1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_GC_HEAP_INL_H_
18 #define ART_RUNTIME_GC_HEAP_INL_H_
19 
20 #include "heap.h"
21 
22 #include "allocation_listener.h"
23 #include "base/quasi_atomic.h"
24 #include "base/time_utils.h"
25 #include "gc/accounting/atomic_stack.h"
26 #include "gc/accounting/card_table-inl.h"
27 #include "gc/allocation_record.h"
28 #include "gc/collector/semi_space.h"
29 #include "gc/space/bump_pointer_space-inl.h"
30 #include "gc/space/dlmalloc_space-inl.h"
31 #include "gc/space/large_object_space.h"
32 #include "gc/space/region_space-inl.h"
33 #include "gc/space/rosalloc_space-inl.h"
34 #include "handle_scope-inl.h"
35 #include "obj_ptr-inl.h"
36 #include "runtime.h"
37 #include "thread-inl.h"
38 #include "verify_object.h"
39 #include "write_barrier-inl.h"
40 
41 namespace art HIDDEN {
42 namespace gc {
43 
44 template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor>
AllocObjectWithAllocator(Thread * self,ObjPtr<mirror::Class> klass,size_t byte_count,AllocatorType allocator,const PreFenceVisitor & pre_fence_visitor)45 inline mirror::Object* Heap::AllocObjectWithAllocator(Thread* self,
46                                                       ObjPtr<mirror::Class> klass,
47                                                       size_t byte_count,
48                                                       AllocatorType allocator,
49                                                       const PreFenceVisitor& pre_fence_visitor) {
50   auto no_suspend_pre_fence_visitor =
51       [&pre_fence_visitor](auto... x) REQUIRES_SHARED(Locks::mutator_lock_) {
52         ScopedAssertNoThreadSuspension sants("No thread suspension during pre-fence visitor");
53         pre_fence_visitor(x...);
54       };
55 
56   if (kIsDebugBuild) {
57     CheckPreconditionsForAllocObject(klass, byte_count);
58     // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
59     // done in the runnable state where suspension is expected.
60     CHECK_EQ(self->GetState(), ThreadState::kRunnable);
61     self->AssertThreadSuspensionIsAllowable();
62     self->AssertNoPendingException();
63     // Make sure to preserve klass.
64     StackHandleScope<1> hs(self);
65     HandleWrapperObjPtr<mirror::Class> h = hs.NewHandleWrapper(&klass);
66     self->PoisonObjectPointers();
67   }
68   auto pre_object_allocated = [&]() REQUIRES_SHARED(Locks::mutator_lock_)
69       REQUIRES(!Roles::uninterruptible_ /* only suspends if kInstrumented */) {
70     if constexpr (kInstrumented) {
71       AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst);
72       if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) {
73         StackHandleScope<1> hs(self);
74         HandleWrapperObjPtr<mirror::Class> h_klass(hs.NewHandleWrapper(&klass));
75         l->PreObjectAllocated(self, h_klass, &byte_count);
76       }
77     }
78   };
79   ObjPtr<mirror::Object> obj;
80   // bytes allocated for the (individual) object.
81   size_t bytes_allocated;
82   size_t usable_size;
83   size_t new_num_bytes_allocated = 0;
84   bool need_gc = false;
85   uint32_t starting_gc_num;  // o.w. GC number at which we observed need for GC.
86   {
87     // Bytes allocated that includes bulk thread-local buffer allocations in addition to direct
88     // non-TLAB object allocations. Only set for non-thread-local allocation,
89     size_t bytes_tl_bulk_allocated = 0u;
90     // Do the initial pre-alloc
91     // TODO: Consider what happens if the allocator is switched while suspended here.
92     pre_object_allocated();
93 
94     // Need to check that we aren't the large object allocator since the large object allocation
95     // code path includes this function. If we didn't check we would have an infinite loop.
96     if (kCheckLargeObject && UNLIKELY(ShouldAllocLargeObject(klass, byte_count))) {
97       // AllocLargeObject can suspend and will recall PreObjectAllocated if needed.
98       obj = AllocLargeObject<kInstrumented, PreFenceVisitor>(self, &klass, byte_count,
99                                                              pre_fence_visitor);
100       if (obj != nullptr) {
101         return obj.Ptr();
102       }
103       // There should be an OOM exception, since we are retrying, clear it.
104       self->ClearException();
105 
106       // If the large object allocation failed, try to use the normal spaces (main space,
107       // non moving space). This can happen if there is significant virtual address space
108       // fragmentation.
109       // kInstrumented may be out of date, so recurse without large object checking, rather than
110       // continue.
111       return AllocObjectWithAllocator</*kInstrumented=*/ true, /*kCheckLargeObject=*/ false>
112           (self, klass, byte_count, GetUpdatedAllocator(allocator), pre_fence_visitor);
113     }
114     ScopedAssertNoThreadSuspension ants("Called PreObjectAllocated, no suspend until alloc");
115     if (IsTLABAllocator(allocator)) {
116       byte_count = RoundUp(byte_count, space::BumpPointerSpace::kAlignment);
117     }
118     // If we have a thread local allocation we don't need to update bytes allocated.
119     if (IsTLABAllocator(allocator) && byte_count <= self->TlabSize()) {
120       obj = self->AllocTlab(byte_count);
121       DCHECK(obj != nullptr) << "AllocTlab can't fail";
122       obj->SetClass(klass);
123       if (kUseBakerReadBarrier) {
124         obj->AssertReadBarrierState();
125       }
126       bytes_allocated = byte_count;
127       usable_size = bytes_allocated;
128       no_suspend_pre_fence_visitor(obj, usable_size);
129       QuasiAtomic::ThreadFenceForConstructor();
130     } else if (
131         !kInstrumented && allocator == kAllocatorTypeRosAlloc &&
132         (obj = rosalloc_space_->AllocThreadLocal(self, byte_count, &bytes_allocated)) != nullptr &&
133         LIKELY(obj != nullptr)) {
134       DCHECK(!is_running_on_memory_tool_);
135       obj->SetClass(klass);
136       if (kUseBakerReadBarrier) {
137         obj->AssertReadBarrierState();
138       }
139       usable_size = bytes_allocated;
140       no_suspend_pre_fence_visitor(obj, usable_size);
141       QuasiAtomic::ThreadFenceForConstructor();
142     } else {
143       obj = TryToAllocate<kInstrumented, false>(self, allocator, byte_count, &bytes_allocated,
144                                                 &usable_size, &bytes_tl_bulk_allocated);
145       if (UNLIKELY(obj == nullptr)) {
146         // AllocateInternalWithGc internally re-allows, and can cause, thread suspension, if
147         // someone instruments the entrypoints or changes the allocator in a suspend point here,
148         // we need to retry the allocation. It will send the pre-alloc event again.
149         obj = AllocateInternalWithGc(self,
150                                      allocator,
151                                      kInstrumented,
152                                      byte_count,
153                                      &bytes_allocated,
154                                      &usable_size,
155                                      &bytes_tl_bulk_allocated,
156                                      &klass);
157         if (obj == nullptr) {
158           // The only way that we can get a null return if there is no pending exception is if the
159           // allocator or instrumentation changed.
160           if (!self->IsExceptionPending()) {
161             // Since we are restarting, allow thread suspension.
162             ScopedAllowThreadSuspension ats;
163             // Get the new class size in case class redefinition changed the class size since alloc
164             // started.
165             int new_byte_count = klass->IsVariableSize()? byte_count : klass->GetObjectSize();
166             // AllocObject will pick up the new allocator type, and instrumented as true is the safe
167             // default.
168             return AllocObjectWithAllocator</*kInstrumented=*/true>(self,
169                                                                     klass,
170                                                                     new_byte_count,
171                                                                     GetUpdatedAllocator(allocator),
172                                                                     pre_fence_visitor);
173           }
174           return nullptr;
175         }
176         // Non-null result implies neither instrumentation nor allocator changed.
177       }
178       DCHECK_GT(bytes_allocated, 0u);
179       DCHECK_GT(usable_size, 0u);
180       obj->SetClass(klass);
181       if (kUseBakerReadBarrier) {
182         obj->AssertReadBarrierState();
183       }
184       if (collector::SemiSpace::kUseRememberedSet &&
185           UNLIKELY(allocator == kAllocatorTypeNonMoving)) {
186         // (Note this if statement will be constant folded away for the fast-path quick entry
187         // points.) Because SetClass() has no write barrier, the GC may need a write barrier in the
188         // case the object is non movable and points to a recently allocated movable class.
189         WriteBarrier::ForFieldWrite(obj, mirror::Object::ClassOffset(), klass);
190       }
191       no_suspend_pre_fence_visitor(obj, usable_size);
192       QuasiAtomic::ThreadFenceForConstructor();
193     }
194     if (bytes_tl_bulk_allocated > 0) {
195       starting_gc_num = GetCurrentGcNum();
196       size_t num_bytes_allocated_before = AddBytesAllocated(bytes_tl_bulk_allocated);
197       new_num_bytes_allocated = num_bytes_allocated_before + bytes_tl_bulk_allocated;
198       // Only trace when we get an increase in the number of bytes allocated. This happens when
199       // obtaining a new TLAB and isn't often enough to hurt performance according to golem.
200       if (region_space_) {
201         // With CC collector, during a GC cycle, the heap usage increases as
202         // there are two copies of evacuated objects. Therefore, add evac-bytes
203         // to the heap size. When the GC cycle is not running, evac-bytes
204         // are 0, as required.
205         TraceHeapSize(new_num_bytes_allocated + region_space_->EvacBytes());
206       } else {
207         TraceHeapSize(new_num_bytes_allocated);
208       }
209       // IsGcConcurrent() isn't known at compile time so we can optimize by not checking it for the
210       // BumpPointer or TLAB allocators. This is nice since it allows the entire if statement to be
211       // optimized out.
212       if (IsGcConcurrent() && UNLIKELY(ShouldConcurrentGCForJava(new_num_bytes_allocated))) {
213         need_gc = true;
214       }
215       GetMetrics()->TotalBytesAllocated()->Add(bytes_tl_bulk_allocated);
216       GetMetrics()->TotalBytesAllocatedDelta()->Add(bytes_tl_bulk_allocated);
217     }
218   }
219   if (kIsDebugBuild && Runtime::Current()->IsStarted()) {
220     CHECK_LE(obj->SizeOf(), usable_size);
221   }
222   // TODO: Deprecate.
223   if (kInstrumented) {
224     if (Runtime::Current()->HasStatsEnabled()) {
225       RuntimeStats* thread_stats = self->GetStats();
226       ++thread_stats->allocated_objects;
227       thread_stats->allocated_bytes += bytes_allocated;
228       RuntimeStats* global_stats = Runtime::Current()->GetStats();
229       ++global_stats->allocated_objects;
230       global_stats->allocated_bytes += bytes_allocated;
231     }
232   } else {
233     DCHECK(!Runtime::Current()->HasStatsEnabled());
234   }
235   if (kInstrumented) {
236     if (IsAllocTrackingEnabled()) {
237       // allocation_records_ is not null since it never becomes null after allocation tracking is
238       // enabled.
239       DCHECK(allocation_records_ != nullptr);
240       allocation_records_->RecordAllocation(self, &obj, bytes_allocated);
241     }
242     AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst);
243     if (l != nullptr) {
244       // Same as above. We assume that a listener that was once stored will never be deleted.
245       // Otherwise we'd have to perform this under a lock.
246       l->ObjectAllocated(self, &obj, bytes_allocated);
247     }
248   } else {
249     DCHECK(!IsAllocTrackingEnabled());
250   }
251   if (AllocatorHasAllocationStack(allocator)) {
252     PushOnAllocationStack(self, &obj);
253   }
254   if (kInstrumented) {
255     if (gc_stress_mode_) {
256       CheckGcStressMode(self, &obj);
257     }
258   } else {
259     DCHECK(!gc_stress_mode_);
260   }
261   if (need_gc) {
262     // Do this only once thread suspension is allowed again, and we're done with kInstrumented.
263     RequestConcurrentGCAndSaveObject(self, /*force_full=*/ false, starting_gc_num, &obj);
264   }
265   VerifyObject(obj);
266   self->VerifyStack();
267   return obj.Ptr();
268 }
269 
270 // The size of a thread-local allocation stack in the number of references.
271 static constexpr size_t kThreadLocalAllocationStackSize = 128;
272 
PushOnAllocationStack(Thread * self,ObjPtr<mirror::Object> * obj)273 inline void Heap::PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj) {
274   if (kUseThreadLocalAllocationStack) {
275     if (UNLIKELY(!self->PushOnThreadLocalAllocationStack(obj->Ptr()))) {
276       PushOnThreadLocalAllocationStackWithInternalGC(self, obj);
277     }
278   } else if (UNLIKELY(!allocation_stack_->AtomicPushBack(obj->Ptr()))) {
279     PushOnAllocationStackWithInternalGC(self, obj);
280   }
281 }
282 
283 template <bool kInstrumented, typename PreFenceVisitor>
AllocLargeObject(Thread * self,ObjPtr<mirror::Class> * klass,size_t byte_count,const PreFenceVisitor & pre_fence_visitor)284 inline mirror::Object* Heap::AllocLargeObject(Thread* self,
285                                               ObjPtr<mirror::Class>* klass,
286                                               size_t byte_count,
287                                               const PreFenceVisitor& pre_fence_visitor) {
288   // Save and restore the class in case it moves.
289   StackHandleScope<1> hs(self);
290   auto klass_wrapper = hs.NewHandleWrapper(klass);
291   mirror::Object* obj = AllocObjectWithAllocator<kInstrumented, false, PreFenceVisitor>
292                         (self, *klass, byte_count, kAllocatorTypeLOS, pre_fence_visitor);
293   // Java Heap Profiler check and sample allocation.
294   if (GetHeapSampler().IsEnabled()) {
295     JHPCheckNonTlabSampleAllocation(self, obj, byte_count);
296   }
297   return obj;
298 }
299 
300 template <const bool kInstrumented, const bool kGrow>
TryToAllocate(Thread * self,AllocatorType allocator_type,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)301 inline mirror::Object* Heap::TryToAllocate(Thread* self,
302                                            AllocatorType allocator_type,
303                                            size_t alloc_size,
304                                            size_t* bytes_allocated,
305                                            size_t* usable_size,
306                                            size_t* bytes_tl_bulk_allocated) {
307   if (allocator_type != kAllocatorTypeRegionTLAB &&
308       allocator_type != kAllocatorTypeTLAB &&
309       allocator_type != kAllocatorTypeRosAlloc &&
310       UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, alloc_size, kGrow))) {
311     return nullptr;
312   }
313   mirror::Object* ret;
314   switch (allocator_type) {
315     case kAllocatorTypeBumpPointer: {
316       DCHECK(bump_pointer_space_ != nullptr);
317       alloc_size = RoundUp(alloc_size, space::BumpPointerSpace::kAlignment);
318       ret = bump_pointer_space_->AllocNonvirtual(alloc_size);
319       if (LIKELY(ret != nullptr)) {
320         *bytes_allocated = alloc_size;
321         *usable_size = alloc_size;
322         *bytes_tl_bulk_allocated = alloc_size;
323       }
324       break;
325     }
326     case kAllocatorTypeRosAlloc: {
327       if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) {
328         // If running on ASan, we should be using the instrumented path.
329         size_t max_bytes_tl_bulk_allocated = rosalloc_space_->MaxBytesBulkAllocatedFor(alloc_size);
330         if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type,
331                                                max_bytes_tl_bulk_allocated,
332                                                kGrow))) {
333           return nullptr;
334         }
335         ret = rosalloc_space_->Alloc(self, alloc_size, bytes_allocated, usable_size,
336                                      bytes_tl_bulk_allocated);
337       } else {
338         DCHECK(!is_running_on_memory_tool_);
339         size_t max_bytes_tl_bulk_allocated =
340             rosalloc_space_->MaxBytesBulkAllocatedForNonvirtual(alloc_size);
341         if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type,
342                                                max_bytes_tl_bulk_allocated,
343                                                kGrow))) {
344           return nullptr;
345         }
346         if (!kInstrumented) {
347           DCHECK(!rosalloc_space_->CanAllocThreadLocal(self, alloc_size));
348         }
349         ret = rosalloc_space_->AllocNonvirtual(self,
350                                                alloc_size,
351                                                bytes_allocated,
352                                                usable_size,
353                                                bytes_tl_bulk_allocated);
354       }
355       break;
356     }
357     case kAllocatorTypeDlMalloc: {
358       if (kInstrumented && UNLIKELY(is_running_on_memory_tool_)) {
359         // If running on ASan, we should be using the instrumented path.
360         ret = dlmalloc_space_->Alloc(self,
361                                      alloc_size,
362                                      bytes_allocated,
363                                      usable_size,
364                                      bytes_tl_bulk_allocated);
365       } else {
366         DCHECK(!is_running_on_memory_tool_);
367         ret = dlmalloc_space_->AllocNonvirtual(self,
368                                                alloc_size,
369                                                bytes_allocated,
370                                                usable_size,
371                                                bytes_tl_bulk_allocated);
372       }
373       break;
374     }
375     case kAllocatorTypeNonMoving: {
376       ret = non_moving_space_->Alloc(self,
377                                      alloc_size,
378                                      bytes_allocated,
379                                      usable_size,
380                                      bytes_tl_bulk_allocated);
381       break;
382     }
383     case kAllocatorTypeLOS: {
384       ret = large_object_space_->Alloc(self,
385                                        alloc_size,
386                                        bytes_allocated,
387                                        usable_size,
388                                        bytes_tl_bulk_allocated);
389       // Note that the bump pointer spaces aren't necessarily next to
390       // the other continuous spaces like the non-moving alloc space or
391       // the zygote space.
392       DCHECK(ret == nullptr || large_object_space_->Contains(ret));
393       break;
394     }
395     case kAllocatorTypeRegion: {
396       DCHECK(region_space_ != nullptr);
397       alloc_size = RoundUp(alloc_size, space::RegionSpace::kAlignment);
398       ret = region_space_->AllocNonvirtual<false>(alloc_size,
399                                                   bytes_allocated,
400                                                   usable_size,
401                                                   bytes_tl_bulk_allocated);
402       break;
403     }
404     case kAllocatorTypeTLAB:
405       FALLTHROUGH_INTENDED;
406     case kAllocatorTypeRegionTLAB: {
407       DCHECK_ALIGNED(alloc_size, kObjectAlignment);
408       static_assert(space::RegionSpace::kAlignment == space::BumpPointerSpace::kAlignment,
409                     "mismatched alignments");
410       static_assert(kObjectAlignment == space::BumpPointerSpace::kAlignment,
411                     "mismatched alignments");
412       if (UNLIKELY(self->TlabSize() < alloc_size)) {
413         return AllocWithNewTLAB(self,
414                                 allocator_type,
415                                 alloc_size,
416                                 kGrow,
417                                 bytes_allocated,
418                                 usable_size,
419                                 bytes_tl_bulk_allocated);
420       }
421       // The allocation can't fail.
422       ret = self->AllocTlab(alloc_size);
423       DCHECK(ret != nullptr);
424       *bytes_allocated = alloc_size;
425       *bytes_tl_bulk_allocated = 0;  // Allocated in an existing buffer.
426       *usable_size = alloc_size;
427       break;
428     }
429     default: {
430       LOG(FATAL) << "Invalid allocator type";
431       ret = nullptr;
432     }
433   }
434   return ret;
435 }
436 
ShouldAllocLargeObject(ObjPtr<mirror::Class> c,size_t byte_count)437 inline bool Heap::ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const {
438   // We need to have a zygote space or else our newly allocated large object can end up in the
439   // Zygote resulting in it being prematurely freed.
440   // We can only do this for primitive objects since large objects will not be within the card table
441   // range. This also means that we rely on SetClass not dirtying the object's card.
442   return byte_count >= large_object_threshold_ && (c->IsPrimitiveArray() || c->IsStringClass());
443 }
444 
IsOutOfMemoryOnAllocation(AllocatorType allocator_type,size_t alloc_size,bool grow)445 inline bool Heap::IsOutOfMemoryOnAllocation([[maybe_unused]] AllocatorType allocator_type,
446                                             size_t alloc_size,
447                                             bool grow) {
448   size_t old_target = target_footprint_.load(std::memory_order_relaxed);
449   while (true) {
450     size_t old_allocated = num_bytes_allocated_.load(std::memory_order_relaxed);
451     size_t new_footprint = old_allocated + alloc_size;
452     // Tests against heap limits are inherently approximate, since multiple allocations may
453     // race, and this is not atomic with the allocation.
454     if (UNLIKELY(new_footprint <= old_target)) {
455       return false;
456     } else if (UNLIKELY(new_footprint > growth_limit_)) {
457       return true;
458     }
459     // We are between target_footprint_ and growth_limit_ .
460     if (IsGcConcurrent()) {
461       return false;
462     } else {
463       if (grow) {
464         if (target_footprint_.compare_exchange_weak(/*inout ref*/old_target, new_footprint,
465                                                     std::memory_order_relaxed)) {
466           VlogHeapGrowth(old_target, new_footprint, alloc_size);
467           return false;
468         }  // else try again.
469       } else {
470         return true;
471       }
472     }
473   }
474 }
475 
ShouldConcurrentGCForJava(size_t new_num_bytes_allocated)476 inline bool Heap::ShouldConcurrentGCForJava(size_t new_num_bytes_allocated) {
477   // For a Java allocation, we only check whether the number of Java allocated bytes excceeds a
478   // threshold. By not considering native allocation here, we (a) ensure that Java heap bounds are
479   // maintained, and (b) reduce the cost of the check here.
480   return new_num_bytes_allocated >= concurrent_start_bytes_;
481 }
482 
483 }  // namespace gc
484 }  // namespace art
485 
486 #endif  // ART_RUNTIME_GC_HEAP_INL_H_
487