1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //#define LOG_NDEBUG 0
18 #include <utils/Log.h>
19 
20 #define ATRACE_TAG ATRACE_TAG_AUDIO
21 
22 #include <algorithm>
23 
24 #include <media/MediaMetricsItem.h>
25 #include <utils/Trace.h>
26 
27 #include "client/AudioStreamInternalPlay.h"
28 #include "utility/AudioClock.h"
29 
30 // We do this after the #includes because if a header uses ALOG.
31 // it would fail on the reference to mInService.
32 #undef LOG_TAG
33 // This file is used in both client and server processes.
34 // This is needed to make sense of the logs more easily.
35 #define LOG_TAG (mInService ? "AudioStreamInternalPlay_Service" \
36                             : "AudioStreamInternalPlay_Client")
37 
38 using android::status_t;
39 using android::WrappingBuffer;
40 
41 using namespace aaudio;
42 
AudioStreamInternalPlay(AAudioServiceInterface & serviceInterface,bool inService)43 AudioStreamInternalPlay::AudioStreamInternalPlay(AAudioServiceInterface  &serviceInterface,
44                                                        bool inService)
45         : AudioStreamInternal(serviceInterface, inService) {
46 
47 }
48 
49 constexpr int kRampMSec = 10; // time to apply a change in volume
50 
open(const AudioStreamBuilder & builder)51 aaudio_result_t AudioStreamInternalPlay::open(const AudioStreamBuilder &builder) {
52     aaudio_result_t result = AudioStreamInternal::open(builder);
53     const bool useVolumeRamps = (getSharingMode() == AAUDIO_SHARING_MODE_EXCLUSIVE);
54     if (result == AAUDIO_OK) {
55         result = mFlowGraph.configure(getFormat(),
56                              getSamplesPerFrame(),
57                              getSampleRate(),
58                              getDeviceFormat(),
59                              getDeviceSamplesPerFrame(),
60                              getDeviceSampleRate(),
61                              getRequireMonoBlend(),
62                              useVolumeRamps,
63                              getAudioBalance(),
64                              aaudio::resampler::MultiChannelResampler::Quality::Medium);
65 
66         if (result != AAUDIO_OK) {
67             safeReleaseClose();
68         }
69         // Sample rate is constrained to common values by now and should not overflow.
70         int32_t numFrames = kRampMSec * getSampleRate() / AAUDIO_MILLIS_PER_SECOND;
71         mFlowGraph.setRampLengthInFrames(numFrames);
72     }
73     return result;
74 }
75 
76 // This must be called under mStreamLock.
requestPause_l()77 aaudio_result_t AudioStreamInternalPlay::requestPause_l()
78 {
79     aaudio_result_t result = stopCallback_l();
80     if (result != AAUDIO_OK) {
81         return result;
82     }
83     if (getServiceHandle() == AAUDIO_HANDLE_INVALID) {
84         ALOGW("%s() mServiceStreamHandle invalid", __func__);
85         return AAUDIO_ERROR_INVALID_STATE;
86     }
87 
88     mClockModel.stop(AudioClock::getNanoseconds());
89     setState(AAUDIO_STREAM_STATE_PAUSING);
90     mAtomicInternalTimestamp.clear();
91     return mServiceInterface.pauseStream(mServiceStreamHandleInfo);
92 }
93 
requestFlush_l()94 aaudio_result_t AudioStreamInternalPlay::requestFlush_l() {
95     if (getServiceHandle() == AAUDIO_HANDLE_INVALID) {
96         ALOGW("%s() mServiceStreamHandle invalid", __func__);
97         return AAUDIO_ERROR_INVALID_STATE;
98     }
99 
100     setState(AAUDIO_STREAM_STATE_FLUSHING);
101     return mServiceInterface.flushStream(mServiceStreamHandleInfo);
102 }
103 
prepareBuffersForStart()104 void AudioStreamInternalPlay::prepareBuffersForStart() {
105     // Reset volume ramps to avoid a starting noise.
106     // This was called here instead of AudioStreamInternal so that
107     // it will be easier to backport.
108     mFlowGraph.reset();
109     // Prevent stale data from being played.
110     mAudioEndpoint->eraseDataMemory();
111 }
112 
prepareBuffersForStop()113 void AudioStreamInternalPlay::prepareBuffersForStop() {
114     // If this is a shared stream and the FIFO is being read by the mixer then
115     // we don't have to worry about the DSP reading past the valid data. We can skip all this.
116     if(!mAudioEndpoint->isFreeRunning()) {
117         return;
118     }
119     // Sleep until the DSP has read all of the data written.
120     int64_t validFramesInBuffer = getFramesWritten() - getFramesRead();
121     if (validFramesInBuffer >= 0) {
122         int64_t emptyFramesInBuffer = ((int64_t) getBufferCapacity()) - validFramesInBuffer;
123 
124         // Prevent stale data from being played if the DSP is still running.
125         // Erase some of the FIFO memory in front of the DSP read cursor.
126         // Subtract one burst so we do not accidentally erase data that the DSP might be using.
127         int64_t framesToErase = std::max((int64_t) 0,
128                                          emptyFramesInBuffer - getFramesPerBurst());
129         mAudioEndpoint->eraseEmptyDataMemory(framesToErase);
130 
131         // Sleep until we are confident the DSP has consumed all of the valid data.
132         // Sleep for one extra burst as a safety margin because the IsochronousClockModel
133         // is not perfectly accurate.
134         int64_t positionInEmptyMemory = getFramesWritten() + getFramesPerBurst();
135         int64_t timeAllConsumed = mClockModel.convertPositionToTime(positionInEmptyMemory);
136         int64_t durationAllConsumed = timeAllConsumed - AudioClock::getNanoseconds();
137         // Prevent sleeping for too long.
138         durationAllConsumed = std::min(200 * AAUDIO_NANOS_PER_MILLISECOND, durationAllConsumed);
139         AudioClock::sleepForNanos(durationAllConsumed);
140     }
141 
142     // Erase all of the memory in case the DSP keeps going and wraps around.
143     mAudioEndpoint->eraseDataMemory();
144 
145     // Wait for the last buffer to reach the DAC.
146     // This is because the expected behavior of stop() is that all data written to the stream
147     // should be played before the hardware actually shuts down.
148     // This is different than pause(), where we just end as soon as possible.
149     // This can be important when, for example, playing car navigation and
150     // you want the user to hear the complete instruction.
151     if (mAtomicInternalTimestamp.isValid()) {
152         // Use timestamps to calculate the latency between the DSP reading
153         // a frame and when it reaches the DAC.
154         // This code assumes that timestamps are accurate.
155         Timestamp timestamp = mAtomicInternalTimestamp.read();
156         int64_t dacPosition = timestamp.getPosition();
157         int64_t hardwareReadTime = mClockModel.convertPositionToTime(dacPosition);
158         int64_t hardwareLatencyNanos = timestamp.getNanoseconds() - hardwareReadTime;
159         ALOGD("%s() hardwareLatencyNanos = %lld", __func__,
160               (long long) hardwareLatencyNanos);
161         // Prevent sleeping for too long.
162         hardwareLatencyNanos = std::min(30 * AAUDIO_NANOS_PER_MILLISECOND,
163                                         hardwareLatencyNanos);
164         AudioClock::sleepForNanos(hardwareLatencyNanos);
165     }
166 }
167 
advanceClientToMatchServerPosition(int32_t serverMargin)168 void AudioStreamInternalPlay::advanceClientToMatchServerPosition(int32_t serverMargin) {
169     int64_t readCounter = mAudioEndpoint->getDataReadCounter() + serverMargin;
170     int64_t writeCounter = mAudioEndpoint->getDataWriteCounter();
171 
172     // Bump offset so caller does not see the retrograde motion in getFramesRead().
173     int64_t offset = writeCounter - readCounter;
174     mFramesOffsetFromService += offset;
175     ALOGV("%s() readN = %lld, writeN = %lld, offset = %lld", __func__,
176           (long long)readCounter, (long long)writeCounter, (long long)mFramesOffsetFromService);
177 
178     // Force writeCounter to match readCounter.
179     // This is because we cannot change the read counter in the hardware.
180     mAudioEndpoint->setDataWriteCounter(readCounter);
181 }
182 
onFlushFromServer()183 void AudioStreamInternalPlay::onFlushFromServer() {
184     advanceClientToMatchServerPosition(0 /*serverMargin*/);
185 }
186 
187 // Write the data, block if needed and timeoutMillis > 0
write(const void * buffer,int32_t numFrames,int64_t timeoutNanoseconds)188 aaudio_result_t AudioStreamInternalPlay::write(const void *buffer, int32_t numFrames,
189                                                int64_t timeoutNanoseconds) {
190     return processData((void *)buffer, numFrames, timeoutNanoseconds);
191 }
192 
193 // Write as much data as we can without blocking.
processDataNow(void * buffer,int32_t numFrames,int64_t currentNanoTime,int64_t * wakeTimePtr)194 aaudio_result_t AudioStreamInternalPlay::processDataNow(void *buffer, int32_t numFrames,
195                                               int64_t currentNanoTime, int64_t *wakeTimePtr) {
196     aaudio_result_t result = processCommands();
197     if (result != AAUDIO_OK) {
198         return result;
199     }
200 
201     const char *traceName = "aaWrNow";
202     ATRACE_BEGIN(traceName);
203 
204     if (mClockModel.isStarting()) {
205         // Still haven't got any timestamps from server.
206         // Keep waiting until we get some valid timestamps then start writing to the
207         // current buffer position.
208         ALOGV("%s() wait for valid timestamps", __func__);
209         // Sleep very briefly and hope we get a timestamp soon.
210         *wakeTimePtr = currentNanoTime + (2000 * AAUDIO_NANOS_PER_MICROSECOND);
211         ATRACE_END();
212         return 0;
213     }
214     // If we have gotten this far then we have at least one timestamp from server.
215 
216     // If a DMA channel or DSP is reading the other end then we have to update the readCounter.
217     if (mAudioEndpoint->isFreeRunning()) {
218         // Update data queue based on the timing model.
219         int64_t estimatedReadCounter = mClockModel.convertTimeToPosition(currentNanoTime);
220         // ALOGD("AudioStreamInternal::processDataNow() - estimatedReadCounter = %d", (int)estimatedReadCounter);
221         mAudioEndpoint->setDataReadCounter(estimatedReadCounter);
222     }
223 
224     if (mNeedCatchUp.isRequested()) {
225         // Catch an MMAP pointer that is already advancing.
226         // This will avoid initial underruns caused by a slow cold start.
227         // We add a one burst margin in case the DSP advances before we can write the data.
228         // This can help prevent the beginning of the stream from being skipped.
229         advanceClientToMatchServerPosition(getFramesPerBurst());
230         mNeedCatchUp.acknowledge();
231     }
232 
233     // If the read index passed the write index then consider it an underrun.
234     // For shared streams, the xRunCount is passed up from the service.
235     if (mAudioEndpoint->isFreeRunning() && mAudioEndpoint->getFullFramesAvailable() < 0) {
236         mXRunCount++;
237         if (ATRACE_ENABLED()) {
238             ATRACE_INT("aaUnderRuns", mXRunCount);
239         }
240     }
241 
242     // Write some data to the buffer.
243     //ALOGD("AudioStreamInternal::processDataNow() - writeNowWithConversion(%d)", numFrames);
244     int32_t framesWritten = writeNowWithConversion(buffer, numFrames);
245     //ALOGD("AudioStreamInternal::processDataNow() - tried to write %d frames, wrote %d",
246     //    numFrames, framesWritten);
247     if (ATRACE_ENABLED()) {
248         ATRACE_INT("aaWrote", framesWritten);
249     }
250 
251     // Sleep if there is too much data in the buffer.
252     // Calculate an ideal time to wake up.
253     if (wakeTimePtr != nullptr
254             && (mAudioEndpoint->getFullFramesAvailable() >= getDeviceBufferSize())) {
255         // By default wake up a few milliseconds from now.  // TODO review
256         int64_t wakeTime = currentNanoTime + (1 * AAUDIO_NANOS_PER_MILLISECOND);
257         aaudio_stream_state_t state = getState();
258         //ALOGD("AudioStreamInternal::processDataNow() - wakeTime based on %s",
259         //      AAudio_convertStreamStateToText(state));
260         switch (state) {
261             case AAUDIO_STREAM_STATE_OPEN:
262             case AAUDIO_STREAM_STATE_STARTING:
263                 if (framesWritten != 0) {
264                     // Don't wait to write more data. Just prime the buffer.
265                     wakeTime = currentNanoTime;
266                 }
267                 break;
268             case AAUDIO_STREAM_STATE_STARTED:
269             {
270                 // Calculate when there will be room available to write to the buffer.
271                 // If the appBufferSize is smaller than the endpointBufferSize then
272                 // we will have room to write data beyond the appBufferSize.
273                 // That is a technique used to reduce glitches without adding latency.
274                 const int64_t appBufferSize = getDeviceBufferSize();
275                 // The endpoint buffer size is set to the maximum that can be written.
276                 // If we use it then we must carve out some room to write data when we wake up.
277                 const int64_t endBufferSize = mAudioEndpoint->getBufferSizeInFrames()
278                         - getDeviceFramesPerBurst();
279                 const int64_t bestBufferSize = std::min(appBufferSize, endBufferSize);
280                 int64_t targetReadPosition = mAudioEndpoint->getDataWriteCounter() - bestBufferSize;
281                 wakeTime = mClockModel.convertPositionToTime(targetReadPosition);
282             }
283                 break;
284             default:
285                 break;
286         }
287         *wakeTimePtr = wakeTime;
288 
289     }
290 
291     ATRACE_END();
292     return framesWritten;
293 }
294 
295 
writeNowWithConversion(const void * buffer,int32_t numFrames)296 aaudio_result_t AudioStreamInternalPlay::writeNowWithConversion(const void *buffer,
297                                                             int32_t numFrames) {
298     WrappingBuffer wrappingBuffer;
299     uint8_t *byteBuffer = (uint8_t *) buffer;
300     int32_t framesLeftInByteBuffer = numFrames;
301 
302     mAudioEndpoint->getEmptyFramesAvailable(&wrappingBuffer);
303 
304     // Write data in one or two parts.
305     int partIndex = 0;
306     int framesWrittenToAudioEndpoint = 0;
307     while (framesLeftInByteBuffer > 0 && partIndex < WrappingBuffer::SIZE) {
308         int32_t framesAvailableInWrappingBuffer = wrappingBuffer.numFrames[partIndex];
309         uint8_t *currentWrappingBuffer = (uint8_t *) wrappingBuffer.data[partIndex];
310 
311         if (framesAvailableInWrappingBuffer > 0) {
312             // Pull data from the flowgraph in case there is residual data.
313             const int32_t framesActuallyWrittenToWrappingBuffer = mFlowGraph.pull(
314                 (void*) currentWrappingBuffer,
315                 framesAvailableInWrappingBuffer);
316 
317             const int32_t numBytesActuallyWrittenToWrappingBuffer =
318                 framesActuallyWrittenToWrappingBuffer * getBytesPerDeviceFrame();
319             currentWrappingBuffer += numBytesActuallyWrittenToWrappingBuffer;
320             framesAvailableInWrappingBuffer -= framesActuallyWrittenToWrappingBuffer;
321             framesWrittenToAudioEndpoint += framesActuallyWrittenToWrappingBuffer;
322         } else {
323             break;
324         }
325 
326         // Put data from byteBuffer into the flowgraph one buffer (8 frames) at a time.
327         // Continuously pull as much data as possible from the flowgraph into the wrapping buffer.
328         // The return value of mFlowGraph.process is the number of frames actually pulled.
329         while (framesAvailableInWrappingBuffer > 0 && framesLeftInByteBuffer > 0) {
330             int32_t framesToWriteFromByteBuffer = std::min(flowgraph::kDefaultBufferSize,
331                     framesLeftInByteBuffer);
332             // If the wrapping buffer is running low, write one frame at a time.
333             if (framesAvailableInWrappingBuffer < flowgraph::kDefaultBufferSize) {
334                 framesToWriteFromByteBuffer = 1;
335             }
336 
337             const int32_t numBytesToWriteFromByteBuffer = getBytesPerFrame() *
338                     framesToWriteFromByteBuffer;
339 
340             //ALOGD("%s() framesLeftInByteBuffer %d, framesAvailableInWrappingBuffer %d"
341             //      "framesToWriteFromByteBuffer %d, numBytesToWriteFromByteBuffer %d"
342             //      , __func__, framesLeftInByteBuffer, framesAvailableInWrappingBuffer,
343             //      framesToWriteFromByteBuffer, numBytesToWriteFromByteBuffer);
344 
345             const int32_t framesActuallyWrittenToWrappingBuffer = mFlowGraph.process(
346                     (void *)byteBuffer,
347                     framesToWriteFromByteBuffer,
348                     (void *)currentWrappingBuffer,
349                     framesAvailableInWrappingBuffer);
350 
351             byteBuffer += numBytesToWriteFromByteBuffer;
352             framesLeftInByteBuffer -= framesToWriteFromByteBuffer;
353             const int32_t numBytesActuallyWrittenToWrappingBuffer =
354                     framesActuallyWrittenToWrappingBuffer * getBytesPerDeviceFrame();
355             currentWrappingBuffer += numBytesActuallyWrittenToWrappingBuffer;
356             framesAvailableInWrappingBuffer -= framesActuallyWrittenToWrappingBuffer;
357             framesWrittenToAudioEndpoint += framesActuallyWrittenToWrappingBuffer;
358 
359             //ALOGD("%s() numBytesActuallyWrittenToWrappingBuffer %d, framesLeftInByteBuffer %d"
360             //      "framesActuallyWrittenToWrappingBuffer %d, numBytesToWriteFromByteBuffer %d"
361             //      "framesWrittenToAudioEndpoint %d"
362             //      , __func__, numBytesActuallyWrittenToWrappingBuffer, framesLeftInByteBuffer,
363             //      framesActuallyWrittenToWrappingBuffer, numBytesToWriteFromByteBuffer,
364             //      framesWrittenToAudioEndpoint);
365         }
366         partIndex++;
367     }
368     //ALOGD("%s() framesWrittenToAudioEndpoint %d, numFrames %d"
369     //              "framesLeftInByteBuffer %d"
370     //              , __func__, framesWrittenToAudioEndpoint, numFrames,
371     //              framesLeftInByteBuffer);
372 
373     // The audio endpoint should reference the number of frames written to the wrapping buffer.
374     mAudioEndpoint->advanceWriteIndex(framesWrittenToAudioEndpoint);
375 
376     // The internal code should use the number of frames read from the app.
377     return numFrames - framesLeftInByteBuffer;
378 }
379 
getFramesRead()380 int64_t AudioStreamInternalPlay::getFramesRead() {
381     if (mAudioEndpoint) {
382         const int64_t framesReadHardware = isClockModelInControl()
383                 ? mClockModel.convertTimeToPosition(AudioClock::getNanoseconds())
384                 : mAudioEndpoint->getDataReadCounter();
385         // Add service offset and prevent retrograde motion.
386         mLastFramesRead = std::max(mLastFramesRead, framesReadHardware + mFramesOffsetFromService);
387     }
388     return mLastFramesRead;
389 }
390 
getFramesWritten()391 int64_t AudioStreamInternalPlay::getFramesWritten() {
392     if (mAudioEndpoint) {
393         mLastFramesWritten = std::max(
394                 mLastFramesWritten,
395                 mAudioEndpoint->getDataWriteCounter() + mFramesOffsetFromService);
396     }
397     return mLastFramesWritten;
398 }
399 
400 // Render audio in the application callback and then write the data to the stream.
callbackLoop()401 void *AudioStreamInternalPlay::callbackLoop() {
402     ALOGD("%s() entering >>>>>>>>>>>>>>>", __func__);
403     aaudio_result_t result = AAUDIO_OK;
404     aaudio_data_callback_result_t callbackResult = AAUDIO_CALLBACK_RESULT_CONTINUE;
405     if (!isDataCallbackSet()) return nullptr;
406     int64_t timeoutNanos = calculateReasonableTimeout(mCallbackFrames);
407 
408     // result might be a frame count
409     while (mCallbackEnabled.load() && isActive() && (result >= 0)) {
410         // Call application using the AAudio callback interface.
411         callbackResult = maybeCallDataCallback(mCallbackBuffer.get(), mCallbackFrames);
412 
413         // Write audio data to stream. This is a BLOCKING WRITE!
414         // Write data regardless of the callbackResult because we assume the data
415         // is valid even when the callback returns AAUDIO_CALLBACK_RESULT_STOP.
416         // Imagine a callback that is playing a large sound in menory.
417         // When it gets to the end of the sound it can partially fill
418         // the last buffer with the end of the sound, then zero pad the buffer, then return STOP.
419         // If the callback has no valid data then it should zero-fill the entire buffer.
420         result = write(mCallbackBuffer.get(), mCallbackFrames, timeoutNanos);
421         if ((result != mCallbackFrames)) {
422             if (result >= 0) {
423                 // Only wrote some of the frames requested. The stream can be disconnected
424                 // or timed out.
425                 processCommands();
426                 result = isDisconnected() ? AAUDIO_ERROR_DISCONNECTED : AAUDIO_ERROR_TIMEOUT;
427             }
428             maybeCallErrorCallback(result);
429             break;
430         }
431 
432         if (callbackResult == AAUDIO_CALLBACK_RESULT_STOP) {
433             ALOGD("%s(): callback returned AAUDIO_CALLBACK_RESULT_STOP", __func__);
434             result = systemStopInternal();
435             break;
436         }
437     }
438 
439     ALOGD("%s() exiting, result = %d, isActive() = %d <<<<<<<<<<<<<<",
440           __func__, result, (int) isActive());
441     return nullptr;
442 }
443 
444 //------------------------------------------------------------------------------
445 // Implementation of PlayerBase
doSetVolume()446 status_t AudioStreamInternalPlay::doSetVolume() {
447     float combinedVolume = mStreamVolume * getDuckAndMuteVolume();
448     ALOGD("%s() mStreamVolume * duckAndMuteVolume = %f * %f = %f",
449           __func__, mStreamVolume, getDuckAndMuteVolume(), combinedVolume);
450     mFlowGraph.setTargetVolume(combinedVolume);
451     return android::NO_ERROR;
452 }
453