1# 2# Copyright (C) 2019 The Android Open Source Project 3# 4# Licensed under the Apache License, Version 2.0 (the "License"); 5# you may not use this file except in compliance with the License. 6# You may obtain a copy of the License at 7# 8# http://www.apache.org/licenses/LICENSE-2.0 9# 10# Unless required by applicable law or agreed to in writing, software 11# distributed under the License is distributed on an "AS IS" BASIS, 12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13# See the License for the specific language governing permissions and 14# limitations under the License. 15# 16 17inp = Input("input", "TENSOR_QUANT8_ASYMM_SIGNED", "{3, 2, 3, 1}, 2.0, 0") 18inp_data = [ 19 -127, -127, -127, -126, -126, -126, -125, -125, -125, -124, -124, -124, 20 -123, -123, -123, -122, -122, -122 21] 22begin = Input("begin", "TENSOR_INT32", "{4}") 23begin_data = [1, 0, 0, 0] 24size = Input("size", "TENSOR_INT32", "{4}") 25size_data = [2, 1, 3, 1] 26output = Output("output", "TENSOR_QUANT8_ASYMM_SIGNED", "{2, 1, 3, 1}, 2.0, 0") 27output_data = [-125, -125, -125, -123, -123, -123] 28 29model = Model().Operation("SLICE", inp, begin, size).To(output) 30Example( 31 { 32 inp: inp_data, 33 begin: begin_data, 34 size: size_data, 35 output: output_data, 36 }, 37 model=model) 38 39# zero-sized input 40 41# Use BOX_WITH_NMS_LIMIT op to generate a zero-sized internal tensor for box cooridnates. 42p1 = Parameter("scores", "TENSOR_FLOAT32", "{1, 2}", [0.90, 0.10]) # scores 43p2 = Parameter("roi", "TENSOR_FLOAT32", "{1, 8}", 44 [1, 1, 10, 10, 0, 0, 10, 10]) # roi 45o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 46o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out 47tmp1 = Internal("roiOut", "TENSOR_FLOAT32", "{0, 4}") # roi out 48tmp2 = Internal("batchSplitOut", "TENSOR_INT32", "{0}") # batch split out 49model = Model("zero_sized").Operation("BOX_WITH_NMS_LIMIT", p1, p2, [0], 0.3, 50 -1, 0, 0.4, 1.0, 51 0.3).To(o1, tmp1, o2, tmp2) 52 53# Use ROI_ALIGN op to convert into zero-sized feature map. 54layout = BoolScalar("layout", False) # NHWC 55i1 = Input("in", "TENSOR_FLOAT32", "{1, 1, 1, 1}") 56zero_sized = Internal("featureMap", "TENSOR_FLOAT32", "{0, 2, 2, 1}") 57model = model.Operation("ROI_ALIGN", i1, tmp1, tmp2, 2, 2, 2.0, 2.0, 4, 4, 58 layout).To(zero_sized) 59 60# SLICE op with numBatches = 0. 61o3 = Output("out", "TENSOR_FLOAT32", "{0, 1, 1, 1}") # out 62model = model.Operation("SLICE", zero_sized, [0, 1, 1, 0], 63 [-1, 1, -1, 1]).To(o3) 64 65quant8_signed = DataTypeConverter().Identify({ 66 p1: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.1, 0), 67 p2: ("TENSOR_QUANT16_ASYMM", 0.125, 0), 68 o1: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.1, 0), 69 tmp1: ("TENSOR_QUANT16_ASYMM", 0.125, 0), 70 i1: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.1, 0), 71 zero_sized: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.1, 0), 72 o3: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.1, 0) 73}) 74 75Example({ 76 i1: [1], 77 o1: [], 78 o2: [], 79 o3: [], 80}).AddVariations(quant8_signed, includeDefault=False) 81