1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2019-2022 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17
18 /**
19 * @brief 4x32-bit vectors, implemented using Armv8-A NEON.
20 *
21 * This module implements 4-wide 32-bit float, int, and mask vectors for
22 * Armv8-A NEON.
23 *
24 * There is a baseline level of functionality provided by all vector widths and
25 * implementations. This is implemented using identical function signatures,
26 * modulo data type, so we can use them as substitutable implementations in VLA
27 * code.
28 *
29 * The 4-wide vectors are also used as a fixed-width type, and significantly
30 * extend the functionality above that available to VLA code.
31 */
32
33 #ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED
34 #define ASTC_VECMATHLIB_NEON_4_H_INCLUDED
35
36 #ifndef ASTCENC_SIMD_INLINE
37 #error "Include astcenc_vecmathlib.h, do not include directly"
38 #endif
39
40 #include <cstdio>
41
42 // ============================================================================
43 // vfloat4 data type
44 // ============================================================================
45
46 /**
47 * @brief Data type for 4-wide floats.
48 */
49 struct vfloat4
50 {
51 /**
52 * @brief Construct from zero-initialized value.
53 */
54 ASTCENC_SIMD_INLINE vfloat4() = default;
55
56 /**
57 * @brief Construct from 4 values loaded from an unaligned address.
58 *
59 * Consider using loada() which is better with vectors if data is aligned
60 * to vector length.
61 */
vfloat4vfloat462 ASTCENC_SIMD_INLINE explicit vfloat4(const float *p)
63 {
64 m = vld1q_f32(p);
65 }
66
67 /**
68 * @brief Construct from 1 scalar value replicated across all lanes.
69 *
70 * Consider using zero() for constexpr zeros.
71 */
vfloat4vfloat472 ASTCENC_SIMD_INLINE explicit vfloat4(float a)
73 {
74 m = vdupq_n_f32(a);
75 }
76
77 /**
78 * @brief Construct from 4 scalar values.
79 *
80 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
81 */
vfloat4vfloat482 ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d)
83 {
84 float v[4] { a, b, c, d };
85 m = vld1q_f32(v);
86 }
87
88 /**
89 * @brief Construct from an existing SIMD register.
90 */
vfloat4vfloat491 ASTCENC_SIMD_INLINE explicit vfloat4(float32x4_t a)
92 {
93 m = a;
94 }
95
96 /**
97 * @brief Get the scalar value of a single lane.
98 */
lanevfloat499 template <int l> ASTCENC_SIMD_INLINE float lane() const
100 {
101 return vgetq_lane_f32(m, l);
102 }
103
104 /**
105 * @brief Set the scalar value of a single lane.
106 */
set_lanevfloat4107 template <int l> ASTCENC_SIMD_INLINE void set_lane(float a)
108 {
109 m = vld1q_lane_f32(&a, m, l);
110 }
111
112 /**
113 * @brief Factory that returns a vector of zeros.
114 */
zerovfloat4115 static ASTCENC_SIMD_INLINE vfloat4 zero()
116 {
117 return vfloat4(vdupq_n_f32(0.0f));
118 }
119
120 /**
121 * @brief Factory that returns a replicated scalar loaded from memory.
122 */
load1vfloat4123 static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p)
124 {
125 return vfloat4(vdupq_n_f32(*p));
126 }
127
128 /**
129 * @brief Factory that returns a vector loaded from 16B aligned memory.
130 */
loadavfloat4131 static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p)
132 {
133 return vfloat4(vld1q_f32(p));
134 }
135
136 /**
137 * @brief Factory that returns a vector containing the lane IDs.
138 */
lane_idvfloat4139 static ASTCENC_SIMD_INLINE vfloat4 lane_id()
140 {
141 alignas(16) float data[4] { 0.0f, 1.0f, 2.0f, 3.0f };
142 return vfloat4(vld1q_f32(data));
143 }
144
145 /**
146 * @brief Return a swizzled float 2.
147 */
swzvfloat4148 template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const
149 {
150 return vfloat4(lane<l0>(), lane<l1>(), 0.0f, 0.0f);
151 }
152
153 /**
154 * @brief Return a swizzled float 3.
155 */
swzvfloat4156 template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const
157 {
158 return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), 0.0f);
159 }
160
161 /**
162 * @brief Return a swizzled float 4.
163 */
swzvfloat4164 template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const
165 {
166 return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), lane<l3>());
167 }
168
169 /**
170 * @brief The vector ...
171 */
172 float32x4_t m;
173 };
174
175 // ============================================================================
176 // vint4 data type
177 // ============================================================================
178
179 /**
180 * @brief Data type for 4-wide ints.
181 */
182 struct vint4
183 {
184 /**
185 * @brief Construct from zero-initialized value.
186 */
187 ASTCENC_SIMD_INLINE vint4() = default;
188
189 /**
190 * @brief Construct from 4 values loaded from an unaligned address.
191 *
192 * Consider using loada() which is better with vectors if data is aligned
193 * to vector length.
194 */
vint4vint4195 ASTCENC_SIMD_INLINE explicit vint4(const int *p)
196 {
197 m = vld1q_s32(p);
198 }
199
200 /**
201 * @brief Construct from 4 uint8_t loaded from an unaligned address.
202 */
vint4vint4203 ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p)
204 {
205 uint32x2_t t8 {};
206 // Cast is safe - NEON loads are allowed to be unaligned
207 t8 = vld1_lane_u32(reinterpret_cast<const uint32_t*>(p), t8, 0);
208 uint16x4_t t16 = vget_low_u16(vmovl_u8(vreinterpret_u8_u32(t8)));
209 m = vreinterpretq_s32_u32(vmovl_u16(t16));
210 }
211
212 /**
213 * @brief Construct from 1 scalar value replicated across all lanes.
214 *
215 * Consider using vfloat4::zero() for constexpr zeros.
216 */
vint4vint4217 ASTCENC_SIMD_INLINE explicit vint4(int a)
218 {
219 m = vdupq_n_s32(a);
220 }
221
222 /**
223 * @brief Construct from 4 scalar values.
224 *
225 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
226 */
vint4vint4227 ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d)
228 {
229 int v[4] { a, b, c, d };
230 m = vld1q_s32(v);
231 }
232
233 /**
234 * @brief Construct from an existing SIMD register.
235 */
vint4vint4236 ASTCENC_SIMD_INLINE explicit vint4(int32x4_t a)
237 {
238 m = a;
239 }
240
241 /**
242 * @brief Get the scalar from a single lane.
243 */
lanevint4244 template <int l> ASTCENC_SIMD_INLINE int lane() const
245 {
246 return vgetq_lane_s32(m, l);
247 }
248
249 /**
250 * @brief Set the scalar value of a single lane.
251 */
set_lanevint4252 template <int l> ASTCENC_SIMD_INLINE void set_lane(int a)
253 {
254 m = vld1q_lane_s32(&a, m, l);
255 }
256
257 /**
258 * @brief Factory that returns a vector of zeros.
259 */
zerovint4260 static ASTCENC_SIMD_INLINE vint4 zero()
261 {
262 return vint4(0);
263 }
264
265 /**
266 * @brief Factory that returns a replicated scalar loaded from memory.
267 */
load1vint4268 static ASTCENC_SIMD_INLINE vint4 load1(const int* p)
269 {
270 return vint4(*p);
271 }
272
273 /**
274 * @brief Factory that returns a vector loaded from 16B aligned memory.
275 */
loadavint4276 static ASTCENC_SIMD_INLINE vint4 loada(const int* p)
277 {
278 return vint4(p);
279 }
280
281 /**
282 * @brief Factory that returns a vector containing the lane IDs.
283 */
lane_idvint4284 static ASTCENC_SIMD_INLINE vint4 lane_id()
285 {
286 alignas(16) static const int data[4] { 0, 1, 2, 3 };
287 return vint4(vld1q_s32(data));
288 }
289
290 /**
291 * @brief The vector ...
292 */
293 int32x4_t m;
294 };
295
296 // ============================================================================
297 // vmask4 data type
298 // ============================================================================
299
300 /**
301 * @brief Data type for 4-wide control plane masks.
302 */
303 struct vmask4
304 {
305 /**
306 * @brief Construct from an existing SIMD register.
307 */
vmask4vmask4308 ASTCENC_SIMD_INLINE explicit vmask4(uint32x4_t a)
309 {
310 m = a;
311 }
312
313 #if !defined(_MSC_VER)
314 /**
315 * @brief Construct from an existing SIMD register.
316 */
vmask4vmask4317 ASTCENC_SIMD_INLINE explicit vmask4(int32x4_t a)
318 {
319 m = vreinterpretq_u32_s32(a);
320 }
321 #endif
322
323 /**
324 * @brief Construct from 1 scalar value.
325 */
vmask4vmask4326 ASTCENC_SIMD_INLINE explicit vmask4(bool a)
327 {
328 m = vreinterpretq_u32_s32(vdupq_n_s32(a == true ? -1 : 0));
329 }
330
331 /**
332 * @brief Construct from 4 scalar values.
333 *
334 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
335 */
vmask4vmask4336 ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d)
337 {
338 int v[4] {
339 a == true ? -1 : 0,
340 b == true ? -1 : 0,
341 c == true ? -1 : 0,
342 d == true ? -1 : 0
343 };
344
345 int32x4_t ms = vld1q_s32(v);
346 m = vreinterpretq_u32_s32(ms);
347 }
348
349 /**
350 * @brief Get the scalar from a single lane.
351 */
lanevmask4352 template <int32_t l> ASTCENC_SIMD_INLINE uint32_t lane() const
353 {
354 return vgetq_lane_u32(m, l);
355 }
356
357 /**
358 * @brief The vector ...
359 */
360 uint32x4_t m;
361 };
362
363 // ============================================================================
364 // vmask4 operators and functions
365 // ============================================================================
366
367 /**
368 * @brief Overload: mask union (or).
369 */
370 ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b)
371 {
372 return vmask4(vorrq_u32(a.m, b.m));
373 }
374
375 /**
376 * @brief Overload: mask intersect (and).
377 */
378 ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b)
379 {
380 return vmask4(vandq_u32(a.m, b.m));
381 }
382
383 /**
384 * @brief Overload: mask difference (xor).
385 */
386 ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b)
387 {
388 return vmask4(veorq_u32(a.m, b.m));
389 }
390
391 /**
392 * @brief Overload: mask invert (not).
393 */
394 ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a)
395 {
396 return vmask4(vmvnq_u32(a.m));
397 }
398
399 /**
400 * @brief Return a 4-bit mask code indicating mask status.
401 *
402 * bit0 = lane 0
403 */
mask(vmask4 a)404 ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a)
405 {
406 static const int shifta[4] { 0, 1, 2, 3 };
407 static const int32x4_t shift = vld1q_s32(shifta);
408
409 uint32x4_t tmp = vshrq_n_u32(a.m, 31);
410 return vaddvq_u32(vshlq_u32(tmp, shift));
411 }
412
413 // ============================================================================
414 // vint4 operators and functions
415 // ============================================================================
416
417 /**
418 * @brief Overload: vector by vector addition.
419 */
420 ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b)
421 {
422 return vint4(vaddq_s32(a.m, b.m));
423 }
424
425 /**
426 * @brief Overload: vector by vector subtraction.
427 */
428 ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b)
429 {
430 return vint4(vsubq_s32(a.m, b.m));
431 }
432
433 /**
434 * @brief Overload: vector by vector multiplication.
435 */
436 ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b)
437 {
438 return vint4(vmulq_s32(a.m, b.m));
439 }
440
441 /**
442 * @brief Overload: vector bit invert.
443 */
444 ASTCENC_SIMD_INLINE vint4 operator~(vint4 a)
445 {
446 return vint4(vmvnq_s32(a.m));
447 }
448
449 /**
450 * @brief Overload: vector by vector bitwise or.
451 */
452 ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b)
453 {
454 return vint4(vorrq_s32(a.m, b.m));
455 }
456
457 /**
458 * @brief Overload: vector by vector bitwise and.
459 */
460 ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b)
461 {
462 return vint4(vandq_s32(a.m, b.m));
463 }
464
465 /**
466 * @brief Overload: vector by vector bitwise xor.
467 */
468 ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b)
469 {
470 return vint4(veorq_s32(a.m, b.m));
471 }
472
473 /**
474 * @brief Overload: vector by vector equality.
475 */
476 ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b)
477 {
478 return vmask4(vceqq_s32(a.m, b.m));
479 }
480
481 /**
482 * @brief Overload: vector by vector inequality.
483 */
484 ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b)
485 {
486 return ~vmask4(vceqq_s32(a.m, b.m));
487 }
488
489 /**
490 * @brief Overload: vector by vector less than.
491 */
492 ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b)
493 {
494 return vmask4(vcltq_s32(a.m, b.m));
495 }
496
497 /**
498 * @brief Overload: vector by vector greater than.
499 */
500 ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b)
501 {
502 return vmask4(vcgtq_s32(a.m, b.m));
503 }
504
505 /**
506 * @brief Logical shift left.
507 */
lsl(vint4 a)508 template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a)
509 {
510 return vint4(vshlq_s32(a.m, vdupq_n_s32(s)));
511 }
512
513 /**
514 * @brief Logical shift right.
515 */
lsr(vint4 a)516 template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a)
517 {
518 uint32x4_t ua = vreinterpretq_u32_s32(a.m);
519 ua = vshlq_u32(ua, vdupq_n_s32(-s));
520 return vint4(vreinterpretq_s32_u32(ua));
521 }
522
523 /**
524 * @brief Arithmetic shift right.
525 */
asr(vint4 a)526 template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a)
527 {
528 return vint4(vshlq_s32(a.m, vdupq_n_s32(-s)));
529 }
530
531 /**
532 * @brief Return the min vector of two vectors.
533 */
min(vint4 a,vint4 b)534 ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b)
535 {
536 return vint4(vminq_s32(a.m, b.m));
537 }
538
539 /**
540 * @brief Return the max vector of two vectors.
541 */
max(vint4 a,vint4 b)542 ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b)
543 {
544 return vint4(vmaxq_s32(a.m, b.m));
545 }
546
547 /**
548 * @brief Return the horizontal minimum of a vector.
549 */
hmin(vint4 a)550 ASTCENC_SIMD_INLINE vint4 hmin(vint4 a)
551 {
552 return vint4(vminvq_s32(a.m));
553 }
554
555 /**
556 * @brief Return the horizontal maximum of a vector.
557 */
hmax(vint4 a)558 ASTCENC_SIMD_INLINE vint4 hmax(vint4 a)
559 {
560 return vint4(vmaxvq_s32(a.m));
561 }
562
563 /**
564 * @brief Return the horizontal sum of a vector.
565 */
hadd_s(vint4 a)566 ASTCENC_SIMD_INLINE int hadd_s(vint4 a)
567 {
568 int32x2_t t = vadd_s32(vget_high_s32(a.m), vget_low_s32(a.m));
569 return vget_lane_s32(vpadd_s32(t, t), 0);
570 }
571
572 /**
573 * @brief Store a vector to a 16B aligned memory address.
574 */
storea(vint4 a,int * p)575 ASTCENC_SIMD_INLINE void storea(vint4 a, int* p)
576 {
577 vst1q_s32(p, a.m);
578 }
579
580 /**
581 * @brief Store a vector to an unaligned memory address.
582 */
store(vint4 a,int * p)583 ASTCENC_SIMD_INLINE void store(vint4 a, int* p)
584 {
585 vst1q_s32(p, a.m);
586 }
587
588 /**
589 * @brief Store lowest N (vector width) bytes into an unaligned address.
590 */
store_nbytes(vint4 a,uint8_t * p)591 ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p)
592 {
593 vst1q_lane_s32(reinterpret_cast<int32_t*>(p), a.m, 0);
594 }
595
596 /**
597 * @brief Gather N (vector width) indices from the array.
598 */
gatheri(const int * base,vint4 indices)599 ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices)
600 {
601 alignas(16) int idx[4];
602 storea(indices, idx);
603 alignas(16) int vals[4];
604 vals[0] = base[idx[0]];
605 vals[1] = base[idx[1]];
606 vals[2] = base[idx[2]];
607 vals[3] = base[idx[3]];
608 return vint4(vals);
609 }
610
611 /**
612 * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
613 */
pack_low_bytes(vint4 a)614 ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a)
615 {
616 alignas(16) uint8_t shuf[16] {
617 0, 4, 8, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
618 };
619 uint8x16_t idx = vld1q_u8(shuf);
620 int8x16_t av = vreinterpretq_s8_s32(a.m);
621 return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(av, idx)));
622 }
623
624 /**
625 * @brief Return lanes from @c b if @c cond is set, else @c a.
626 */
select(vint4 a,vint4 b,vmask4 cond)627 ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond)
628 {
629 return vint4(vbslq_s32(cond.m, b.m, a.m));
630 }
631
632 // ============================================================================
633 // vfloat4 operators and functions
634 // ============================================================================
635
636 /**
637 * @brief Overload: vector by vector addition.
638 */
639 ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b)
640 {
641 return vfloat4(vaddq_f32(a.m, b.m));
642 }
643
644 /**
645 * @brief Overload: vector by vector subtraction.
646 */
647 ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b)
648 {
649 return vfloat4(vsubq_f32(a.m, b.m));
650 }
651
652 /**
653 * @brief Overload: vector by vector multiplication.
654 */
655 ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b)
656 {
657 return vfloat4(vmulq_f32(a.m, b.m));
658 }
659
660 /**
661 * @brief Overload: vector by vector division.
662 */
663 ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b)
664 {
665 return vfloat4(vdivq_f32(a.m, b.m));
666 }
667
668 /**
669 * @brief Overload: vector by vector equality.
670 */
671 ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b)
672 {
673 return vmask4(vceqq_f32(a.m, b.m));
674 }
675
676 /**
677 * @brief Overload: vector by vector inequality.
678 */
679 ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b)
680 {
681 return vmask4(vmvnq_u32(vceqq_f32(a.m, b.m)));
682 }
683
684 /**
685 * @brief Overload: vector by vector less than.
686 */
687 ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b)
688 {
689 return vmask4(vcltq_f32(a.m, b.m));
690 }
691
692 /**
693 * @brief Overload: vector by vector greater than.
694 */
695 ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b)
696 {
697 return vmask4(vcgtq_f32(a.m, b.m));
698 }
699
700 /**
701 * @brief Overload: vector by vector less than or equal.
702 */
703 ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b)
704 {
705 return vmask4(vcleq_f32(a.m, b.m));
706 }
707
708 /**
709 * @brief Overload: vector by vector greater than or equal.
710 */
711 ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b)
712 {
713 return vmask4(vcgeq_f32(a.m, b.m));
714 }
715
716 /**
717 * @brief Return the min vector of two vectors.
718 *
719 * If either lane value is NaN, @c b will be returned for that lane.
720 */
min(vfloat4 a,vfloat4 b)721 ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b)
722 {
723 // Do not reorder - second operand will return if either is NaN
724 return vfloat4(vminnmq_f32(a.m, b.m));
725 }
726
727 /**
728 * @brief Return the max vector of two vectors.
729 *
730 * If either lane value is NaN, @c b will be returned for that lane.
731 */
max(vfloat4 a,vfloat4 b)732 ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b)
733 {
734 // Do not reorder - second operand will return if either is NaN
735 return vfloat4(vmaxnmq_f32(a.m, b.m));
736 }
737
738 /**
739 * @brief Return the absolute value of the float vector.
740 */
abs(vfloat4 a)741 ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a)
742 {
743 float32x4_t zero = vdupq_n_f32(0.0f);
744 float32x4_t inv = vsubq_f32(zero, a.m);
745 return vfloat4(vmaxq_f32(a.m, inv));
746 }
747
748 /**
749 * @brief Return a float rounded to the nearest integer value.
750 */
round(vfloat4 a)751 ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a)
752 {
753 return vfloat4(vrndnq_f32(a.m));
754 }
755
756 /**
757 * @brief Return the horizontal minimum of a vector.
758 */
hmin(vfloat4 a)759 ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a)
760 {
761 return vfloat4(vminvq_f32(a.m));
762 }
763
764 /**
765 * @brief Return the horizontal maximum of a vector.
766 */
hmax(vfloat4 a)767 ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a)
768 {
769 return vfloat4(vmaxvq_f32(a.m));
770 }
771
772 /**
773 * @brief Return the horizontal sum of a vector.
774 */
hadd_s(vfloat4 a)775 ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a)
776 {
777 // Perform halving add to ensure invariance; we cannot use vaddqv as this
778 // does (0 + 1 + 2 + 3) which is not invariant with x86 (0 + 2) + (1 + 3).
779 float32x2_t t = vadd_f32(vget_high_f32(a.m), vget_low_f32(a.m));
780 return vget_lane_f32(vpadd_f32(t, t), 0);
781 }
782
783 /**
784 * @brief Return the sqrt of the lanes in the vector.
785 */
sqrt(vfloat4 a)786 ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a)
787 {
788 return vfloat4(vsqrtq_f32(a.m));
789 }
790
791 /**
792 * @brief Return lanes from @c b if @c cond is set, else @c a.
793 */
select(vfloat4 a,vfloat4 b,vmask4 cond)794 ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond)
795 {
796 return vfloat4(vbslq_f32(cond.m, b.m, a.m));
797 }
798
799 /**
800 * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
801 */
select_msb(vfloat4 a,vfloat4 b,vmask4 cond)802 ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond)
803 {
804 static const uint32x4_t msb = vdupq_n_u32(0x80000000u);
805 uint32x4_t mask = vcgeq_u32(cond.m, msb);
806 return vfloat4(vbslq_f32(mask, b.m, a.m));
807 }
808
809 /**
810 * @brief Load a vector of gathered results from an array;
811 */
gatherf(const float * base,vint4 indices)812 ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices)
813 {
814 alignas(16) int idx[4];
815 storea(indices, idx);
816 alignas(16) float vals[4];
817 vals[0] = base[idx[0]];
818 vals[1] = base[idx[1]];
819 vals[2] = base[idx[2]];
820 vals[3] = base[idx[3]];
821 return vfloat4(vals);
822 }
823
824 /**
825 * @brief Store a vector to an unaligned memory address.
826 */
store(vfloat4 a,float * p)827 ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p)
828 {
829 vst1q_f32(p, a.m);
830 }
831
832 /**
833 * @brief Store a vector to a 16B aligned memory address.
834 */
storea(vfloat4 a,float * p)835 ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p)
836 {
837 vst1q_f32(p, a.m);
838 }
839
840 /**
841 * @brief Return a integer value for a float vector, using truncation.
842 */
float_to_int(vfloat4 a)843 ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a)
844 {
845 return vint4(vcvtq_s32_f32(a.m));
846 }
847
848 /**
849 * @brief Return a integer value for a float vector, using round-to-nearest.
850 */
float_to_int_rtn(vfloat4 a)851 ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a)
852 {
853 a = round(a);
854 return vint4(vcvtq_s32_f32(a.m));
855 }
856
857 /**
858 * @brief Return a float value for an integer vector.
859 */
int_to_float(vint4 a)860 ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a)
861 {
862 return vfloat4(vcvtq_f32_s32(a.m));
863 }
864
865 /**
866 * @brief Return a float16 value for a float vector, using round-to-nearest.
867 */
float_to_float16(vfloat4 a)868 ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a)
869 {
870 // Generate float16 value
871 float16x4_t f16 = vcvt_f16_f32(a.m);
872
873 // Convert each 16-bit float pattern to a 32-bit pattern
874 uint16x4_t u16 = vreinterpret_u16_f16(f16);
875 uint32x4_t u32 = vmovl_u16(u16);
876 return vint4(vreinterpretq_s32_u32(u32));
877 }
878
879 /**
880 * @brief Return a float16 value for a float scalar, using round-to-nearest.
881 */
float_to_float16(float a)882 static inline uint16_t float_to_float16(float a)
883 {
884 vfloat4 av(a);
885 return static_cast<uint16_t>(float_to_float16(av).lane<0>());
886 }
887
888 /**
889 * @brief Return a float value for a float16 vector.
890 */
float16_to_float(vint4 a)891 ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a)
892 {
893 // Convert each 32-bit float pattern to a 16-bit pattern
894 uint32x4_t u32 = vreinterpretq_u32_s32(a.m);
895 uint16x4_t u16 = vmovn_u32(u32);
896 float16x4_t f16 = vreinterpret_f16_u16(u16);
897
898 // Generate float16 value
899 return vfloat4(vcvt_f32_f16(f16));
900 }
901
902 /**
903 * @brief Return a float value for a float16 scalar.
904 */
float16_to_float(uint16_t a)905 ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a)
906 {
907 vint4 av(a);
908 return float16_to_float(av).lane<0>();
909 }
910
911 /**
912 * @brief Return a float value as an integer bit pattern (i.e. no conversion).
913 *
914 * It is a common trick to convert floats into integer bit patterns, perform
915 * some bit hackery based on knowledge they are IEEE 754 layout, and then
916 * convert them back again. This is the first half of that flip.
917 */
float_as_int(vfloat4 a)918 ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a)
919 {
920 return vint4(vreinterpretq_s32_f32(a.m));
921 }
922
923 /**
924 * @brief Return a integer value as a float bit pattern (i.e. no conversion).
925 *
926 * It is a common trick to convert floats into integer bit patterns, perform
927 * some bit hackery based on knowledge they are IEEE 754 layout, and then
928 * convert them back again. This is the second half of that flip.
929 */
int_as_float(vint4 v)930 ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v)
931 {
932 return vfloat4(vreinterpretq_f32_s32(v.m));
933 }
934
935 /**
936 * @brief Prepare a vtable lookup table for use with the native SIMD size.
937 */
vtable_prepare(vint4 t0,vint4 & t0p)938 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p)
939 {
940 t0p = t0;
941 }
942
943
944 /**
945 * @brief Prepare a vtable lookup table for use with the native SIMD size.
946 */
vtable_prepare(vint4 t0,vint4 t1,vint4 & t0p,vint4 & t1p)947 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p)
948 {
949 t0p = t0;
950 t1p = t1;
951 }
952
953 /**
954 * @brief Prepare a vtable lookup table for use with the native SIMD size.
955 */
vtable_prepare(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 & t0p,vint4 & t1p,vint4 & t2p,vint4 & t3p)956 ASTCENC_SIMD_INLINE void vtable_prepare(
957 vint4 t0, vint4 t1, vint4 t2, vint4 t3,
958 vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p)
959 {
960 t0p = t0;
961 t1p = t1;
962 t2p = t2;
963 t3p = t3;
964 }
965
966 /**
967 * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
968 */
vtable_8bt_32bi(vint4 t0,vint4 idx)969 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx)
970 {
971 int8x16_t table {
972 vreinterpretq_s8_s32(t0.m)
973 };
974
975 // Set index byte above max index for unused bytes so table lookup returns zero
976 int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
977 uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);
978
979 return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(table, idx_bytes)));
980 }
981
982 /**
983 * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
984 */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 idx)985 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx)
986 {
987 int8x16x2_t table {
988 vreinterpretq_s8_s32(t0.m),
989 vreinterpretq_s8_s32(t1.m)
990 };
991
992 // Set index byte above max index for unused bytes so table lookup returns zero
993 int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
994 uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);
995
996 return vint4(vreinterpretq_s32_s8(vqtbl2q_s8(table, idx_bytes)));
997 }
998
999 /**
1000 * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
1001 */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 idx)1002 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx)
1003 {
1004 int8x16x4_t table {
1005 vreinterpretq_s8_s32(t0.m),
1006 vreinterpretq_s8_s32(t1.m),
1007 vreinterpretq_s8_s32(t2.m),
1008 vreinterpretq_s8_s32(t3.m)
1009 };
1010
1011 // Set index byte above max index for unused bytes so table lookup returns zero
1012 int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
1013 uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);
1014
1015 return vint4(vreinterpretq_s32_s8(vqtbl4q_s8(table, idx_bytes)));
1016 }
1017
1018 /**
1019 * @brief Return a vector of interleaved RGBA data.
1020 *
1021 * Input vectors have the value stored in the bottom 8 bits of each lane,
1022 * with high bits set to zero.
1023 *
1024 * Output vector stores a single RGBA texel packed in each lane.
1025 */
interleave_rgba8(vint4 r,vint4 g,vint4 b,vint4 a)1026 ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a)
1027 {
1028 return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a);
1029 }
1030
1031 /**
1032 * @brief Store a vector, skipping masked lanes.
1033 *
1034 * All masked lanes must be at the end of vector, after all non-masked lanes.
1035 */
store_lanes_masked(int * base,vint4 data,vmask4 mask)1036 ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask)
1037 {
1038 if (mask.lane<3>())
1039 {
1040 store(data, base);
1041 }
1042 else if (mask.lane<2>())
1043 {
1044 base[0] = data.lane<0>();
1045 base[1] = data.lane<1>();
1046 base[2] = data.lane<2>();
1047 }
1048 else if (mask.lane<1>())
1049 {
1050 base[0] = data.lane<0>();
1051 base[1] = data.lane<1>();
1052 }
1053 else if (mask.lane<0>())
1054 {
1055 base[0] = data.lane<0>();
1056 }
1057 }
1058
1059 #define ASTCENC_USE_NATIVE_POPCOUNT 1
1060
1061 /**
1062 * @brief Population bit count.
1063 *
1064 * @param v The value to population count.
1065 *
1066 * @return The number of 1 bits.
1067 */
popcount(uint64_t v)1068 ASTCENC_SIMD_INLINE int popcount(uint64_t v)
1069 {
1070 return static_cast<int>(vaddlv_u8(vcnt_u8(vcreate_u8(v))));
1071 }
1072
1073 #endif // #ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED
1074