetRawInputAt(1u, instruction->InputAt(0u));
2035       break;
2036     case Intrinsics::kStringCharAt: {
2037       // Add bounds check.
2038       HInstruction* array = instruction->InputAt(0u);
2039       HInstruction* index = instruction->InputAt(1u);
2040       HInstruction* length =
2041           new (allocator_) HArrayLength(array, dex_pc, /*is_string_length=*/ true);
2042       AppendInstruction(length);
2043       HBoundsCheck* bounds_check =
2044           new (allocator_) HBoundsCheck(index, length, dex_pc, /*is_string_char_at=*/ true);
2045       AppendInstruction(bounds_check);
2046       graph_->SetHasBoundsChecks(true);
2047       instruction->SetRawInputAt(1u, bounds_check);
2048       break;
2049     }
2050     case Intrinsics::kStringIsEmpty: {
2051       // Compare the length with 0.
2052       DCHECK(instruction->IsArrayLength());
2053       AppendInstruction(instruction);
2054       HEqual* equal = new (allocator_) HEqual(instruction, graph_->GetIntConstant(0), dex_pc);
2055       instruction = equal;
2056       break;
2057     }
2058     default:
2059       break;
2060   }
2061 
2062   AppendInstruction(instruction);
2063   latest_result_ = instruction;
2064 
2065   return true;
2066 }
2067 
HandleStringInit(HInvoke * invoke,const InstructionOperands & operands,const char * shorty)2068 bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
2069                                            const InstructionOperands& operands,
2070                                            const char* shorty) {
2071   DCHECK(invoke->IsInvokeStaticOrDirect());
2072   DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
2073 
2074   if (!SetupInvokeArguments(invoke, operands, shorty, ReceiverArg::kIgnored)) {
2075     return false;
2076   }
2077 
2078   AppendInstruction(invoke);
2079 
2080   // This is a StringFactory call, not an actual String constructor. Its result
2081   // replaces the empty String pre-allocated by NewInstance.
2082   uint32_t orig_this_reg = operands.GetOperand(0);
2083   HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference);
2084 
2085   // Replacing the NewInstance might render it redundant. Keep a list of these
2086   // to be visited once it is clear whether it has remaining uses.
2087   if (arg_this->IsNewInstance()) {
2088     ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
2089   } else {
2090     DCHECK(arg_this->IsPhi());
2091     // We can get a phi as input of a String.<init> if there is a loop between the
2092     // allocation and the String.<init> call. As we don't know which other phis might alias
2093     // with `arg_this`, we keep a record of those invocations so we can later replace
2094     // the allocation with the invocation.
2095     // Add the actual 'this' input so the analysis knows what is the allocation instruction.
2096     // The input will be removed during the analysis.
2097     invoke->AddInput(arg_this);
2098     ssa_builder_->AddUninitializedStringPhi(invoke);
2099   }
2100   // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
2101   for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
2102     if ((*current_locals_)[vreg] == arg_this) {
2103       (*current_locals_)[vreg] = invoke;
2104     }
2105   }
2106   return true;
2107 }
2108 
GetFieldAccessType(const DexFile & dex_file,uint16_t field_index)2109 static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
2110   const dex::FieldId& field_id = dex_file.GetFieldId(field_index);
2111   const char* type = dex_file.GetFieldTypeDescriptor(field_id);
2112   return DataType::FromShorty(type[0]);
2113 }
2114 
BuildInstanceFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put)2115 bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
2116                                                    uint32_t dex_pc,
2117                                                    bool is_put) {
2118   uint32_t source_or_dest_reg = instruction.VRegA_22c();
2119   uint32_t obj_reg = instruction.VRegB_22c();
2120   uint16_t field_index = instruction.VRegC_22c();
2121 
2122   ScopedObjectAccess soa(Thread::Current());
2123   ArtField* resolved_field = ResolveField(field_index, /* is_static= */ false, is_put);
2124 
2125   // Generate an explicit null check on the reference, unless the field access
2126   // is unresolved. In that case, we rely on the runtime to perform various
2127   // checks first, followed by a null check.
2128   HInstruction* object = (resolved_field == nullptr)
2129       ? LoadLocal(obj_reg, DataType::Type::kReference)
2130       : LoadNullCheckedLocal(obj_reg, dex_pc);
2131 
2132   DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
2133   if (is_put) {
2134     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
2135     HInstruction* field_set = nullptr;
2136     if (resolved_field == nullptr) {
2137       MaybeRecordStat(compilation_stats_,
2138                       MethodCompilationStat::kUnresolvedField);
2139       field_set = new (allocator_) HUnresolvedInstanceFieldSet(object,
2140                                                                value,
2141                                                                field_type,
2142                                                                field_index,
2143                                                                dex_pc);
2144     } else {
2145       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
2146       field_set = new (allocator_) HInstanceFieldSet(object,
2147                                                      value,
2148                                                      resolved_field,
2149                                                      field_type,
2150                                                      resolved_field->GetOffset(),
2151                                                      resolved_field->IsVolatile(),
2152                                                      field_index,
2153                                                      class_def_index,
2154                                                      *dex_file_,
2155                                                      dex_pc);
2156     }
2157     AppendInstruction(field_set);
2158   } else {
2159     HInstruction* field_get = nullptr;
2160     if (resolved_field == nullptr) {
2161       MaybeRecordStat(compilation_stats_,
2162                       MethodCompilationStat::kUnresolvedField);
2163       field_get = new (allocator_) HUnresolvedInstanceFieldGet(object,
2164                                                                field_type,
2165                                                                field_index,
2166                                                                dex_pc);
2167     } else {
2168       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
2169       field_get = new (allocator_) HInstanceFieldGet(object,
2170                                                      resolved_field,
2171                                                      field_type,
2172                                                      resolved_field->GetOffset(),
2173                                                      resolved_field->IsVolatile(),
2174                                                      field_index,
2175                                                      class_def_index,
2176                                                      *dex_file_,
2177                                                      dex_pc);
2178     }
2179     AppendInstruction(field_get);
2180     UpdateLocal(source_or_dest_reg, field_get);
2181   }
2182 
2183   return true;
2184 }
2185 
BuildUnresolvedStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type field_type)2186 void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
2187                                                            uint32_t dex_pc,
2188                                                            bool is_put,
2189                                                            DataType::Type field_type) {
2190   uint32_t source_or_dest_reg = instruction.VRegA_21c();
2191   uint16_t field_index = instruction.VRegB_21c();
2192 
2193   if (is_put) {
2194     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
2195     AppendInstruction(
2196         new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
2197   } else {
2198     AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
2199     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
2200   }
2201 }
2202 
ResolveField(uint16_t field_idx,bool is_static,bool is_put)2203 ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) {
2204   ScopedObjectAccess soa(Thread::Current());
2205 
2206   ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
2207   Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
2208 
2209   ArtField* resolved_field = class_linker->ResolveFieldJLS(field_idx,
2210                                                            dex_compilation_unit_->GetDexCache(),
2211                                                            class_loader);
2212   DCHECK_EQ(resolved_field == nullptr, soa.Self()->IsExceptionPending())
2213       << "field="
2214       << ((resolved_field == nullptr) ? "null" : resolved_field->PrettyField())
2215       << ", exception="
2216       << (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "null");
2217   if (UNLIKELY(resolved_field == nullptr)) {
2218     // Clean up any exception left by field resolution.
2219     soa.Self()->ClearException();
2220     return nullptr;
2221   }
2222 
2223   if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
2224     return nullptr;
2225   }
2226 
2227   // Check access.
2228   Handle<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass();
2229   if (compiling_class == nullptr) {
2230     // Check if the declaring class or referencing class is accessible.
2231     SamePackageCompare same_package(*dex_compilation_unit_);
2232     ObjPtr<mirror::Class> declaring_class = resolved_field->GetDeclaringClass();
2233     bool declaring_class_accessible = declaring_class->IsPublic() || same_package(declaring_class);
2234     if (!declaring_class_accessible) {
2235       // It is possible to access members from an inaccessible superclass
2236       // by referencing them through an accessible subclass.
2237       ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
2238           dex_compilation_unit_->GetDexFile()->GetFieldId(field_idx).class_idx_,
2239           dex_compilation_unit_->GetDexCache().Get(),
2240           class_loader.Get());
2241       DCHECK(referenced_class != nullptr);  // Must have been resolved when resolving the field.
2242       if (!referenced_class->IsPublic() && !same_package(referenced_class)) {
2243         return nullptr;
2244       }
2245     }
2246     // Check whether the field itself is accessible.
2247     // Since the referrer is unresolved but the field is resolved, it cannot be
2248     // inside the same class, so a private field is known to be inaccessible.
2249     // And without a resolved referrer, we cannot check for protected member access
2250     // in superlass, so we handle only access to public member or within the package.
2251     if (resolved_field->IsPrivate() ||
2252         (!resolved_field->IsPublic() && !declaring_class_accessible)) {
2253       return nullptr;
2254     }
2255   } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(),
2256                                                       resolved_field,
2257                                                       dex_compilation_unit_->GetDexCache().Get(),
2258                                                       field_idx)) {
2259     return nullptr;
2260   }
2261 
2262   if (is_put) {
2263     if (resolved_field->IsFinal() &&
2264         (compiling_class.Get() != resolved_field->GetDeclaringClass())) {
2265       // Final fields can only be updated within their own class.
2266       // TODO: Only allow it in constructors. b/34966607.
2267       return nullptr;
2268     }
2269 
2270     // Note: We do not need to resolve the field type for `get` opcodes.
2271     StackArtFieldHandleScope<1> rhs(soa.Self());
2272     ReflectiveHandle<ArtField> resolved_field_handle(rhs.NewHandle(resolved_field));
2273     if (resolved_field->ResolveType().IsNull()) {
2274       // ArtField::ResolveType() may fail as evidenced with a dexing bug (b/78788577).
2275       soa.Self()->ClearException();
2276       return nullptr;  // Failure
2277     }
2278     resolved_field = resolved_field_handle.Get();
2279   }
2280 
2281   return resolved_field;
2282 }
2283 
BuildStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put)2284 void HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
2285                                                  uint32_t dex_pc,
2286                                                  bool is_put) {
2287   uint32_t source_or_dest_reg = instruction.VRegA_21c();
2288   uint16_t field_index = instruction.VRegB_21c();
2289 
2290   ScopedObjectAccess soa(Thread::Current());
2291   ArtField* resolved_field = ResolveField(field_index, /* is_static= */ true, is_put);
2292 
2293   if (resolved_field == nullptr) {
2294     MaybeRecordStat(compilation_stats_,
2295                     MethodCompilationStat::kUnresolvedField);
2296     DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
2297     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
2298     return;
2299   }
2300 
2301   DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
2302 
2303   Handle<mirror::Class> klass =
2304       graph_->GetHandleCache()->NewHandle(resolved_field->GetDeclaringClass());
2305   HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(),
2306                                         klass->GetDexFile(),
2307                                         klass,
2308                                         dex_pc,
2309                                         /* needs_access_check= */ false);
2310 
2311   if (constant == nullptr) {
2312     // The class cannot be referenced from this compiled code. Generate
2313     // an unresolved access.
2314     MaybeRecordStat(compilation_stats_,
2315                     MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
2316     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
2317     return;
2318   }
2319 
2320   HInstruction* cls = constant;
2321   if (!IsInitialized(klass.Get())) {
2322     cls = new (allocator_) HClinitCheck(constant, dex_pc);
2323     AppendInstruction(cls);
2324   }
2325 
2326   uint16_t class_def_index = klass->GetDexClassDefIndex();
2327   if (is_put) {
2328     // We need to keep the class alive before loading the value.
2329     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
2330     DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
2331     AppendInstruction(new (allocator_) HStaticFieldSet(cls,
2332                                                        value,
2333                                                        resolved_field,
2334                                                        field_type,
2335                                                        resolved_field->GetOffset(),
2336                                                        resolved_field->IsVolatile(),
2337                                                        field_index,
2338                                                        class_def_index,
2339                                                        *dex_file_,
2340                                                        dex_pc));
2341   } else {
2342     AppendInstruction(new (allocator_) HStaticFieldGet(cls,
2343                                                        resolved_field,
2344                                                        field_type,
2345                                                        resolved_field->GetOffset(),
2346                                                        resolved_field->IsVolatile(),
2347                                                        field_index,
2348                                                        class_def_index,
2349                                                        *dex_file_,
2350                                                        dex_pc));
2351     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
2352   }
2353 }
2354 
BuildCheckedDivRem(uint16_t out_vreg,uint16_t first_vreg,int64_t second_vreg_or_constant,uint32_t dex_pc,DataType::Type type,bool second_is_constant,bool isDiv)2355 void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
2356                                              uint16_t first_vreg,
2357                                              int64_t second_vreg_or_constant,
2358                                              uint32_t dex_pc,
2359                                              DataType::Type type,
2360                                              bool second_is_constant,
2361                                              bool isDiv) {
2362   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2363 
2364   HInstruction* first = LoadLocal(first_vreg, type);
2365   HInstruction* second = nullptr;
2366   if (second_is_constant) {
2367     if (type == DataType::Type::kInt32) {
2368       second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
2369     } else {
2370       second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
2371     }
2372   } else {
2373     second = LoadLocal(second_vreg_or_constant, type);
2374   }
2375 
2376   if (!second_is_constant ||
2377       (type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0) ||
2378       (type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) {
2379     second = new (allocator_) HDivZeroCheck(second, dex_pc);
2380     AppendInstruction(second);
2381   }
2382 
2383   if (isDiv) {
2384     AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc));
2385   } else {
2386     AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc));
2387   }
2388   UpdateLocal(out_vreg, current_block_->GetLastInstruction());
2389 }
2390 
BuildArrayAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type anticipated_type)2391 void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
2392                                            uint32_t dex_pc,
2393                                            bool is_put,
2394                                            DataType::Type anticipated_type) {
2395   uint8_t source_or_dest_reg = instruction.VRegA_23x();
2396   uint8_t array_reg = instruction.VRegB_23x();
2397   uint8_t index_reg = instruction.VRegC_23x();
2398 
2399   HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc);
2400   HInstruction* length = new (allocator_) HArrayLength(object, dex_pc);
2401   AppendInstruction(length);
2402   HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32);
2403   index = new (allocator_) HBoundsCheck(index, length, dex_pc);
2404   AppendInstruction(index);
2405   if (is_put) {
2406     HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
2407     // TODO: Insert a type check node if the type is Object.
2408     HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
2409     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2410     AppendInstruction(aset);
2411   } else {
2412     HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc);
2413     ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
2414     AppendInstruction(aget);
2415     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
2416   }
2417   graph_->SetHasBoundsChecks(true);
2418 }
2419 
BuildNewArray(uint32_t dex_pc,dex::TypeIndex type_index,HInstruction * length)2420 HNewArray* HInstructionBuilder::BuildNewArray(uint32_t dex_pc,
2421                                               dex::TypeIndex type_index,
2422                                               HInstruction* length) {
2423   HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
2424 
2425   const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(type_index));
2426   DCHECK_EQ(descriptor[0], '[');
2427   size_t component_type_shift = Primitive::ComponentSizeShift(Primitive::GetType(descriptor[1]));
2428 
2429   HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc, component_type_shift);
2430   AppendInstruction(new_array);
2431   return new_array;
2432 }
2433 
BuildFilledNewArray(uint32_t dex_pc,dex::TypeIndex type_index,const InstructionOperands & operands)2434 HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
2435                                                     dex::TypeIndex type_index,
2436                                                     const InstructionOperands& operands) {
2437   const size_t number_of_operands = operands.GetNumberOfOperands();
2438   HInstruction* length = graph_->GetIntConstant(number_of_operands, dex_pc);
2439 
2440   HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
2441   const char* descriptor = dex_file_->GetTypeDescriptor(type_index);
2442   DCHECK_EQ(descriptor[0], '[') << descriptor;
2443   char primitive = descriptor[1];
2444   DCHECK(primitive == 'I'
2445       || primitive == 'L'
2446       || primitive == '[') << descriptor;
2447   bool is_reference_array = (primitive == 'L') || (primitive == '[');
2448   DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32;
2449 
2450   for (size_t i = 0; i < number_of_operands; ++i) {
2451     HInstruction* value = LoadLocal(operands.GetOperand(i), type);
2452     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2453     HArraySet* aset = new (allocator_) HArraySet(new_array, index, value, type, dex_pc);
2454     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2455     AppendInstruction(aset);
2456   }
2457   latest_result_ = new_array;
2458 
2459   return new_array;
2460 }
2461 
2462 template <typename T>
BuildFillArrayData(HInstruction * object,const T * data,uint32_t element_count,DataType::Type anticipated_type,uint32_t dex_pc)2463 void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
2464                                              const T* data,
2465                                              uint32_t element_count,
2466                                              DataType::Type anticipated_type,
2467                                              uint32_t dex_pc) {
2468   for (uint32_t i = 0; i < element_count; ++i) {
2469     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2470     HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
2471     HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
2472     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2473     AppendInstruction(aset);
2474   }
2475 }
2476 
BuildFillArrayData(const Instruction & instruction,uint32_t dex_pc)2477 void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
2478   HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc);
2479 
2480   int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
2481   const Instruction::ArrayDataPayload* payload =
2482       reinterpret_cast<const Instruction::ArrayDataPayload*>(
2483           code_item_accessor_.Insns() + payload_offset);
2484   const uint8_t* data = payload->data;
2485   uint32_t element_count = payload->element_count;
2486 
2487   if (element_count == 0u) {
2488     // For empty payload we emit only the null check above.
2489     return;
2490   }
2491 
2492   HInstruction* length = new (allocator_) HArrayLength(array, dex_pc);
2493   AppendInstruction(length);
2494 
2495   // Implementation of this DEX instruction seems to be that the bounds check is
2496   // done before doing any stores.
2497   HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
2498   AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc));
2499 
2500   switch (payload->element_width) {
2501     case 1:
2502       BuildFillArrayData(array,
2503                          reinterpret_cast<const int8_t*>(data),
2504                          element_count,
2505                          DataType::Type::kInt8,
2506                          dex_pc);
2507       break;
2508     case 2:
2509       BuildFillArrayData(array,
2510                          reinterpret_cast<const int16_t*>(data),
2511                          element_count,
2512                          DataType::Type::kInt16,
2513                          dex_pc);
2514       break;
2515     case 4:
2516       BuildFillArrayData(array,
2517                          reinterpret_cast<const int32_t*>(data),
2518                          element_count,
2519                          DataType::Type::kInt32,
2520                          dex_pc);
2521       break;
2522     case 8:
2523       BuildFillWideArrayData(array,
2524                              reinterpret_cast<const int64_t*>(data),
2525                              element_count,
2526                              dex_pc);
2527       break;
2528     default:
2529       LOG(FATAL) << "Unknown element width for " << payload->element_width;
2530   }
2531   graph_->SetHasBoundsChecks(true);
2532 }
2533 
BuildFillWideArrayData(HInstruction * object,const int64_t * data,uint32_t element_count,uint32_t dex_pc)2534 void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
2535                                                  const int64_t* data,
2536                                                  uint32_t element_count,
2537                                                  uint32_t dex_pc) {
2538   for (uint32_t i = 0; i < element_count; ++i) {
2539     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
2540     HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
2541     HArraySet* aset =
2542         new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc);
2543     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
2544     AppendInstruction(aset);
2545   }
2546 }
2547 
BuildLoadString(dex::StringIndex string_index,uint32_t dex_pc)2548 void HInstructionBuilder::BuildLoadString(dex::StringIndex string_index, uint32_t dex_pc) {
2549   HLoadString* load_string =
2550       new (allocator_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc);
2551   HSharpening::ProcessLoadString(load_string,
2552                                  code_generator_,
2553                                  *dex_compilation_unit_,
2554                                  graph_->GetHandleCache()->GetHandles());
2555   AppendInstruction(load_string);
2556 }
2557 
BuildLoadClass(dex::TypeIndex type_index,uint32_t dex_pc)2558 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) {
2559   ScopedObjectAccess soa(Thread::Current());
2560   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2561   Handle<mirror::Class> klass = ResolveClass(soa, type_index);
2562   bool needs_access_check = LoadClassNeedsAccessCheck(type_index, klass.Get());
2563   return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
2564 }
2565 
BuildLoadClass(dex::TypeIndex type_index,const DexFile & dex_file,Handle<mirror::Class> klass,uint32_t dex_pc,bool needs_access_check)2566 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index,
2567                                                 const DexFile& dex_file,
2568                                                 Handle<mirror::Class> klass,
2569                                                 uint32_t dex_pc,
2570                                                 bool needs_access_check) {
2571   // Try to find a reference in the compiling dex file.
2572   const DexFile* actual_dex_file = &dex_file;
2573   if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) {
2574     dex::TypeIndex local_type_index =
2575         klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile());
2576     if (local_type_index.IsValid()) {
2577       type_index = local_type_index;
2578       actual_dex_file = dex_compilation_unit_->GetDexFile();
2579     }
2580   }
2581 
2582   // We cannot use the referrer's class load kind if we need to do an access check.
2583   // If the `klass` is unresolved, we need access check with the exception of the referrer's
2584   // class, see LoadClassNeedsAccessCheck(), so the `!needs_access_check` check is enough.
2585   // Otherwise, also check if the `klass` is the same as the compiling class, which also
2586   // conveniently rejects the case of unresolved compiling class.
2587   bool is_referrers_class =
2588     !needs_access_check &&
2589     (klass == nullptr || outer_compilation_unit_->GetCompilingClass().Get() == klass.Get());
2590   // Note: `klass` must be from `graph_->GetHandleCache()`.
2591   HLoadClass* load_class = new (allocator_) HLoadClass(
2592       graph_->GetCurrentMethod(),
2593       type_index,
2594       *actual_dex_file,
2595       klass,
2596       is_referrers_class,
2597       dex_pc,
2598       needs_access_check);
2599 
2600   HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class,
2601                                                                      code_generator_,
2602                                                                      *dex_compilation_unit_);
2603 
2604   if (load_kind == HLoadClass::LoadKind::kInvalid) {
2605     // We actually cannot reference this class, we're forced to bail.
2606     return nullptr;
2607   }
2608   // Load kind must be set before inserting the instruction into the graph.
2609   load_class->SetLoadKind(load_kind);
2610   AppendInstruction(load_class);
2611   return load_class;
2612 }
2613 
ResolveClass(ScopedObjectAccess & soa,dex::TypeIndex type_index)2614 Handle<mirror::Class> HInstructionBuilder::ResolveClass(ScopedObjectAccess& soa,
2615                                                         dex::TypeIndex type_index) {
2616   auto it = class_cache_.find(type_index);
2617   if (it != class_cache_.end()) {
2618     return it->second;
2619   }
2620 
2621   ObjPtr<mirror::Class> klass = dex_compilation_unit_->GetClassLinker()->ResolveType(
2622       type_index, dex_compilation_unit_->GetDexCache(), dex_compilation_unit_->GetClassLoader());
2623   DCHECK_EQ(klass == nullptr, soa.Self()->IsExceptionPending());
2624   soa.Self()->ClearException();  // Clean up the exception left by type resolution if any.
2625 
2626   Handle<mirror::Class> h_klass = graph_->GetHandleCache()->NewHandle(klass);
2627   class_cache_.Put(type_index, h_klass);
2628   return h_klass;
2629 }
2630 
LoadClassNeedsAccessCheck(dex::TypeIndex type_index,ObjPtr<mirror::Class> klass)2631 bool HInstructionBuilder::LoadClassNeedsAccessCheck(dex::TypeIndex type_index,
2632                                                     ObjPtr<mirror::Class> klass) {
2633   if (klass == nullptr) {
2634     // If the class is unresolved, we can avoid access checks only for references to
2635     // the compiling class as determined by checking the descriptor and ClassLoader.
2636     if (outer_compilation_unit_->GetCompilingClass() != nullptr) {
2637       // Compiling class is resolved, so different from the unresolved class.
2638       return true;
2639     }
2640     if (dex_compilation_unit_->GetClassLoader().Get() !=
2641             outer_compilation_unit_->GetClassLoader().Get()) {
2642       // Resolving the same descriptor in a different ClassLoader than the
2643       // defining loader of the compiling class shall either fail to find
2644       // the class definition, or find a different one.
2645       // (Assuming no custom ClassLoader hierarchy with circular delegation.)
2646       return true;
2647     }
2648     // Check if the class is the outer method's class.
2649     // For the same dex file compare type indexes, otherwise descriptors.
2650     const DexFile* outer_dex_file = outer_compilation_unit_->GetDexFile();
2651     const DexFile* inner_dex_file = dex_compilation_unit_->GetDexFile();
2652     const dex::ClassDef& outer_class_def =
2653         outer_dex_file->GetClassDef(outer_compilation_unit_->GetClassDefIndex());
2654     if (IsSameDexFile(*inner_dex_file, *outer_dex_file)) {
2655       if (type_index != outer_class_def.class_idx_) {
2656         return true;
2657       }
2658     } else {
2659       const std::string_view outer_descriptor =
2660           outer_dex_file->GetTypeDescriptorView(outer_class_def.class_idx_);
2661       const std::string_view target_descriptor =
2662           inner_dex_file->GetTypeDescriptorView(type_index);
2663       if (outer_descriptor != target_descriptor) {
2664         return true;
2665       }
2666     }
2667     // For inlined methods we also need to check if the compiling class
2668     // is public or in the same package as the inlined method's class.
2669     if (dex_compilation_unit_ != outer_compilation_unit_ &&
2670         (outer_class_def.access_flags_ & kAccPublic) == 0) {
2671       DCHECK(dex_compilation_unit_->GetCompilingClass() != nullptr);
2672       SamePackageCompare same_package(*outer_compilation_unit_);
2673       if (!same_package(dex_compilation_unit_->GetCompilingClass().Get())) {
2674         return true;
2675       }
2676     }
2677     return false;
2678   } else if (klass->IsPublic()) {
2679     return false;
2680   } else if (dex_compilation_unit_->GetCompilingClass() != nullptr) {
2681     return !dex_compilation_unit_->GetCompilingClass()->CanAccess(klass);
2682   } else {
2683     SamePackageCompare same_package(*dex_compilation_unit_);
2684     return !same_package(klass);
2685   }
2686 }
2687 
BuildLoadMethodHandle(uint16_t method_handle_index,uint32_t dex_pc)2688 void HInstructionBuilder::BuildLoadMethodHandle(uint16_t method_handle_index, uint32_t dex_pc) {
2689   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2690   HLoadMethodHandle* load_method_handle = new (allocator_) HLoadMethodHandle(
2691       graph_->GetCurrentMethod(), method_handle_index, dex_file, dex_pc);
2692   AppendInstruction(load_method_handle);
2693 }
2694 
BuildLoadMethodType(dex::ProtoIndex proto_index,uint32_t dex_pc)2695 void HInstructionBuilder::BuildLoadMethodType(dex::ProtoIndex proto_index, uint32_t dex_pc) {
2696   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2697   HLoadMethodType* load_method_type =
2698       new (allocator_) HLoadMethodType(graph_->GetCurrentMethod(), proto_index, dex_file, dex_pc);
2699   if (!code_generator_->GetCompilerOptions().IsJitCompiler()) {
2700     load_method_type->SetLoadKind(HLoadMethodType::LoadKind::kBssEntry);
2701   }
2702   AppendInstruction(load_method_type);
2703 }
2704 
BuildTypeCheck(bool is_instance_of,HInstruction * object,dex::TypeIndex type_index,uint32_t dex_pc)2705 void HInstructionBuilder::BuildTypeCheck(bool is_instance_of,
2706                                          HInstruction* object,
2707                                          dex::TypeIndex type_index,
2708                                          uint32_t dex_pc) {
2709   ScopedObjectAccess soa(Thread::Current());
2710   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2711   Handle<mirror::Class> klass = ResolveClass(soa, type_index);
2712   bool needs_access_check = LoadClassNeedsAccessCheck(type_index, klass.Get());
2713   TypeCheckKind check_kind = HSharpening::ComputeTypeCheckKind(
2714       klass.Get(), code_generator_, needs_access_check);
2715 
2716   HInstruction* class_or_null = nullptr;
2717   HIntConstant* bitstring_path_to_root = nullptr;
2718   HIntConstant* bitstring_mask = nullptr;
2719   if (check_kind == TypeCheckKind::kBitstringCheck) {
2720     // TODO: Allow using the bitstring check also if we need an access check.
2721     DCHECK(!needs_access_check);
2722     class_or_null = graph_->GetNullConstant(dex_pc);
2723     MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
2724     uint32_t path_to_root =
2725         SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootForTarget(klass.Get());
2726     uint32_t mask = SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootMask(klass.Get());
2727     bitstring_path_to_root = graph_->GetIntConstant(static_cast<int32_t>(path_to_root), dex_pc);
2728     bitstring_mask = graph_->GetIntConstant(static_cast<int32_t>(mask), dex_pc);
2729   } else {
2730     class_or_null = BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
2731   }
2732   DCHECK(class_or_null != nullptr);
2733 
2734   if (is_instance_of) {
2735     AppendInstruction(new (allocator_) HInstanceOf(object,
2736                                                    class_or_null,
2737                                                    check_kind,
2738                                                    klass,
2739                                                    dex_pc,
2740                                                    allocator_,
2741                                                    bitstring_path_to_root,
2742                                                    bitstring_mask));
2743   } else {
2744     // We emit a CheckCast followed by a BoundType. CheckCast is a statement
2745     // which may throw. If it succeeds BoundType sets the new type of `object`
2746     // for all subsequent uses.
2747     AppendInstruction(
2748         new (allocator_) HCheckCast(object,
2749                                     class_or_null,
2750                                     check_kind,
2751                                     klass,
2752                                     dex_pc,
2753                                     allocator_,
2754                                     bitstring_path_to_root,
2755                                     bitstring_mask));
2756     AppendInstruction(new (allocator_) HBoundType(object, dex_pc));
2757   }
2758 }
2759 
BuildTypeCheck(const Instruction & instruction,uint8_t destination,uint8_t reference,dex::TypeIndex type_index,uint32_t dex_pc)2760 void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
2761                                          uint8_t destination,
2762                                          uint8_t reference,
2763                                          dex::TypeIndex type_index,
2764                                          uint32_t dex_pc) {
2765   HInstruction* object = LoadLocal(reference, DataType::Type::kReference);
2766   bool is_instance_of = instruction.Opcode() == Instruction::INSTANCE_OF;
2767 
2768   BuildTypeCheck(is_instance_of, object, type_index, dex_pc);
2769 
2770   if (is_instance_of) {
2771     UpdateLocal(destination, current_block_->GetLastInstruction());
2772   } else {
2773     DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
2774     UpdateLocal(reference, current_block_->GetLastInstruction());
2775   }
2776 }
2777 
ProcessDexInstruction(const Instruction & instruction,uint32_t dex_pc)2778 bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
2779   switch (instruction.Opcode()) {
2780     case Instruction::CONST_4: {
2781       int32_t register_index = instruction.VRegA();
2782       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
2783       UpdateLocal(register_index, constant);
2784       break;
2785     }
2786 
2787     case Instruction::CONST_16: {
2788       int32_t register_index = instruction.VRegA();
2789       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
2790       UpdateLocal(register_index, constant);
2791       break;
2792     }
2793 
2794     case Instruction::CONST: {
2795       int32_t register_index = instruction.VRegA();
2796       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
2797       UpdateLocal(register_index, constant);
2798       break;
2799     }
2800 
2801     case Instruction::CONST_HIGH16: {
2802       int32_t register_index = instruction.VRegA();
2803       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
2804       UpdateLocal(register_index, constant);
2805       break;
2806     }
2807 
2808     case Instruction::CONST_WIDE_16: {
2809       int32_t register_index = instruction.VRegA();
2810       // Get 16 bits of constant value, sign extended to 64 bits.
2811       int64_t value = instruction.VRegB_21s();
2812       value <<= 48;
2813       value >>= 48;
2814       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2815       UpdateLocal(register_index, constant);
2816       break;
2817     }
2818 
2819     case Instruction::CONST_WIDE_32: {
2820       int32_t register_index = instruction.VRegA();
2821       // Get 32 bits of constant value, sign extended to 64 bits.
2822       int64_t value = instruction.VRegB_31i();
2823       value <<= 32;
2824       value >>= 32;
2825       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2826       UpdateLocal(register_index, constant);
2827       break;
2828     }
2829 
2830     case Instruction::CONST_WIDE: {
2831       int32_t register_index = instruction.VRegA();
2832       HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
2833       UpdateLocal(register_index, constant);
2834       break;
2835     }
2836 
2837     case Instruction::CONST_WIDE_HIGH16: {
2838       int32_t register_index = instruction.VRegA();
2839       int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
2840       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2841       UpdateLocal(register_index, constant);
2842       break;
2843     }
2844 
2845     // Note that the SSA building will refine the types.
2846     case Instruction::MOVE:
2847     case Instruction::MOVE_FROM16:
2848     case Instruction::MOVE_16: {
2849       HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
2850       UpdateLocal(instruction.VRegA(), value);
2851       break;
2852     }
2853 
2854     // Note that the SSA building will refine the types.
2855     case Instruction::MOVE_WIDE:
2856     case Instruction::MOVE_WIDE_FROM16:
2857     case Instruction::MOVE_WIDE_16: {
2858       HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64);
2859       UpdateLocal(instruction.VRegA(), value);
2860       break;
2861     }
2862 
2863     case Instruction::MOVE_OBJECT:
2864     case Instruction::MOVE_OBJECT_16:
2865     case Instruction::MOVE_OBJECT_FROM16: {
2866       // The verifier has no notion of a null type, so a move-object of constant 0
2867       // will lead to the same constant 0 in the destination register. To mimic
2868       // this behavior, we just pretend we haven't seen a type change (int to reference)
2869       // for the 0 constant and phis. We rely on our type propagation to eventually get the
2870       // types correct.
2871       uint32_t reg_number = instruction.VRegB();
2872       HInstruction* value = (*current_locals_)[reg_number];
2873       if (value->IsIntConstant()) {
2874         DCHECK_EQ(value->AsIntConstant()->GetValue(), 0);
2875       } else if (value->IsPhi()) {
2876         DCHECK(value->GetType() == DataType::Type::kInt32 ||
2877                value->GetType() == DataType::Type::kReference);
2878       } else {
2879         value = LoadLocal(reg_number, DataType::Type::kReference);
2880       }
2881       UpdateLocal(instruction.VRegA(), value);
2882       break;
2883     }
2884 
2885     case Instruction::RETURN_VOID: {
2886       BuildReturn(instruction, DataType::Type::kVoid, dex_pc);
2887       break;
2888     }
2889 
2890 #define IF_XX(comparison, cond) \
2891     case Instruction::IF_##cond: \
2892       If_21_22t<comparison, /* kCompareWithZero= */ false>(instruction, dex_pc); \
2893       break; \
2894     case Instruction::IF_##cond##Z: \
2895       If_21_22t<comparison, /* kCompareWithZero= */ true>(instruction, dex_pc); \
2896       break;
2897 
2898     IF_XX(HEqual, EQ);
2899     IF_XX(HNotEqual, NE);
2900     IF_XX(HLessThan, LT);
2901     IF_XX(HLessThanOrEqual, LE);
2902     IF_XX(HGreaterThan, GT);
2903     IF_XX(HGreaterThanOrEqual, GE);
2904 
2905     case Instruction::GOTO:
2906     case Instruction::GOTO_16:
2907     case Instruction::GOTO_32: {
2908       AppendInstruction(new (allocator_) HGoto(dex_pc));
2909       current_block_ = nullptr;
2910       break;
2911     }
2912 
2913     case Instruction::RETURN: {
2914       BuildReturn(instruction, return_type_, dex_pc);
2915       break;
2916     }
2917 
2918     case Instruction::RETURN_OBJECT: {
2919       BuildReturn(instruction, return_type_, dex_pc);
2920       break;
2921     }
2922 
2923     case Instruction::RETURN_WIDE: {
2924       BuildReturn(instruction, return_type_, dex_pc);
2925       break;
2926     }
2927 
2928     case Instruction::INVOKE_DIRECT:
2929     case Instruction::INVOKE_INTERFACE:
2930     case Instruction::INVOKE_STATIC:
2931     case Instruction::INVOKE_SUPER:
2932     case Instruction::INVOKE_VIRTUAL: {
2933       uint16_t method_idx = instruction.VRegB_35c();
2934       uint32_t args[5];
2935       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2936       VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2937       if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
2938         return false;
2939       }
2940       break;
2941     }
2942 
2943     case Instruction::INVOKE_DIRECT_RANGE:
2944     case Instruction::INVOKE_INTERFACE_RANGE:
2945     case Instruction::INVOKE_STATIC_RANGE:
2946     case Instruction::INVOKE_SUPER_RANGE:
2947     case Instruction::INVOKE_VIRTUAL_RANGE: {
2948       uint16_t method_idx = instruction.VRegB_3rc();
2949       RangeInstructionOperands operands(instruction.VRegC(), instruction.VRegA_3rc());
2950       if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
2951         return false;
2952       }
2953       break;
2954     }
2955 
2956     case Instruction::INVOKE_POLYMORPHIC: {
2957       uint16_t method_idx = instruction.VRegB_45cc();
2958       dex::ProtoIndex proto_idx(instruction.VRegH_45cc());
2959       uint32_t args[5];
2960       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2961       VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2962       return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
2963     }
2964 
2965     case Instruction::INVOKE_POLYMORPHIC_RANGE: {
2966       uint16_t method_idx = instruction.VRegB_4rcc();
2967       dex::ProtoIndex proto_idx(instruction.VRegH_4rcc());
2968       RangeInstructionOperands operands(instruction.VRegC_4rcc(), instruction.VRegA_4rcc());
2969       return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
2970     }
2971 
2972     case Instruction::INVOKE_CUSTOM: {
2973       uint16_t call_site_idx = instruction.VRegB_35c();
2974       uint32_t args[5];
2975       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2976       VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2977       return BuildInvokeCustom(dex_pc, call_site_idx, operands);
2978     }
2979 
2980     case Instruction::INVOKE_CUSTOM_RANGE: {
2981       uint16_t call_site_idx = instruction.VRegB_3rc();
2982       RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
2983       return BuildInvokeCustom(dex_pc, call_site_idx, operands);
2984     }
2985 
2986     case Instruction::NEG_INT: {
2987       Unop_12x<HNeg>(instruction, DataType::Type::kInt32, dex_pc);
2988       break;
2989     }
2990 
2991     case Instruction::NEG_LONG: {
2992       Unop_12x<HNeg>(instruction, DataType::Type::kInt64, dex_pc);
2993       break;
2994     }
2995 
2996     case Instruction::NEG_FLOAT: {
2997       Unop_12x<HNeg>(instruction, DataType::Type::kFloat32, dex_pc);
2998       break;
2999     }
3000 
3001     case Instruction::NEG_DOUBLE: {
3002       Unop_12x<HNeg>(instruction, DataType::Type::kFloat64, dex_pc);
3003       break;
3004     }
3005 
3006     case Instruction::NOT_INT: {
3007       Unop_12x<HNot>(instruction, DataType::Type::kInt32, dex_pc);
3008       break;
3009     }
3010 
3011     case Instruction::NOT_LONG: {
3012       Unop_12x<HNot>(instruction, DataType::Type::kInt64, dex_pc);
3013       break;
3014     }
3015 
3016     case Instruction::INT_TO_LONG: {
3017       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc);
3018       break;
3019     }
3020 
3021     case Instruction::INT_TO_FLOAT: {
3022       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc);
3023       break;
3024     }
3025 
3026     case Instruction::INT_TO_DOUBLE: {
3027       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc);
3028       break;
3029     }
3030 
3031     case Instruction::LONG_TO_INT: {
3032       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc);
3033       break;
3034     }
3035 
3036     case Instruction::LONG_TO_FLOAT: {
3037       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc);
3038       break;
3039     }
3040 
3041     case Instruction::LONG_TO_DOUBLE: {
3042       Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc);
3043       break;
3044     }
3045 
3046     case Instruction::FLOAT_TO_INT: {
3047       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc);
3048       break;
3049     }
3050 
3051     case Instruction::FLOAT_TO_LONG: {
3052       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc);
3053       break;
3054     }
3055 
3056     case Instruction::FLOAT_TO_DOUBLE: {
3057       Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc);
3058       break;
3059     }
3060 
3061     case Instruction::DOUBLE_TO_INT: {
3062       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc);
3063       break;
3064     }
3065 
3066     case Instruction::DOUBLE_TO_LONG: {
3067       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc);
3068       break;
3069     }
3070 
3071     case Instruction::DOUBLE_TO_FLOAT: {
3072       Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc);
3073       break;
3074     }
3075 
3076     case Instruction::INT_TO_BYTE: {
3077       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc);
3078       break;
3079     }
3080 
3081     case Instruction::INT_TO_SHORT: {
3082       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc);
3083       break;
3084     }
3085 
3086     case Instruction::INT_TO_CHAR: {
3087       Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc);
3088       break;
3089     }
3090 
3091     case Instruction::ADD_INT: {
3092       Binop_23x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
3093       break;
3094     }
3095 
3096     case Instruction::ADD_LONG: {
3097       Binop_23x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
3098       break;
3099     }
3100 
3101     case Instruction::ADD_DOUBLE: {
3102       Binop_23x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
3103       break;
3104     }
3105 
3106     case Instruction::ADD_FLOAT: {
3107       Binop_23x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
3108       break;
3109     }
3110 
3111     case Instruction::SUB_INT: {
3112       Binop_23x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
3113       break;
3114     }
3115 
3116     case Instruction::SUB_LONG: {
3117       Binop_23x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
3118       break;
3119     }
3120 
3121     case Instruction::SUB_FLOAT: {
3122       Binop_23x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
3123       break;
3124     }
3125 
3126     case Instruction::SUB_DOUBLE: {
3127       Binop_23x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
3128       break;
3129     }
3130 
3131     case Instruction::ADD_INT_2ADDR: {
3132       Binop_12x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
3133       break;
3134     }
3135 
3136     case Instruction::MUL_INT: {
3137       Binop_23x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
3138       break;
3139     }
3140 
3141     case Instruction::MUL_LONG: {
3142       Binop_23x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
3143       break;
3144     }
3145 
3146     case Instruction::MUL_FLOAT: {
3147       Binop_23x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
3148       break;
3149     }
3150 
3151     case Instruction::MUL_DOUBLE: {
3152       Binop_23x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
3153       break;
3154     }
3155 
3156     case Instruction::DIV_INT: {
3157       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3158                          dex_pc, DataType::Type::kInt32, false, true);
3159       break;
3160     }
3161 
3162     case Instruction::DIV_LONG: {
3163       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3164                          dex_pc, DataType::Type::kInt64, false, true);
3165       break;
3166     }
3167 
3168     case Instruction::DIV_FLOAT: {
3169       Binop_23x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
3170       break;
3171     }
3172 
3173     case Instruction::DIV_DOUBLE: {
3174       Binop_23x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
3175       break;
3176     }
3177 
3178     case Instruction::REM_INT: {
3179       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3180                          dex_pc, DataType::Type::kInt32, false, false);
3181       break;
3182     }
3183 
3184     case Instruction::REM_LONG: {
3185       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3186                          dex_pc, DataType::Type::kInt64, false, false);
3187       break;
3188     }
3189 
3190     case Instruction::REM_FLOAT: {
3191       Binop_23x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
3192       break;
3193     }
3194 
3195     case Instruction::REM_DOUBLE: {
3196       Binop_23x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
3197       break;
3198     }
3199 
3200     case Instruction::AND_INT: {
3201       Binop_23x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
3202       break;
3203     }
3204 
3205     case Instruction::AND_LONG: {
3206       Binop_23x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
3207       break;
3208     }
3209 
3210     case Instruction::SHL_INT: {
3211       Binop_23x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
3212       break;
3213     }
3214 
3215     case Instruction::SHL_LONG: {
3216       Binop_23x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
3217       break;
3218     }
3219 
3220     case Instruction::SHR_INT: {
3221       Binop_23x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
3222       break;
3223     }
3224 
3225     case Instruction::SHR_LONG: {
3226       Binop_23x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
3227       break;
3228     }
3229 
3230     case Instruction::USHR_INT: {
3231       Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
3232       break;
3233     }
3234 
3235     case Instruction::USHR_LONG: {
3236       Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
3237       break;
3238     }
3239 
3240     case Instruction::OR_INT: {
3241       Binop_23x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
3242       break;
3243     }
3244 
3245     case Instruction::OR_LONG: {
3246       Binop_23x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
3247       break;
3248     }
3249 
3250     case Instruction::XOR_INT: {
3251       Binop_23x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
3252       break;
3253     }
3254 
3255     case Instruction::XOR_LONG: {
3256       Binop_23x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
3257       break;
3258     }
3259 
3260     case Instruction::ADD_LONG_2ADDR: {
3261       Binop_12x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
3262       break;
3263     }
3264 
3265     case Instruction::ADD_DOUBLE_2ADDR: {
3266       Binop_12x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
3267       break;
3268     }
3269 
3270     case Instruction::ADD_FLOAT_2ADDR: {
3271       Binop_12x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
3272       break;
3273     }
3274 
3275     case Instruction::SUB_INT_2ADDR: {
3276       Binop_12x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
3277       break;
3278     }
3279 
3280     case Instruction::SUB_LONG_2ADDR: {
3281       Binop_12x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
3282       break;
3283     }
3284 
3285     case Instruction::SUB_FLOAT_2ADDR: {
3286       Binop_12x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
3287       break;
3288     }
3289 
3290     case Instruction::SUB_DOUBLE_2ADDR: {
3291       Binop_12x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
3292       break;
3293     }
3294 
3295     case Instruction::MUL_INT_2ADDR: {
3296       Binop_12x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
3297       break;
3298     }
3299 
3300     case Instruction::MUL_LONG_2ADDR: {
3301       Binop_12x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
3302       break;
3303     }
3304 
3305     case Instruction::MUL_FLOAT_2ADDR: {
3306       Binop_12x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
3307       break;
3308     }
3309 
3310     case Instruction::MUL_DOUBLE_2ADDR: {
3311       Binop_12x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
3312       break;
3313     }
3314 
3315     case Instruction::DIV_INT_2ADDR: {
3316       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
3317                          dex_pc, DataType::Type::kInt32, false, true);
3318       break;
3319     }
3320 
3321     case Instruction::DIV_LONG_2ADDR: {
3322       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
3323                          dex_pc, DataType::Type::kInt64, false, true);
3324       break;
3325     }
3326 
3327     case Instruction::REM_INT_2ADDR: {
3328       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
3329                          dex_pc, DataType::Type::kInt32, false, false);
3330       break;
3331     }
3332 
3333     case Instruction::REM_LONG_2ADDR: {
3334       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
3335                          dex_pc, DataType::Type::kInt64, false, false);
3336       break;
3337     }
3338 
3339     case Instruction::REM_FLOAT_2ADDR: {
3340       Binop_12x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
3341       break;
3342     }
3343 
3344     case Instruction::REM_DOUBLE_2ADDR: {
3345       Binop_12x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
3346       break;
3347     }
3348 
3349     case Instruction::SHL_INT_2ADDR: {
3350       Binop_12x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
3351       break;
3352     }
3353 
3354     case Instruction::SHL_LONG_2ADDR: {
3355       Binop_12x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
3356       break;
3357     }
3358 
3359     case Instruction::SHR_INT_2ADDR: {
3360       Binop_12x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
3361       break;
3362     }
3363 
3364     case Instruction::SHR_LONG_2ADDR: {
3365       Binop_12x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
3366       break;
3367     }
3368 
3369     case Instruction::USHR_INT_2ADDR: {
3370       Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
3371       break;
3372     }
3373 
3374     case Instruction::USHR_LONG_2ADDR: {
3375       Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
3376       break;
3377     }
3378 
3379     case Instruction::DIV_FLOAT_2ADDR: {
3380       Binop_12x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
3381       break;
3382     }
3383 
3384     case Instruction::DIV_DOUBLE_2ADDR: {
3385       Binop_12x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
3386       break;
3387     }
3388 
3389     case Instruction::AND_INT_2ADDR: {
3390       Binop_12x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
3391       break;
3392     }
3393 
3394     case Instruction::AND_LONG_2ADDR: {
3395       Binop_12x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
3396       break;
3397     }
3398 
3399     case Instruction::OR_INT_2ADDR: {
3400       Binop_12x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
3401       break;
3402     }
3403 
3404     case Instruction::OR_LONG_2ADDR: {
3405       Binop_12x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
3406       break;
3407     }
3408 
3409     case Instruction::XOR_INT_2ADDR: {
3410       Binop_12x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
3411       break;
3412     }
3413 
3414     case Instruction::XOR_LONG_2ADDR: {
3415       Binop_12x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
3416       break;
3417     }
3418 
3419     case Instruction::ADD_INT_LIT16: {
3420       Binop_22s<HAdd>(instruction, false, dex_pc);
3421       break;
3422     }
3423 
3424     case Instruction::AND_INT_LIT16: {
3425       Binop_22s<HAnd>(instruction, false, dex_pc);
3426       break;
3427     }
3428 
3429     case Instruction::OR_INT_LIT16: {
3430       Binop_22s<HOr>(instruction, false, dex_pc);
3431       break;
3432     }
3433 
3434     case Instruction::XOR_INT_LIT16: {
3435       Binop_22s<HXor>(instruction, false, dex_pc);
3436       break;
3437     }
3438 
3439     case Instruction::RSUB_INT: {
3440       Binop_22s<HSub>(instruction, true, dex_pc);
3441       break;
3442     }
3443 
3444     case Instruction::MUL_INT_LIT16: {
3445       Binop_22s<HMul>(instruction, false, dex_pc);
3446       break;
3447     }
3448 
3449     case Instruction::ADD_INT_LIT8: {
3450       Binop_22b<HAdd>(instruction, false, dex_pc);
3451       break;
3452     }
3453 
3454     case Instruction::AND_INT_LIT8: {
3455       Binop_22b<HAnd>(instruction, false, dex_pc);
3456       break;
3457     }
3458 
3459     case Instruction::OR_INT_LIT8: {
3460       Binop_22b<HOr>(instruction, false, dex_pc);
3461       break;
3462     }
3463 
3464     case Instruction::XOR_INT_LIT8: {
3465       Binop_22b<HXor>(instruction, false, dex_pc);
3466       break;
3467     }
3468 
3469     case Instruction::RSUB_INT_LIT8: {
3470       Binop_22b<HSub>(instruction, true, dex_pc);
3471       break;
3472     }
3473 
3474     case Instruction::MUL_INT_LIT8: {
3475       Binop_22b<HMul>(instruction, false, dex_pc);
3476       break;
3477     }
3478 
3479     case Instruction::DIV_INT_LIT16:
3480     case Instruction::DIV_INT_LIT8: {
3481       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3482                          dex_pc, DataType::Type::kInt32, true, true);
3483       break;
3484     }
3485 
3486     case Instruction::REM_INT_LIT16:
3487     case Instruction::REM_INT_LIT8: {
3488       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
3489                          dex_pc, DataType::Type::kInt32, true, false);
3490       break;
3491     }
3492 
3493     case Instruction::SHL_INT_LIT8: {
3494       Binop_22b<HShl>(instruction, false, dex_pc);
3495       break;
3496     }
3497 
3498     case Instruction::SHR_INT_LIT8: {
3499       Binop_22b<HShr>(instruction, false, dex_pc);
3500       break;
3501     }
3502 
3503     case Instruction::USHR_INT_LIT8: {
3504       Binop_22b<HUShr>(instruction, false, dex_pc);
3505       break;
3506     }
3507 
3508     case Instruction::NEW_INSTANCE: {
3509       HNewInstance* new_instance =
3510           BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc);
3511       DCHECK(new_instance != nullptr);
3512 
3513       UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
3514       BuildConstructorFenceForAllocation(new_instance);
3515       break;
3516     }
3517 
3518     case Instruction::NEW_ARRAY: {
3519       dex::TypeIndex type_index(instruction.VRegC_22c());
3520       HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32);
3521       HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
3522 
3523       UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
3524       BuildConstructorFenceForAllocation(new_array);
3525       break;
3526     }
3527 
3528     case Instruction::FILLED_NEW_ARRAY: {
3529       dex::TypeIndex type_index(instruction.VRegB_35c());
3530       uint32_t args[5];
3531       uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
3532       VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
3533       HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
3534       BuildConstructorFenceForAllocation(new_array);
3535       break;
3536     }
3537 
3538     case Instruction::FILLED_NEW_ARRAY_RANGE: {
3539       dex::TypeIndex type_index(instruction.VRegB_3rc());
3540       RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
3541       HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
3542       BuildConstructorFenceForAllocation(new_array);
3543       break;
3544     }
3545 
3546     case Instruction::FILL_ARRAY_DATA: {
3547       BuildFillArrayData(instruction, dex_pc);
3548       break;
3549     }
3550 
3551     case Instruction::MOVE_RESULT:
3552     case Instruction::MOVE_RESULT_WIDE:
3553     case Instruction::MOVE_RESULT_OBJECT: {
3554       DCHECK(latest_result_ != nullptr);
3555       UpdateLocal(instruction.VRegA(), latest_result_);
3556       latest_result_ = nullptr;
3557       break;
3558     }
3559 
3560     case Instruction::CMP_LONG: {
3561       Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc);
3562       break;
3563     }
3564 
3565     case Instruction::CMPG_FLOAT: {
3566       Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc);
3567       break;
3568     }
3569 
3570     case Instruction::CMPG_DOUBLE: {
3571       Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc);
3572       break;
3573     }
3574 
3575     case Instruction::CMPL_FLOAT: {
3576       Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc);
3577       break;
3578     }
3579 
3580     case Instruction::CMPL_DOUBLE: {
3581       Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc);
3582       break;
3583     }
3584 
3585     case Instruction::NOP:
3586       break;
3587 
3588     case Instruction::IGET:
3589     case Instruction::IGET_WIDE:
3590     case Instruction::IGET_OBJECT:
3591     case Instruction::IGET_BOOLEAN:
3592     case Instruction::IGET_BYTE:
3593     case Instruction::IGET_CHAR:
3594     case Instruction::IGET_SHORT: {
3595       if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ false)) {
3596         return false;
3597       }
3598       break;
3599     }
3600 
3601     case Instruction::IPUT:
3602     case Instruction::IPUT_WIDE:
3603     case Instruction::IPUT_OBJECT:
3604     case Instruction::IPUT_BOOLEAN:
3605     case Instruction::IPUT_BYTE:
3606     case Instruction::IPUT_CHAR:
3607     case Instruction::IPUT_SHORT: {
3608       if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ true)) {
3609         return false;
3610       }
3611       break;
3612     }
3613 
3614     case Instruction::SGET:
3615     case Instruction::SGET_WIDE:
3616     case Instruction::SGET_OBJECT:
3617     case Instruction::SGET_BOOLEAN:
3618     case Instruction::SGET_BYTE:
3619     case Instruction::SGET_CHAR:
3620     case Instruction::SGET_SHORT: {
3621       BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ false);
3622       break;
3623     }
3624 
3625     case Instruction::SPUT:
3626     case Instruction::SPUT_WIDE:
3627     case Instruction::SPUT_OBJECT:
3628     case Instruction::SPUT_BOOLEAN:
3629     case Instruction::SPUT_BYTE:
3630     case Instruction::SPUT_CHAR:
3631     case Instruction::SPUT_SHORT: {
3632       BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ true);
3633       break;
3634     }
3635 
3636 #define ARRAY_XX(kind, anticipated_type)                                          \
3637     case Instruction::AGET##kind: {                                               \
3638       BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
3639       break;                                                                      \
3640     }                                                                             \
3641     case Instruction::APUT##kind: {                                               \
3642       BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
3643       break;                                                                      \
3644     }
3645 
3646     ARRAY_XX(, DataType::Type::kInt32);
3647     ARRAY_XX(_WIDE, DataType::Type::kInt64);
3648     ARRAY_XX(_OBJECT, DataType::Type::kReference);
3649     ARRAY_XX(_BOOLEAN, DataType::Type::kBool);
3650     ARRAY_XX(_BYTE, DataType::Type::kInt8);
3651     ARRAY_XX(_CHAR, DataType::Type::kUint16);
3652     ARRAY_XX(_SHORT, DataType::Type::kInt16);
3653 
3654     case Instruction::ARRAY_LENGTH: {
3655       HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc);
3656       AppendInstruction(new (allocator_) HArrayLength(object, dex_pc));
3657       UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
3658       break;
3659     }
3660 
3661     case Instruction::CONST_STRING: {
3662       dex::StringIndex string_index(instruction.VRegB_21c());
3663       BuildLoadString(string_index, dex_pc);
3664       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3665       break;
3666     }
3667 
3668     case Instruction::CONST_STRING_JUMBO: {
3669       dex::StringIndex string_index(instruction.VRegB_31c());
3670       BuildLoadString(string_index, dex_pc);
3671       UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
3672       break;
3673     }
3674 
3675     case Instruction::CONST_CLASS: {
3676       dex::TypeIndex type_index(instruction.VRegB_21c());
3677       BuildLoadClass(type_index, dex_pc);
3678       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3679       break;
3680     }
3681 
3682     case Instruction::CONST_METHOD_HANDLE: {
3683       uint16_t method_handle_idx = instruction.VRegB_21c();
3684       BuildLoadMethodHandle(method_handle_idx, dex_pc);
3685       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3686       break;
3687     }
3688 
3689     case Instruction::CONST_METHOD_TYPE: {
3690       dex::ProtoIndex proto_idx(instruction.VRegB_21c());
3691       BuildLoadMethodType(proto_idx, dex_pc);
3692       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3693       break;
3694     }
3695 
3696     case Instruction::MOVE_EXCEPTION: {
3697       AppendInstruction(new (allocator_) HLoadException(dex_pc));
3698       UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
3699       AppendInstruction(new (allocator_) HClearException(dex_pc));
3700       break;
3701     }
3702 
3703     case Instruction::THROW: {
3704       HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference);
3705       AppendInstruction(new (allocator_) HThrow(exception, dex_pc));
3706       // We finished building this block. Set the current block to null to avoid
3707       // adding dead instructions to it.
3708       current_block_ = nullptr;
3709       break;
3710     }
3711 
3712     case Instruction::INSTANCE_OF: {
3713       uint8_t destination = instruction.VRegA_22c();
3714       uint8_t reference = instruction.VRegB_22c();
3715       dex::TypeIndex type_index(instruction.VRegC_22c());
3716       BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
3717       break;
3718     }
3719 
3720     case Instruction::CHECK_CAST: {
3721       uint8_t reference = instruction.VRegA_21c();
3722       dex::TypeIndex type_index(instruction.VRegB_21c());
3723       BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
3724       break;
3725     }
3726 
3727     case Instruction::MONITOR_ENTER: {
3728       AppendInstruction(new (allocator_) HMonitorOperation(
3729           LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
3730           HMonitorOperation::OperationKind::kEnter,
3731           dex_pc));
3732       graph_->SetHasMonitorOperations(true);
3733       break;
3734     }
3735 
3736     case Instruction::MONITOR_EXIT: {
3737       AppendInstruction(new (allocator_) HMonitorOperation(
3738           LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
3739           HMonitorOperation::OperationKind::kExit,
3740           dex_pc));
3741       graph_->SetHasMonitorOperations(true);
3742       break;
3743     }
3744 
3745     case Instruction::SPARSE_SWITCH:
3746     case Instruction::PACKED_SWITCH: {
3747       BuildSwitch(instruction, dex_pc);
3748       break;
3749     }
3750 
3751     case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
3752     case Instruction::UNUSED_73:
3753     case Instruction::UNUSED_79:
3754     case Instruction::UNUSED_7A:
3755     case Instruction::UNUSED_E3 ... Instruction::UNUSED_F9: {
3756       VLOG(compiler) << "Did not compile "
3757                      << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
3758                      << " because of unhandled instruction "
3759                      << instruction.Name();
3760       MaybeRecordStat(compilation_stats_,
3761                       MethodCompilationStat::kNotCompiledUnhandledInstruction);
3762       return false;
3763     }
3764   }
3765   return true;
3766 }  // NOLINT(readability/fn_size)
3767 
LookupResolvedType(dex::TypeIndex type_index,const DexCompilationUnit & compilation_unit) const3768 ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType(
3769     dex::TypeIndex type_index,
3770     const DexCompilationUnit& compilation_unit) const {
3771   return compilation_unit.GetClassLinker()->LookupResolvedType(
3772         type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
3773 }
3774 
LookupReferrerClass() const3775 ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const {
3776   // TODO: Cache the result in a Handle<mirror::Class>.
3777   const dex::MethodId& method_id =
3778       dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
3779   return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_);
3780 }
3781 
3782 }  // namespace art
3783