1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
19 
20 #include <cstring>
21 #include <map>
22 
23 #include "arch/instruction_set.h"
24 #include "base/macros.h"
25 #include "debug/method_debug_info.h"
26 #include "dwarf/debug_info_entry_writer.h"
27 #include "dwarf/register.h"
28 #include "oat/stack_map.h"
29 
30 namespace art HIDDEN {
31 namespace debug {
32 using Reg = dwarf::Reg;
33 
GetDwarfCoreReg(InstructionSet isa,int machine_reg)34 static Reg GetDwarfCoreReg(InstructionSet isa, int machine_reg) {
35   switch (isa) {
36     case InstructionSet::kArm:
37     case InstructionSet::kThumb2:
38       return Reg::ArmCore(machine_reg);
39     case InstructionSet::kArm64:
40       return Reg::Arm64Core(machine_reg);
41     case InstructionSet::kRiscv64:
42       return Reg::Riscv64Core(machine_reg);
43     case InstructionSet::kX86:
44       return Reg::X86Core(machine_reg);
45     case InstructionSet::kX86_64:
46       return Reg::X86_64Core(machine_reg);
47     case InstructionSet::kNone:
48       LOG(FATAL) << "No instruction set";
49   }
50   UNREACHABLE();
51 }
52 
GetDwarfFpReg(InstructionSet isa,int machine_reg)53 static Reg GetDwarfFpReg(InstructionSet isa, int machine_reg) {
54   switch (isa) {
55     case InstructionSet::kArm:
56     case InstructionSet::kThumb2:
57       return Reg::ArmFp(machine_reg);
58     case InstructionSet::kArm64:
59       return Reg::Arm64Fp(machine_reg);
60     case InstructionSet::kRiscv64:
61       return Reg::Riscv64Fp(machine_reg);
62     case InstructionSet::kX86:
63       return Reg::X86Fp(machine_reg);
64     case InstructionSet::kX86_64:
65       return Reg::X86_64Fp(machine_reg);
66     case InstructionSet::kNone:
67       LOG(FATAL) << "No instruction set";
68   }
69   UNREACHABLE();
70 }
71 
72 struct VariableLocation {
73   uint32_t low_pc;  // Relative to compilation unit.
74   uint32_t high_pc;  // Relative to compilation unit.
75   DexRegisterLocation reg_lo;  // May be None if the location is unknown.
76   DexRegisterLocation reg_hi;  // Most significant bits of 64-bit value.
77 };
78 
79 // Get the location of given dex register (e.g. stack or machine register).
80 // Note that the location might be different based on the current pc.
81 // The result will cover all ranges where the variable is in scope.
82 // PCs corresponding to stackmap with dex register map are accurate,
83 // all other PCs are best-effort only.
GetVariableLocations(const MethodDebugInfo * method_info,const std::vector<DexRegisterMap> & dex_register_maps,uint16_t vreg,bool is64bitValue,uint64_t compilation_unit_code_address,uint32_t dex_pc_low,uint32_t dex_pc_high,InstructionSet isa)84 static std::vector<VariableLocation> GetVariableLocations(
85     const MethodDebugInfo* method_info,
86     const std::vector<DexRegisterMap>& dex_register_maps,
87     uint16_t vreg,
88     bool is64bitValue,
89     uint64_t compilation_unit_code_address,
90     uint32_t dex_pc_low,
91     uint32_t dex_pc_high,
92     InstructionSet isa) {
93   std::vector<VariableLocation> variable_locations;
94 
95   // Get stack maps sorted by pc (they might not be sorted internally).
96   // TODO(dsrbecky) Remove this once stackmaps get sorted by pc.
97   const CodeInfo code_info(method_info->code_info);
98   std::map<uint32_t, uint32_t> stack_maps;  // low_pc -> stack_map_index.
99   for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(); s++) {
100     StackMap stack_map = code_info.GetStackMapAt(s);
101     DCHECK(stack_map.IsValid());
102     if (!stack_map.HasDexRegisterMap()) {
103       // The compiler creates stackmaps without register maps at the start of
104       // basic blocks in order to keep instruction-accurate line number mapping.
105       // However, we never stop at those (breakpoint locations always have map).
106       // Therefore, for the purpose of local variables, we ignore them.
107       // The main reason for this is to save space by avoiding undefined gaps.
108       continue;
109     }
110     const uint32_t pc_offset = stack_map.GetNativePcOffset(isa);
111     DCHECK_LE(pc_offset, method_info->code_size);
112     DCHECK_LE(compilation_unit_code_address, method_info->code_address);
113     const uint32_t low_pc = dchecked_integral_cast<uint32_t>(
114         method_info->code_address + pc_offset - compilation_unit_code_address);
115     stack_maps.emplace(low_pc, s);
116   }
117 
118   // Create entries for the requested register based on stack map data.
119   for (auto it = stack_maps.begin(); it != stack_maps.end(); it++) {
120     const uint32_t low_pc = it->first;
121     const uint32_t stack_map_index = it->second;
122     const StackMap stack_map = code_info.GetStackMapAt(stack_map_index);
123     auto next_it = it;
124     next_it++;
125     const uint32_t high_pc = next_it != stack_maps.end()
126       ? next_it->first
127       : method_info->code_address + method_info->code_size - compilation_unit_code_address;
128     DCHECK_LE(low_pc, high_pc);
129     if (low_pc == high_pc) {
130       continue;  // Ignore if the address range is empty.
131     }
132 
133     // Check that the stack map is in the requested range.
134     uint32_t dex_pc = stack_map.GetDexPc();
135     if (!(dex_pc_low <= dex_pc && dex_pc < dex_pc_high)) {
136       // The variable is not in scope at this PC. Therefore omit the entry.
137       // Note that this is different to None() entry which means in scope, but unknown location.
138       continue;
139     }
140 
141     // Find the location of the dex register.
142     DexRegisterLocation reg_lo = DexRegisterLocation::None();
143     DexRegisterLocation reg_hi = DexRegisterLocation::None();
144     DCHECK_LT(stack_map_index, dex_register_maps.size());
145     DexRegisterMap dex_register_map = dex_register_maps[stack_map_index];
146     DCHECK(!dex_register_map.empty());
147     CodeItemDataAccessor accessor(*method_info->dex_file, method_info->code_item);
148     reg_lo = dex_register_map[vreg];
149     if (is64bitValue) {
150       reg_hi = dex_register_map[vreg + 1];
151     }
152 
153     // Add location entry for this address range.
154     if (!variable_locations.empty() &&
155         variable_locations.back().reg_lo == reg_lo &&
156         variable_locations.back().reg_hi == reg_hi &&
157         variable_locations.back().high_pc == low_pc) {
158       // Merge with the previous entry (extend its range).
159       variable_locations.back().high_pc = high_pc;
160     } else {
161       variable_locations.push_back({low_pc, high_pc, reg_lo, reg_hi});
162     }
163   }
164 
165   return variable_locations;
166 }
167 
168 // Write table into .debug_loc which describes location of dex register.
169 // The dex register might be valid only at some points and it might
170 // move between machine registers and stack.
WriteDebugLocEntry(const MethodDebugInfo * method_info,const std::vector<DexRegisterMap> & dex_register_maps,uint16_t vreg,bool is64bitValue,uint64_t compilation_unit_code_address,uint32_t dex_pc_low,uint32_t dex_pc_high,InstructionSet isa,dwarf::DebugInfoEntryWriter<> * debug_info,std::vector<uint8_t> * debug_loc_buffer,std::vector<uint8_t> * debug_ranges_buffer)171 static void WriteDebugLocEntry(const MethodDebugInfo* method_info,
172                                const std::vector<DexRegisterMap>& dex_register_maps,
173                                uint16_t vreg,
174                                bool is64bitValue,
175                                uint64_t compilation_unit_code_address,
176                                uint32_t dex_pc_low,
177                                uint32_t dex_pc_high,
178                                InstructionSet isa,
179                                dwarf::DebugInfoEntryWriter<>* debug_info,
180                                std::vector<uint8_t>* debug_loc_buffer,
181                                std::vector<uint8_t>* debug_ranges_buffer) {
182   using Kind = DexRegisterLocation::Kind;
183   if (method_info->code_info == nullptr || dex_register_maps.empty()) {
184     return;
185   }
186 
187   std::vector<VariableLocation> variable_locations = GetVariableLocations(
188       method_info,
189       dex_register_maps,
190       vreg,
191       is64bitValue,
192       compilation_unit_code_address,
193       dex_pc_low,
194       dex_pc_high,
195       isa);
196 
197   // Write .debug_loc entries.
198   dwarf::Writer<> debug_loc(debug_loc_buffer);
199   const size_t debug_loc_offset = debug_loc.size();
200   const bool is64bit = Is64BitInstructionSet(isa);
201   std::vector<uint8_t> expr_buffer;
202   for (const VariableLocation& variable_location : variable_locations) {
203     // Translate dex register location to DWARF expression.
204     // Note that 64-bit value might be split to two distinct locations.
205     // (for example, two 32-bit machine registers, or even stack and register)
206     dwarf::Expression expr(&expr_buffer);
207     DexRegisterLocation reg_lo = variable_location.reg_lo;
208     DexRegisterLocation reg_hi = variable_location.reg_hi;
209     for (int piece = 0; piece < (is64bitValue ? 2 : 1); piece++) {
210       DexRegisterLocation reg_loc = (piece == 0 ? reg_lo : reg_hi);
211       const Kind kind = reg_loc.GetKind();
212       const int32_t value = reg_loc.GetValue();
213       if (kind == Kind::kInStack) {
214         // The stack offset is relative to SP. Make it relative to CFA.
215         expr.WriteOpFbreg(value - method_info->frame_size_in_bytes);
216         if (piece == 0 && reg_hi.GetKind() == Kind::kInStack &&
217             reg_hi.GetValue() == value + 4) {
218           break;  // the high word is correctly implied by the low word.
219         }
220       } else if (kind == Kind::kInRegister) {
221         expr.WriteOpReg(GetDwarfCoreReg(isa, value).num());
222         if (piece == 0 && reg_hi.GetKind() == Kind::kInRegisterHigh &&
223             reg_hi.GetValue() == value) {
224           break;  // the high word is correctly implied by the low word.
225         }
226       } else if (kind == Kind::kInFpuRegister) {
227         if ((isa == InstructionSet::kArm || isa == InstructionSet::kThumb2) &&
228             piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegister &&
229             reg_hi.GetValue() == value + 1 && value % 2 == 0) {
230           // Translate S register pair to D register (e.g. S4+S5 to D2).
231           expr.WriteOpReg(Reg::ArmDp(value / 2).num());
232           break;
233         }
234         expr.WriteOpReg(GetDwarfFpReg(isa, value).num());
235         if (piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegisterHigh &&
236             reg_hi.GetValue() == reg_lo.GetValue()) {
237           break;  // the high word is correctly implied by the low word.
238         }
239       } else if (kind == Kind::kConstant) {
240         expr.WriteOpConsts(value);
241         expr.WriteOpStackValue();
242       } else if (kind == Kind::kNone) {
243         break;
244       } else {
245         // kInStackLargeOffset and kConstantLargeValue are hidden by GetKind().
246         // kInRegisterHigh and kInFpuRegisterHigh should be handled by
247         // the special cases above and they should not occur alone.
248         LOG(WARNING) << "Unexpected register location: " << kind
249                      << " (This can indicate either a bug in the dexer when generating"
250                      << " local variable information, or a bug in ART compiler."
251                      << " Please file a bug at go/art-bug)";
252         break;
253       }
254       if (is64bitValue) {
255         // Write the marker which is needed by split 64-bit values.
256         // This code is skipped by the special cases.
257         expr.WriteOpPiece(4);
258       }
259     }
260 
261     if (expr.size() > 0) {
262       if (is64bit) {
263         debug_loc.PushUint64(variable_location.low_pc);
264         debug_loc.PushUint64(variable_location.high_pc);
265       } else {
266         debug_loc.PushUint32(variable_location.low_pc);
267         debug_loc.PushUint32(variable_location.high_pc);
268       }
269       // Write the expression.
270       debug_loc.PushUint16(expr.size());
271       debug_loc.PushData(expr.data());
272     } else {
273       // Do not generate .debug_loc if the location is not known.
274     }
275   }
276   // Write end-of-list entry.
277   if (is64bit) {
278     debug_loc.PushUint64(0);
279     debug_loc.PushUint64(0);
280   } else {
281     debug_loc.PushUint32(0);
282     debug_loc.PushUint32(0);
283   }
284 
285   // Write .debug_ranges entries.
286   // This includes ranges where the variable is in scope but the location is not known.
287   dwarf::Writer<> debug_ranges(debug_ranges_buffer);
288   size_t debug_ranges_offset = debug_ranges.size();
289   for (size_t i = 0; i < variable_locations.size(); i++) {
290     uint32_t low_pc = variable_locations[i].low_pc;
291     uint32_t high_pc = variable_locations[i].high_pc;
292     while (i + 1 < variable_locations.size() && variable_locations[i+1].low_pc == high_pc) {
293       // Merge address range with the next entry.
294       high_pc = variable_locations[++i].high_pc;
295     }
296     if (is64bit) {
297       debug_ranges.PushUint64(low_pc);
298       debug_ranges.PushUint64(high_pc);
299     } else {
300       debug_ranges.PushUint32(low_pc);
301       debug_ranges.PushUint32(high_pc);
302     }
303   }
304   // Write end-of-list entry.
305   if (is64bit) {
306     debug_ranges.PushUint64(0);
307     debug_ranges.PushUint64(0);
308   } else {
309     debug_ranges.PushUint32(0);
310     debug_ranges.PushUint32(0);
311   }
312 
313   // Simple de-duplication - check whether this entry is same as the last one (or tail of it).
314   size_t debug_ranges_entry_size = debug_ranges.size() - debug_ranges_offset;
315   if (debug_ranges_offset >= debug_ranges_entry_size) {
316     size_t previous_offset = debug_ranges_offset - debug_ranges_entry_size;
317     if (memcmp(debug_ranges_buffer->data() + previous_offset,
318                debug_ranges_buffer->data() + debug_ranges_offset,
319                debug_ranges_entry_size) == 0) {
320       // Remove what we have just written and use the last entry instead.
321       debug_ranges_buffer->resize(debug_ranges_offset);
322       debug_ranges_offset = previous_offset;
323     }
324   }
325 
326   // Write attributes to .debug_info.
327   debug_info->WriteSecOffset(dwarf::DW_AT_location, debug_loc_offset);
328   debug_info->WriteSecOffset(dwarf::DW_AT_start_scope, debug_ranges_offset);
329 }
330 
331 }  // namespace debug
332 }  // namespace art
333 
334 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
335 
336