1 /*
2  * Copyright 2011 Daniel Drown
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  *
16  * translate.c - CLAT functions / partial implementation of rfc6145
17  */
18 #include "translate.h"
19 
20 #include <string.h>
21 
22 #include "checksum.h"
23 #include "clatd.h"
24 #include "common.h"
25 #include "config.h"
26 #include "debug.h"
27 #include "icmp.h"
28 #include "logging.h"
29 
30 /* function: packet_checksum
31  * calculates the checksum over all the packet components starting from pos
32  * checksum - checksum of packet components before pos
33  * packet   - packet to calculate the checksum of
34  * pos      - position to start counting from
35  * returns  - the completed 16-bit checksum, ready to write into a checksum header field
36  */
packet_checksum(uint32_t checksum,clat_packet packet,clat_packet_index pos)37 uint16_t packet_checksum(uint32_t checksum, clat_packet packet, clat_packet_index pos) {
38   int i;
39   for (i = pos; i < CLAT_POS_MAX; i++) {
40     if (packet[i].iov_len > 0) {
41       checksum = ip_checksum_add(checksum, packet[i].iov_base, packet[i].iov_len);
42     }
43   }
44   return ip_checksum_finish(checksum);
45 }
46 
47 /* function: packet_length
48  * returns the total length of all the packet components after pos
49  * packet - packet to calculate the length of
50  * pos    - position to start counting after
51  * returns: the total length of the packet components after pos
52  */
packet_length(clat_packet packet,clat_packet_index pos)53 uint16_t packet_length(clat_packet packet, clat_packet_index pos) {
54   size_t len = 0;
55   int i;
56   for (i = pos + 1; i < CLAT_POS_MAX; i++) {
57     len += packet[i].iov_len;
58   }
59   return len;
60 }
61 
62 /* function: is_in_plat_subnet
63  * returns true iff the given IPv6 address is in the plat subnet.
64  * addr - IPv6 address
65  */
is_in_plat_subnet(const struct in6_addr * addr6)66 int is_in_plat_subnet(const struct in6_addr *addr6) {
67   // Assumes a /96 plat subnet.
68   return (addr6 != NULL) && (memcmp(addr6, &Global_Clatd_Config.plat_subnet, 12) == 0);
69 }
70 
71 /* function: ipv6_addr_to_ipv4_addr
72  * return the corresponding ipv4 address for the given ipv6 address
73  * addr6 - ipv6 address
74  * returns: the IPv4 address
75  */
ipv6_addr_to_ipv4_addr(const struct in6_addr * addr6)76 uint32_t ipv6_addr_to_ipv4_addr(const struct in6_addr *addr6) {
77   if (is_in_plat_subnet(addr6)) {
78     // Assumes a /96 plat subnet.
79     return addr6->s6_addr32[3];
80   } else if (IN6_ARE_ADDR_EQUAL(addr6, &Global_Clatd_Config.ipv6_local_subnet)) {
81     // Special-case our own address.
82     return Global_Clatd_Config.ipv4_local_subnet.s_addr;
83   } else {
84     // Third party packet. Let the caller deal with it.
85     return INADDR_NONE;
86   }
87 }
88 
89 /* function: ipv4_addr_to_ipv6_addr
90  * return the corresponding ipv6 address for the given ipv4 address
91  * addr4 - ipv4 address
92  */
ipv4_addr_to_ipv6_addr(uint32_t addr4)93 struct in6_addr ipv4_addr_to_ipv6_addr(uint32_t addr4) {
94   struct in6_addr addr6;
95   // Both addresses are in network byte order (addr4 comes from a network packet, and the config
96   // file entry is read using inet_ntop).
97   if (addr4 == Global_Clatd_Config.ipv4_local_subnet.s_addr) {
98     return Global_Clatd_Config.ipv6_local_subnet;
99   } else {
100     // Assumes a /96 plat subnet.
101     addr6              = Global_Clatd_Config.plat_subnet;
102     addr6.s6_addr32[3] = addr4;
103     return addr6;
104   }
105 }
106 
107 /* function: fill_tun_header
108  * fill in the header for the tun fd
109  * tun_header - tunnel header, already allocated
110  * proto      - ethernet protocol id: ETH_P_IP(ipv4) or ETH_P_IPV6(ipv6)
111  */
fill_tun_header(struct tun_pi * tun_header,uint16_t proto)112 void fill_tun_header(struct tun_pi *tun_header, uint16_t proto) {
113   tun_header->flags = 0;
114   tun_header->proto = htons(proto);
115 }
116 
117 /* function: fill_ip_header
118  * generate an ipv4 header from an ipv6 header
119  * ip_targ     - (ipv4) target packet header, source: original ipv4 addr, dest: local subnet addr
120  * payload_len - length of other data inside packet
121  * protocol    - protocol number (tcp, udp, etc)
122  * old_header  - (ipv6) source packet header, source: nat64 prefix, dest: local subnet prefix
123  */
fill_ip_header(struct iphdr * ip,uint16_t payload_len,uint8_t protocol,const struct ip6_hdr * old_header)124 void fill_ip_header(struct iphdr *ip, uint16_t payload_len, uint8_t protocol,
125                     const struct ip6_hdr *old_header) {
126   int ttl_guess;
127   memset(ip, 0, sizeof(struct iphdr));
128 
129   ip->ihl      = 5;
130   ip->version  = 4;
131   ip->tos      = 0;
132   ip->tot_len  = htons(sizeof(struct iphdr) + payload_len);
133   ip->id       = 0;
134   ip->frag_off = htons(IP_DF);
135   ip->ttl      = old_header->ip6_hlim;
136   ip->protocol = protocol;
137   ip->check    = 0;
138 
139   ip->saddr = ipv6_addr_to_ipv4_addr(&old_header->ip6_src);
140   ip->daddr = ipv6_addr_to_ipv4_addr(&old_header->ip6_dst);
141 
142   // Third-party ICMPv6 message. This may have been originated by an native IPv6 address.
143   // In that case, the source IPv6 address can't be translated and we need to make up an IPv4
144   // source address. For now, use 255.0.0.<ttl>, which at least looks useful in traceroute.
145   if ((uint32_t)ip->saddr == INADDR_NONE) {
146     ttl_guess = icmp_guess_ttl(old_header->ip6_hlim);
147     ip->saddr = htonl((0xff << 24) + ttl_guess);
148   }
149 }
150 
151 /* function: fill_ip6_header
152  * generate an ipv6 header from an ipv4 header
153  * ip6         - (ipv6) target packet header, source: local subnet prefix, dest: nat64 prefix
154  * payload_len - length of other data inside packet
155  * protocol    - protocol number (tcp, udp, etc)
156  * old_header  - (ipv4) source packet header, source: local subnet addr, dest: internet's ipv4 addr
157  */
fill_ip6_header(struct ip6_hdr * ip6,uint16_t payload_len,uint8_t protocol,const struct iphdr * old_header)158 void fill_ip6_header(struct ip6_hdr *ip6, uint16_t payload_len, uint8_t protocol,
159                      const struct iphdr *old_header) {
160   memset(ip6, 0, sizeof(struct ip6_hdr));
161 
162   ip6->ip6_vfc  = 6 << 4;
163   ip6->ip6_plen = htons(payload_len);
164   ip6->ip6_nxt  = protocol;
165   ip6->ip6_hlim = old_header->ttl;
166 
167   ip6->ip6_src = ipv4_addr_to_ipv6_addr(old_header->saddr);
168   ip6->ip6_dst = ipv4_addr_to_ipv6_addr(old_header->daddr);
169 }
170 
171 /* function: maybe_fill_frag_header
172  * fills a fragmentation header
173  * generate an ipv6 fragment header from an ipv4 header
174  * frag_hdr    - target (ipv6) fragmentation header
175  * ip6_targ    - target (ipv6) header
176  * old_header  - (ipv4) source packet header
177  * returns: the length of the fragmentation header if present, or zero if not present
178  */
maybe_fill_frag_header(struct ip6_frag * frag_hdr,struct ip6_hdr * ip6_targ,const struct iphdr * old_header)179 size_t maybe_fill_frag_header(struct ip6_frag *frag_hdr, struct ip6_hdr *ip6_targ,
180                               const struct iphdr *old_header) {
181   uint16_t frag_flags = ntohs(old_header->frag_off);
182   uint16_t frag_off   = frag_flags & IP_OFFMASK;
183   if (frag_off == 0 && (frag_flags & IP_MF) == 0) {
184     // Not a fragment.
185     return 0;
186   }
187 
188   frag_hdr->ip6f_nxt      = ip6_targ->ip6_nxt;
189   frag_hdr->ip6f_reserved = 0;
190   // In IPv4, the offset is the bottom 13 bits; in IPv6 it's the top 13 bits.
191   frag_hdr->ip6f_offlg = htons(frag_off << 3);
192   if (frag_flags & IP_MF) {
193     frag_hdr->ip6f_offlg |= IP6F_MORE_FRAG;
194   }
195   frag_hdr->ip6f_ident = htonl(ntohs(old_header->id));
196   ip6_targ->ip6_nxt    = IPPROTO_FRAGMENT;
197 
198   return sizeof(*frag_hdr);
199 }
200 
201 /* function: parse_frag_header
202  * return the length of the fragmentation header if present, or zero if not present
203  * generate an ipv6 fragment header from an ipv4 header
204  * frag_hdr    - (ipv6) fragmentation header
205  * ip_targ     - target (ipv4) header
206  * returns: the next header value
207  */
parse_frag_header(const struct ip6_frag * frag_hdr,struct iphdr * ip_targ)208 uint8_t parse_frag_header(const struct ip6_frag *frag_hdr, struct iphdr *ip_targ) {
209   uint16_t frag_off = (ntohs(frag_hdr->ip6f_offlg & IP6F_OFF_MASK) >> 3);
210   if (frag_hdr->ip6f_offlg & IP6F_MORE_FRAG) {
211     frag_off |= IP_MF;
212   }
213   ip_targ->frag_off = htons(frag_off);
214   ip_targ->id       = htons(ntohl(frag_hdr->ip6f_ident) & 0xffff);
215   ip_targ->protocol = frag_hdr->ip6f_nxt;
216   return frag_hdr->ip6f_nxt;
217 }
218 
219 /* function: icmp_to_icmp6
220  * translate ipv4 icmp to ipv6 icmp
221  * out          - output packet
222  * icmp         - source packet icmp header
223  * checksum     - pseudo-header checksum
224  * payload      - icmp payload
225  * payload_size - size of payload
226  * returns: the highest position in the output clat_packet that's filled in
227  */
icmp_to_icmp6(clat_packet out,clat_packet_index pos,const struct icmphdr * icmp,uint32_t checksum,const uint8_t * payload,size_t payload_size)228 int icmp_to_icmp6(clat_packet out, clat_packet_index pos, const struct icmphdr *icmp,
229                   uint32_t checksum, const uint8_t *payload, size_t payload_size) {
230   struct icmp6_hdr *icmp6_targ = out[pos].iov_base;
231   uint8_t icmp6_type;
232   int clat_packet_len;
233 
234   memset(icmp6_targ, 0, sizeof(struct icmp6_hdr));
235 
236   icmp6_type             = icmp_to_icmp6_type(icmp->type, icmp->code);
237   icmp6_targ->icmp6_type = icmp6_type;
238   icmp6_targ->icmp6_code = icmp_to_icmp6_code(icmp->type, icmp->code);
239 
240   out[pos].iov_len = sizeof(struct icmp6_hdr);
241 
242   if (pos == CLAT_POS_TRANSPORTHDR && is_icmp_error(icmp->type) && icmp6_type != ICMP6_PARAM_PROB) {
243     // An ICMP error we understand, one level deep.
244     // Translate the nested packet (the one that caused the error).
245     clat_packet_len = ipv4_packet(out, pos + 1, payload, payload_size);
246 
247     // The pseudo-header checksum was calculated on the transport length of the original IPv4
248     // packet that we were asked to translate. This transport length is 20 bytes smaller than it
249     // needs to be, because the ICMP error contains an IPv4 header, which we will be translating to
250     // an IPv6 header, which is 20 bytes longer. Fix it up here.
251     // We only need to do this for ICMP->ICMPv6, not ICMPv6->ICMP, because ICMP does not use the
252     // pseudo-header when calculating its checksum (as the IPv4 header has its own checksum).
253     checksum = checksum + htons(20);
254   } else if (icmp6_type == ICMP6_ECHO_REQUEST || icmp6_type == ICMP6_ECHO_REPLY) {
255     // Ping packet.
256     icmp6_targ->icmp6_id           = icmp->un.echo.id;
257     icmp6_targ->icmp6_seq          = icmp->un.echo.sequence;
258     out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *)payload;
259     out[CLAT_POS_PAYLOAD].iov_len  = payload_size;
260     clat_packet_len                = CLAT_POS_PAYLOAD + 1;
261   } else {
262     // Unknown type/code. The type/code conversion functions have already logged an error.
263     return 0;
264   }
265 
266   icmp6_targ->icmp6_cksum = 0;  // Checksum field must be 0 when calculating checksum.
267   icmp6_targ->icmp6_cksum = packet_checksum(checksum, out, pos);
268 
269   return clat_packet_len;
270 }
271 
272 /* function: icmp6_to_icmp
273  * translate ipv6 icmp to ipv4 icmp
274  * out          - output packet
275  * icmp6        - source packet icmp6 header
276  * payload      - icmp6 payload
277  * payload_size - size of payload
278  * returns: the highest position in the output clat_packet that's filled in
279  */
icmp6_to_icmp(clat_packet out,clat_packet_index pos,const struct icmp6_hdr * icmp6,const uint8_t * payload,size_t payload_size)280 int icmp6_to_icmp(clat_packet out, clat_packet_index pos, const struct icmp6_hdr *icmp6,
281                   const uint8_t *payload, size_t payload_size) {
282   struct icmphdr *icmp_targ = out[pos].iov_base;
283   uint8_t icmp_type;
284   int clat_packet_len;
285 
286   memset(icmp_targ, 0, sizeof(struct icmphdr));
287 
288   icmp_type       = icmp6_to_icmp_type(icmp6->icmp6_type, icmp6->icmp6_code);
289   icmp_targ->type = icmp_type;
290   icmp_targ->code = icmp6_to_icmp_code(icmp6->icmp6_type, icmp6->icmp6_code);
291 
292   out[pos].iov_len = sizeof(struct icmphdr);
293 
294   if (pos == CLAT_POS_TRANSPORTHDR && is_icmp6_error(icmp6->icmp6_type) &&
295       icmp_type != ICMP_PARAMETERPROB) {
296     // An ICMPv6 error we understand, one level deep.
297     // Translate the nested packet (the one that caused the error).
298     clat_packet_len = ipv6_packet(out, pos + 1, payload, payload_size);
299   } else if (icmp_type == ICMP_ECHO || icmp_type == ICMP_ECHOREPLY) {
300     // Ping packet.
301     icmp_targ->un.echo.id          = icmp6->icmp6_id;
302     icmp_targ->un.echo.sequence    = icmp6->icmp6_seq;
303     out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *)payload;
304     out[CLAT_POS_PAYLOAD].iov_len  = payload_size;
305     clat_packet_len                = CLAT_POS_PAYLOAD + 1;
306   } else {
307     // Unknown type/code. The type/code conversion functions have already logged an error.
308     return 0;
309   }
310 
311   icmp_targ->checksum = 0;  // Checksum field must be 0 when calculating checksum.
312   icmp_targ->checksum = packet_checksum(0, out, pos);
313 
314   return clat_packet_len;
315 }
316 
317 /* function: generic_packet
318  * takes a generic IP packet and sets it up for translation
319  * out      - output packet
320  * pos      - position in the output packet of the transport header
321  * payload  - pointer to IP payload
322  * len      - size of ip payload
323  * returns: the highest position in the output clat_packet that's filled in
324  */
generic_packet(clat_packet out,clat_packet_index pos,const uint8_t * payload,size_t len)325 int generic_packet(clat_packet out, clat_packet_index pos, const uint8_t *payload, size_t len) {
326   out[pos].iov_len               = 0;
327   out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *)payload;
328   out[CLAT_POS_PAYLOAD].iov_len  = len;
329 
330   return CLAT_POS_PAYLOAD + 1;
331 }
332 
333 /* function: udp_packet
334  * takes a udp packet and sets it up for translation
335  * out      - output packet
336  * udp      - pointer to udp header in packet
337  * old_sum  - pseudo-header checksum of old header
338  * new_sum  - pseudo-header checksum of new header
339  * len      - size of ip payload
340  */
udp_packet(clat_packet out,clat_packet_index pos,const struct udphdr * udp,uint32_t old_sum,uint32_t new_sum,size_t len)341 int udp_packet(clat_packet out, clat_packet_index pos, const struct udphdr *udp, uint32_t old_sum,
342                uint32_t new_sum, size_t len) {
343   const uint8_t *payload;
344   size_t payload_size;
345 
346   if (len < sizeof(struct udphdr)) {
347     logmsg_dbg(ANDROID_LOG_ERROR, "udp_packet/(too small)");
348     return 0;
349   }
350 
351   payload      = (const uint8_t *)(udp + 1);
352   payload_size = len - sizeof(struct udphdr);
353 
354   return udp_translate(out, pos, udp, old_sum, new_sum, payload, payload_size);
355 }
356 
357 /* function: tcp_packet
358  * takes a tcp packet and sets it up for translation
359  * out      - output packet
360  * tcp      - pointer to tcp header in packet
361  * checksum - pseudo-header checksum
362  * len      - size of ip payload
363  * returns: the highest position in the output clat_packet that's filled in
364  */
tcp_packet(clat_packet out,clat_packet_index pos,const struct tcphdr * tcp,uint32_t old_sum,uint32_t new_sum,size_t len)365 int tcp_packet(clat_packet out, clat_packet_index pos, const struct tcphdr *tcp, uint32_t old_sum,
366                uint32_t new_sum, size_t len) {
367   const uint8_t *payload;
368   size_t payload_size, header_size;
369 
370   if (len < sizeof(struct tcphdr)) {
371     logmsg_dbg(ANDROID_LOG_ERROR, "tcp_packet/(too small)");
372     return 0;
373   }
374 
375   if (tcp->doff < 5) {
376     logmsg_dbg(ANDROID_LOG_ERROR, "tcp_packet/tcp header length set to less than 5: %x", tcp->doff);
377     return 0;
378   }
379 
380   if ((size_t)tcp->doff * 4 > len) {
381     logmsg_dbg(ANDROID_LOG_ERROR, "tcp_packet/tcp header length set too large: %x", tcp->doff);
382     return 0;
383   }
384 
385   header_size  = tcp->doff * 4;
386   payload      = ((const uint8_t *)tcp) + header_size;
387   payload_size = len - header_size;
388 
389   return tcp_translate(out, pos, tcp, header_size, old_sum, new_sum, payload, payload_size);
390 }
391 
392 /* function: udp_translate
393  * common between ipv4/ipv6 - setup checksum and send udp packet
394  * out          - output packet
395  * udp          - udp header
396  * old_sum      - pseudo-header checksum of old header
397  * new_sum      - pseudo-header checksum of new header
398  * payload      - tcp payload
399  * payload_size - size of payload
400  * returns: the highest position in the output clat_packet that's filled in
401  */
udp_translate(clat_packet out,clat_packet_index pos,const struct udphdr * udp,uint32_t old_sum,uint32_t new_sum,const uint8_t * payload,size_t payload_size)402 int udp_translate(clat_packet out, clat_packet_index pos, const struct udphdr *udp,
403                   uint32_t old_sum, uint32_t new_sum, const uint8_t *payload, size_t payload_size) {
404   struct udphdr *udp_targ = out[pos].iov_base;
405 
406   memcpy(udp_targ, udp, sizeof(struct udphdr));
407 
408   out[pos].iov_len               = sizeof(struct udphdr);
409   out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *)payload;
410   out[CLAT_POS_PAYLOAD].iov_len  = payload_size;
411 
412   if (udp_targ->check) {
413     udp_targ->check = ip_checksum_adjust(udp->check, old_sum, new_sum);
414   } else {
415     // Zero checksums are special. RFC 768 says, "An all zero transmitted checksum value means that
416     // the transmitter generated no checksum (for debugging or for higher level protocols that
417     // don't care)." However, in IPv6 zero UDP checksums were only permitted by RFC 6935 (2013). So
418     // for safety we recompute it.
419     udp_targ->check = 0;  // Checksum field must be 0 when calculating checksum.
420     udp_targ->check = packet_checksum(new_sum, out, pos);
421   }
422 
423   // RFC 768: "If the computed checksum is zero, it is transmitted as all ones (the equivalent
424   // in one's complement arithmetic)."
425   if (!udp_targ->check) {
426     udp_targ->check = 0xffff;
427   }
428 
429   return CLAT_POS_PAYLOAD + 1;
430 }
431 
432 /* function: tcp_translate
433  * common between ipv4/ipv6 - setup checksum and send tcp packet
434  * out          - output packet
435  * tcp          - tcp header
436  * header_size  - size of tcp header including options
437  * checksum     - partial checksum covering ipv4/ipv6 header
438  * payload      - tcp payload
439  * payload_size - size of payload
440  * returns: the highest position in the output clat_packet that's filled in
441  */
tcp_translate(clat_packet out,clat_packet_index pos,const struct tcphdr * tcp,size_t header_size,uint32_t old_sum,uint32_t new_sum,const uint8_t * payload,size_t payload_size)442 int tcp_translate(clat_packet out, clat_packet_index pos, const struct tcphdr *tcp,
443                   size_t header_size, uint32_t old_sum, uint32_t new_sum, const uint8_t *payload,
444                   size_t payload_size) {
445   struct tcphdr *tcp_targ = out[pos].iov_base;
446   out[pos].iov_len        = header_size;
447 
448   if (header_size > MAX_TCP_HDR) {
449     // A TCP header cannot be more than MAX_TCP_HDR bytes long because it's a 4-bit field that
450     // counts in 4-byte words. So this can never happen unless there is a bug in the caller.
451     logmsg(ANDROID_LOG_ERROR, "tcp_translate: header too long %d > %d, truncating", header_size,
452            MAX_TCP_HDR);
453     header_size = MAX_TCP_HDR;
454   }
455 
456   memcpy(tcp_targ, tcp, header_size);
457 
458   out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *)payload;
459   out[CLAT_POS_PAYLOAD].iov_len  = payload_size;
460 
461   tcp_targ->check = ip_checksum_adjust(tcp->check, old_sum, new_sum);
462 
463   return CLAT_POS_PAYLOAD + 1;
464 }
465 
466 // Weak symbol so we can override it in the unit test.
467 void send_rawv6(int fd, clat_packet out, int iov_len) __attribute__((weak));
468 
send_rawv6(int fd,clat_packet out,int iov_len)469 void send_rawv6(int fd, clat_packet out, int iov_len) {
470   // A send on a raw socket requires a destination address to be specified even if the socket's
471   // protocol is IPPROTO_RAW. This is the address that will be used in routing lookups; the
472   // destination address in the packet header only affects what appears on the wire, not where the
473   // packet is sent to.
474   static struct sockaddr_in6 sin6 = { AF_INET6, 0, 0, { { { 0, 0, 0, 0 } } }, 0 };
475   static struct msghdr msg        = {
476     .msg_name    = &sin6,
477     .msg_namelen = sizeof(sin6),
478   };
479 
480   msg.msg_iov = out, msg.msg_iovlen = iov_len,
481   sin6.sin6_addr = ((struct ip6_hdr *)out[CLAT_POS_IPHDR].iov_base)->ip6_dst;
482   sendmsg(fd, &msg, 0);
483 }
484 
485 /* function: translate_packet
486  * takes a packet, translates it, and writes it to fd
487  * fd         - fd to write translated packet to
488  * to_ipv6    - true if translating to ipv6, false if translating to ipv4
489  * packet     - packet
490  * packetsize - size of packet
491  */
translate_packet(int fd,int to_ipv6,const uint8_t * packet,size_t packetsize)492 void translate_packet(int fd, int to_ipv6, const uint8_t *packet, size_t packetsize) {
493   int iov_len = 0;
494 
495   // Allocate buffers for all packet headers.
496   struct tun_pi tun_targ;
497   char iphdr[sizeof(struct ip6_hdr)];
498   char fraghdr[sizeof(struct ip6_frag)];
499   char transporthdr[MAX_TCP_HDR];
500   char icmp_iphdr[sizeof(struct ip6_hdr)];
501   char icmp_fraghdr[sizeof(struct ip6_frag)];
502   char icmp_transporthdr[MAX_TCP_HDR];
503 
504   // iovec of the packets we'll send. This gets passed down to the translation functions.
505   clat_packet out = {
506     { &tun_targ, 0 },          // Tunnel header.
507     { iphdr, 0 },              // IP header.
508     { fraghdr, 0 },            // Fragment header.
509     { transporthdr, 0 },       // Transport layer header.
510     { icmp_iphdr, 0 },         // ICMP error inner IP header.
511     { icmp_fraghdr, 0 },       // ICMP error fragmentation header.
512     { icmp_transporthdr, 0 },  // ICMP error transport layer header.
513     { NULL, 0 },               // Payload. No buffer, it's a pointer to the original payload.
514   };
515 
516   if (to_ipv6) {
517     iov_len = ipv4_packet(out, CLAT_POS_IPHDR, packet, packetsize);
518     if (iov_len > 0) {
519       send_rawv6(fd, out, iov_len);
520     }
521   } else {
522     iov_len = ipv6_packet(out, CLAT_POS_IPHDR, packet, packetsize);
523     if (iov_len > 0) {
524       fill_tun_header(&tun_targ, ETH_P_IP);
525       out[CLAT_POS_TUNHDR].iov_len = sizeof(tun_targ);
526       writev(fd, out, iov_len);
527     }
528   }
529 }
530