1 /*
2 * Copyright 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #pragma once
18
19 #include <cstddef>
20 #include <limits>
21 #include <optional>
22 #include <string_view>
23 #include <type_traits>
24 #include <utility>
25
26 #include <ftl/string.h>
27
28 // Returns the name of enumerator E::V and optionally the class (i.e. "E::V" or "V") as
29 // std::optional<std::string_view> by parsing the compiler-generated string literal for the
30 // signature of this function. The function is defined in the global namespace with a short name
31 // and inferred return type to reduce bloat in the read-only data segment.
32 template <bool S, typename E, E V>
ftl_enum_builder()33 constexpr auto ftl_enum_builder() {
34 static_assert(std::is_enum_v<E>);
35
36 using R = std::optional<std::string_view>;
37 using namespace std::literals;
38
39 // The "pretty" signature has the following format:
40 //
41 // auto ftl_enum() [E = android::test::Enum, V = android::test::Enum::kValue]
42 //
43 std::string_view view = __PRETTY_FUNCTION__;
44 const auto template_begin = view.rfind('[');
45 const auto template_end = view.rfind(']');
46 if (template_begin == view.npos || template_end == view.npos) return R{};
47
48 // Extract the template parameters without the enclosing brackets. Example (cont'd):
49 //
50 // E = android::test::Enum, V = android::test::Enum::kValue
51 //
52 view = view.substr(template_begin + 1, template_end - template_begin - 1);
53 const auto value_begin = view.rfind("V = "sv);
54 if (value_begin == view.npos) return R{};
55
56 // Example (cont'd):
57 //
58 // V = android::test::Enum::kValue
59 //
60 view = view.substr(value_begin);
61 const auto pos = S ? view.rfind("::"sv) - 2 : view.npos;
62
63 const auto name_begin = view.rfind("::"sv, pos);
64 if (name_begin == view.npos) return R{};
65
66 // Chop off the leading "::".
67 const auto name = view.substr(name_begin + 2);
68
69 // A value that is not enumerated has the format "Enum)42".
70 return name.find(')') == view.npos ? R{name} : R{};
71 }
72
73 // Returns the name of enumerator E::V (i.e. "V") as std::optional<std::string_view>
74 template <typename E, E V>
ftl_enum()75 constexpr auto ftl_enum() {
76 return ftl_enum_builder<false, E, V>();
77 }
78
79 // Returns the name of enumerator and class E::V (i.e. "E::V") as std::optional<std::string_view>
80 template <typename E, E V>
ftl_enum_full()81 constexpr auto ftl_enum_full() {
82 return ftl_enum_builder<true, E, V>();
83 }
84
85 namespace android::ftl {
86
87 // Trait for determining whether a type is specifically a scoped enum or not. By definition, a
88 // scoped enum is one that is not implicitly convertible to its underlying type.
89 //
90 // TODO: Replace with std::is_scoped_enum in C++23.
91 //
92 template <typename T, bool = std::is_enum_v<T>>
93 struct is_scoped_enum : std::false_type {};
94
95 template <typename T>
96 struct is_scoped_enum<T, true> : std::negation<std::is_convertible<T, std::underlying_type_t<T>>> {
97 };
98
99 template <typename T>
100 inline constexpr bool is_scoped_enum_v = is_scoped_enum<T>::value;
101
102 // Shorthand for casting an enumerator to its integral value.
103 //
104 // TODO: Replace with std::to_underlying in C++23.
105 //
106 // enum class E { A, B, C };
107 // static_assert(ftl::to_underlying(E::B) == 1);
108 //
109 template <typename E, typename = std::enable_if_t<std::is_enum_v<E>>>
110 constexpr auto to_underlying(E v) {
111 return static_cast<std::underlying_type_t<E>>(v);
112 }
113
114 // Traits for retrieving an enum's range. An enum specifies its range by defining enumerators named
115 // ftl_first and ftl_last. If omitted, ftl_first defaults to 0, whereas ftl_last defaults to N - 1
116 // where N is the bit width of the underlying type, but only if that type is unsigned, assuming the
117 // enumerators are flags. Also, note that unscoped enums must define both bounds, as casting out-of-
118 // range values results in undefined behavior if the underlying type is not fixed.
119 //
120 // enum class E { A, B, C, F = 5, ftl_last = F };
121 //
122 // static_assert(ftl::enum_begin_v<E> == E::A);
123 // static_assert(ftl::enum_last_v<E> == E::F);
124 // static_assert(ftl::enum_size_v<E> == 6);
125 //
126 // enum class F : std::uint16_t { X = 0b1, Y = 0b10, Z = 0b100 };
127 //
128 // static_assert(ftl::enum_begin_v<F> == F{0});
129 // static_assert(ftl::enum_last_v<F> == F{15});
130 // static_assert(ftl::enum_size_v<F> == 16);
131 //
132 template <typename E, typename = void>
133 struct enum_begin {
134 static_assert(is_scoped_enum_v<E>, "Missing ftl_first enumerator");
135 static constexpr E value{0};
136 };
137
138 template <typename E>
139 struct enum_begin<E, std::void_t<decltype(E::ftl_first)>> {
140 static constexpr E value = E::ftl_first;
141 };
142
143 template <typename E>
144 inline constexpr E enum_begin_v = enum_begin<E>::value;
145
146 template <typename E, typename = void>
147 struct enum_end {
148 using U = std::underlying_type_t<E>;
149 static_assert(is_scoped_enum_v<E> && std::is_unsigned_v<U>, "Missing ftl_last enumerator");
150
151 static constexpr E value{std::numeric_limits<U>::digits};
152 };
153
154 template <typename E>
155 struct enum_end<E, std::void_t<decltype(E::ftl_last)>> {
156 static constexpr E value = E{to_underlying(E::ftl_last) + 1};
157 };
158
159 template <typename E>
160 inline constexpr E enum_end_v = enum_end<E>::value;
161
162 template <typename E>
163 inline constexpr E enum_last_v = E{to_underlying(enum_end_v<E>) - 1};
164
165 template <typename E>
166 struct enum_size {
167 static constexpr auto kBegin = to_underlying(enum_begin_v<E>);
168 static constexpr auto kEnd = to_underlying(enum_end_v<E>);
169 static_assert(kBegin < kEnd, "Invalid range");
170
171 static constexpr std::size_t value = kEnd - kBegin;
172 static_assert(value <= 64, "Excessive range size");
173 };
174
175 template <typename E>
176 inline constexpr std::size_t enum_size_v = enum_size<E>::value;
177
178 namespace details {
179
180 template <auto V>
181 struct Identity {
182 static constexpr auto value = V;
183 };
184
185 template <typename E>
186 using make_enum_sequence = std::make_integer_sequence<std::underlying_type_t<E>, enum_size_v<E>>;
187
188 template <typename E, template <E> class = Identity, typename = make_enum_sequence<E>>
189 struct EnumRange;
190
191 template <typename E, template <E> class F, typename T, T... Vs>
192 struct EnumRange<E, F, std::integer_sequence<T, Vs...>> {
193 static constexpr auto kBegin = to_underlying(enum_begin_v<E>);
194 static constexpr auto kSize = enum_size_v<E>;
195
196 using R = decltype(F<E{}>::value);
197 const R values[kSize] = {F<static_cast<E>(Vs + kBegin)>::value...};
198
199 constexpr const auto* begin() const { return values; }
200 constexpr const auto* end() const { return values + kSize; }
201 };
202
203 template <auto V>
204 struct EnumName {
205 static constexpr auto value = ftl_enum<decltype(V), V>();
206 };
207
208 template <auto V>
209 struct EnumNameFull {
210 static constexpr auto value = ftl_enum_full<decltype(V), V>();
211 };
212
213 template <auto I>
214 struct FlagName {
215 using E = decltype(I);
216 using U = std::underlying_type_t<E>;
217
218 static constexpr E V{U{1} << to_underlying(I)};
219 static constexpr auto value = ftl_enum<E, V>();
220 };
221
222 } // namespace details
223
224 // Returns an iterable over the range of an enum.
225 //
226 // enum class E { A, B, C, F = 5, ftl_last = F };
227 //
228 // std::string string;
229 // for (E v : ftl::enum_range<E>()) {
230 // string += ftl::enum_name(v).value_or("?");
231 // }
232 //
233 // assert(string == "ABC??F");
234 //
235 template <typename E>
236 constexpr auto enum_range() {
237 return details::EnumRange<E>{};
238 }
239
240 // Returns a stringified enumerator at compile time.
241 //
242 // enum class E { A, B, C };
243 // static_assert(ftl::enum_name<E::B>() == "B");
244 //
245 template <auto V>
246 constexpr std::string_view enum_name() {
247 constexpr auto kName = ftl_enum<decltype(V), V>();
248 static_assert(kName, "Unknown enumerator");
249 return *kName;
250 }
251
252 // Returns a stringified enumerator with class at compile time.
253 //
254 // enum class E { A, B, C };
255 // static_assert(ftl::enum_name<E::B>() == "E::B");
256 //
257 template <auto V>
258 constexpr std::string_view enum_name_full() {
259 constexpr auto kName = ftl_enum_full<decltype(V), V>();
260 static_assert(kName, "Unknown enumerator");
261 return *kName;
262 }
263
264 // Returns a stringified enumerator, possibly at compile time.
265 //
266 // enum class E { A, B, C, F = 5, ftl_last = F };
267 //
268 // static_assert(ftl::enum_name(E::C).value_or("?") == "C");
269 // static_assert(ftl::enum_name(E{3}).value_or("?") == "?");
270 //
271 template <typename E>
272 constexpr std::optional<std::string_view> enum_name(E v) {
273 const auto value = to_underlying(v);
274
275 constexpr auto kBegin = to_underlying(enum_begin_v<E>);
276 constexpr auto kLast = to_underlying(enum_last_v<E>);
277 if (value < kBegin || value > kLast) return {};
278
279 constexpr auto kRange = details::EnumRange<E, details::EnumName>{};
280 return kRange.values[value - kBegin];
281 }
282
283 // Returns a stringified enumerator with class, possibly at compile time.
284 //
285 // enum class E { A, B, C, F = 5, ftl_last = F };
286 //
287 // static_assert(ftl::enum_name(E::C).value_or("?") == "E::C");
288 // static_assert(ftl::enum_name(E{3}).value_or("?") == "?");
289 //
290 template <typename E>
291 constexpr std::optional<std::string_view> enum_name_full(E v) {
292 const auto value = to_underlying(v);
293
294 constexpr auto kBegin = to_underlying(enum_begin_v<E>);
295 constexpr auto kLast = to_underlying(enum_last_v<E>);
296 if (value < kBegin || value > kLast) return {};
297
298 constexpr auto kRange = details::EnumRange<E, details::EnumNameFull>{};
299 return kRange.values[value - kBegin];
300 }
301
302 // Returns a stringified flag enumerator, possibly at compile time.
303 //
304 // enum class F : std::uint16_t { X = 0b1, Y = 0b10, Z = 0b100 };
305 //
306 // static_assert(ftl::flag_name(F::Z).value_or("?") == "Z");
307 // static_assert(ftl::flag_name(F{0b111}).value_or("?") == "?");
308 //
309 template <typename E>
310 constexpr std::optional<std::string_view> flag_name(E v) {
311 const auto value = to_underlying(v);
312
313 // TODO: Replace with std::popcount and std::countr_zero in C++20.
314 if (__builtin_popcountll(value) != 1) return {};
315
316 constexpr auto kRange = details::EnumRange<E, details::FlagName>{};
317 return kRange.values[__builtin_ctzll(value)];
318 }
319
320 // Returns a stringified enumerator, or its integral value if not named.
321 //
322 // enum class E { A, B, C, F = 5, ftl_last = F };
323 //
324 // assert(ftl::enum_string(E::C) == "C");
325 // assert(ftl::enum_string(E{3}) == "3");
326 //
327 template <typename E>
328 inline std::string enum_string(E v) {
329 if (const auto name = enum_name(v)) {
330 return std::string(*name);
331 }
332 return to_string(to_underlying(v));
333 }
334
335 // Returns a stringified enumerator with class, or its integral value if not named.
336 //
337 // enum class E { A, B, C, F = 5, ftl_last = F };
338 //
339 // assert(ftl::enum_string(E::C) == "E::C");
340 // assert(ftl::enum_string(E{3}) == "3");
341 //
342 template <typename E>
343 inline std::string enum_string_full(E v) {
344 if (const auto name = enum_name_full(v)) {
345 return std::string(*name);
346 }
347 return to_string(to_underlying(v));
348 }
349
350 // Returns a stringified flag enumerator, or its integral value if not named.
351 //
352 // enum class F : std::uint16_t { X = 0b1, Y = 0b10, Z = 0b100 };
353 //
354 // assert(ftl::flag_string(F::Z) == "Z");
355 // assert(ftl::flag_string(F{7}) == "0b111");
356 //
357 template <typename E>
358 inline std::string flag_string(E v) {
359 if (const auto name = flag_name(v)) {
360 return std::string(*name);
361 }
362 constexpr auto radix = sizeof(E) == 1 ? Radix::kBin : Radix::kHex;
363 return to_string(to_underlying(v), radix);
364 }
365
366 } // namespace android::ftl
367