1 /*
2  * Copyright (C) 2018 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include "Tile.h"
20 
21 #include <algorithm>
22 #include <utility>
23 
24 #include "Tracing.h"
25 
26 namespace android {
27 namespace nn {
28 namespace tile {
29 
30 namespace {
31 
32 template <typename T>
CopyMultipleTimes(const T * in_data,int32_t in_size,int32_t multiplier,T * out_data)33 void CopyMultipleTimes(const T* in_data, int32_t in_size, int32_t multiplier, T* out_data) {
34     for (int i = 0; i < multiplier; ++i) {
35         const T* in_end = in_data + in_size;
36         T* new_out_data = std::copy(in_data, in_end, out_data);
37         in_data = out_data;
38         out_data = new_out_data;
39     }
40 }
41 
42 template <typename T, typename M>
TileOneDimension(const Shape & input_shape,const T * in_data,const M * multipliers,T * out_data,int dimension)43 std::pair<int, int> TileOneDimension(const Shape& input_shape, const T* in_data,
44                                      const M* multipliers, T* out_data, int dimension) {
45     const int dimension_size = input_shape.dimensions[dimension];
46     if (static_cast<size_t>(dimension) == input_shape.dimensions.size() - 1) {
47         CopyMultipleTimes(in_data, dimension_size, multipliers[dimension], out_data);
48         return std::make_pair(dimension_size,
49                               dimension_size * static_cast<int>(multipliers[dimension]));
50     }
51     int total_stride_size = 0, total_tiled_stride_size = 0;
52     const T* copy_from_data = in_data;
53     T* copy_to_data = out_data;
54     for (int i = 0; i < dimension_size; ++i) {
55         int stride_size = 0, tiled_stride_size = 0;
56         std::tie(stride_size, tiled_stride_size) = TileOneDimension(
57                 input_shape, copy_from_data, multipliers, copy_to_data, dimension + 1);
58         copy_from_data += stride_size;
59         copy_to_data += tiled_stride_size;
60         total_stride_size += stride_size;
61         total_tiled_stride_size += tiled_stride_size;
62     }
63     CopyMultipleTimes(out_data, total_tiled_stride_size, multipliers[dimension] - 1,
64                       out_data + total_tiled_stride_size);
65     return std::make_pair(total_stride_size, total_tiled_stride_size * multipliers[dimension]);
66 }
67 
68 template <typename T>
tileImpl(const T * inputData,const Shape & inputShape,const int32_t * multiples,T * outputData,const Shape &)69 void tileImpl(const T* inputData, const Shape& inputShape, const int32_t* multiples, T* outputData,
70               const Shape& /*outputShape*/) {
71     TileOneDimension(inputShape, inputData, multiples, outputData, 0);
72 }
73 
74 }  // namespace
75 
prepare(const Shape & input,const int32_t * multiples,const Shape &,Shape * output)76 bool prepare(const Shape& input, const int32_t* multiples, const Shape& /*multiplesShape*/,
77              Shape* output) {
78     output->type = input.type;
79     output->offset = input.offset;
80     output->scale = input.scale;
81 
82     output->dimensions.assign(input.dimensions.begin(), input.dimensions.end());
83     for (size_t i = 0; i < output->dimensions.size(); ++i) {
84         output->dimensions[i] *= multiples[i];
85     }
86 
87     return true;
88 }
89 
eval(const uint8_t * inputData,const Shape & inputShape,const int32_t * multiples,uint8_t * outputData,const Shape & outputShape)90 bool eval(const uint8_t* inputData, const Shape& inputShape, const int32_t* multiples,
91           uint8_t* outputData, const Shape& outputShape) {
92     NNTRACE_TRANS("tile::eval");
93 #define ANDROID_NN_IMPL_TILE(operandType, dataType)                                   \
94     case operandType: {                                                               \
95         NNTRACE_COMP_SWITCH("tileImpl::" #dataType);                                  \
96         tileImpl(reinterpret_cast<const dataType*>(inputData), inputShape, multiples, \
97                  reinterpret_cast<dataType*>(outputData), outputShape);               \
98         return true;                                                                  \
99     }
100 
101     switch (inputShape.type) {
102         ANDROID_NN_IMPL_TILE(OperandType::TENSOR_FLOAT16, _Float16);
103         ANDROID_NN_IMPL_TILE(OperandType::TENSOR_FLOAT32, float);
104         ANDROID_NN_IMPL_TILE(OperandType::TENSOR_INT32, int32_t);
105         ANDROID_NN_IMPL_TILE(OperandType::TENSOR_QUANT8_ASYMM, uint8_t);
106         ANDROID_NN_IMPL_TILE(OperandType::TENSOR_QUANT8_ASYMM_SIGNED, int8_t);
107         default:
108             LOG(ERROR) << "Unsupported data type";
109             return false;
110     }
111 #undef ANDROID_NN_IMPL_TILE
112 }
113 
114 }  // namespace tile
115 }  // namespace nn
116 }  // namespace android
117