1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_writer.h"
18
19 #include <lz4.h>
20 #include <lz4hc.h>
21 #include <sys/stat.h>
22 #include <zlib.h>
23
24 #include <charconv>
25 #include <memory>
26 #include <numeric>
27 #include <vector>
28
29 #include "android-base/strings.h"
30 #include "art_field-inl.h"
31 #include "art_method-inl.h"
32 #include "base/callee_save_type.h"
33 #include "base/globals.h"
34 #include "base/logging.h" // For VLOG.
35 #include "base/pointer_size.h"
36 #include "base/stl_util.h"
37 #include "base/unix_file/fd_file.h"
38 #include "class_linker-inl.h"
39 #include "class_root-inl.h"
40 #include "dex/dex_file-inl.h"
41 #include "dex/dex_file_types.h"
42 #include "driver/compiler_options.h"
43 #include "elf/elf_utils.h"
44 #include "entrypoints/entrypoint_utils-inl.h"
45 #include "gc/accounting/card_table-inl.h"
46 #include "gc/accounting/heap_bitmap.h"
47 #include "gc/accounting/space_bitmap-inl.h"
48 #include "gc/collector/concurrent_copying.h"
49 #include "gc/heap-visit-objects-inl.h"
50 #include "gc/heap.h"
51 #include "gc/space/large_object_space.h"
52 #include "gc/space/region_space.h"
53 #include "gc/space/space-inl.h"
54 #include "gc/verification.h"
55 #include "handle_scope-inl.h"
56 #include "imt_conflict_table.h"
57 #include "indirect_reference_table-inl.h"
58 #include "intern_table-inl.h"
59 #include "jni/java_vm_ext-inl.h"
60 #include "jni/jni_internal.h"
61 #include "linear_alloc.h"
62 #include "lock_word.h"
63 #include "mirror/array-inl.h"
64 #include "mirror/class-inl.h"
65 #include "mirror/class_ext-inl.h"
66 #include "mirror/class_loader.h"
67 #include "mirror/dex_cache-inl.h"
68 #include "mirror/dex_cache.h"
69 #include "mirror/executable.h"
70 #include "mirror/method.h"
71 #include "mirror/object-inl.h"
72 #include "mirror/object-refvisitor-inl.h"
73 #include "mirror/object_array-alloc-inl.h"
74 #include "mirror/object_array-inl.h"
75 #include "mirror/string-inl.h"
76 #include "mirror/var_handle.h"
77 #include "nterp_helpers-inl.h"
78 #include "nterp_helpers.h"
79 #include "oat/elf_file.h"
80 #include "oat/image-inl.h"
81 #include "oat/oat.h"
82 #include "oat/oat_file.h"
83 #include "oat/oat_file_manager.h"
84 #include "optimizing/intrinsic_objects.h"
85 #include "runtime.h"
86 #include "scoped_thread_state_change-inl.h"
87 #include "subtype_check.h"
88 #include "thread-current-inl.h" // For AssertOnly1Thread.
89 #include "thread_list.h" // For AssertOnly1Thread.
90 #include "well_known_classes-inl.h"
91
92 using ::art::mirror::Class;
93 using ::art::mirror::DexCache;
94 using ::art::mirror::Object;
95 using ::art::mirror::ObjectArray;
96 using ::art::mirror::String;
97
98 namespace art {
99 namespace linker {
100
101 // The actual value of `kImageClassTableMinLoadFactor` is irrelevant because image class tables
102 // are never resized, but we still need to pass a reasonable value to the constructor.
103 constexpr double kImageClassTableMinLoadFactor = 0.5;
104 // We use `kImageClassTableMaxLoadFactor` to determine the buffer size for image class tables
105 // to make them full. We never insert additional elements to them, so we do not want to waste
106 // extra memory. And unlike runtime class tables, we do not want this to depend on runtime
107 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
108 constexpr double kImageClassTableMaxLoadFactor = 0.6;
109
110 // The actual value of `kImageInternTableMinLoadFactor` is irrelevant because image intern tables
111 // are never resized, but we still need to pass a reasonable value to the constructor.
112 constexpr double kImageInternTableMinLoadFactor = 0.5;
113 // We use `kImageInternTableMaxLoadFactor` to determine the buffer size for image intern tables
114 // to make them full. We never insert additional elements to them, so we do not want to waste
115 // extra memory. And unlike runtime intern tables, we do not want this to depend on runtime
116 // properties (see `Runtime::GetHashTableMaxLoadFactor()` checking for low memory mode).
117 constexpr double kImageInternTableMaxLoadFactor = 0.6;
118
119 // Separate objects into multiple bins to optimize dirty memory use.
120 static constexpr bool kBinObjects = true;
121
122 namespace {
123
124 // Dirty object data from dirty-image-objects.
125 struct DirtyEntry {
126 // Reference field name and type.
127 struct RefInfo {
128 std::string_view name;
129 std::string_view type;
130 };
131
132 std::string_view class_descriptor;
133 // A "path" from class object to the dirty object. If empty -- the class itself is dirty.
134 std::vector<RefInfo> reference_path;
135 uint32_t sort_key = std::numeric_limits<uint32_t>::max();
136 };
137
138 // Parse dirty-image-object line of the format:
139 // <class_descriptor>[.<reference_field_name>:<reference_field_type>]* [<sort_key>]
ParseDirtyEntry(std::string_view entry_str)140 std::optional<DirtyEntry> ParseDirtyEntry(std::string_view entry_str) {
141 DirtyEntry entry;
142 std::vector<std::string_view> tokens;
143 Split(entry_str, ' ', &tokens);
144 if (tokens.empty()) {
145 // entry_str is empty.
146 return std::nullopt;
147 }
148
149 std::string_view path_to_root = tokens[0];
150 // Parse sort_key if present, otherwise it will be uint32::max by default.
151 if (tokens.size() > 1) {
152 std::from_chars_result res =
153 std::from_chars(tokens[1].data(), tokens[1].data() + tokens[1].size(), entry.sort_key);
154 if (res.ec != std::errc()) {
155 LOG(WARNING) << "Failed to parse dirty object sort key: \"" << entry_str << "\"";
156 return std::nullopt;
157 }
158 }
159
160 std::vector<std::string_view> path_components;
161 Split(path_to_root, '.', &path_components);
162 if (path_components.empty()) {
163 return std::nullopt;
164 }
165 entry.class_descriptor = path_components[0];
166 for (size_t i = 1; i < path_components.size(); ++i) {
167 std::string_view name_and_type = path_components[i];
168 std::vector<std::string_view> ref_data;
169 Split(name_and_type, ':', &ref_data);
170 if (ref_data.size() != 2) {
171 LOG(WARNING) << "Failed to parse dirty object reference field: \"" << entry_str << "\"";
172 return std::nullopt;
173 }
174
175 std::string_view field_name = ref_data[0];
176 std::string_view field_type = ref_data[1];
177 entry.reference_path.push_back({field_name, field_type});
178 }
179
180 return entry;
181 }
182
183 // Calls VisitFunc for each non-null (reference)Object/ArtField pair.
184 // Doesn't work with ObjectArray instances, because array elements don't have ArtField.
185 class ReferenceFieldVisitor {
186 public:
187 using VisitFunc = std::function<void(mirror::Object&, ArtField&)>;
188
ReferenceFieldVisitor(VisitFunc visit_func)189 explicit ReferenceFieldVisitor(VisitFunc visit_func) : visit_func_(std::move(visit_func)) {}
190
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const191 void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool is_static) const
192 REQUIRES_SHARED(Locks::mutator_lock_) {
193 CHECK(!obj->IsObjectArray());
194 mirror::Object* field_obj =
195 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
196 // Skip fields that contain null.
197 if (field_obj == nullptr) {
198 return;
199 }
200 // Skip self references.
201 if (field_obj == obj.Ptr()) {
202 return;
203 }
204
205 ArtField* field = nullptr;
206 // Don't use Object::FindFieldByOffset, because it can't find instance fields in classes.
207 // field = obj->FindFieldByOffset(offset);
208 if (is_static) {
209 CHECK(obj->IsClass());
210 field = ArtField::FindStaticFieldWithOffset(obj->AsClass(), offset.Uint32Value());
211 } else {
212 field = ArtField::
213 FindInstanceFieldWithOffset</*kExactOffset*/ true, kVerifyNone, kWithoutReadBarrier>(
214 obj->GetClass<kVerifyNone, kWithoutReadBarrier>(), offset.Uint32Value());
215 }
216 DCHECK(field != nullptr);
217 visit_func_(*field_obj, *field);
218 }
219
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const220 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
221 REQUIRES_SHARED(Locks::mutator_lock_) {
222 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
223 }
224
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const225 void VisitRootIfNonNull([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const
226 REQUIRES_SHARED(Locks::mutator_lock_) {
227 DCHECK(false) << "ReferenceFieldVisitor shouldn't visit roots";
228 }
229
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const230 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const
231 REQUIRES_SHARED(Locks::mutator_lock_) {
232 DCHECK(false) << "ReferenceFieldVisitor shouldn't visit roots";
233 }
234
235 private:
236 VisitFunc visit_func_;
237 };
238
239 // Finds Class objects for descriptors of dirty entries.
240 // Map keys are string_views, that point to strings from `dirty_image_objects`.
241 // If there is no Class for a descriptor, the result map will have an entry with nullptr value.
FindClassesByDescriptor(const std::vector<std::string> & dirty_image_objects)242 static HashMap<std::string_view, mirror::Object*> FindClassesByDescriptor(
243 const std::vector<std::string>& dirty_image_objects) REQUIRES_SHARED(Locks::mutator_lock_) {
244 HashMap<std::string_view, mirror::Object*> descriptor_to_class;
245 // Collect class descriptors that are used in dirty-image-objects.
246 for (const std::string& entry : dirty_image_objects) {
247 auto it = std::find_if(entry.begin(), entry.end(), [](char c) { return c == '.' || c == ' '; });
248 size_t descriptor_len = std::distance(entry.begin(), it);
249
250 std::string_view descriptor = std::string_view(entry).substr(0, descriptor_len);
251 descriptor_to_class.insert(std::make_pair(descriptor, nullptr));
252 }
253
254 // Find Class objects for collected descriptors.
255 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
256 DCHECK(obj != nullptr);
257 if (obj->IsClass()) {
258 std::string temp;
259 const char* descriptor = obj->AsClass()->GetDescriptor(&temp);
260 auto it = descriptor_to_class.find(descriptor);
261 if (it != descriptor_to_class.end()) {
262 it->second = obj;
263 }
264 }
265 };
266 Runtime::Current()->GetHeap()->VisitObjects(visitor);
267
268 return descriptor_to_class;
269 }
270
271 // Get all objects that match dirty_entries by path from class.
272 // Map values are sort_keys from DirtyEntry.
MatchDirtyObjectPaths(const std::vector<std::string> & dirty_image_objects)273 HashMap<mirror::Object*, uint32_t> MatchDirtyObjectPaths(
274 const std::vector<std::string>& dirty_image_objects) REQUIRES_SHARED(Locks::mutator_lock_) {
275 auto get_array_element = [](mirror::Object* cur_obj, const DirtyEntry::RefInfo& ref_info)
276 REQUIRES_SHARED(Locks::mutator_lock_) -> mirror::Object* {
277 if (!cur_obj->IsObjectArray()) {
278 return nullptr;
279 }
280 int32_t idx = 0;
281 std::from_chars_result idx_parse_res =
282 std::from_chars(ref_info.name.data(), ref_info.name.data() + ref_info.name.size(), idx);
283 if (idx_parse_res.ec != std::errc()) {
284 return nullptr;
285 }
286
287 ObjPtr<ObjectArray<mirror::Object>> array = cur_obj->AsObjectArray<mirror::Object>();
288 if (idx < 0 || idx >= array->GetLength()) {
289 return nullptr;
290 }
291
292 ObjPtr<mirror::Object> next_obj =
293 array->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(idx);
294 if (next_obj == nullptr) {
295 return nullptr;
296 }
297
298 std::string temp;
299 if (next_obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->GetDescriptor(&temp) !=
300 ref_info.type) {
301 return nullptr;
302 }
303 return next_obj.Ptr();
304 };
305 auto get_object_field =
306 [](mirror::Object* cur_obj, const DirtyEntry::RefInfo& ref_info)
307 REQUIRES_SHARED(Locks::mutator_lock_) {
308 mirror::Object* next_obj = nullptr;
309 ReferenceFieldVisitor::VisitFunc visit_func =
310 [&](mirror::Object& ref_obj, ArtField& ref_field)
311 REQUIRES_SHARED(Locks::mutator_lock_) {
312 if (ref_field.GetName() == ref_info.name &&
313 ref_field.GetTypeDescriptor() == ref_info.type) {
314 next_obj = &ref_obj;
315 }
316 };
317 ReferenceFieldVisitor visitor(visit_func);
318 cur_obj->VisitReferences</*kVisitNativeRoots=*/false, kVerifyNone, kWithoutReadBarrier>(
319 visitor, visitor);
320
321 return next_obj;
322 };
323
324 HashMap<mirror::Object*, uint32_t> dirty_objects;
325 const HashMap<std::string_view, mirror::Object*> descriptor_to_class =
326 FindClassesByDescriptor(dirty_image_objects);
327 for (const std::string& entry_str : dirty_image_objects) {
328 const std::optional<DirtyEntry> entry = ParseDirtyEntry(entry_str);
329 if (entry == std::nullopt) {
330 continue;
331 }
332
333 auto root_it = descriptor_to_class.find(entry->class_descriptor);
334 if (root_it == descriptor_to_class.end() || root_it->second == nullptr) {
335 LOG(WARNING) << "Class not found: \"" << entry->class_descriptor << "\"";
336 continue;
337 }
338
339 mirror::Object* cur_obj = root_it->second;
340 for (const DirtyEntry::RefInfo& ref_info : entry->reference_path) {
341 if (std::all_of(
342 ref_info.name.begin(), ref_info.name.end(), [](char c) { return std::isdigit(c); })) {
343 cur_obj = get_array_element(cur_obj, ref_info);
344 } else {
345 cur_obj = get_object_field(cur_obj, ref_info);
346 }
347 if (cur_obj == nullptr) {
348 LOG(WARNING) << ART_FORMAT("Failed to find field \"{}:{}\", entry: \"{}\"",
349 ref_info.name,
350 ref_info.type,
351 entry_str);
352 break;
353 }
354 }
355 if (cur_obj == nullptr) {
356 continue;
357 }
358
359 dirty_objects.insert(std::make_pair(cur_obj, entry->sort_key));
360 }
361
362 return dirty_objects;
363 }
364
365 } // namespace
366
AllocateBootImageLiveObjects(Thread * self,Runtime * runtime)367 static ObjPtr<mirror::ObjectArray<mirror::Object>> AllocateBootImageLiveObjects(
368 Thread* self, Runtime* runtime) REQUIRES_SHARED(Locks::mutator_lock_) {
369 ClassLinker* class_linker = runtime->GetClassLinker();
370 // The objects used for intrinsics must remain live even if references
371 // to them are removed using reflection. Image roots are not accessible through reflection,
372 // so the array we construct here shall keep them alive.
373 StackHandleScope<1> hs(self);
374 size_t live_objects_size =
375 enum_cast<size_t>(ImageHeader::kIntrinsicObjectsStart) +
376 IntrinsicObjects::GetNumberOfIntrinsicObjects();
377 ObjPtr<mirror::ObjectArray<mirror::Object>> live_objects =
378 mirror::ObjectArray<mirror::Object>::Alloc(
379 self, GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker), live_objects_size);
380 if (live_objects == nullptr) {
381 return nullptr;
382 }
383 int32_t index = 0u;
384 auto set_entry = [&](ImageHeader::BootImageLiveObjects entry,
385 ObjPtr<mirror::Object> value) REQUIRES_SHARED(Locks::mutator_lock_) {
386 DCHECK_EQ(index, enum_cast<int32_t>(entry));
387 live_objects->Set</*kTransacrionActive=*/ false>(index, value);
388 ++index;
389 };
390 set_entry(ImageHeader::kOomeWhenThrowingException,
391 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
392 set_entry(ImageHeader::kOomeWhenThrowingOome,
393 runtime->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
394 set_entry(ImageHeader::kOomeWhenHandlingStackOverflow,
395 runtime->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
396 set_entry(ImageHeader::kNoClassDefFoundError, runtime->GetPreAllocatedNoClassDefFoundError());
397 set_entry(ImageHeader::kClearedJniWeakSentinel, runtime->GetSentinel().Read());
398
399 DCHECK_EQ(index, enum_cast<int32_t>(ImageHeader::kIntrinsicObjectsStart));
400 IntrinsicObjects::FillIntrinsicObjects(live_objects, index);
401 return live_objects;
402 }
403
404 template <typename MirrorType>
DecodeGlobalWithoutRB(JavaVMExt * vm,jobject obj)405 ObjPtr<MirrorType> ImageWriter::DecodeGlobalWithoutRB(JavaVMExt* vm, jobject obj) {
406 DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kGlobal);
407 return ObjPtr<MirrorType>::DownCast(vm->globals_.Get<kWithoutReadBarrier>(obj));
408 }
409
410 template <typename MirrorType>
DecodeWeakGlobalWithoutRB(JavaVMExt * vm,Thread * self,jobject obj)411 ObjPtr<MirrorType> ImageWriter::DecodeWeakGlobalWithoutRB(
412 JavaVMExt* vm, Thread* self, jobject obj) {
413 DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(obj), kWeakGlobal);
414 DCHECK(vm->MayAccessWeakGlobals(self));
415 return ObjPtr<MirrorType>::DownCast(vm->weak_globals_.Get<kWithoutReadBarrier>(obj));
416 }
417
GetAppClassLoader() const418 ObjPtr<mirror::ClassLoader> ImageWriter::GetAppClassLoader() const
419 REQUIRES_SHARED(Locks::mutator_lock_) {
420 return compiler_options_.IsAppImage()
421 ? ObjPtr<mirror::ClassLoader>::DownCast(Thread::Current()->DecodeJObject(app_class_loader_))
422 : nullptr;
423 }
424
IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const425 bool ImageWriter::IsImageDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
426 // For boot image, we keep all dex caches.
427 if (compiler_options_.IsBootImage()) {
428 return true;
429 }
430 // Dex caches already in the boot image do not belong to the image being written.
431 if (IsInBootImage(dex_cache.Ptr())) {
432 return false;
433 }
434 // Dex caches for the boot class path components that are not part of the boot image
435 // cannot be garbage collected in PrepareImageAddressSpace() but we do not want to
436 // include them in the app image.
437 if (!ContainsElement(compiler_options_.GetDexFilesForOatFile(), dex_cache->GetDexFile())) {
438 return false;
439 }
440 return true;
441 }
442
ClearDexFileCookies()443 static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
444 auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
445 DCHECK(obj != nullptr);
446 Class* klass = obj->GetClass();
447 if (klass == WellKnownClasses::dalvik_system_DexFile) {
448 ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie;
449 // Null out the cookie to enable determinism. b/34090128
450 field->SetObject</*kTransactionActive*/false>(obj, nullptr);
451 }
452 };
453 Runtime::Current()->GetHeap()->VisitObjects(visitor);
454 }
455
PrepareImageAddressSpace(TimingLogger * timings)456 bool ImageWriter::PrepareImageAddressSpace(TimingLogger* timings) {
457 Thread* const self = Thread::Current();
458
459 gc::Heap* const heap = Runtime::Current()->GetHeap();
460 {
461 ScopedObjectAccess soa(self);
462 {
463 TimingLogger::ScopedTiming t("PruneNonImageClasses", timings);
464 PruneNonImageClasses(); // Remove junk
465 }
466
467 if (UNLIKELY(!CreateImageRoots())) {
468 self->AssertPendingOOMException();
469 self->ClearException();
470 return false;
471 }
472
473 if (compiler_options_.IsAppImage()) {
474 TimingLogger::ScopedTiming t("ClearDexFileCookies", timings);
475 // Clear dex file cookies for app images to enable app image determinism. This is required
476 // since the cookie field contains long pointers to DexFiles which are not deterministic.
477 // b/34090128
478 ClearDexFileCookies();
479 }
480 }
481
482 {
483 TimingLogger::ScopedTiming t("CollectGarbage", timings);
484 heap->CollectGarbage(/* clear_soft_references */ false); // Remove garbage.
485 }
486
487 if (kIsDebugBuild) {
488 ScopedObjectAccess soa(self);
489 CheckNonImageClassesRemoved();
490 }
491
492 // From this point on, there should be no GC, so we should not use unnecessary read barriers.
493 ScopedDebugDisallowReadBarriers sddrb(self);
494
495 {
496 // All remaining weak interns are referenced. Promote them to strong interns. Whether a
497 // string was strongly or weakly interned, we shall make it strongly interned in the image.
498 TimingLogger::ScopedTiming t("PromoteInterns", timings);
499 ScopedObjectAccess soa(self);
500 PromoteWeakInternsToStrong(self);
501 }
502
503 {
504 TimingLogger::ScopedTiming t("CalculateNewObjectOffsets", timings);
505 ScopedObjectAccess soa(self);
506 CalculateNewObjectOffsets();
507 }
508
509 // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
510 // bin size sums being calculated.
511 TimingLogger::ScopedTiming t("AllocMemory", timings);
512 return AllocMemory();
513 }
514
CopyMetadata()515 void ImageWriter::CopyMetadata() {
516 DCHECK(compiler_options_.IsAppImage());
517 CHECK_EQ(image_infos_.size(), 1u);
518
519 const ImageInfo& image_info = image_infos_.back();
520 dchecked_vector<ImageSection> image_sections = image_info.CreateImageSections().second;
521
522 auto* sfo_section_base = reinterpret_cast<AppImageReferenceOffsetInfo*>(
523 image_info.image_.Begin() +
524 image_sections[ImageHeader::kSectionStringReferenceOffsets].Offset());
525
526 std::copy(image_info.string_reference_offsets_.begin(),
527 image_info.string_reference_offsets_.end(),
528 sfo_section_base);
529 }
530
531 // NO_THREAD_SAFETY_ANALYSIS: Avoid locking the `Locks::intern_table_lock_` while single-threaded.
IsStronglyInternedString(ObjPtr<mirror::String> str)532 bool ImageWriter::IsStronglyInternedString(ObjPtr<mirror::String> str) NO_THREAD_SAFETY_ANALYSIS {
533 uint32_t hash = static_cast<uint32_t>(str->GetStoredHashCode());
534 if (hash == 0u && str->ComputeHashCode() != 0) {
535 // A string with uninitialized hash code cannot be interned.
536 return false;
537 }
538 InternTable* intern_table = Runtime::Current()->GetInternTable();
539 for (InternTable::Table::InternalTable& table : intern_table->strong_interns_.tables_) {
540 auto it = table.set_.FindWithHash(GcRoot<mirror::String>(str), hash);
541 if (it != table.set_.end()) {
542 return it->Read<kWithoutReadBarrier>() == str;
543 }
544 }
545 return false;
546 }
547
IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const548 bool ImageWriter::IsInternedAppImageStringReference(ObjPtr<mirror::Object> referred_obj) const {
549 return referred_obj != nullptr &&
550 !IsInBootImage(referred_obj.Ptr()) &&
551 referred_obj->IsString() &&
552 IsStronglyInternedString(referred_obj->AsString());
553 }
554
Write(int image_fd,const std::vector<std::string> & image_filenames,size_t component_count)555 bool ImageWriter::Write(int image_fd,
556 const std::vector<std::string>& image_filenames,
557 size_t component_count) {
558 // If image_fd or oat_fd are not File::kInvalidFd then we may have empty strings in
559 // image_filenames or oat_filenames.
560 CHECK(!image_filenames.empty());
561 if (image_fd != File::kInvalidFd) {
562 CHECK_EQ(image_filenames.size(), 1u);
563 }
564 DCHECK(!oat_filenames_.empty());
565 CHECK_EQ(image_filenames.size(), oat_filenames_.size());
566
567 Thread* const self = Thread::Current();
568 ScopedDebugDisallowReadBarriers sddrb(self);
569 {
570 ScopedObjectAccess soa(self);
571 for (size_t i = 0; i < oat_filenames_.size(); ++i) {
572 CreateHeader(i, component_count);
573 CopyAndFixupNativeData(i);
574 CopyAndFixupJniStubMethods(i);
575 }
576 }
577
578 {
579 // TODO: heap validation can't handle these fix up passes.
580 ScopedObjectAccess soa(self);
581 Runtime::Current()->GetHeap()->DisableObjectValidation();
582 CopyAndFixupObjects();
583 }
584
585 if (compiler_options_.IsAppImage()) {
586 CopyMetadata();
587 }
588
589 // Primary image header shall be written last for two reasons. First, this ensures
590 // that we shall not end up with a valid primary image and invalid secondary image.
591 // Second, its checksum shall include the checksums of the secondary images (XORed).
592 // This way only the primary image checksum needs to be checked to determine whether
593 // any of the images or oat files are out of date. (Oat file checksums are included
594 // in the image checksum calculation.)
595 ImageHeader* primary_header = reinterpret_cast<ImageHeader*>(image_infos_[0].image_.Begin());
596 ImageFileGuard primary_image_file;
597 for (size_t i = 0; i < image_filenames.size(); ++i) {
598 const std::string& image_filename = image_filenames[i];
599 ImageInfo& image_info = GetImageInfo(i);
600 ImageFileGuard image_file;
601 if (image_fd != File::kInvalidFd) {
602 // Ignore image_filename, it is supplied only for better diagnostic.
603 image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
604 // Empty the file in case it already exists.
605 if (image_file != nullptr) {
606 TEMP_FAILURE_RETRY(image_file->SetLength(0));
607 TEMP_FAILURE_RETRY(image_file->Flush());
608 }
609 } else {
610 image_file.reset(OS::CreateEmptyFile(image_filename.c_str()));
611 }
612
613 if (image_file == nullptr) {
614 LOG(ERROR) << "Failed to open image file " << image_filename;
615 return false;
616 }
617
618 // Make file world readable if we have created it, i.e. when not passed as file descriptor.
619 if (image_fd == -1 && !compiler_options_.IsAppImage() && fchmod(image_file->Fd(), 0644) != 0) {
620 PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
621 return false;
622 }
623
624 // Image data size excludes the bitmap and the header.
625 ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
626 std::string error_msg;
627 if (!image_header->WriteData(image_file,
628 image_info.image_.Begin(),
629 reinterpret_cast<const uint8_t*>(image_info.image_bitmap_.Begin()),
630 image_storage_mode_,
631 compiler_options_.MaxImageBlockSize(),
632 /* update_checksum= */ true,
633 &error_msg)) {
634 LOG(ERROR) << error_msg;
635 return false;
636 }
637
638 // Write header last in case the compiler gets killed in the middle of image writing.
639 // We do not want to have a corrupted image with a valid header.
640 // Delay the writing of the primary image header until after writing secondary images.
641 if (i == 0u) {
642 primary_image_file = std::move(image_file);
643 } else {
644 if (!image_file.WriteHeaderAndClose(image_filename, image_header, &error_msg)) {
645 LOG(ERROR) << error_msg;
646 return false;
647 }
648 // Update the primary image checksum with the secondary image checksum.
649 primary_header->SetImageChecksum(
650 primary_header->GetImageChecksum() ^ image_header->GetImageChecksum());
651 }
652 }
653 DCHECK(primary_image_file != nullptr);
654 std::string error_msg;
655 if (!primary_image_file.WriteHeaderAndClose(image_filenames[0], primary_header, &error_msg)) {
656 LOG(ERROR) << error_msg;
657 return false;
658 }
659
660 return true;
661 }
662
GetImageOffset(mirror::Object * object,size_t oat_index) const663 size_t ImageWriter::GetImageOffset(mirror::Object* object, size_t oat_index) const {
664 BinSlot bin_slot = GetImageBinSlot(object, oat_index);
665 const ImageInfo& image_info = GetImageInfo(oat_index);
666 size_t offset = image_info.GetBinSlotOffset(bin_slot.GetBin()) + bin_slot.GetOffset();
667 DCHECK_LT(offset, image_info.image_end_);
668 return offset;
669 }
670
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)671 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
672 DCHECK(object != nullptr);
673 DCHECK(!IsImageBinSlotAssigned(object));
674
675 // Before we stomp over the lock word, save the hash code for later.
676 LockWord lw(object->GetLockWord(false));
677 switch (lw.GetState()) {
678 case LockWord::kFatLocked:
679 FALLTHROUGH_INTENDED;
680 case LockWord::kThinLocked: {
681 std::ostringstream oss;
682 bool thin = (lw.GetState() == LockWord::kThinLocked);
683 oss << (thin ? "Thin" : "Fat")
684 << " locked object " << object << "(" << object->PrettyTypeOf()
685 << ") found during object copy";
686 if (thin) {
687 oss << ". Lock owner:" << lw.ThinLockOwner();
688 }
689 LOG(FATAL) << oss.str();
690 UNREACHABLE();
691 }
692 case LockWord::kUnlocked:
693 // No hash, don't need to save it.
694 break;
695 case LockWord::kHashCode:
696 DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
697 saved_hashcode_map_.insert(std::make_pair(object, lw.GetHashCode()));
698 break;
699 default:
700 LOG(FATAL) << "UNREACHABLE";
701 UNREACHABLE();
702 }
703 object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()),
704 /*as_volatile=*/ false);
705 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
706 DCHECK(IsImageBinSlotAssigned(object));
707 }
708
GetImageBin(mirror::Object * object)709 ImageWriter::Bin ImageWriter::GetImageBin(mirror::Object* object) {
710 DCHECK(object != nullptr);
711
712 // The magic happens here. We segregate objects into different bins based
713 // on how likely they are to get dirty at runtime.
714 //
715 // Likely-to-dirty objects get packed together into the same bin so that
716 // at runtime their page dirtiness ratio (how many dirty objects a page has) is
717 // maximized.
718 //
719 // This means more pages will stay either clean or shared dirty (with zygote) and
720 // the app will use less of its own (private) memory.
721 Bin bin = Bin::kRegular;
722
723 if (kBinObjects) {
724 //
725 // Changing the bin of an object is purely a memory-use tuning.
726 // It has no change on runtime correctness.
727 //
728 // Memory analysis has determined that the following types of objects get dirtied
729 // the most:
730 //
731 // * Class'es which are verified [their clinit runs only at runtime]
732 // - classes in general [because their static fields get overwritten]
733 // - initialized classes with all-final statics are unlikely to be ever dirty,
734 // so bin them separately
735 // * Art Methods that are:
736 // - native [their native entry point is not looked up until runtime]
737 // - have declaring classes that aren't initialized
738 // [their interpreter/quick entry points are trampolines until the class
739 // becomes initialized]
740 //
741 // We also assume the following objects get dirtied either never or extremely rarely:
742 // * Strings (they are immutable)
743 // * Art methods that aren't native and have initialized declared classes
744 //
745 // We assume that "regular" bin objects are highly unlikely to become dirtied,
746 // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
747 //
748 ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
749 if (klass->IsStringClass<kVerifyNone>()) {
750 // Assign strings to their bin before checking dirty objects, because
751 // string intern processing expects strings to be in Bin::kString.
752 bin = Bin::kString; // Strings are almost always immutable (except for object header).
753 } else if (dirty_objects_.find(object) != dirty_objects_.end()) {
754 bin = Bin::kKnownDirty;
755 } else if (klass->IsClassClass()) {
756 bin = Bin::kClassVerified;
757 ObjPtr<mirror::Class> as_klass = object->AsClass<kVerifyNone>();
758 if (as_klass->IsVisiblyInitialized<kVerifyNone>()) {
759 bin = Bin::kClassInitialized;
760
761 // If the class's static fields are all final, put it into a separate bin
762 // since it's very likely it will stay clean.
763 uint32_t num_static_fields = as_klass->NumStaticFields();
764 if (num_static_fields == 0) {
765 bin = Bin::kClassInitializedFinalStatics;
766 } else {
767 // Maybe all the statics are final?
768 bool all_final = true;
769 for (uint32_t i = 0; i < num_static_fields; ++i) {
770 ArtField* field = as_klass->GetStaticField(i);
771 if (!field->IsFinal()) {
772 all_final = false;
773 break;
774 }
775 }
776
777 if (all_final) {
778 bin = Bin::kClassInitializedFinalStatics;
779 }
780 }
781 }
782 } else if (!klass->HasSuperClass()) {
783 // Only `j.l.Object` and primitive classes lack the superclass and
784 // there are no instances of primitive classes.
785 DCHECK(klass->IsObjectClass());
786 // Instance of java lang object, probably a lock object. This means it will be dirty when we
787 // synchronize on it.
788 bin = Bin::kMiscDirty;
789 } else if (klass->IsDexCacheClass<kVerifyNone>()) {
790 // Dex file field becomes dirty when the image is loaded.
791 bin = Bin::kMiscDirty;
792 }
793 // else bin = kBinRegular
794 }
795
796 return bin;
797 }
798
AssignImageBinSlot(mirror::Object * object,size_t oat_index,Bin bin)799 void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index, Bin bin) {
800 DCHECK(object != nullptr);
801 size_t object_size = object->SizeOf();
802
803 // Assign the oat index too.
804 if (IsMultiImage()) {
805 DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
806 oat_index_map_.insert(std::make_pair(object, oat_index));
807 } else {
808 DCHECK(oat_index_map_.empty());
809 }
810
811 ImageInfo& image_info = GetImageInfo(oat_index);
812
813 size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment
814 // How many bytes the current bin is at (aligned).
815 size_t current_offset = image_info.GetBinSlotSize(bin);
816 // Move the current bin size up to accommodate the object we just assigned a bin slot.
817 image_info.IncrementBinSlotSize(bin, offset_delta);
818
819 BinSlot new_bin_slot(bin, current_offset);
820 SetImageBinSlot(object, new_bin_slot);
821
822 image_info.IncrementBinSlotCount(bin, 1u);
823
824 // Grow the image closer to the end by the object we just assigned.
825 image_info.image_end_ += offset_delta;
826 }
827
WillMethodBeDirty(ArtMethod * m) const828 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
829 if (m->IsNative()) {
830 return true;
831 }
832 ObjPtr<mirror::Class> declaring_class = m->GetDeclaringClass<kWithoutReadBarrier>();
833 // Initialized is highly unlikely to dirty since there's no entry points to mutate.
834 return declaring_class == nullptr ||
835 declaring_class->GetStatus() != ClassStatus::kVisiblyInitialized;
836 }
837
IsImageBinSlotAssigned(mirror::Object * object) const838 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
839 DCHECK(object != nullptr);
840
841 // We always stash the bin slot into a lockword, in the 'forwarding address' state.
842 // If it's in some other state, then we haven't yet assigned an image bin slot.
843 if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
844 return false;
845 } else if (kIsDebugBuild) {
846 LockWord lock_word = object->GetLockWord(false);
847 size_t offset = lock_word.ForwardingAddress();
848 BinSlot bin_slot(offset);
849 size_t oat_index = GetOatIndex(object);
850 const ImageInfo& image_info = GetImageInfo(oat_index);
851 DCHECK_LT(bin_slot.GetOffset(), image_info.GetBinSlotSize(bin_slot.GetBin()))
852 << "bin slot offset should not exceed the size of that bin";
853 }
854 return true;
855 }
856
GetImageBinSlot(mirror::Object * object,size_t oat_index) const857 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object, size_t oat_index) const {
858 DCHECK(object != nullptr);
859 DCHECK(IsImageBinSlotAssigned(object));
860
861 LockWord lock_word = object->GetLockWord(false);
862 size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t
863 DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
864
865 BinSlot bin_slot(static_cast<uint32_t>(offset));
866 DCHECK_LT(bin_slot.GetOffset(), GetImageInfo(oat_index).GetBinSlotSize(bin_slot.GetBin()));
867
868 return bin_slot;
869 }
870
UpdateImageBinSlotOffset(mirror::Object * object,size_t oat_index,size_t new_offset)871 void ImageWriter::UpdateImageBinSlotOffset(mirror::Object* object,
872 size_t oat_index,
873 size_t new_offset) {
874 BinSlot old_bin_slot = GetImageBinSlot(object, oat_index);
875 DCHECK_LT(new_offset, GetImageInfo(oat_index).GetBinSlotSize(old_bin_slot.GetBin()));
876 BinSlot new_bin_slot(old_bin_slot.GetBin(), new_offset);
877 object->SetLockWord(LockWord::FromForwardingAddress(new_bin_slot.Uint32Value()),
878 /*as_volatile=*/ false);
879 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
880 DCHECK(IsImageBinSlotAssigned(object));
881 }
882
AllocMemory()883 bool ImageWriter::AllocMemory() {
884 for (ImageInfo& image_info : image_infos_) {
885 const size_t length = RoundUp(image_info.CreateImageSections().first, kElfSegmentAlignment);
886
887 std::string error_msg;
888 image_info.image_ = MemMap::MapAnonymous("image writer image",
889 length,
890 PROT_READ | PROT_WRITE,
891 /*low_4gb=*/ false,
892 &error_msg);
893 if (UNLIKELY(!image_info.image_.IsValid())) {
894 LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
895 return false;
896 }
897
898 // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
899 // The covered size is rounded up to kCardSize to match the bitmap size expected by Loader::Init
900 // at art::gc::space::ImageSpace.
901 CHECK_LE(image_info.image_end_, length);
902 image_info.image_bitmap_ = gc::accounting::ContinuousSpaceBitmap::Create("image bitmap",
903 image_info.image_.Begin(),
904 RoundUp(image_info.image_end_, gc::accounting::CardTable::kCardSize));
905 if (!image_info.image_bitmap_.IsValid()) {
906 LOG(ERROR) << "Failed to allocate memory for image bitmap";
907 return false;
908 }
909 }
910 return true;
911 }
912
913 // This visitor follows the references of an instance, recursively then prune this class
914 // if a type of any field is pruned.
915 class ImageWriter::PruneObjectReferenceVisitor {
916 public:
PruneObjectReferenceVisitor(ImageWriter * image_writer,bool * early_exit,HashSet<mirror::Object * > * visited,bool * result)917 PruneObjectReferenceVisitor(ImageWriter* image_writer,
918 bool* early_exit,
919 HashSet<mirror::Object*>* visited,
920 bool* result)
921 : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
922
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const923 ALWAYS_INLINE void VisitRootIfNonNull(
924 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const
925 REQUIRES_SHARED(Locks::mutator_lock_) {}
926
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const927 ALWAYS_INLINE void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root)
928 const REQUIRES_SHARED(Locks::mutator_lock_) {}
929
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const930 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
931 MemberOffset offset,
932 [[maybe_unused]] bool is_static) const
933 REQUIRES_SHARED(Locks::mutator_lock_) {
934 mirror::Object* ref =
935 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
936 if (ref == nullptr || visited_->find(ref) != visited_->end()) {
937 return;
938 }
939
940 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
941 Runtime::Current()->GetClassLinker()->GetClassRoots();
942 ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
943 if (klass == GetClassRoot<mirror::Method>(class_roots) ||
944 klass == GetClassRoot<mirror::Constructor>(class_roots)) {
945 // Prune all classes using reflection because the content they held will not be fixup.
946 *result_ = true;
947 }
948
949 if (ref->IsClass()) {
950 *result_ = *result_ ||
951 image_writer_->PruneImageClassInternal(ref->AsClass(), early_exit_, visited_);
952 } else {
953 // Record the object visited in case of circular reference.
954 visited_->insert(ref);
955 *result_ = *result_ ||
956 image_writer_->PruneImageClassInternal(klass, early_exit_, visited_);
957 ref->VisitReferences(*this, *this);
958 // Clean up before exit for next call of this function.
959 auto it = visited_->find(ref);
960 DCHECK(it != visited_->end());
961 visited_->erase(it);
962 }
963 }
964
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const965 ALWAYS_INLINE void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
966 ObjPtr<mirror::Reference> ref) const
967 REQUIRES_SHARED(Locks::mutator_lock_) {
968 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
969 }
970
971 private:
972 ImageWriter* image_writer_;
973 bool* early_exit_;
974 HashSet<mirror::Object*>* visited_;
975 bool* const result_;
976 };
977
978
PruneImageClass(ObjPtr<mirror::Class> klass)979 bool ImageWriter::PruneImageClass(ObjPtr<mirror::Class> klass) {
980 bool early_exit = false;
981 HashSet<mirror::Object*> visited;
982 return PruneImageClassInternal(klass, &early_exit, &visited);
983 }
984
PruneImageClassInternal(ObjPtr<mirror::Class> klass,bool * early_exit,HashSet<mirror::Object * > * visited)985 bool ImageWriter::PruneImageClassInternal(
986 ObjPtr<mirror::Class> klass,
987 bool* early_exit,
988 HashSet<mirror::Object*>* visited) {
989 DCHECK(early_exit != nullptr);
990 DCHECK(visited != nullptr);
991 DCHECK(compiler_options_.IsAppImage() || compiler_options_.IsBootImageExtension());
992 if (klass == nullptr || IsInBootImage(klass.Ptr())) {
993 return false;
994 }
995 auto found = prune_class_memo_.find(klass.Ptr());
996 if (found != prune_class_memo_.end()) {
997 // Already computed, return the found value.
998 return found->second;
999 }
1000 // Circular dependencies, return false but do not store the result in the memoization table.
1001 if (visited->find(klass.Ptr()) != visited->end()) {
1002 *early_exit = true;
1003 return false;
1004 }
1005 visited->insert(klass.Ptr());
1006 bool result = klass->IsBootStrapClassLoaded();
1007 std::string temp;
1008 // Prune if not an image class, this handles any broken sets of image classes such as having a
1009 // class in the set but not it's superclass.
1010 result = result || !compiler_options_.IsImageClass(klass->GetDescriptor(&temp));
1011 bool my_early_exit = false; // Only for ourselves, ignore caller.
1012 // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
1013 // app image.
1014 if (klass->IsErroneous()) {
1015 result = true;
1016 } else {
1017 ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
1018 CHECK(ext.IsNull() || ext->GetErroneousStateError() == nullptr) << klass->PrettyClass();
1019 }
1020 if (!result) {
1021 // Check interfaces since these wont be visited through VisitReferences.)
1022 ObjPtr<mirror::IfTable> if_table = klass->GetIfTable();
1023 for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
1024 result = result || PruneImageClassInternal(if_table->GetInterface(i),
1025 &my_early_exit,
1026 visited);
1027 }
1028 }
1029 if (klass->IsObjectArrayClass()) {
1030 result = result || PruneImageClassInternal(klass->GetComponentType(),
1031 &my_early_exit,
1032 visited);
1033 }
1034 // Check static fields and their classes.
1035 if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
1036 size_t num_static_fields = klass->NumReferenceStaticFields();
1037 // Presumably GC can happen when we are cross compiling, it should not cause performance
1038 // problems to do pointer size logic.
1039 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
1040 Runtime::Current()->GetClassLinker()->GetImagePointerSize());
1041 for (size_t i = 0u; i < num_static_fields; ++i) {
1042 mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
1043 if (ref != nullptr) {
1044 if (ref->IsClass()) {
1045 result = result || PruneImageClassInternal(ref->AsClass(), &my_early_exit, visited);
1046 } else {
1047 mirror::Class* type = ref->GetClass();
1048 result = result || PruneImageClassInternal(type, &my_early_exit, visited);
1049 if (!result) {
1050 // For non-class case, also go through all the types mentioned by it's fields'
1051 // references recursively to decide whether to keep this class.
1052 bool tmp = false;
1053 PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
1054 ref->VisitReferences(visitor, visitor);
1055 result = result || tmp;
1056 }
1057 }
1058 }
1059 field_offset = MemberOffset(field_offset.Uint32Value() +
1060 sizeof(mirror::HeapReference<mirror::Object>));
1061 }
1062 }
1063 result = result || PruneImageClassInternal(klass->GetSuperClass(), &my_early_exit, visited);
1064 // Remove the class if the dex file is not in the set of dex files. This happens for classes that
1065 // are from uses-library if there is no profile. b/30688277
1066 ObjPtr<mirror::DexCache> dex_cache = klass->GetDexCache();
1067 if (dex_cache != nullptr) {
1068 result = result ||
1069 dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
1070 }
1071 // Erase the element we stored earlier since we are exiting the function.
1072 auto it = visited->find(klass.Ptr());
1073 DCHECK(it != visited->end());
1074 visited->erase(it);
1075 // Only store result if it is true or none of the calls early exited due to circular
1076 // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
1077 // a child call and we can remember the result.
1078 if (result == true || !my_early_exit || visited->empty()) {
1079 prune_class_memo_.Overwrite(klass.Ptr(), result);
1080 }
1081 *early_exit |= my_early_exit;
1082 return result;
1083 }
1084
KeepClass(ObjPtr<mirror::Class> klass)1085 bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
1086 if (klass == nullptr) {
1087 return false;
1088 }
1089 if (IsInBootImage(klass.Ptr())) {
1090 // Already in boot image, return true.
1091 DCHECK(!compiler_options_.IsBootImage());
1092 return true;
1093 }
1094 std::string temp;
1095 if (!compiler_options_.IsImageClass(klass->GetDescriptor(&temp))) {
1096 return false;
1097 }
1098 if (compiler_options_.IsAppImage()) {
1099 // For app images, we need to prune classes that
1100 // are defined by the boot class path we're compiling against but not in
1101 // the boot image spaces since these may have already been loaded at
1102 // run time when this image is loaded. Keep classes in the boot image
1103 // spaces we're compiling against since we don't want to re-resolve these.
1104 // FIXME: Update image classes in the `CompilerOptions` after initializing classes
1105 // with `--initialize-app-image-classes=true`. This experimental flag can currently
1106 // cause an inconsistency between `CompilerOptions::IsImageClass()` and what actually
1107 // ends up in the app image as seen in the run-test `660-clinit` where the class
1108 // `ObjectRef` is considered an app image class during compilation but in the end
1109 // it's pruned here. This inconsistency should be fixed if we want to properly
1110 // initialize app image classes. b/38313278
1111 bool keep = !PruneImageClass(klass);
1112 CHECK_IMPLIES(!compiler_options_.InitializeAppImageClasses(), keep)
1113 << klass->PrettyDescriptor();
1114 return keep;
1115 }
1116 return true;
1117 }
1118
1119 class ImageWriter::PruneClassesVisitor : public ClassVisitor {
1120 public:
PruneClassesVisitor(ImageWriter * image_writer,ObjPtr<mirror::ClassLoader> class_loader)1121 PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
1122 : image_writer_(image_writer),
1123 class_loader_(class_loader),
1124 classes_to_prune_(),
1125 defined_class_count_(0u) { }
1126
operator ()(ObjPtr<mirror::Class> klass)1127 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
1128 if (!image_writer_->KeepClass(klass.Ptr())) {
1129 classes_to_prune_.insert(klass.Ptr());
1130 if (klass->GetClassLoader() == class_loader_) {
1131 ++defined_class_count_;
1132 }
1133 }
1134 return true;
1135 }
1136
Prune()1137 size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
1138 ClassTable* class_table =
1139 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
1140 WriterMutexLock mu(Thread::Current(), class_table->lock_);
1141 // App class loader class tables contain only one internal set. The boot class path class
1142 // table also contains class sets from boot images we're compiling against but we are not
1143 // pruning these boot image classes, so all classes to remove are in the last set.
1144 DCHECK(!class_table->classes_.empty());
1145 ClassTable::ClassSet& last_class_set = class_table->classes_.back();
1146 for (mirror::Class* klass : classes_to_prune_) {
1147 uint32_t hash = klass->DescriptorHash();
1148 auto it = last_class_set.FindWithHash(ClassTable::TableSlot(klass, hash), hash);
1149 DCHECK(it != last_class_set.end());
1150 last_class_set.erase(it);
1151 DCHECK(std::none_of(class_table->classes_.begin(),
1152 class_table->classes_.end(),
1153 [klass, hash](ClassTable::ClassSet& class_set)
1154 REQUIRES_SHARED(Locks::mutator_lock_) {
1155 ClassTable::TableSlot slot(klass, hash);
1156 return class_set.FindWithHash(slot, hash) != class_set.end();
1157 }));
1158 }
1159 return defined_class_count_;
1160 }
1161
1162 private:
1163 ImageWriter* const image_writer_;
1164 const ObjPtr<mirror::ClassLoader> class_loader_;
1165 HashSet<mirror::Class*> classes_to_prune_;
1166 size_t defined_class_count_;
1167 };
1168
1169 class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
1170 public:
PruneClassLoaderClassesVisitor(ImageWriter * image_writer)1171 explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
1172 : image_writer_(image_writer), removed_class_count_(0) {}
1173
Visit(ObjPtr<mirror::ClassLoader> class_loader)1174 void Visit(ObjPtr<mirror::ClassLoader> class_loader) override
1175 REQUIRES_SHARED(Locks::mutator_lock_) {
1176 PruneClassesVisitor classes_visitor(image_writer_, class_loader);
1177 ClassTable* class_table =
1178 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
1179 class_table->Visit(classes_visitor);
1180 removed_class_count_ += classes_visitor.Prune();
1181 }
1182
GetRemovedClassCount() const1183 size_t GetRemovedClassCount() const {
1184 return removed_class_count_;
1185 }
1186
1187 private:
1188 ImageWriter* const image_writer_;
1189 size_t removed_class_count_;
1190 };
1191
VisitClassLoaders(ClassLoaderVisitor * visitor)1192 void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
1193 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1194 visitor->Visit(nullptr); // Visit boot class loader.
1195 Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
1196 }
1197
PruneNonImageClasses()1198 void ImageWriter::PruneNonImageClasses() {
1199 Runtime* runtime = Runtime::Current();
1200 ClassLinker* class_linker = runtime->GetClassLinker();
1201 Thread* self = Thread::Current();
1202 ScopedAssertNoThreadSuspension sa(__FUNCTION__);
1203
1204 // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
1205 // sure the other ones don't get unloaded before the OatWriter runs.
1206 class_linker->VisitClassTables(
1207 [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
1208 table->RemoveStrongRoots(
1209 [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
1210 ObjPtr<mirror::Object> obj = root.Read();
1211 if (obj->IsDexCache()) {
1212 // Return true if the dex file is not one of the ones in the map.
1213 return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
1214 dex_file_oat_index_map_.end();
1215 }
1216 // Return false to avoid removing.
1217 return false;
1218 });
1219 });
1220
1221 // Remove the undesired classes from the class roots.
1222 {
1223 PruneClassLoaderClassesVisitor class_loader_visitor(this);
1224 VisitClassLoaders(&class_loader_visitor);
1225 VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
1226 }
1227
1228 // Completely clear DexCaches.
1229 dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches = FindDexCaches(self);
1230 for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
1231 dex_cache->ResetNativeArrays();
1232 }
1233
1234 // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
1235 class_linker->DropFindArrayClassCache();
1236
1237 // Clear to save RAM.
1238 prune_class_memo_.clear();
1239 }
1240
FindDexCaches(Thread * self)1241 dchecked_vector<ObjPtr<mirror::DexCache>> ImageWriter::FindDexCaches(Thread* self) {
1242 dchecked_vector<ObjPtr<mirror::DexCache>> dex_caches;
1243 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1244 ReaderMutexLock mu2(self, *Locks::dex_lock_);
1245 dex_caches.reserve(class_linker->GetDexCachesData().size());
1246 for (const auto& entry : class_linker->GetDexCachesData()) {
1247 const ClassLinker::DexCacheData& data = entry.second;
1248 if (self->IsJWeakCleared(data.weak_root)) {
1249 continue;
1250 }
1251 dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
1252 }
1253 return dex_caches;
1254 }
1255
CheckNonImageClassesRemoved()1256 void ImageWriter::CheckNonImageClassesRemoved() {
1257 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1258 if (obj->IsClass() && !IsInBootImage(obj)) {
1259 ObjPtr<Class> klass = obj->AsClass();
1260 if (!KeepClass(klass)) {
1261 DumpImageClasses();
1262 CHECK(KeepClass(klass))
1263 << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
1264 }
1265 }
1266 };
1267 gc::Heap* heap = Runtime::Current()->GetHeap();
1268 heap->VisitObjects(visitor);
1269 }
1270
PromoteWeakInternsToStrong(Thread * self)1271 void ImageWriter::PromoteWeakInternsToStrong(Thread* self) {
1272 InternTable* intern_table = Runtime::Current()->GetInternTable();
1273 MutexLock mu(self, *Locks::intern_table_lock_);
1274 DCHECK_EQ(intern_table->weak_interns_.tables_.size(), 1u);
1275 for (GcRoot<mirror::String>& entry : intern_table->weak_interns_.tables_.front().set_) {
1276 ObjPtr<mirror::String> s = entry.Read<kWithoutReadBarrier>();
1277 DCHECK(!IsStronglyInternedString(s));
1278 uint32_t hash = static_cast<uint32_t>(s->GetStoredHashCode());
1279 intern_table->InsertStrong(s, hash);
1280 }
1281 intern_table->weak_interns_.tables_.front().set_.clear();
1282 }
1283
DumpImageClasses()1284 void ImageWriter::DumpImageClasses() {
1285 for (const std::string& image_class : compiler_options_.GetImageClasses()) {
1286 LOG(INFO) << " " << image_class;
1287 }
1288 }
1289
CreateImageRoots()1290 bool ImageWriter::CreateImageRoots() {
1291 Runtime* runtime = Runtime::Current();
1292 ClassLinker* class_linker = runtime->GetClassLinker();
1293 Thread* self = Thread::Current();
1294 VariableSizedHandleScope handles(self);
1295
1296 // Prepare boot image live objects if we're compiling a boot image or boot image extension.
1297 Handle<mirror::ObjectArray<mirror::Object>> boot_image_live_objects;
1298 if (compiler_options_.IsBootImage()) {
1299 boot_image_live_objects = handles.NewHandle(AllocateBootImageLiveObjects(self, runtime));
1300 if (boot_image_live_objects == nullptr) {
1301 return false;
1302 }
1303 } else if (compiler_options_.IsBootImageExtension()) {
1304 gc::Heap* heap = runtime->GetHeap();
1305 DCHECK(!heap->GetBootImageSpaces().empty());
1306 const ImageHeader& primary_header = heap->GetBootImageSpaces().front()->GetImageHeader();
1307 boot_image_live_objects = handles.NewHandle(ObjPtr<ObjectArray<Object>>::DownCast(
1308 primary_header.GetImageRoot<kWithReadBarrier>(ImageHeader::kBootImageLiveObjects)));
1309 DCHECK(boot_image_live_objects != nullptr);
1310 }
1311
1312 // Collect dex caches and the sizes of dex cache arrays.
1313 struct DexCacheRecord {
1314 uint64_t registration_index;
1315 Handle<mirror::DexCache> dex_cache;
1316 size_t oat_index;
1317 };
1318 size_t num_oat_files = oat_filenames_.size();
1319 dchecked_vector<size_t> dex_cache_counts(num_oat_files, 0u);
1320 dchecked_vector<DexCacheRecord> dex_cache_records;
1321 dex_cache_records.reserve(dex_file_oat_index_map_.size());
1322 {
1323 ReaderMutexLock mu(self, *Locks::dex_lock_);
1324 // Count number of dex caches not in the boot image.
1325 for (const auto& entry : class_linker->GetDexCachesData()) {
1326 const ClassLinker::DexCacheData& data = entry.second;
1327 ObjPtr<mirror::DexCache> dex_cache =
1328 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1329 if (dex_cache == nullptr) {
1330 continue;
1331 }
1332 const DexFile* dex_file = dex_cache->GetDexFile();
1333 auto it = dex_file_oat_index_map_.find(dex_file);
1334 if (it != dex_file_oat_index_map_.end()) {
1335 size_t oat_index = it->second;
1336 DCHECK(IsImageDexCache(dex_cache));
1337 ++dex_cache_counts[oat_index];
1338 Handle<mirror::DexCache> h_dex_cache = handles.NewHandle(dex_cache);
1339 dex_cache_records.push_back({data.registration_index, h_dex_cache, oat_index});
1340 }
1341 }
1342 }
1343
1344 // Allocate dex cache arrays.
1345 dchecked_vector<Handle<ObjectArray<Object>>> dex_cache_arrays;
1346 dex_cache_arrays.reserve(num_oat_files);
1347 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1348 ObjPtr<ObjectArray<Object>> dex_caches = ObjectArray<Object>::Alloc(
1349 self, GetClassRoot<ObjectArray<Object>>(class_linker), dex_cache_counts[oat_index]);
1350 if (dex_caches == nullptr) {
1351 return false;
1352 }
1353 dex_cache_counts[oat_index] = 0u; // Reset count for filling in dex caches below.
1354 dex_cache_arrays.push_back(handles.NewHandle(dex_caches));
1355 }
1356
1357 // Sort dex caches by registration index to make output deterministic.
1358 std::sort(dex_cache_records.begin(),
1359 dex_cache_records.end(),
1360 [](const DexCacheRecord& lhs, const DexCacheRecord&rhs) {
1361 return lhs.registration_index < rhs.registration_index;
1362 });
1363
1364 // Fill dex cache arrays.
1365 for (const DexCacheRecord& record : dex_cache_records) {
1366 ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[record.oat_index].Get();
1367 dex_caches->SetWithoutChecks</*kTransactionActive=*/ false>(
1368 dex_cache_counts[record.oat_index], record.dex_cache.Get());
1369 ++dex_cache_counts[record.oat_index];
1370 }
1371
1372 // Create image roots with empty dex cache arrays.
1373 image_roots_.reserve(num_oat_files);
1374 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1375 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
1376 // Build an Object[] of the roots needed to restore the runtime.
1377 int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compiler_options_.IsAppImage());
1378 ObjPtr<ObjectArray<Object>> image_roots = ObjectArray<Object>::Alloc(
1379 self, GetClassRoot<ObjectArray<Object>>(class_linker), image_roots_size);
1380 if (image_roots == nullptr) {
1381 return false;
1382 }
1383 ObjPtr<ObjectArray<Object>> dex_caches = dex_cache_arrays[oat_index].Get();
1384 CHECK_EQ(dex_cache_counts[oat_index],
1385 dchecked_integral_cast<size_t>(dex_caches->GetLength<kVerifyNone>()))
1386 << "The number of non-image dex caches changed.";
1387 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1388 ImageHeader::kDexCaches, dex_caches);
1389 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1390 ImageHeader::kClassRoots, class_linker->GetClassRoots());
1391 if (!compiler_options_.IsAppImage()) {
1392 DCHECK(boot_image_live_objects != nullptr);
1393 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1394 ImageHeader::kBootImageLiveObjects, boot_image_live_objects.Get());
1395 } else {
1396 DCHECK(boot_image_live_objects.GetReference() == nullptr);
1397 image_roots->SetWithoutChecks</*kTransactionActive=*/ false>(
1398 ImageHeader::kAppImageClassLoader, GetAppClassLoader());
1399 }
1400 for (int32_t i = 0; i != image_roots_size; ++i) {
1401 CHECK(image_roots->Get(i) != nullptr);
1402 }
1403 image_roots_.push_back(vm->AddGlobalRef(self, image_roots));
1404 }
1405
1406 return true;
1407 }
1408
RecordNativeRelocations(ObjPtr<mirror::Class> klass,size_t oat_index)1409 void ImageWriter::RecordNativeRelocations(ObjPtr<mirror::Class> klass, size_t oat_index) {
1410 // Visit and assign offsets for fields and field arrays.
1411 DCHECK_EQ(oat_index, GetOatIndexForClass(klass));
1412 DCHECK(!klass->IsErroneous()) << klass->GetStatus();
1413 if (compiler_options_.IsAppImage()) {
1414 // Extra consistency check: no boot loader classes should be left!
1415 CHECK(!klass->IsBootStrapClassLoaded()) << klass->PrettyClass();
1416 }
1417 LengthPrefixedArray<ArtField>* fields[] = {
1418 klass->GetSFieldsPtr(), klass->GetIFieldsPtr(),
1419 };
1420 ImageInfo& image_info = GetImageInfo(oat_index);
1421 for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1422 // Total array length including header.
1423 if (cur_fields != nullptr) {
1424 // Forward the entire array at once.
1425 size_t offset = image_info.GetBinSlotSize(Bin::kArtField);
1426 DCHECK(!IsInBootImage(cur_fields));
1427 bool inserted =
1428 native_object_relocations_.insert(std::make_pair(
1429 cur_fields,
1430 NativeObjectRelocation{
1431 oat_index, offset, NativeObjectRelocationType::kArtFieldArray
1432 })).second;
1433 CHECK(inserted) << "Field array " << cur_fields << " already forwarded";
1434 const size_t size = LengthPrefixedArray<ArtField>::ComputeSize(cur_fields->size());
1435 offset += size;
1436 image_info.IncrementBinSlotSize(Bin::kArtField, size);
1437 DCHECK_EQ(offset, image_info.GetBinSlotSize(Bin::kArtField));
1438 }
1439 }
1440 // Visit and assign offsets for methods.
1441 size_t num_methods = klass->NumMethods();
1442 if (num_methods != 0) {
1443 bool any_dirty = false;
1444 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1445 if (WillMethodBeDirty(&m)) {
1446 any_dirty = true;
1447 break;
1448 }
1449 }
1450 NativeObjectRelocationType type = any_dirty
1451 ? NativeObjectRelocationType::kArtMethodDirty
1452 : NativeObjectRelocationType::kArtMethodClean;
1453 Bin bin_type = BinTypeForNativeRelocationType(type);
1454 // Forward the entire array at once, but header first.
1455 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1456 const size_t method_size = ArtMethod::Size(target_ptr_size_);
1457 const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1458 method_size,
1459 method_alignment);
1460 LengthPrefixedArray<ArtMethod>* array = klass->GetMethodsPtr();
1461 size_t offset = image_info.GetBinSlotSize(bin_type);
1462 DCHECK(!IsInBootImage(array));
1463 bool inserted =
1464 native_object_relocations_.insert(std::make_pair(
1465 array,
1466 NativeObjectRelocation{
1467 oat_index,
1468 offset,
1469 any_dirty ? NativeObjectRelocationType::kArtMethodArrayDirty
1470 : NativeObjectRelocationType::kArtMethodArrayClean
1471 })).second;
1472 CHECK(inserted) << "Method array " << array << " already forwarded";
1473 image_info.IncrementBinSlotSize(bin_type, header_size);
1474 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1475 AssignMethodOffset(&m, type, oat_index);
1476 }
1477 // Only write JNI stub methods in boot images, but not in boot image extensions and app images.
1478 // And the write only happens in non-debuggable since we never use AOT code for debuggable.
1479 if (compiler_options_.IsBootImage() &&
1480 compiler_options_.IsJniCompilationEnabled() &&
1481 !compiler_options_.GetDebuggable()) {
1482 for (auto& m : klass->GetMethods(target_ptr_size_)) {
1483 if (m.IsNative() && !m.IsIntrinsic()) {
1484 AssignJniStubMethodOffset(&m, oat_index);
1485 }
1486 }
1487 }
1488 (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1489 }
1490 // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1491 // live.
1492 if (klass->ShouldHaveImt()) {
1493 ImTable* imt = klass->GetImt(target_ptr_size_);
1494 if (TryAssignImTableOffset(imt, oat_index)) {
1495 // Since imt's can be shared only do this the first time to not double count imt method
1496 // fixups.
1497 for (size_t i = 0; i < ImTable::kSize; ++i) {
1498 ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
1499 DCHECK(imt_method != nullptr);
1500 if (imt_method->IsRuntimeMethod() &&
1501 !IsInBootImage(imt_method) &&
1502 !NativeRelocationAssigned(imt_method)) {
1503 AssignMethodOffset(imt_method, NativeObjectRelocationType::kRuntimeMethod, oat_index);
1504 }
1505 }
1506 }
1507 }
1508 }
1509
NativeRelocationAssigned(void * ptr) const1510 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1511 return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1512 }
1513
TryAssignImTableOffset(ImTable * imt,size_t oat_index)1514 bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
1515 // No offset, or already assigned.
1516 if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
1517 return false;
1518 }
1519 // If the method is a conflict method we also want to assign the conflict table offset.
1520 ImageInfo& image_info = GetImageInfo(oat_index);
1521 const size_t size = ImTable::SizeInBytes(target_ptr_size_);
1522 native_object_relocations_.insert(std::make_pair(
1523 imt,
1524 NativeObjectRelocation{
1525 oat_index,
1526 image_info.GetBinSlotSize(Bin::kImTable),
1527 NativeObjectRelocationType::kIMTable
1528 }));
1529 image_info.IncrementBinSlotSize(Bin::kImTable, size);
1530 return true;
1531 }
1532
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)1533 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1534 // No offset, or already assigned.
1535 if (table == nullptr || NativeRelocationAssigned(table)) {
1536 return;
1537 }
1538 CHECK(!IsInBootImage(table));
1539 // If the method is a conflict method we also want to assign the conflict table offset.
1540 ImageInfo& image_info = GetImageInfo(oat_index);
1541 const size_t size = table->ComputeSize(target_ptr_size_);
1542 native_object_relocations_.insert(std::make_pair(
1543 table,
1544 NativeObjectRelocation{
1545 oat_index,
1546 image_info.GetBinSlotSize(Bin::kIMTConflictTable),
1547 NativeObjectRelocationType::kIMTConflictTable
1548 }));
1549 image_info.IncrementBinSlotSize(Bin::kIMTConflictTable, size);
1550 }
1551
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)1552 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1553 NativeObjectRelocationType type,
1554 size_t oat_index) {
1555 DCHECK(!IsInBootImage(method));
1556 CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1557 << ArtMethod::PrettyMethod(method);
1558 if (method->IsRuntimeMethod()) {
1559 TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1560 }
1561 ImageInfo& image_info = GetImageInfo(oat_index);
1562 Bin bin_type = BinTypeForNativeRelocationType(type);
1563 size_t offset = image_info.GetBinSlotSize(bin_type);
1564 native_object_relocations_.insert(
1565 std::make_pair(method, NativeObjectRelocation{oat_index, offset, type}));
1566 image_info.IncrementBinSlotSize(bin_type, ArtMethod::Size(target_ptr_size_));
1567 }
1568
AssignJniStubMethodOffset(ArtMethod * method,size_t oat_index)1569 void ImageWriter::AssignJniStubMethodOffset(ArtMethod* method, size_t oat_index) {
1570 CHECK(method->IsNative());
1571 auto it = jni_stub_map_.find(JniStubKey(method));
1572 if (it == jni_stub_map_.end()) {
1573 ImageInfo& image_info = GetImageInfo(oat_index);
1574 constexpr Bin bin_type = Bin::kJniStubMethod;
1575 size_t offset = image_info.GetBinSlotSize(bin_type);
1576 jni_stub_map_.Put(std::make_pair(
1577 JniStubKey(method),
1578 std::make_pair(method, JniStubMethodRelocation{oat_index, offset})));
1579 image_info.IncrementBinSlotSize(bin_type, static_cast<size_t>(target_ptr_size_));
1580 }
1581 }
1582
1583 class ImageWriter::LayoutHelper {
1584 public:
LayoutHelper(ImageWriter * image_writer)1585 explicit LayoutHelper(ImageWriter* image_writer)
1586 : image_writer_(image_writer) {
1587 bin_objects_.resize(image_writer_->image_infos_.size());
1588 for (auto& inner : bin_objects_) {
1589 inner.resize(enum_cast<size_t>(Bin::kMirrorCount));
1590 }
1591 }
1592
1593 void ProcessDexFileObjects(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1594 void ProcessRoots(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1595 void FinalizeInternTables() REQUIRES_SHARED(Locks::mutator_lock_);
1596 // Recreate dirty object offsets (kKnownDirty bin) with objects sorted by sort_key.
1597 void SortDirtyObjects(const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index)
1598 REQUIRES_SHARED(Locks::mutator_lock_);
1599
1600 void VerifyImageBinSlotsAssigned() REQUIRES_SHARED(Locks::mutator_lock_);
1601
1602 void FinalizeBinSlotOffsets() REQUIRES_SHARED(Locks::mutator_lock_);
1603
1604 /*
1605 * Collects the string reference info necessary for loading app images.
1606 *
1607 * Because AppImages may contain interned strings that must be deduplicated
1608 * with previously interned strings when loading the app image, we need to
1609 * visit references to these strings and update them to point to the correct
1610 * string. To speed up the visiting of references at load time we include
1611 * a list of offsets to string references in the AppImage.
1612 */
1613 void CollectStringReferenceInfo() REQUIRES_SHARED(Locks::mutator_lock_);
1614
1615 private:
1616 class CollectClassesVisitor;
1617 class CollectStringReferenceVisitor;
1618 class VisitReferencesVisitor;
1619
1620 void ProcessInterns(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
1621 void ProcessWorkQueue() REQUIRES_SHARED(Locks::mutator_lock_);
1622
1623 using WorkQueue = std::deque<std::pair<ObjPtr<mirror::Object>, size_t>>;
1624
1625 void VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index)
1626 REQUIRES_SHARED(Locks::mutator_lock_);
1627 bool TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index)
1628 REQUIRES_SHARED(Locks::mutator_lock_);
1629 ImageWriter::Bin AssignImageBinSlot(ObjPtr<mirror::Object> object, size_t oat_index)
1630 REQUIRES_SHARED(Locks::mutator_lock_);
1631 void AssignImageBinSlot(ObjPtr<mirror::Object> object, size_t oat_index, Bin bin)
1632 REQUIRES_SHARED(Locks::mutator_lock_);
1633
1634 ImageWriter* const image_writer_;
1635
1636 // Work list of <object, oat_index> for objects. Everything in the queue must already be
1637 // assigned a bin slot.
1638 WorkQueue work_queue_;
1639
1640 // Objects for individual bins. Indexed by `oat_index` and `bin`.
1641 // Cannot use ObjPtr<> because of invalidation in Heap::VisitObjects().
1642 dchecked_vector<dchecked_vector<dchecked_vector<mirror::Object*>>> bin_objects_;
1643
1644 // Interns that do not have a corresponding StringId in any of the input dex files.
1645 // These shall be assigned to individual images based on the `oat_index` that we
1646 // see as we visit them during the work queue processing.
1647 dchecked_vector<mirror::String*> non_dex_file_interns_;
1648 };
1649
1650 class ImageWriter::LayoutHelper::CollectClassesVisitor {
1651 public:
CollectClassesVisitor(ImageWriter * image_writer)1652 explicit CollectClassesVisitor(ImageWriter* image_writer)
1653 : image_writer_(image_writer),
1654 dex_files_(image_writer_->compiler_options_.GetDexFilesForOatFile()) {}
1655
operator ()(ObjPtr<mirror::Class> klass)1656 bool operator()(ObjPtr<mirror::Class> klass) REQUIRES_SHARED(Locks::mutator_lock_) {
1657 if (!image_writer_->IsInBootImage(klass.Ptr())) {
1658 ObjPtr<mirror::Class> component_type = klass;
1659 size_t dimension = 0u;
1660 while (component_type->IsArrayClass<kVerifyNone>()) {
1661 ++dimension;
1662 component_type = component_type->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
1663 }
1664 DCHECK(!component_type->IsProxyClass());
1665 size_t dex_file_index;
1666 uint32_t class_def_index = 0u;
1667 if (UNLIKELY(component_type->IsPrimitive())) {
1668 DCHECK(image_writer_->compiler_options_.IsBootImage());
1669 dex_file_index = 0u;
1670 class_def_index = enum_cast<uint32_t>(component_type->GetPrimitiveType());
1671 } else {
1672 auto it = std::find(dex_files_.begin(), dex_files_.end(), &component_type->GetDexFile());
1673 DCHECK(it != dex_files_.end()) << klass->PrettyDescriptor();
1674 dex_file_index = std::distance(dex_files_.begin(), it) + 1u; // 0 is for primitive types.
1675 class_def_index = component_type->GetDexClassDefIndex();
1676 }
1677 klasses_.push_back({klass, dex_file_index, class_def_index, dimension});
1678 }
1679 return true;
1680 }
1681
ProcessCollectedClasses(Thread * self)1682 WorkQueue ProcessCollectedClasses(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
1683 std::sort(klasses_.begin(), klasses_.end());
1684
1685 ImageWriter* image_writer = image_writer_;
1686 WorkQueue work_queue;
1687 size_t last_dex_file_index = static_cast<size_t>(-1);
1688 size_t last_oat_index = static_cast<size_t>(-1);
1689 for (const ClassEntry& entry : klasses_) {
1690 if (last_dex_file_index != entry.dex_file_index) {
1691 if (UNLIKELY(entry.dex_file_index == 0u)) {
1692 last_oat_index = GetDefaultOatIndex(); // Primitive type.
1693 } else {
1694 uint32_t dex_file_index = entry.dex_file_index - 1u; // 0 is for primitive types.
1695 last_oat_index = image_writer->GetOatIndexForDexFile(dex_files_[dex_file_index]);
1696 }
1697 last_dex_file_index = entry.dex_file_index;
1698 }
1699 // Count the number of classes for class tables.
1700 image_writer->image_infos_[last_oat_index].class_table_size_ += 1u;
1701 work_queue.emplace_back(entry.klass, last_oat_index);
1702 }
1703 klasses_.clear();
1704
1705 // Prepare image class tables.
1706 dchecked_vector<mirror::Class*> boot_image_classes;
1707 if (image_writer->compiler_options_.IsAppImage()) {
1708 DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1709 ImageInfo& image_info = image_writer->image_infos_[0];
1710 // Log the non-boot image class count for app image for debugging purposes.
1711 VLOG(compiler) << "Dex2Oat:AppImage:classCount = " << image_info.class_table_size_;
1712 // Collect boot image classes referenced by app class loader's class table.
1713 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1714 auto app_class_loader = DecodeGlobalWithoutRB<mirror::ClassLoader>(
1715 vm, image_writer->app_class_loader_);
1716 ClassTable* app_class_table = app_class_loader->GetClassTable();
1717 ReaderMutexLock lock(self, app_class_table->lock_);
1718 DCHECK_EQ(app_class_table->classes_.size(), 1u);
1719 const ClassTable::ClassSet& app_class_set = app_class_table->classes_[0];
1720 DCHECK_GE(app_class_set.size(), image_info.class_table_size_);
1721 boot_image_classes.reserve(app_class_set.size() - image_info.class_table_size_);
1722 for (const ClassTable::TableSlot& slot : app_class_set) {
1723 mirror::Class* klass = slot.Read<kWithoutReadBarrier>().Ptr();
1724 if (image_writer->IsInBootImage(klass)) {
1725 boot_image_classes.push_back(klass);
1726 }
1727 }
1728 DCHECK_EQ(app_class_set.size() - image_info.class_table_size_, boot_image_classes.size());
1729 // Increase the app class table size to include referenced boot image classes.
1730 image_info.class_table_size_ = app_class_set.size();
1731 }
1732 for (ImageInfo& image_info : image_writer->image_infos_) {
1733 if (image_info.class_table_size_ != 0u) {
1734 // Make sure the class table shall be full by allocating a buffer of the right size.
1735 size_t buffer_size = static_cast<size_t>(
1736 ceil(image_info.class_table_size_ / kImageClassTableMaxLoadFactor));
1737 image_info.class_table_buffer_.reset(new ClassTable::TableSlot[buffer_size]);
1738 DCHECK(image_info.class_table_buffer_ != nullptr);
1739 image_info.class_table_.emplace(kImageClassTableMinLoadFactor,
1740 kImageClassTableMaxLoadFactor,
1741 image_info.class_table_buffer_.get(),
1742 buffer_size);
1743 }
1744 }
1745 for (const auto& pair : work_queue) {
1746 ObjPtr<mirror::Class> klass = pair.first->AsClass();
1747 size_t oat_index = pair.second;
1748 DCHECK(image_writer->image_infos_[oat_index].class_table_.has_value());
1749 ClassTable::ClassSet& class_table = *image_writer->image_infos_[oat_index].class_table_;
1750 uint32_t hash = klass->DescriptorHash();
1751 bool inserted = class_table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1752 DCHECK(inserted) << "Class " << klass->PrettyDescriptor()
1753 << " (" << klass.Ptr() << ") already inserted";
1754 }
1755 if (image_writer->compiler_options_.IsAppImage()) {
1756 DCHECK_EQ(image_writer->image_infos_.size(), 1u);
1757 ImageInfo& image_info = image_writer->image_infos_[0];
1758 if (image_info.class_table_size_ != 0u) {
1759 // Insert boot image class references to the app class table.
1760 // The order of insertion into the app class loader's ClassTable is non-deterministic,
1761 // so sort the boot image classes by the boot image address to get deterministic table.
1762 std::sort(boot_image_classes.begin(), boot_image_classes.end());
1763 DCHECK(image_info.class_table_.has_value());
1764 ClassTable::ClassSet& table = *image_info.class_table_;
1765 for (mirror::Class* klass : boot_image_classes) {
1766 uint32_t hash = klass->DescriptorHash();
1767 bool inserted = table.InsertWithHash(ClassTable::TableSlot(klass, hash), hash).second;
1768 DCHECK(inserted) << "Boot image class " << klass->PrettyDescriptor()
1769 << " (" << klass << ") already inserted";
1770 }
1771 DCHECK_EQ(table.size(), image_info.class_table_size_);
1772 }
1773 }
1774 for (ImageInfo& image_info : image_writer->image_infos_) {
1775 DCHECK_EQ(image_info.class_table_bytes_, 0u);
1776 if (image_info.class_table_size_ != 0u) {
1777 DCHECK(image_info.class_table_.has_value());
1778 DCHECK_EQ(image_info.class_table_->size(), image_info.class_table_size_);
1779 image_info.class_table_bytes_ = image_info.class_table_->WriteToMemory(nullptr);
1780 DCHECK_NE(image_info.class_table_bytes_, 0u);
1781 } else {
1782 DCHECK(!image_info.class_table_.has_value());
1783 }
1784 }
1785
1786 return work_queue;
1787 }
1788
1789 private:
1790 struct ClassEntry {
1791 ObjPtr<mirror::Class> klass;
1792 // We shall sort classes by dex file, class def index and array dimension.
1793 size_t dex_file_index;
1794 uint32_t class_def_index;
1795 size_t dimension;
1796
operator <art::linker::ImageWriter::LayoutHelper::CollectClassesVisitor::ClassEntry1797 bool operator<(const ClassEntry& other) const {
1798 return std::tie(dex_file_index, class_def_index, dimension) <
1799 std::tie(other.dex_file_index, other.class_def_index, other.dimension);
1800 }
1801 };
1802
1803 ImageWriter* const image_writer_;
1804 const ArrayRef<const DexFile* const> dex_files_;
1805 std::deque<ClassEntry> klasses_;
1806 };
1807
1808 class ImageWriter::LayoutHelper::CollectStringReferenceVisitor {
1809 public:
CollectStringReferenceVisitor(const ImageWriter * image_writer,size_t oat_index,dchecked_vector<AppImageReferenceOffsetInfo> * const string_reference_offsets,ObjPtr<mirror::Object> current_obj)1810 explicit CollectStringReferenceVisitor(
1811 const ImageWriter* image_writer,
1812 size_t oat_index,
1813 dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets,
1814 ObjPtr<mirror::Object> current_obj)
1815 : image_writer_(image_writer),
1816 oat_index_(oat_index),
1817 string_reference_offsets_(string_reference_offsets),
1818 current_obj_(current_obj) {}
1819
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1820 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1821 REQUIRES_SHARED(Locks::mutator_lock_) {
1822 if (!root->IsNull()) {
1823 VisitRoot(root);
1824 }
1825 }
1826
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1827 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1828 REQUIRES_SHARED(Locks::mutator_lock_) {
1829 // Only dex caches have native String roots. These are collected separately.
1830 DCHECK((current_obj_->IsDexCache<kVerifyNone, kWithoutReadBarrier>()) ||
1831 !image_writer_->IsInternedAppImageStringReference(root->AsMirrorPtr()))
1832 << mirror::Object::PrettyTypeOf(current_obj_);
1833 }
1834
1835 // Collects info for managed fields that reference managed Strings.
operator ()(ObjPtr<mirror::Object> obj,MemberOffset member_offset,bool is_static) const1836 void operator()(ObjPtr<mirror::Object> obj,
1837 MemberOffset member_offset,
1838 [[maybe_unused]] bool is_static) const REQUIRES_SHARED(Locks::mutator_lock_) {
1839 ObjPtr<mirror::Object> referred_obj =
1840 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(member_offset);
1841
1842 if (image_writer_->IsInternedAppImageStringReference(referred_obj)) {
1843 size_t base_offset = image_writer_->GetImageOffset(current_obj_.Ptr(), oat_index_);
1844 string_reference_offsets_->emplace_back(base_offset, member_offset.Uint32Value());
1845 }
1846 }
1847
1848 ALWAYS_INLINE
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1849 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1850 REQUIRES_SHARED(Locks::mutator_lock_) {
1851 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1852 }
1853
1854 private:
1855 const ImageWriter* const image_writer_;
1856 const size_t oat_index_;
1857 dchecked_vector<AppImageReferenceOffsetInfo>* const string_reference_offsets_;
1858 const ObjPtr<mirror::Object> current_obj_;
1859 };
1860
1861 class ImageWriter::LayoutHelper::VisitReferencesVisitor {
1862 public:
VisitReferencesVisitor(LayoutHelper * helper,size_t oat_index)1863 VisitReferencesVisitor(LayoutHelper* helper, size_t oat_index)
1864 : helper_(helper), oat_index_(oat_index) {}
1865
1866 // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1867 void VisitRootIfNonNull(
1868 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
1869 LOG(FATAL) << "UNREACHABLE";
1870 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1871 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
1872 LOG(FATAL) << "UNREACHABLE";
1873 }
1874
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const1875 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1876 MemberOffset offset,
1877 [[maybe_unused]] bool is_static) const
1878 REQUIRES_SHARED(Locks::mutator_lock_) {
1879 mirror::Object* ref =
1880 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1881 VisitReference(ref);
1882 }
1883
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1884 ALWAYS_INLINE void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
1885 ObjPtr<mirror::Reference> ref) const
1886 REQUIRES_SHARED(Locks::mutator_lock_) {
1887 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1888 }
1889
1890 private:
VisitReference(mirror::Object * ref) const1891 void VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
1892 if (helper_->TryAssignBinSlot(ref, oat_index_)) {
1893 // Remember how many objects we're adding at the front of the queue as we want
1894 // to reverse that range to process these references in the order of addition.
1895 helper_->work_queue_.emplace_front(ref, oat_index_);
1896 }
1897 if (ClassLinker::kAppImageMayContainStrings &&
1898 helper_->image_writer_->compiler_options_.IsAppImage() &&
1899 helper_->image_writer_->IsInternedAppImageStringReference(ref)) {
1900 helper_->image_writer_->image_infos_[oat_index_].num_string_references_ += 1u;
1901 }
1902 }
1903
1904 LayoutHelper* const helper_;
1905 const size_t oat_index_;
1906 };
1907
1908 // Visit method pointer arrays in `klass` that were not inherited from its superclass.
1909 template <typename Visitor>
VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass,Visitor && visitor)1910 static void VisitNewMethodPointerArrays(ObjPtr<mirror::Class> klass, Visitor&& visitor)
1911 REQUIRES_SHARED(Locks::mutator_lock_) {
1912 ObjPtr<mirror::Class> super = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
1913 ObjPtr<mirror::PointerArray> vtable = klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1914 if (vtable != nullptr &&
1915 (super == nullptr || vtable != super->GetVTable<kVerifyNone, kWithoutReadBarrier>())) {
1916 visitor(vtable);
1917 }
1918 int32_t iftable_count = klass->GetIfTableCount();
1919 int32_t super_iftable_count = (super != nullptr) ? super->GetIfTableCount() : 0;
1920 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1921 ObjPtr<mirror::IfTable> super_iftable =
1922 (super != nullptr) ? super->GetIfTable<kVerifyNone, kWithoutReadBarrier>() : nullptr;
1923 for (int32_t i = 0; i < iftable_count; ++i) {
1924 ObjPtr<mirror::PointerArray> methods =
1925 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1926 ObjPtr<mirror::PointerArray> super_methods = (i < super_iftable_count)
1927 ? super_iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i)
1928 : nullptr;
1929 if (methods != super_methods) {
1930 DCHECK(methods != nullptr);
1931 if (i < super_iftable_count) {
1932 DCHECK(super_methods != nullptr);
1933 DCHECK_EQ(methods->GetLength(), super_methods->GetLength());
1934 }
1935 visitor(methods);
1936 }
1937 }
1938 }
1939
ProcessDexFileObjects(Thread * self)1940 void ImageWriter::LayoutHelper::ProcessDexFileObjects(Thread* self) {
1941 Runtime* runtime = Runtime::Current();
1942 ClassLinker* class_linker = runtime->GetClassLinker();
1943 const CompilerOptions& compiler_options = image_writer_->compiler_options_;
1944 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
1945
1946 // To ensure deterministic output, populate the work queue with objects in a pre-defined order.
1947 // Note: If we decide to implement a profile-guided layout, this is the place to do so.
1948
1949 // Get initial work queue with the image classes and assign their bin slots.
1950 CollectClassesVisitor visitor(image_writer_);
1951 {
1952 WriterMutexLock mu(self, *Locks::classlinker_classes_lock_);
1953 if (compiler_options.IsBootImage() || compiler_options.IsBootImageExtension()) {
1954 // No need to filter based on class loader, boot class table contains only
1955 // classes defined by the boot class loader.
1956 ClassTable* class_table = class_linker->boot_class_table_.get();
1957 class_table->Visit<kWithoutReadBarrier>(visitor);
1958 } else {
1959 // No need to visit boot class table as there are no classes there for the app image.
1960 for (const ClassLinker::ClassLoaderData& data : class_linker->class_loaders_) {
1961 auto class_loader =
1962 DecodeWeakGlobalWithoutRB<mirror::ClassLoader>(vm, self, data.weak_root);
1963 if (class_loader != nullptr) {
1964 ClassTable* class_table = class_loader->GetClassTable();
1965 if (class_table != nullptr) {
1966 // Visit only classes defined in this class loader (avoid visiting multiple times).
1967 auto filtering_visitor = [&visitor, class_loader](ObjPtr<mirror::Class> klass)
1968 REQUIRES_SHARED(Locks::mutator_lock_) {
1969 if (klass->GetClassLoader<kVerifyNone, kWithoutReadBarrier>() == class_loader) {
1970 visitor(klass);
1971 }
1972 return true;
1973 };
1974 class_table->Visit<kWithoutReadBarrier>(filtering_visitor);
1975 }
1976 }
1977 }
1978 }
1979 }
1980 DCHECK(work_queue_.empty());
1981 work_queue_ = visitor.ProcessCollectedClasses(self);
1982 for (const std::pair<ObjPtr<mirror::Object>, size_t>& entry : work_queue_) {
1983 DCHECK(entry.first != nullptr);
1984 ObjPtr<mirror::Class> klass = entry.first->AsClass();
1985 size_t oat_index = entry.second;
1986 image_writer_->RecordNativeRelocations(klass, oat_index);
1987 AssignImageBinSlot(klass.Ptr(), oat_index);
1988
1989 auto method_pointer_array_visitor =
1990 [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
1991 constexpr Bin bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
1992 AssignImageBinSlot(pointer_array.Ptr(), oat_index, bin);
1993 // No need to add to the work queue. The class reference, if not in the boot image
1994 // (that is, when compiling the primary boot image), is already in the work queue.
1995 };
1996 VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
1997 }
1998
1999 // Assign bin slots to dex caches.
2000 {
2001 ReaderMutexLock mu(self, *Locks::dex_lock_);
2002 for (const DexFile* dex_file : compiler_options.GetDexFilesForOatFile()) {
2003 auto it = image_writer_->dex_file_oat_index_map_.find(dex_file);
2004 DCHECK(it != image_writer_->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2005 const size_t oat_index = it->second;
2006 // Assign bin slot to this file's dex cache and add it to the end of the work queue.
2007 auto dcd_it = class_linker->GetDexCachesData().find(dex_file);
2008 DCHECK(dcd_it != class_linker->GetDexCachesData().end()) << dex_file->GetLocation();
2009 auto dex_cache =
2010 DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, dcd_it->second.weak_root);
2011 DCHECK(dex_cache != nullptr);
2012 bool assigned = TryAssignBinSlot(dex_cache, oat_index);
2013 DCHECK(assigned);
2014 work_queue_.emplace_back(dex_cache, oat_index);
2015 }
2016 }
2017
2018 // Assign interns to images depending on the first dex file they appear in.
2019 // Record those that do not have a StringId in any dex file.
2020 ProcessInterns(self);
2021
2022 // Since classes and dex caches have been assigned to their bins, when we process a class
2023 // we do not follow through the class references or dex caches, so we correctly process
2024 // only objects actually belonging to that class before taking a new class from the queue.
2025 // If multiple class statics reference the same object (directly or indirectly), the object
2026 // is treated as belonging to the first encountered referencing class.
2027 ProcessWorkQueue();
2028 }
2029
ProcessRoots(Thread * self)2030 void ImageWriter::LayoutHelper::ProcessRoots(Thread* self) {
2031 // Assign bin slots to the image roots and boot image live objects, add them to the work queue
2032 // and process the work queue. These objects reference other objects needed for the image, for
2033 // example the array of dex cache references, or the pre-allocated exceptions for the boot image.
2034 DCHECK(work_queue_.empty());
2035
2036 constexpr Bin clean_bin = kBinObjects ? Bin::kInternalClean : Bin::kRegular;
2037 size_t num_oat_files = image_writer_->oat_filenames_.size();
2038 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2039 for (size_t oat_index = 0; oat_index != num_oat_files; ++oat_index) {
2040 // Put image roots and dex caches into `clean_bin`.
2041 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2042 vm, image_writer_->image_roots_[oat_index]);
2043 AssignImageBinSlot(image_roots, oat_index, clean_bin);
2044 work_queue_.emplace_back(image_roots, oat_index);
2045 // Do not rely on the `work_queue_` for dex cache arrays, it would assign a different bin.
2046 ObjPtr<ObjectArray<Object>> dex_caches = ObjPtr<ObjectArray<Object>>::DownCast(
2047 image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(ImageHeader::kDexCaches));
2048 AssignImageBinSlot(dex_caches, oat_index, clean_bin);
2049 work_queue_.emplace_back(dex_caches, oat_index);
2050 }
2051 // Do not rely on the `work_queue_` for boot image live objects, it would assign a different bin.
2052 if (image_writer_->compiler_options_.IsBootImage()) {
2053 ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
2054 image_writer_->boot_image_live_objects_;
2055 AssignImageBinSlot(boot_image_live_objects, GetDefaultOatIndex(), clean_bin);
2056 work_queue_.emplace_back(boot_image_live_objects, GetDefaultOatIndex());
2057 }
2058
2059 ProcessWorkQueue();
2060 }
2061
ProcessInterns(Thread * self)2062 void ImageWriter::LayoutHelper::ProcessInterns(Thread* self) {
2063 // String bins are empty at this point.
2064 DCHECK(std::all_of(bin_objects_.begin(),
2065 bin_objects_.end(),
2066 [](const auto& bins) {
2067 return bins[enum_cast<size_t>(Bin::kString)].empty();
2068 }));
2069
2070 // There is only one non-boot image intern table and it's the last one.
2071 InternTable* const intern_table = Runtime::Current()->GetInternTable();
2072 MutexLock mu(self, *Locks::intern_table_lock_);
2073 DCHECK_EQ(std::count_if(intern_table->strong_interns_.tables_.begin(),
2074 intern_table->strong_interns_.tables_.end(),
2075 [](const InternTable::Table::InternalTable& table) {
2076 return !table.IsBootImage();
2077 }),
2078 1);
2079 DCHECK(!intern_table->strong_interns_.tables_.back().IsBootImage());
2080 const InternTable::UnorderedSet& intern_set = intern_table->strong_interns_.tables_.back().set_;
2081
2082 // Assign bin slots to all interns with a corresponding StringId in one of the input dex files.
2083 ImageWriter* image_writer = image_writer_;
2084 for (const DexFile* dex_file : image_writer->compiler_options_.GetDexFilesForOatFile()) {
2085 auto it = image_writer->dex_file_oat_index_map_.find(dex_file);
2086 DCHECK(it != image_writer->dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2087 const size_t oat_index = it->second;
2088 // Assign bin slots for strings defined in this dex file in StringId (lexicographical) order.
2089 for (size_t i = 0, count = dex_file->NumStringIds(); i != count; ++i) {
2090 uint32_t utf16_length;
2091 const char* utf8_data = dex_file->GetStringDataAndUtf16Length(dex::StringIndex(i),
2092 &utf16_length);
2093 uint32_t hash = InternTable::Utf8String::Hash(utf16_length, utf8_data);
2094 auto intern_it =
2095 intern_set.FindWithHash(InternTable::Utf8String(utf16_length, utf8_data), hash);
2096 if (intern_it != intern_set.end()) {
2097 mirror::String* string = intern_it->Read<kWithoutReadBarrier>();
2098 DCHECK(string != nullptr);
2099 DCHECK(!image_writer->IsInBootImage(string));
2100 if (!image_writer->IsImageBinSlotAssigned(string)) {
2101 Bin bin = AssignImageBinSlot(string, oat_index);
2102 DCHECK_EQ(bin, kBinObjects ? Bin::kString : Bin::kRegular);
2103 } else {
2104 // We have already seen this string in a previous dex file.
2105 DCHECK(dex_file != image_writer->compiler_options_.GetDexFilesForOatFile().front());
2106 }
2107 }
2108 }
2109 }
2110
2111 // String bins have been filled with dex file interns. Record their numbers in image infos.
2112 DCHECK_EQ(bin_objects_.size(), image_writer_->image_infos_.size());
2113 size_t total_dex_file_interns = 0u;
2114 for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
2115 size_t num_dex_file_interns = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)].size();
2116 ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
2117 DCHECK_EQ(image_info.intern_table_size_, 0u);
2118 image_info.intern_table_size_ = num_dex_file_interns;
2119 total_dex_file_interns += num_dex_file_interns;
2120 }
2121
2122 // Collect interns that do not have a corresponding StringId in any of the input dex files.
2123 non_dex_file_interns_.reserve(intern_set.size() - total_dex_file_interns);
2124 for (const GcRoot<mirror::String>& root : intern_set) {
2125 mirror::String* string = root.Read<kWithoutReadBarrier>();
2126 if (!image_writer->IsImageBinSlotAssigned(string)) {
2127 non_dex_file_interns_.push_back(string);
2128 }
2129 }
2130 DCHECK_EQ(intern_set.size(), total_dex_file_interns + non_dex_file_interns_.size());
2131 }
2132
FinalizeInternTables()2133 void ImageWriter::LayoutHelper::FinalizeInternTables() {
2134 // Remove interns that do not have a bin slot assigned. These correspond
2135 // to the DexCache locations excluded in VerifyImageBinSlotsAssigned().
2136 ImageWriter* image_writer = image_writer_;
2137 auto retained_end = std::remove_if(
2138 non_dex_file_interns_.begin(),
2139 non_dex_file_interns_.end(),
2140 [=](mirror::String* string) REQUIRES_SHARED(Locks::mutator_lock_) {
2141 return !image_writer->IsImageBinSlotAssigned(string);
2142 });
2143 non_dex_file_interns_.resize(std::distance(non_dex_file_interns_.begin(), retained_end));
2144
2145 // Sort `non_dex_file_interns_` based on oat index and bin offset.
2146 ArrayRef<mirror::String*> non_dex_file_interns(non_dex_file_interns_);
2147 std::sort(non_dex_file_interns.begin(),
2148 non_dex_file_interns.end(),
2149 [=](mirror::String* lhs, mirror::String* rhs) REQUIRES_SHARED(Locks::mutator_lock_) {
2150 size_t lhs_oat_index = image_writer->GetOatIndex(lhs);
2151 size_t rhs_oat_index = image_writer->GetOatIndex(rhs);
2152 if (lhs_oat_index != rhs_oat_index) {
2153 return lhs_oat_index < rhs_oat_index;
2154 }
2155 BinSlot lhs_bin_slot = image_writer->GetImageBinSlot(lhs, lhs_oat_index);
2156 BinSlot rhs_bin_slot = image_writer->GetImageBinSlot(rhs, rhs_oat_index);
2157 return lhs_bin_slot < rhs_bin_slot;
2158 });
2159
2160 // Allocate and fill intern tables.
2161 size_t ndfi_index = 0u;
2162 DCHECK_EQ(bin_objects_.size(), image_writer->image_infos_.size());
2163 for (size_t oat_index = 0, size = bin_objects_.size(); oat_index != size; ++oat_index) {
2164 // Find the end of `non_dex_file_interns` for this oat file.
2165 size_t ndfi_end = ndfi_index;
2166 while (ndfi_end != non_dex_file_interns.size() &&
2167 image_writer->GetOatIndex(non_dex_file_interns[ndfi_end]) == oat_index) {
2168 ++ndfi_end;
2169 }
2170
2171 // Calculate final intern table size.
2172 ImageInfo& image_info = image_writer->GetImageInfo(oat_index);
2173 DCHECK_EQ(image_info.intern_table_bytes_, 0u);
2174 size_t num_dex_file_interns = image_info.intern_table_size_;
2175 size_t num_non_dex_file_interns = ndfi_end - ndfi_index;
2176 image_info.intern_table_size_ = num_dex_file_interns + num_non_dex_file_interns;
2177 if (image_info.intern_table_size_ != 0u) {
2178 // Make sure the intern table shall be full by allocating a buffer of the right size.
2179 size_t buffer_size = static_cast<size_t>(
2180 ceil(image_info.intern_table_size_ / kImageInternTableMaxLoadFactor));
2181 image_info.intern_table_buffer_.reset(new GcRoot<mirror::String>[buffer_size]);
2182 DCHECK(image_info.intern_table_buffer_ != nullptr);
2183 image_info.intern_table_.emplace(kImageInternTableMinLoadFactor,
2184 kImageInternTableMaxLoadFactor,
2185 image_info.intern_table_buffer_.get(),
2186 buffer_size);
2187
2188 // Fill the intern table. Dex file interns are at the start of the bin_objects[.][kString].
2189 InternTable::UnorderedSet& table = *image_info.intern_table_;
2190 const auto& oat_file_strings = bin_objects_[oat_index][enum_cast<size_t>(Bin::kString)];
2191 DCHECK_LE(num_dex_file_interns, oat_file_strings.size());
2192 ArrayRef<mirror::Object* const> dex_file_interns(
2193 oat_file_strings.data(), num_dex_file_interns);
2194 for (mirror::Object* string : dex_file_interns) {
2195 bool inserted = table.insert(GcRoot<mirror::String>(string->AsString())).second;
2196 DCHECK(inserted) << "String already inserted: " << string->AsString()->ToModifiedUtf8();
2197 }
2198 ArrayRef<mirror::String*> current_non_dex_file_interns =
2199 non_dex_file_interns.SubArray(ndfi_index, num_non_dex_file_interns);
2200 for (mirror::String* string : current_non_dex_file_interns) {
2201 bool inserted = table.insert(GcRoot<mirror::String>(string)).second;
2202 DCHECK(inserted) << "String already inserted: " << string->ToModifiedUtf8();
2203 }
2204
2205 // Record the intern table size in bytes.
2206 image_info.intern_table_bytes_ = table.WriteToMemory(nullptr);
2207 }
2208
2209 ndfi_index = ndfi_end;
2210 }
2211 }
2212
ProcessWorkQueue()2213 void ImageWriter::LayoutHelper::ProcessWorkQueue() {
2214 while (!work_queue_.empty()) {
2215 std::pair<ObjPtr<mirror::Object>, size_t> pair = work_queue_.front();
2216 work_queue_.pop_front();
2217 VisitReferences(/*obj=*/ pair.first, /*oat_index=*/ pair.second);
2218 }
2219 }
2220
SortDirtyObjects(const HashMap<mirror::Object *,uint32_t> & dirty_objects,size_t oat_index)2221 void ImageWriter::LayoutHelper::SortDirtyObjects(
2222 const HashMap<mirror::Object*, uint32_t>& dirty_objects, size_t oat_index) {
2223 constexpr Bin bin = Bin::kKnownDirty;
2224 ImageInfo& image_info = image_writer_->GetImageInfo(oat_index);
2225
2226 dchecked_vector<mirror::Object*>& known_dirty = bin_objects_[oat_index][enum_cast<size_t>(bin)];
2227 if (known_dirty.empty()) {
2228 return;
2229 }
2230
2231 // Collect objects and their combined sort_keys.
2232 // Combined key contains sort_key and original offset to ensure deterministic sorting.
2233 using CombinedKey = std::pair<uint32_t, uint32_t>;
2234 using ObjSortPair = std::pair<mirror::Object*, CombinedKey>;
2235 dchecked_vector<ObjSortPair> objects;
2236 objects.reserve(known_dirty.size());
2237 for (mirror::Object* obj : known_dirty) {
2238 const BinSlot bin_slot = image_writer_->GetImageBinSlot(obj, oat_index);
2239 const uint32_t original_offset = bin_slot.GetOffset();
2240 const auto it = dirty_objects.find(obj);
2241 const uint32_t sort_key = (it != dirty_objects.end()) ? it->second : 0;
2242 objects.emplace_back(obj, std::make_pair(sort_key, original_offset));
2243 }
2244 // Sort by combined sort_key.
2245 std::sort(std::begin(objects), std::end(objects), [&](ObjSortPair& lhs, ObjSortPair& rhs) {
2246 return lhs.second < rhs.second;
2247 });
2248
2249 // Fill known_dirty objects in sorted order, update bin offsets.
2250 known_dirty.clear();
2251 size_t offset = 0;
2252 for (const ObjSortPair& entry : objects) {
2253 mirror::Object* obj = entry.first;
2254
2255 known_dirty.push_back(obj);
2256 image_writer_->UpdateImageBinSlotOffset(obj, oat_index, offset);
2257
2258 const size_t aligned_object_size = RoundUp(obj->SizeOf<kVerifyNone>(), kObjectAlignment);
2259 offset += aligned_object_size;
2260 }
2261 DCHECK_EQ(offset, image_info.GetBinSlotSize(bin));
2262 }
2263
VerifyImageBinSlotsAssigned()2264 void ImageWriter::LayoutHelper::VerifyImageBinSlotsAssigned() {
2265 dchecked_vector<mirror::Object*> carveout;
2266 JavaVMExt* vm = nullptr;
2267 if (image_writer_->compiler_options_.IsAppImage()) {
2268 // Exclude boot class path dex caches that are not part of the boot image.
2269 // Also exclude their locations if they have not been visited through another path.
2270 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2271 Thread* self = Thread::Current();
2272 vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2273 ReaderMutexLock mu(self, *Locks::dex_lock_);
2274 for (const auto& entry : class_linker->GetDexCachesData()) {
2275 const ClassLinker::DexCacheData& data = entry.second;
2276 auto dex_cache = DecodeWeakGlobalWithoutRB<mirror::DexCache>(vm, self, data.weak_root);
2277 if (dex_cache == nullptr ||
2278 image_writer_->IsInBootImage(dex_cache.Ptr()) ||
2279 ContainsElement(image_writer_->compiler_options_.GetDexFilesForOatFile(),
2280 dex_cache->GetDexFile())) {
2281 continue;
2282 }
2283 CHECK(!image_writer_->IsImageBinSlotAssigned(dex_cache.Ptr()));
2284 carveout.push_back(dex_cache.Ptr());
2285 ObjPtr<mirror::String> location = dex_cache->GetLocation<kVerifyNone, kWithoutReadBarrier>();
2286 if (!image_writer_->IsImageBinSlotAssigned(location.Ptr())) {
2287 carveout.push_back(location.Ptr());
2288 }
2289 }
2290 }
2291
2292 dchecked_vector<mirror::Object*> missed_objects;
2293 auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
2294 REQUIRES_SHARED(Locks::mutator_lock_) {
2295 if (!image_writer_->IsInBootImage(obj)) {
2296 if (!UNLIKELY(image_writer_->IsImageBinSlotAssigned(obj))) {
2297 // Ignore the `carveout` objects.
2298 if (ContainsElement(carveout, obj)) {
2299 return;
2300 }
2301 // Ignore finalizer references for the dalvik.system.DexFile objects referenced by
2302 // the app class loader.
2303 ObjPtr<mirror::Class> klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
2304 if (klass->IsFinalizerReferenceClass<kVerifyNone>()) {
2305 ObjPtr<mirror::Class> reference_class =
2306 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
2307 DCHECK(reference_class->DescriptorEquals("Ljava/lang/ref/Reference;"));
2308 ArtField* ref_field = reference_class->FindDeclaredInstanceField(
2309 "referent", "Ljava/lang/Object;");
2310 CHECK(ref_field != nullptr);
2311 ObjPtr<mirror::Object> ref = ref_field->GetObject<kWithoutReadBarrier>(obj);
2312 CHECK(ref != nullptr);
2313 CHECK(image_writer_->IsImageBinSlotAssigned(ref.Ptr()));
2314 ObjPtr<mirror::Class> ref_klass = ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
2315 CHECK(ref_klass == WellKnownClasses::dalvik_system_DexFile.Get<kWithoutReadBarrier>());
2316 // Note: The app class loader is used only for checking against the runtime
2317 // class loader, the dex file cookie is cleared and therefore we do not need
2318 // to run the finalizer even if we implement app image objects collection.
2319 ArtField* field = WellKnownClasses::dalvik_system_DexFile_cookie;
2320 CHECK(field->GetObject<kWithoutReadBarrier>(ref) == nullptr);
2321 return;
2322 }
2323 if (klass->IsStringClass()) {
2324 // Ignore interned strings. These may come from reflection interning method names.
2325 // TODO: Make dex file strings weak interns and GC them before writing the image.
2326 if (IsStronglyInternedString(obj->AsString())) {
2327 return;
2328 }
2329 }
2330 missed_objects.push_back(obj);
2331 }
2332 }
2333 };
2334 Runtime::Current()->GetHeap()->VisitObjects(ensure_bin_slots_assigned);
2335 if (!missed_objects.empty()) {
2336 const gc::Verification* v = Runtime::Current()->GetHeap()->GetVerification();
2337 size_t num_missed_objects = missed_objects.size();
2338 size_t num_paths = std::min<size_t>(num_missed_objects, 5u); // Do not flood the output.
2339 ArrayRef<mirror::Object*> missed_objects_head =
2340 ArrayRef<mirror::Object*>(missed_objects).SubArray(/*pos=*/ 0u, /*length=*/ num_paths);
2341 for (mirror::Object* obj : missed_objects_head) {
2342 LOG(ERROR) << "Image object without assigned bin slot: "
2343 << mirror::Object::PrettyTypeOf(obj) << " " << obj
2344 << " " << v->FirstPathFromRootSet(obj);
2345 }
2346 LOG(FATAL) << "Found " << num_missed_objects << " objects without assigned bin slots.";
2347 }
2348 }
2349
FinalizeBinSlotOffsets()2350 void ImageWriter::LayoutHelper::FinalizeBinSlotOffsets() {
2351 // Calculate bin slot offsets and adjust for region padding if needed.
2352 const size_t region_size = image_writer_->region_size_;
2353 const size_t num_image_infos = image_writer_->image_infos_.size();
2354 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2355 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2356 size_t bin_offset = image_writer_->image_objects_offset_begin_;
2357
2358 for (size_t i = 0; i != kNumberOfBins; ++i) {
2359 Bin bin = enum_cast<Bin>(i);
2360 switch (bin) {
2361 case Bin::kArtMethodClean:
2362 case Bin::kArtMethodDirty: {
2363 bin_offset = RoundUp(bin_offset, ArtMethod::Alignment(image_writer_->target_ptr_size_));
2364 break;
2365 }
2366 case Bin::kImTable:
2367 case Bin::kIMTConflictTable: {
2368 bin_offset = RoundUp(bin_offset, static_cast<size_t>(image_writer_->target_ptr_size_));
2369 break;
2370 }
2371 default: {
2372 // Normal alignment.
2373 }
2374 }
2375 image_info.bin_slot_offsets_[i] = bin_offset;
2376
2377 // If the bin is for mirror objects, we may need to add region padding and update offsets.
2378 if (i < enum_cast<size_t>(Bin::kMirrorCount) && region_size != 0u) {
2379 const size_t offset_after_header = bin_offset - sizeof(ImageHeader);
2380 size_t remaining_space =
2381 RoundUp(offset_after_header + 1u, region_size) - offset_after_header;
2382 // Exercise the loop below in debug builds to get coverage.
2383 if (kIsDebugBuild || remaining_space < image_info.bin_slot_sizes_[i]) {
2384 // The bin crosses a region boundary. Add padding if needed.
2385 size_t object_offset = 0u;
2386 size_t padding = 0u;
2387 for (mirror::Object* object : bin_objects_[oat_index][i]) {
2388 BinSlot bin_slot = image_writer_->GetImageBinSlot(object, oat_index);
2389 DCHECK_EQ(enum_cast<size_t>(bin_slot.GetBin()), i);
2390 DCHECK_EQ(bin_slot.GetOffset() + padding, object_offset);
2391 size_t object_size = RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2392
2393 auto add_padding = [&](bool tail_region) {
2394 DCHECK_NE(remaining_space, 0u);
2395 DCHECK_LT(remaining_space, region_size);
2396 DCHECK_ALIGNED(remaining_space, kObjectAlignment);
2397 // TODO When copying to heap regions, leave the tail region padding zero-filled.
2398 if (!tail_region || true) {
2399 image_info.padding_offsets_.push_back(bin_offset + object_offset);
2400 }
2401 image_info.bin_slot_sizes_[i] += remaining_space;
2402 padding += remaining_space;
2403 object_offset += remaining_space;
2404 remaining_space = region_size;
2405 };
2406 if (object_size > remaining_space) {
2407 // Padding needed if we're not at region boundary (with a multi-region object).
2408 if (remaining_space != region_size) {
2409 // TODO: Instead of adding padding, we should consider reordering the bins
2410 // or objects to reduce wasted space.
2411 add_padding(/*tail_region=*/ false);
2412 }
2413 DCHECK_EQ(remaining_space, region_size);
2414 // For huge objects, adjust the remaining space to hold the object and some more.
2415 if (object_size > region_size) {
2416 remaining_space = RoundUp(object_size + 1u, region_size);
2417 }
2418 } else if (remaining_space == object_size) {
2419 // Move to the next region, no padding needed.
2420 remaining_space += region_size;
2421 }
2422 DCHECK_GT(remaining_space, object_size);
2423 remaining_space -= object_size;
2424 image_writer_->UpdateImageBinSlotOffset(object, oat_index, object_offset);
2425 object_offset += object_size;
2426 // Add padding to the tail region of huge objects if not region-aligned.
2427 if (object_size > region_size && remaining_space != region_size) {
2428 DCHECK(!IsAlignedParam(object_size, region_size));
2429 add_padding(/*tail_region=*/ true);
2430 }
2431 }
2432 image_writer_->region_alignment_wasted_ += padding;
2433 image_info.image_end_ += padding;
2434 }
2435 }
2436 bin_offset += image_info.bin_slot_sizes_[i];
2437 }
2438 // NOTE: There may be additional padding between the bin slots and the intern table.
2439 DCHECK_EQ(
2440 image_info.image_end_,
2441 image_info.GetBinSizeSum(Bin::kMirrorCount) + image_writer_->image_objects_offset_begin_);
2442 }
2443
2444 VLOG(image) << "Space wasted for region alignment " << image_writer_->region_alignment_wasted_;
2445 }
2446
CollectStringReferenceInfo()2447 void ImageWriter::LayoutHelper::CollectStringReferenceInfo() {
2448 size_t total_string_refs = 0u;
2449
2450 const size_t num_image_infos = image_writer_->image_infos_.size();
2451 for (size_t oat_index = 0; oat_index != num_image_infos; ++oat_index) {
2452 ImageInfo& image_info = image_writer_->image_infos_[oat_index];
2453 DCHECK(image_info.string_reference_offsets_.empty());
2454 image_info.string_reference_offsets_.reserve(image_info.num_string_references_);
2455
2456 for (size_t i = 0; i < enum_cast<size_t>(Bin::kMirrorCount); ++i) {
2457 for (mirror::Object* obj : bin_objects_[oat_index][i]) {
2458 CollectStringReferenceVisitor visitor(image_writer_,
2459 oat_index,
2460 &image_info.string_reference_offsets_,
2461 obj);
2462 /*
2463 * References to managed strings can occur either in the managed heap or in
2464 * native memory regions. Information about managed references is collected
2465 * by the CollectStringReferenceVisitor and directly added to the image info.
2466 *
2467 * Native references to managed strings can only occur through DexCache
2468 * objects. This is verified by the visitor in debug mode and the references
2469 * are collected separately below.
2470 */
2471 obj->VisitReferences</*kVisitNativeRoots=*/ kIsDebugBuild,
2472 kVerifyNone,
2473 kWithoutReadBarrier>(visitor, visitor);
2474 }
2475 }
2476
2477 total_string_refs += image_info.string_reference_offsets_.size();
2478
2479 // Check that we collected the same number of string references as we saw in the previous pass.
2480 CHECK_EQ(image_info.string_reference_offsets_.size(), image_info.num_string_references_);
2481 }
2482
2483 VLOG(compiler) << "Dex2Oat:AppImage:stringReferences = " << total_string_refs;
2484 }
2485
VisitReferences(ObjPtr<mirror::Object> obj,size_t oat_index)2486 void ImageWriter::LayoutHelper::VisitReferences(ObjPtr<mirror::Object> obj, size_t oat_index) {
2487 size_t old_work_queue_size = work_queue_.size();
2488 VisitReferencesVisitor visitor(this, oat_index);
2489 // Walk references and assign bin slots for them.
2490 obj->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
2491 visitor,
2492 visitor);
2493 // Put the added references in the queue in the order in which they were added.
2494 // The visitor just pushes them to the front as it visits them.
2495 DCHECK_LE(old_work_queue_size, work_queue_.size());
2496 size_t num_added = work_queue_.size() - old_work_queue_size;
2497 std::reverse(work_queue_.begin(), work_queue_.begin() + num_added);
2498 }
2499
TryAssignBinSlot(ObjPtr<mirror::Object> obj,size_t oat_index)2500 bool ImageWriter::LayoutHelper::TryAssignBinSlot(ObjPtr<mirror::Object> obj, size_t oat_index) {
2501 if (obj == nullptr || image_writer_->IsInBootImage(obj.Ptr())) {
2502 // Object is null or already in the image, there is no work to do.
2503 return false;
2504 }
2505 bool assigned = false;
2506 if (!image_writer_->IsImageBinSlotAssigned(obj.Ptr())) {
2507 AssignImageBinSlot(obj.Ptr(), oat_index);
2508 assigned = true;
2509 }
2510 return assigned;
2511 }
2512
AssignImageBinSlot(ObjPtr<mirror::Object> object,size_t oat_index)2513 ImageWriter::Bin ImageWriter::LayoutHelper::AssignImageBinSlot(ObjPtr<mirror::Object> object,
2514 size_t oat_index) {
2515 DCHECK(object != nullptr);
2516 Bin bin = image_writer_->GetImageBin(object.Ptr());
2517 AssignImageBinSlot(object.Ptr(), oat_index, bin);
2518 return bin;
2519 }
2520
AssignImageBinSlot(ObjPtr<mirror::Object> object,size_t oat_index,Bin bin)2521 void ImageWriter::LayoutHelper::AssignImageBinSlot(
2522 ObjPtr<mirror::Object> object, size_t oat_index, Bin bin) {
2523 DCHECK(object != nullptr);
2524 DCHECK(!image_writer_->IsInBootImage(object.Ptr()));
2525 DCHECK(!image_writer_->IsImageBinSlotAssigned(object.Ptr()));
2526 image_writer_->AssignImageBinSlot(object.Ptr(), oat_index, bin);
2527 bin_objects_[oat_index][enum_cast<size_t>(bin)].push_back(object.Ptr());
2528 }
2529
AssertOnly1Thread()2530 static inline void AssertOnly1Thread() REQUIRES(!Locks::thread_list_lock_) {
2531 if (kIsDebugBuild) {
2532 Runtime::Current()->GetThreadList()->CheckOnly1Thread(Thread::Current());
2533 }
2534 }
2535
CalculateNewObjectOffsets()2536 void ImageWriter::CalculateNewObjectOffsets() {
2537 Thread* const self = Thread::Current();
2538 Runtime* const runtime = Runtime::Current();
2539 gc::Heap* const heap = runtime->GetHeap();
2540
2541 AssertOnly1Thread();
2542 // Leave space for the header, but do not write it yet, we need to
2543 // know where image_roots is going to end up
2544 image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment
2545
2546 // Write the image runtime methods.
2547 image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
2548 image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
2549 image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
2550 image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
2551 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
2552 image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
2553 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
2554 image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
2555 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
2556 image_methods_[ImageHeader::kSaveEverythingMethod] =
2557 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
2558 image_methods_[ImageHeader::kSaveEverythingMethodForClinit] =
2559 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit);
2560 image_methods_[ImageHeader::kSaveEverythingMethodForSuspendCheck] =
2561 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck);
2562 // Visit image methods first to have the main runtime methods in the first image.
2563 for (auto* m : image_methods_) {
2564 CHECK(m != nullptr);
2565 CHECK(m->IsRuntimeMethod());
2566 DCHECK_EQ(!compiler_options_.IsBootImage(), IsInBootImage(m))
2567 << "Trampolines should be in boot image";
2568 if (!IsInBootImage(m)) {
2569 AssignMethodOffset(m, NativeObjectRelocationType::kRuntimeMethod, GetDefaultOatIndex());
2570 }
2571 }
2572
2573 // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
2574 // this lock while holding other locks may cause lock order violations.
2575 {
2576 auto deflate_monitor =
2577 // NO_THREAD_SAFETY_ANALYSIS: We don't really hold mutator_lock_ exclusively.
2578 [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_)
2579 NO_THREAD_SAFETY_ANALYSIS { Monitor::Deflate(Thread::Current(), obj); };
2580 heap->VisitObjects(deflate_monitor);
2581 // This does not update the MonitorList, which is thus rendered invalid, and is no longer used.
2582 }
2583
2584 // From this point on, there shall be no GC anymore and no objects shall be allocated.
2585 // We can now assign a BitSlot to each object and store it in its lockword.
2586
2587 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
2588 if (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension()) {
2589 // Record the address of boot image live objects.
2590 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2591 vm, image_roots_[0]);
2592 boot_image_live_objects_ = ObjPtr<ObjectArray<Object>>::DownCast(
2593 image_roots->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(
2594 ImageHeader::kBootImageLiveObjects)).Ptr();
2595 }
2596
2597 // If dirty_image_objects_ is present - try optimizing object layout.
2598 // Parse dirty-image-objects entries and put them in dirty_objects_ map, which is then used in
2599 // `AssignImageBinSlot` method to put the objects in dirty bin.
2600 if (compiler_options_.IsBootImage() && dirty_image_objects_ != nullptr) {
2601 dirty_objects_ = MatchDirtyObjectPaths(*dirty_image_objects_);
2602 LOG(INFO) << ART_FORMAT("Matched {} out of {} dirty-image-objects",
2603 dirty_objects_.size(),
2604 dirty_image_objects_->size());
2605 }
2606
2607 LayoutHelper layout_helper(this);
2608 layout_helper.ProcessDexFileObjects(self);
2609 layout_helper.ProcessRoots(self);
2610 layout_helper.FinalizeInternTables();
2611
2612 // Sort objects in dirty bin.
2613 if (!dirty_objects_.empty()) {
2614 for (size_t oat_index = 0; oat_index < image_infos_.size(); ++oat_index) {
2615 layout_helper.SortDirtyObjects(dirty_objects_, oat_index);
2616 }
2617 }
2618
2619 // Verify that all objects have assigned image bin slots.
2620 layout_helper.VerifyImageBinSlotsAssigned();
2621
2622 // Finalize bin slot offsets. This may add padding for regions.
2623 layout_helper.FinalizeBinSlotOffsets();
2624
2625 // Collect string reference info for app images.
2626 if (ClassLinker::kAppImageMayContainStrings && compiler_options_.IsAppImage()) {
2627 layout_helper.CollectStringReferenceInfo();
2628 }
2629
2630 // Calculate image offsets.
2631 size_t image_offset = 0;
2632 for (ImageInfo& image_info : image_infos_) {
2633 image_info.image_begin_ = global_image_begin_ + image_offset;
2634 image_info.image_offset_ = image_offset;
2635 image_info.image_size_ = RoundUp(image_info.CreateImageSections().first, kElfSegmentAlignment);
2636 // There should be no gaps until the next image.
2637 image_offset += image_info.image_size_;
2638 }
2639
2640 size_t oat_index = 0;
2641 for (ImageInfo& image_info : image_infos_) {
2642 auto image_roots = DecodeGlobalWithoutRB<mirror::ObjectArray<mirror::Object>>(
2643 vm, image_roots_[oat_index]);
2644 image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Ptr()));
2645 ++oat_index;
2646 }
2647
2648 // Update the native relocations by adding their bin sums.
2649 for (auto& pair : native_object_relocations_) {
2650 NativeObjectRelocation& relocation = pair.second;
2651 Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
2652 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2653 relocation.offset += image_info.GetBinSlotOffset(bin_type);
2654 }
2655
2656 // Update the JNI stub methods by adding their bin sums.
2657 for (auto& pair : jni_stub_map_) {
2658 JniStubMethodRelocation& relocation = pair.second.second;
2659 constexpr Bin bin_type = Bin::kJniStubMethod;
2660 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2661 relocation.offset += image_info.GetBinSlotOffset(bin_type);
2662 }
2663 }
2664
2665 std::pair<size_t, dchecked_vector<ImageSection>>
CreateImageSections() const2666 ImageWriter::ImageInfo::CreateImageSections() const {
2667 dchecked_vector<ImageSection> sections(ImageHeader::kSectionCount);
2668
2669 // Do not round up any sections here that are represented by the bins since it
2670 // will break offsets.
2671
2672 /*
2673 * Objects section
2674 */
2675 sections[ImageHeader::kSectionObjects] =
2676 ImageSection(0u, image_end_);
2677
2678 /*
2679 * Field section
2680 */
2681 sections[ImageHeader::kSectionArtFields] =
2682 ImageSection(GetBinSlotOffset(Bin::kArtField), GetBinSlotSize(Bin::kArtField));
2683
2684 /*
2685 * Method section
2686 */
2687 sections[ImageHeader::kSectionArtMethods] =
2688 ImageSection(GetBinSlotOffset(Bin::kArtMethodClean),
2689 GetBinSlotSize(Bin::kArtMethodClean) +
2690 GetBinSlotSize(Bin::kArtMethodDirty));
2691
2692 /*
2693 * IMT section
2694 */
2695 sections[ImageHeader::kSectionImTables] =
2696 ImageSection(GetBinSlotOffset(Bin::kImTable), GetBinSlotSize(Bin::kImTable));
2697
2698 /*
2699 * Conflict Tables section
2700 */
2701 sections[ImageHeader::kSectionIMTConflictTables] =
2702 ImageSection(GetBinSlotOffset(Bin::kIMTConflictTable), GetBinSlotSize(Bin::kIMTConflictTable));
2703
2704 /*
2705 * Runtime Methods section
2706 */
2707 sections[ImageHeader::kSectionRuntimeMethods] =
2708 ImageSection(GetBinSlotOffset(Bin::kRuntimeMethod), GetBinSlotSize(Bin::kRuntimeMethod));
2709
2710 /*
2711 * JNI Stub Methods section
2712 */
2713 sections[ImageHeader::kSectionJniStubMethods] =
2714 ImageSection(GetBinSlotOffset(Bin::kJniStubMethod), GetBinSlotSize(Bin::kJniStubMethod));
2715
2716 /*
2717 * Interned Strings section
2718 */
2719
2720 // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
2721 size_t cur_pos = RoundUp(sections[ImageHeader::kSectionJniStubMethods].End(), sizeof(uint64_t));
2722
2723 const ImageSection& interned_strings_section =
2724 sections[ImageHeader::kSectionInternedStrings] =
2725 ImageSection(cur_pos, intern_table_bytes_);
2726
2727 /*
2728 * Class Table section
2729 */
2730
2731 // Obtain the new position and round it up to the appropriate alignment.
2732 cur_pos = RoundUp(interned_strings_section.End(), sizeof(uint64_t));
2733
2734 const ImageSection& class_table_section =
2735 sections[ImageHeader::kSectionClassTable] =
2736 ImageSection(cur_pos, class_table_bytes_);
2737
2738 /*
2739 * String Field Offsets section
2740 */
2741
2742 // Round up to the alignment of the offsets we are going to store.
2743 cur_pos = RoundUp(class_table_section.End(), sizeof(uint32_t));
2744
2745 // The size of string_reference_offsets_ can't be used here because it hasn't
2746 // been filled with AppImageReferenceOffsetInfo objects yet. The
2747 // num_string_references_ value is calculated separately, before we can
2748 // compute the actual offsets.
2749 const ImageSection& string_reference_offsets =
2750 sections[ImageHeader::kSectionStringReferenceOffsets] =
2751 ImageSection(cur_pos, sizeof(string_reference_offsets_[0]) * num_string_references_);
2752
2753 /*
2754 * DexCache arrays section
2755 */
2756
2757 // Round up to the alignment dex caches arrays expects.
2758 cur_pos = RoundUp(sections[ImageHeader::kSectionStringReferenceOffsets].End(), sizeof(uint32_t));
2759 // We don't generate dex cache arrays in an image generated by dex2oat.
2760 sections[ImageHeader::kSectionDexCacheArrays] = ImageSection(cur_pos, 0u);
2761
2762 /*
2763 * Metadata section.
2764 */
2765
2766 // Round up to the alignment of the offsets we are going to store.
2767 cur_pos = RoundUp(string_reference_offsets.End(), sizeof(uint32_t));
2768
2769 const ImageSection& metadata_section =
2770 sections[ImageHeader::kSectionMetadata] =
2771 ImageSection(cur_pos, GetBinSlotSize(Bin::kMetadata));
2772
2773 // Return the number of bytes described by these sections, and the sections
2774 // themselves.
2775 return make_pair(metadata_section.End(), std::move(sections));
2776 }
2777
CreateHeader(size_t oat_index,size_t component_count)2778 void ImageWriter::CreateHeader(size_t oat_index, size_t component_count) {
2779 ImageInfo& image_info = GetImageInfo(oat_index);
2780 const uint8_t* oat_file_begin = image_info.oat_file_begin_;
2781 const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
2782 const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
2783
2784 uint32_t image_reservation_size = image_info.image_size_;
2785 DCHECK_ALIGNED(image_reservation_size, kElfSegmentAlignment);
2786 uint32_t current_component_count = 1u;
2787 if (compiler_options_.IsAppImage()) {
2788 DCHECK_EQ(oat_index, 0u);
2789 DCHECK_EQ(component_count, current_component_count);
2790 } else {
2791 DCHECK(image_infos_.size() == 1u || image_infos_.size() == component_count)
2792 << image_infos_.size() << " " << component_count;
2793 if (oat_index == 0u) {
2794 const ImageInfo& last_info = image_infos_.back();
2795 const uint8_t* end = last_info.oat_file_begin_ + last_info.oat_loaded_size_;
2796 DCHECK_ALIGNED(image_info.image_begin_, kElfSegmentAlignment);
2797 image_reservation_size = dchecked_integral_cast<uint32_t>(
2798 RoundUp(end - image_info.image_begin_, kElfSegmentAlignment));
2799 current_component_count = component_count;
2800 } else {
2801 image_reservation_size = 0u;
2802 current_component_count = 0u;
2803 }
2804 }
2805
2806 // Compute boot image checksums for the primary component, leave as 0 otherwise.
2807 uint32_t boot_image_components = 0u;
2808 uint32_t boot_image_checksums = 0u;
2809 if (oat_index == 0u) {
2810 const std::vector<gc::space::ImageSpace*>& image_spaces =
2811 Runtime::Current()->GetHeap()->GetBootImageSpaces();
2812 DCHECK_EQ(image_spaces.empty(), compiler_options_.IsBootImage());
2813 for (size_t i = 0u, size = image_spaces.size(); i != size; ) {
2814 const ImageHeader& header = image_spaces[i]->GetImageHeader();
2815 boot_image_components += header.GetComponentCount();
2816 boot_image_checksums ^= header.GetImageChecksum();
2817 DCHECK_LE(header.GetImageSpaceCount(), size - i);
2818 i += header.GetImageSpaceCount();
2819 }
2820 }
2821
2822 // Create the image sections.
2823 auto section_info_pair = image_info.CreateImageSections();
2824 const size_t image_end = section_info_pair.first;
2825 dchecked_vector<ImageSection>& sections = section_info_pair.second;
2826
2827 // Finally bitmap section.
2828 const size_t bitmap_bytes = image_info.image_bitmap_.Size();
2829 auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap];
2830 // The offset of the bitmap section should be aligned to kElfSegmentAlignment to enable mapping
2831 // the section from file to memory. However the section size doesn't have to be rounded up as it
2832 // is located at the end of the file. When mapping file contents to memory, if the last page of
2833 // the mapping is only partially filled with data, the rest will be zero-filled.
2834 *bitmap_section = ImageSection(RoundUp(image_end, kElfSegmentAlignment), bitmap_bytes);
2835 if (VLOG_IS_ON(compiler)) {
2836 LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
2837 size_t idx = 0;
2838 for (const ImageSection& section : sections) {
2839 LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
2840 ++idx;
2841 }
2842 LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
2843 LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
2844 LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
2845 << " Image offset=" << image_info.image_offset_ << std::dec;
2846 LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
2847 << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
2848 << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
2849 << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
2850 }
2851
2852 // Create the header, leave 0 for data size since we will fill this in as we are writing the
2853 // image.
2854 new (image_info.image_.Begin()) ImageHeader(
2855 image_reservation_size,
2856 current_component_count,
2857 PointerToLowMemUInt32(image_info.image_begin_),
2858 image_end,
2859 sections.data(),
2860 image_info.image_roots_address_,
2861 image_info.oat_checksum_,
2862 PointerToLowMemUInt32(oat_file_begin),
2863 PointerToLowMemUInt32(image_info.oat_data_begin_),
2864 PointerToLowMemUInt32(oat_data_end),
2865 PointerToLowMemUInt32(oat_file_end),
2866 boot_image_begin_,
2867 boot_image_size_,
2868 boot_image_components,
2869 boot_image_checksums,
2870 target_ptr_size_);
2871 }
2872
GetImageMethodAddress(ArtMethod * method)2873 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
2874 NativeObjectRelocation relocation = GetNativeRelocation(method);
2875 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2876 CHECK_GE(relocation.offset, image_info.image_end_) << "ArtMethods should be after Objects";
2877 return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + relocation.offset);
2878 }
2879
GetIntrinsicReferenceAddress(uint32_t intrinsic_data)2880 const void* ImageWriter::GetIntrinsicReferenceAddress(uint32_t intrinsic_data) {
2881 DCHECK(compiler_options_.IsBootImage());
2882 switch (IntrinsicObjects::DecodePatchType(intrinsic_data)) {
2883 case IntrinsicObjects::PatchType::kValueOfArray: {
2884 uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2885 const uint8_t* base_address =
2886 reinterpret_cast<const uint8_t*>(GetImageAddress(boot_image_live_objects_));
2887 MemberOffset data_offset =
2888 IntrinsicObjects::GetValueOfArrayDataOffset(boot_image_live_objects_, index);
2889 return base_address + data_offset.Uint32Value();
2890 }
2891 case IntrinsicObjects::PatchType::kValueOfObject: {
2892 uint32_t index = IntrinsicObjects::DecodePatchIndex(intrinsic_data);
2893 ObjPtr<mirror::Object> value = IntrinsicObjects::GetValueOfObject(boot_image_live_objects_,
2894 /* start_index= */ 0u,
2895 index);
2896 return GetImageAddress(value.Ptr());
2897 }
2898 }
2899 LOG(FATAL) << "UNREACHABLE";
2900 UNREACHABLE();
2901 }
2902
2903
2904 class ImageWriter::FixupRootVisitor : public RootVisitor {
2905 public:
FixupRootVisitor(ImageWriter * image_writer)2906 explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
2907 }
2908
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info)2909 void VisitRoots([[maybe_unused]] mirror::Object*** roots,
2910 [[maybe_unused]] size_t count,
2911 [[maybe_unused]] const RootInfo& info) override
2912 REQUIRES_SHARED(Locks::mutator_lock_) {
2913 LOG(FATAL) << "Unsupported";
2914 }
2915
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info)2916 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
2917 size_t count,
2918 [[maybe_unused]] const RootInfo& info) override
2919 REQUIRES_SHARED(Locks::mutator_lock_) {
2920 for (size_t i = 0; i < count; ++i) {
2921 // Copy the reference. Since we do not have the address for recording the relocation,
2922 // it needs to be recorded explicitly by the user of FixupRootVisitor.
2923 ObjPtr<mirror::Object> old_ptr = roots[i]->AsMirrorPtr();
2924 roots[i]->Assign(image_writer_->GetImageAddress(old_ptr.Ptr()));
2925 }
2926 }
2927
2928 private:
2929 ImageWriter* const image_writer_;
2930 };
2931
CopyAndFixupImTable(ImTable * orig,ImTable * copy)2932 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
2933 for (size_t i = 0; i < ImTable::kSize; ++i) {
2934 ArtMethod* method = orig->Get(i, target_ptr_size_);
2935 void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
2936 CopyAndFixupPointer(address, method);
2937 DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
2938 }
2939 }
2940
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)2941 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
2942 const size_t count = orig->NumEntries(target_ptr_size_);
2943 for (size_t i = 0; i < count; ++i) {
2944 ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
2945 ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
2946 CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
2947 CopyAndFixupPointer(
2948 copy->AddressOfImplementationMethod(i, target_ptr_size_), implementation_method);
2949 DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
2950 NativeLocationInImage(interface_method));
2951 DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
2952 NativeLocationInImage(implementation_method));
2953 }
2954 }
2955
CopyAndFixupNativeData(size_t oat_index)2956 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
2957 const ImageInfo& image_info = GetImageInfo(oat_index);
2958 // Copy ArtFields and methods to their locations and update the array for convenience.
2959 for (auto& pair : native_object_relocations_) {
2960 NativeObjectRelocation& relocation = pair.second;
2961 // Only work with fields and methods that are in the current oat file.
2962 if (relocation.oat_index != oat_index) {
2963 continue;
2964 }
2965 auto* dest = image_info.image_.Begin() + relocation.offset;
2966 DCHECK_GE(dest, image_info.image_.Begin() + image_info.image_end_);
2967 DCHECK(!IsInBootImage(pair.first));
2968 switch (relocation.type) {
2969 case NativeObjectRelocationType::kRuntimeMethod:
2970 case NativeObjectRelocationType::kArtMethodClean:
2971 case NativeObjectRelocationType::kArtMethodDirty: {
2972 CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
2973 reinterpret_cast<ArtMethod*>(dest),
2974 oat_index);
2975 break;
2976 }
2977 case NativeObjectRelocationType::kArtFieldArray: {
2978 // Copy and fix up the entire field array.
2979 auto* src_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(pair.first);
2980 auto* dest_array = reinterpret_cast<LengthPrefixedArray<ArtField>*>(dest);
2981 size_t size = src_array->size();
2982 memcpy(dest_array, src_array, LengthPrefixedArray<ArtField>::ComputeSize(size));
2983 for (size_t i = 0; i != size; ++i) {
2984 CopyAndFixupReference(
2985 dest_array->At(i).GetDeclaringClassAddressWithoutBarrier(),
2986 src_array->At(i).GetDeclaringClass<kWithoutReadBarrier>());
2987 }
2988 break;
2989 }
2990 case NativeObjectRelocationType::kArtMethodArrayClean:
2991 case NativeObjectRelocationType::kArtMethodArrayDirty: {
2992 // For method arrays, copy just the header since the elements will
2993 // get copied by their corresponding relocations.
2994 size_t size = ArtMethod::Size(target_ptr_size_);
2995 size_t alignment = ArtMethod::Alignment(target_ptr_size_);
2996 memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
2997 // Clear padding to avoid non-deterministic data in the image.
2998 // Historical note: We also did that to placate Valgrind.
2999 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
3000 break;
3001 }
3002 case NativeObjectRelocationType::kIMTable: {
3003 ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
3004 ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
3005 CopyAndFixupImTable(orig_imt, dest_imt);
3006 break;
3007 }
3008 case NativeObjectRelocationType::kIMTConflictTable: {
3009 auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
3010 CopyAndFixupImtConflictTable(
3011 orig_table,
3012 new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
3013 break;
3014 }
3015 case NativeObjectRelocationType::kGcRootPointer: {
3016 auto* orig_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(pair.first);
3017 auto* dest_pointer = reinterpret_cast<GcRoot<mirror::Object>*>(dest);
3018 CopyAndFixupReference(dest_pointer->AddressWithoutBarrier(), orig_pointer->Read());
3019 break;
3020 }
3021 }
3022 }
3023 // Fixup the image method roots.
3024 auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_.Begin());
3025 for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
3026 ArtMethod* method = image_methods_[i];
3027 CHECK(method != nullptr);
3028 CopyAndFixupPointer(
3029 reinterpret_cast<void**>(&image_header->image_methods_[i]), method, PointerSize::k32);
3030 }
3031 FixupRootVisitor root_visitor(this);
3032
3033 // Write the intern table into the image.
3034 if (image_info.intern_table_bytes_ > 0) {
3035 const ImageSection& intern_table_section = image_header->GetInternedStringsSection();
3036 DCHECK(image_info.intern_table_.has_value());
3037 const InternTable::UnorderedSet& intern_table = *image_info.intern_table_;
3038 uint8_t* const intern_table_memory_ptr =
3039 image_info.image_.Begin() + intern_table_section.Offset();
3040 const size_t intern_table_bytes = intern_table.WriteToMemory(intern_table_memory_ptr);
3041 CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
3042 // Fixup the pointers in the newly written intern table to contain image addresses.
3043 InternTable temp_intern_table;
3044 // Note that we require that ReadFromMemory does not make an internal copy of the elements so
3045 // that the VisitRoots() will update the memory directly rather than the copies.
3046 // This also relies on visit roots not doing any verification which could fail after we update
3047 // the roots to be the image addresses.
3048 temp_intern_table.AddTableFromMemory(intern_table_memory_ptr,
3049 VoidFunctor(),
3050 /*is_boot_image=*/ false);
3051 CHECK_EQ(temp_intern_table.Size(), intern_table.size());
3052 temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
3053
3054 if (kIsDebugBuild) {
3055 MutexLock lock(Thread::Current(), *Locks::intern_table_lock_);
3056 CHECK(!temp_intern_table.strong_interns_.tables_.empty());
3057 // The UnorderedSet was inserted at the beginning.
3058 CHECK_EQ(temp_intern_table.strong_interns_.tables_[0].Size(), intern_table.size());
3059 }
3060 }
3061
3062 // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
3063 // class loaders. Writing multiple class tables into the image is currently unsupported.
3064 if (image_info.class_table_bytes_ > 0u) {
3065 const ImageSection& class_table_section = image_header->GetClassTableSection();
3066 uint8_t* const class_table_memory_ptr =
3067 image_info.image_.Begin() + class_table_section.Offset();
3068
3069 DCHECK(image_info.class_table_.has_value());
3070 const ClassTable::ClassSet& table = *image_info.class_table_;
3071 CHECK_EQ(table.size(), image_info.class_table_size_);
3072 const size_t class_table_bytes = table.WriteToMemory(class_table_memory_ptr);
3073 CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
3074
3075 // Fixup the pointers in the newly written class table to contain image addresses. See
3076 // above comment for intern tables.
3077 ClassTable temp_class_table;
3078 temp_class_table.ReadFromMemory(class_table_memory_ptr);
3079 CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(), table.size());
3080 UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
3081 temp_class_table.VisitRoots(visitor);
3082
3083 if (kIsDebugBuild) {
3084 ReaderMutexLock lock(Thread::Current(), temp_class_table.lock_);
3085 CHECK(!temp_class_table.classes_.empty());
3086 // The ClassSet was inserted at the beginning.
3087 CHECK_EQ(temp_class_table.classes_[0].size(), table.size());
3088 }
3089 }
3090 }
3091
CopyAndFixupJniStubMethods(size_t oat_index)3092 void ImageWriter::CopyAndFixupJniStubMethods(size_t oat_index) {
3093 const ImageInfo& image_info = GetImageInfo(oat_index);
3094 // Copy method's address to JniStubMethods section.
3095 for (auto& pair : jni_stub_map_) {
3096 JniStubMethodRelocation& relocation = pair.second.second;
3097 // Only work with JNI stubs that are in the current oat file.
3098 if (relocation.oat_index != oat_index) {
3099 continue;
3100 }
3101 void** address = reinterpret_cast<void**>(image_info.image_.Begin() + relocation.offset);
3102 ArtMethod* method = pair.second.first;
3103 CopyAndFixupPointer(address, method);
3104 }
3105 }
3106
CopyAndFixupMethodPointerArray(mirror::PointerArray * arr)3107 void ImageWriter::CopyAndFixupMethodPointerArray(mirror::PointerArray* arr) {
3108 // Pointer arrays are processed early and each is visited just once.
3109 // Therefore we know that this array has not been copied yet.
3110 mirror::Object* dst = CopyObject</*kCheckIfDone=*/ false>(arr);
3111 DCHECK(dst != nullptr);
3112 DCHECK(arr->IsIntArray() || arr->IsLongArray())
3113 << arr->GetClass<kVerifyNone, kWithoutReadBarrier>()->PrettyClass() << " " << arr;
3114 // Fixup int and long pointers for the ArtMethod or ArtField arrays.
3115 const size_t num_elements = arr->GetLength();
3116 CopyAndFixupReference(dst->GetFieldObjectReferenceAddr<kVerifyNone>(Class::ClassOffset()),
3117 arr->GetClass<kVerifyNone, kWithoutReadBarrier>());
3118 auto* dest_array = down_cast<mirror::PointerArray*>(dst);
3119 for (size_t i = 0, count = num_elements; i < count; ++i) {
3120 void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
3121 if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
3122 auto it = native_object_relocations_.find(elem);
3123 if (UNLIKELY(it == native_object_relocations_.end())) {
3124 auto* method = reinterpret_cast<ArtMethod*>(elem);
3125 LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
3126 << method << " idx=" << i << "/" << num_elements << " with declaring class "
3127 << Class::PrettyClass(method->GetDeclaringClass<kWithoutReadBarrier>());
3128 UNREACHABLE();
3129 }
3130 }
3131 CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
3132 }
3133 }
3134
CopyAndFixupObject(Object * obj)3135 void ImageWriter::CopyAndFixupObject(Object* obj) {
3136 if (!IsImageBinSlotAssigned(obj)) {
3137 return;
3138 }
3139 // Some objects (such as method pointer arrays) may have been processed before.
3140 mirror::Object* dst = CopyObject</*kCheckIfDone=*/ true>(obj);
3141 if (dst != nullptr) {
3142 FixupObject(obj, dst);
3143 }
3144 }
3145
3146 template <bool kCheckIfDone>
CopyObject(Object * obj)3147 inline Object* ImageWriter::CopyObject(Object* obj) {
3148 size_t oat_index = GetOatIndex(obj);
3149 size_t offset = GetImageOffset(obj, oat_index);
3150 ImageInfo& image_info = GetImageInfo(oat_index);
3151 auto* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + offset);
3152 DCHECK_LT(offset, image_info.image_end_);
3153 const auto* src = reinterpret_cast<const uint8_t*>(obj);
3154
3155 bool done = image_info.image_bitmap_.Set(dst); // Mark the obj as live.
3156 // Check if the object was already copied, unless the caller indicated that it was not.
3157 if (kCheckIfDone && done) {
3158 return nullptr;
3159 }
3160 DCHECK(!done);
3161
3162 const size_t n = obj->SizeOf();
3163
3164 if (kIsDebugBuild && region_size_ != 0u) {
3165 const size_t offset_after_header = offset - sizeof(ImageHeader);
3166 const size_t next_region = RoundUp(offset_after_header, region_size_);
3167 if (offset_after_header != next_region) {
3168 // If the object is not on a region bondary, it must not be cross region.
3169 CHECK_LT(offset_after_header, next_region)
3170 << "offset_after_header=" << offset_after_header << " size=" << n;
3171 CHECK_LE(offset_after_header + n, next_region)
3172 << "offset_after_header=" << offset_after_header << " size=" << n;
3173 }
3174 }
3175 DCHECK_LE(offset + n, image_info.image_.Size());
3176 memcpy(dst, src, n);
3177
3178 // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
3179 // word.
3180 const auto it = saved_hashcode_map_.find(obj);
3181 dst->SetLockWord(it != saved_hashcode_map_.end() ?
3182 LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
3183 if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
3184 // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
3185 // safe since we mark all of the objects that may reference non immune objects as gray.
3186 CHECK(dst->AtomicSetMarkBit(0, 1));
3187 }
3188 return dst;
3189 }
3190
3191 // Rewrite all the references in the copied object to point to their image address equivalent
3192 class ImageWriter::FixupVisitor {
3193 public:
FixupVisitor(ImageWriter * image_writer,Object * copy)3194 FixupVisitor(ImageWriter* image_writer, Object* copy)
3195 : image_writer_(image_writer), copy_(copy) {
3196 }
3197
3198 // We do not visit native roots. These are handled with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3199 void VisitRootIfNonNull(
3200 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
3201 LOG(FATAL) << "UNREACHABLE";
3202 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3203 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {
3204 LOG(FATAL) << "UNREACHABLE";
3205 }
3206
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static) const3207 void operator()(ObjPtr<Object> obj, MemberOffset offset, [[maybe_unused]] bool is_static) const
3208 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3209 ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone, kWithoutReadBarrier>(offset);
3210 // Copy the reference and record the fixup if necessary.
3211 image_writer_->CopyAndFixupReference(
3212 copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset), ref);
3213 }
3214
3215 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3216 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3217 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3218 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
3219 }
3220
3221 protected:
3222 ImageWriter* const image_writer_;
3223 mirror::Object* const copy_;
3224 };
3225
CopyAndFixupObjects()3226 void ImageWriter::CopyAndFixupObjects() {
3227 // Copy and fix up pointer arrays first as they require special treatment.
3228 auto method_pointer_array_visitor =
3229 [&](ObjPtr<mirror::PointerArray> pointer_array) REQUIRES_SHARED(Locks::mutator_lock_) {
3230 CopyAndFixupMethodPointerArray(pointer_array.Ptr());
3231 };
3232 for (ImageInfo& image_info : image_infos_) {
3233 if (image_info.class_table_size_ != 0u) {
3234 DCHECK(image_info.class_table_.has_value());
3235 for (const ClassTable::TableSlot& slot : *image_info.class_table_) {
3236 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
3237 DCHECK(klass != nullptr);
3238 // Do not process boot image classes present in app image class table.
3239 DCHECK(!IsInBootImage(klass.Ptr()) || compiler_options_.IsAppImage());
3240 if (!IsInBootImage(klass.Ptr())) {
3241 // Do not fix up method pointer arrays inherited from superclass. If they are part
3242 // of the current image, they were or shall be copied when visiting the superclass.
3243 VisitNewMethodPointerArrays(klass, method_pointer_array_visitor);
3244 }
3245 }
3246 }
3247 }
3248
3249 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3250 DCHECK(obj != nullptr);
3251 CopyAndFixupObject(obj);
3252 };
3253 Runtime::Current()->GetHeap()->VisitObjects(visitor);
3254
3255 // Fill the padding objects since they are required for in order traversal of the image space.
3256 for (ImageInfo& image_info : image_infos_) {
3257 for (const size_t start_offset : image_info.padding_offsets_) {
3258 const size_t offset_after_header = start_offset - sizeof(ImageHeader);
3259 size_t remaining_space =
3260 RoundUp(offset_after_header + 1u, region_size_) - offset_after_header;
3261 DCHECK_NE(remaining_space, 0u);
3262 DCHECK_LT(remaining_space, region_size_);
3263 Object* dst = reinterpret_cast<Object*>(image_info.image_.Begin() + start_offset);
3264 ObjPtr<Class> object_class = GetClassRoot<mirror::Object, kWithoutReadBarrier>();
3265 DCHECK_ALIGNED_PARAM(remaining_space, object_class->GetObjectSize());
3266 Object* end = dst + remaining_space / object_class->GetObjectSize();
3267 Class* image_object_class = GetImageAddress(object_class.Ptr());
3268 while (dst != end) {
3269 dst->SetClass<kVerifyNone>(image_object_class);
3270 dst->SetLockWord<kVerifyNone>(LockWord::Default(), /*as_volatile=*/ false);
3271 image_info.image_bitmap_.Set(dst); // Mark the obj as live.
3272 ++dst;
3273 }
3274 }
3275 }
3276
3277 // We no longer need the hashcode map, values have already been copied to target objects.
3278 saved_hashcode_map_.clear();
3279 }
3280
3281 class ImageWriter::FixupClassVisitor final : public FixupVisitor {
3282 public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)3283 FixupClassVisitor(ImageWriter* image_writer, Object* copy)
3284 : FixupVisitor(image_writer, copy) {}
3285
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static) const3286 void operator()(ObjPtr<Object> obj, MemberOffset offset, [[maybe_unused]] bool is_static) const
3287 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3288 DCHECK(obj->IsClass());
3289 FixupVisitor::operator()(obj, offset, /*is_static*/false);
3290 }
3291
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3292 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass,
3293 [[maybe_unused]] ObjPtr<mirror::Reference> ref) const
3294 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
3295 LOG(FATAL) << "Reference not expected here.";
3296 }
3297 };
3298
GetNativeRelocation(void * obj)3299 ImageWriter::NativeObjectRelocation ImageWriter::GetNativeRelocation(void* obj) {
3300 DCHECK(obj != nullptr);
3301 DCHECK(!IsInBootImage(obj));
3302 auto it = native_object_relocations_.find(obj);
3303 CHECK(it != native_object_relocations_.end()) << obj << " spaces "
3304 << Runtime::Current()->GetHeap()->DumpSpaces();
3305 return it->second;
3306 }
3307
3308 template <typename T>
PrettyPrint(T * ptr)3309 std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
3310 std::ostringstream oss;
3311 oss << ptr;
3312 return oss.str();
3313 }
3314
3315 template <>
PrettyPrint(ArtMethod * method)3316 std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
3317 return ArtMethod::PrettyMethod(method);
3318 }
3319
3320 template <typename T>
NativeLocationInImage(T * obj)3321 T* ImageWriter::NativeLocationInImage(T* obj) {
3322 if (obj == nullptr || IsInBootImage(obj)) {
3323 return obj;
3324 } else {
3325 NativeObjectRelocation relocation = GetNativeRelocation(obj);
3326 const ImageInfo& image_info = GetImageInfo(relocation.oat_index);
3327 return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
3328 }
3329 }
3330
NativeLocationInImage(ArtField * src_field)3331 ArtField* ImageWriter::NativeLocationInImage(ArtField* src_field) {
3332 // Fields are not individually stored in the native relocation map. Use the field array.
3333 ObjPtr<mirror::Class> declaring_class = src_field->GetDeclaringClass<kWithoutReadBarrier>();
3334 LengthPrefixedArray<ArtField>* src_fields =
3335 src_field->IsStatic() ? declaring_class->GetSFieldsPtr() : declaring_class->GetIFieldsPtr();
3336 DCHECK(src_fields != nullptr);
3337 LengthPrefixedArray<ArtField>* dst_fields = NativeLocationInImage(src_fields);
3338 DCHECK(dst_fields != nullptr);
3339 size_t field_offset =
3340 reinterpret_cast<uint8_t*>(src_field) - reinterpret_cast<uint8_t*>(src_fields);
3341 return reinterpret_cast<ArtField*>(reinterpret_cast<uint8_t*>(dst_fields) + field_offset);
3342 }
3343
3344 class ImageWriter::NativeLocationVisitor {
3345 public:
NativeLocationVisitor(ImageWriter * image_writer)3346 explicit NativeLocationVisitor(ImageWriter* image_writer)
3347 : image_writer_(image_writer) {}
3348
3349 template <typename T>
operator ()(T * ptr,void ** dest_addr) const3350 T* operator()(T* ptr, void** dest_addr) const REQUIRES_SHARED(Locks::mutator_lock_) {
3351 if (ptr != nullptr) {
3352 image_writer_->CopyAndFixupPointer(dest_addr, ptr);
3353 }
3354 // TODO: The caller shall overwrite the value stored by CopyAndFixupPointer()
3355 // with the value we return here. We should try to avoid the duplicate work.
3356 return image_writer_->NativeLocationInImage(ptr);
3357 }
3358
3359 private:
3360 ImageWriter* const image_writer_;
3361 };
3362
FixupClass(mirror::Class * orig,mirror::Class * copy)3363 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
3364 orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
3365 FixupClassVisitor visitor(this, copy);
3366 ObjPtr<mirror::Object>(orig)->VisitReferences<
3367 /*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(visitor, visitor);
3368
3369 if (kBitstringSubtypeCheckEnabled && !compiler_options_.IsBootImage()) {
3370 // When we call SubtypeCheck::EnsureInitialize, it Assigns new bitstring
3371 // values to the parent of that class.
3372 //
3373 // Every time this happens, the parent class has to mutate to increment
3374 // the "Next" value.
3375 //
3376 // If any of these parents are in the boot image, the changes [in the parents]
3377 // would be lost when the app image is reloaded.
3378 //
3379 // To prevent newly loaded classes (not in the app image) from being reassigned
3380 // the same bitstring value as an existing app image class, uninitialize
3381 // all the classes in the app image.
3382 //
3383 // On startup, the class linker will then re-initialize all the app
3384 // image bitstrings. See also ClassLinker::AddImageSpace.
3385 //
3386 // FIXME: Deal with boot image extensions.
3387 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
3388 // Lock every time to prevent a dcheck failure when we suspend with the lock held.
3389 SubtypeCheck<mirror::Class*>::ForceUninitialize(copy);
3390 }
3391
3392 // Remove the clinitThreadId. This is required for image determinism.
3393 copy->SetClinitThreadId(static_cast<pid_t>(0));
3394 // We never emit kRetryVerificationAtRuntime, instead we mark the class as
3395 // resolved and the class will therefore be re-verified at runtime.
3396 if (orig->ShouldVerifyAtRuntime()) {
3397 copy->SetStatusInternal(ClassStatus::kResolved);
3398 }
3399 }
3400
FixupObject(Object * orig,Object * copy)3401 void ImageWriter::FixupObject(Object* orig, Object* copy) {
3402 DCHECK(orig != nullptr);
3403 DCHECK(copy != nullptr);
3404 if (kUseBakerReadBarrier) {
3405 orig->AssertReadBarrierState();
3406 }
3407 ObjPtr<mirror::Class> klass = orig->GetClass<kVerifyNone, kWithoutReadBarrier>();
3408 if (klass->IsClassClass()) {
3409 FixupClass(orig->AsClass<kVerifyNone>().Ptr(), down_cast<mirror::Class*>(copy));
3410 } else {
3411 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
3412 Runtime::Current()->GetClassLinker()->GetClassRoots<kWithoutReadBarrier>();
3413 if (klass == GetClassRoot<mirror::String, kWithoutReadBarrier>(class_roots)) {
3414 // Make sure all image strings have the hash code calculated, even if they are not interned.
3415 down_cast<mirror::String*>(copy)->GetHashCode();
3416 } else if (klass == GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots) ||
3417 klass == GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots)) {
3418 // Need to update the ArtMethod.
3419 auto* dest = down_cast<mirror::Executable*>(copy);
3420 auto* src = down_cast<mirror::Executable*>(orig);
3421 ArtMethod* src_method = src->GetArtMethod();
3422 CopyAndFixupPointer(dest, mirror::Executable::ArtMethodOffset(), src_method);
3423 } else if (klass == GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots) ||
3424 klass == GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots)) {
3425 // Need to update the ArtField.
3426 auto* dest = down_cast<mirror::FieldVarHandle*>(copy);
3427 auto* src = down_cast<mirror::FieldVarHandle*>(orig);
3428 ArtField* src_field = src->GetArtField();
3429 CopyAndFixupPointer(dest, mirror::FieldVarHandle::ArtFieldOffset(), src_field);
3430 } else if (klass == GetClassRoot<mirror::DexCache, kWithoutReadBarrier>(class_roots)) {
3431 down_cast<mirror::DexCache*>(copy)->SetDexFile(nullptr);
3432 down_cast<mirror::DexCache*>(copy)->ResetNativeArrays();
3433 } else if (klass->IsClassLoaderClass()) {
3434 mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
3435 // If src is a ClassLoader, set the class table to null so that it gets recreated by the
3436 // ClassLinker.
3437 copy_loader->SetClassTable(nullptr);
3438 // Also set allocator to null to be safe. The allocator is created when we create the class
3439 // table. We also never expect to unload things in the image since they are held live as
3440 // roots.
3441 copy_loader->SetAllocator(nullptr);
3442 }
3443 FixupVisitor visitor(this, copy);
3444 orig->VisitReferences</*kVisitNativeRoots=*/ false, kVerifyNone, kWithoutReadBarrier>(
3445 visitor, visitor);
3446 }
3447 }
3448
GetOatAddress(StubType type) const3449 const uint8_t* ImageWriter::GetOatAddress(StubType type) const {
3450 DCHECK_LE(type, StubType::kLast);
3451 // If we are compiling a boot image extension or app image,
3452 // we need to use the stubs of the primary boot image.
3453 if (!compiler_options_.IsBootImage()) {
3454 // Use the current image pointers.
3455 const std::vector<gc::space::ImageSpace*>& image_spaces =
3456 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3457 DCHECK(!image_spaces.empty());
3458 const OatFile* oat_file = image_spaces[0]->GetOatFile();
3459 CHECK(oat_file != nullptr);
3460 const OatHeader& header = oat_file->GetOatHeader();
3461 return header.GetOatAddress(type);
3462 }
3463 const ImageInfo& primary_image_info = GetImageInfo(0);
3464 return GetOatAddressForOffset(primary_image_info.GetStubOffset(type), primary_image_info);
3465 }
3466
GetQuickCode(ArtMethod * method,const ImageInfo & image_info)3467 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, const ImageInfo& image_info) {
3468 DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
3469 DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
3470 DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
3471 DCHECK(method->IsInvokable()) << method->PrettyMethod();
3472 DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
3473
3474 // Use original code if it exists. Otherwise, set the code pointer to the resolution
3475 // trampoline.
3476
3477 // Quick entrypoint:
3478 const void* quick_oat_entry_point =
3479 method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
3480 const uint8_t* quick_code;
3481
3482 if (UNLIKELY(IsInBootImage(method->GetDeclaringClass<kWithoutReadBarrier>().Ptr()))) {
3483 DCHECK(method->IsCopied());
3484 // If the code is not in the oat file corresponding to this image (e.g. default methods)
3485 quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
3486 } else {
3487 uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
3488 quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
3489 }
3490
3491 bool still_needs_clinit_check = method->StillNeedsClinitCheck<kWithoutReadBarrier>();
3492
3493 if (quick_code == nullptr) {
3494 // If we don't have code, use generic jni / interpreter.
3495 if (method->IsNative()) {
3496 // The generic JNI trampolines performs class initialization check if needed.
3497 quick_code = GetOatAddress(StubType::kQuickGenericJNITrampoline);
3498 } else if (CanMethodUseNterp(method, compiler_options_.GetInstructionSet())) {
3499 // The nterp trampoline doesn't do initialization checks, so install the
3500 // resolution stub if needed.
3501 if (still_needs_clinit_check) {
3502 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3503 } else {
3504 quick_code = GetOatAddress(StubType::kNterpTrampoline);
3505 }
3506 } else {
3507 // The interpreter brige performs class initialization check if needed.
3508 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3509 }
3510 } else if (still_needs_clinit_check && !compiler_options_.ShouldCompileWithClinitCheck(method)) {
3511 // If we do have code but the method needs a class initialization check before calling
3512 // that code, install the resolution stub that will perform the check.
3513 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3514 }
3515 return quick_code;
3516 }
3517
ResetNterpFastPathFlags(uint32_t access_flags,ArtMethod * orig,InstructionSet isa)3518 static inline uint32_t ResetNterpFastPathFlags(
3519 uint32_t access_flags, ArtMethod* orig, InstructionSet isa)
3520 REQUIRES_SHARED(Locks::mutator_lock_) {
3521 DCHECK(orig != nullptr);
3522 DCHECK(!orig->IsProxyMethod()); // `UnstartedRuntime` does not support creating proxy classes.
3523 DCHECK(!orig->IsRuntimeMethod());
3524
3525 // Clear old nterp fast path flags.
3526 access_flags = ArtMethod::ClearNterpFastPathFlags(access_flags);
3527
3528 // Check if nterp fast paths are available on the target ISA.
3529 std::string_view shorty = orig->GetShortyView(); // Use orig, copy's class not yet ready.
3530 uint32_t new_nterp_flags = GetNterpFastPathFlags(shorty, access_flags, isa);
3531
3532 // Add the new nterp fast path flags, if any.
3533 return access_flags | new_nterp_flags;
3534 }
3535
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,size_t oat_index)3536 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
3537 ArtMethod* copy,
3538 size_t oat_index) {
3539 memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
3540
3541 CopyAndFixupReference(copy->GetDeclaringClassAddressWithoutBarrier(),
3542 orig->GetDeclaringClassUnchecked<kWithoutReadBarrier>());
3543
3544 if (!orig->IsRuntimeMethod()) {
3545 uint32_t access_flags = orig->GetAccessFlags();
3546 if (ArtMethod::IsAbstract(access_flags)) {
3547 // Ignore the single-implementation info for abstract method.
3548 // TODO: handle fixup of single-implementation method for abstract method.
3549 access_flags = ArtMethod::SetHasSingleImplementation(access_flags, /*single_impl=*/ false);
3550 copy->SetSingleImplementation(nullptr, target_ptr_size_);
3551 } else if (mark_memory_shared_methods_ && LIKELY(!ArtMethod::IsIntrinsic(access_flags))) {
3552 access_flags = ArtMethod::SetMemorySharedMethod(access_flags);
3553 copy->SetHotCounter();
3554 }
3555
3556 InstructionSet isa = compiler_options_.GetInstructionSet();
3557 if (isa != kRuntimeISA) {
3558 access_flags = ResetNterpFastPathFlags(access_flags, orig, isa);
3559 } else {
3560 DCHECK_EQ(access_flags, ResetNterpFastPathFlags(access_flags, orig, isa));
3561 }
3562 copy->SetAccessFlags(access_flags);
3563 }
3564
3565 // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
3566 // oat_begin_
3567
3568 // The resolution method has a special trampoline to call.
3569 Runtime* runtime = Runtime::Current();
3570 const void* quick_code;
3571 if (orig->IsRuntimeMethod()) {
3572 ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
3573 if (orig_table != nullptr) {
3574 // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
3575 quick_code = GetOatAddress(StubType::kQuickIMTConflictTrampoline);
3576 CopyAndFixupPointer(copy, ArtMethod::DataOffset(target_ptr_size_), orig_table);
3577 } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
3578 quick_code = GetOatAddress(StubType::kQuickResolutionTrampoline);
3579 // Set JNI entrypoint for resolving @CriticalNative methods called from compiled code .
3580 const void* jni_code = GetOatAddress(StubType::kJNIDlsymLookupCriticalTrampoline);
3581 copy->SetEntryPointFromJniPtrSize(jni_code, target_ptr_size_);
3582 } else {
3583 bool found_one = false;
3584 for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
3585 auto idx = static_cast<CalleeSaveType>(i);
3586 if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
3587 found_one = true;
3588 break;
3589 }
3590 }
3591 CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
3592 CHECK(copy->IsRuntimeMethod());
3593 CHECK(copy->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_) == nullptr);
3594 quick_code = nullptr;
3595 }
3596 } else {
3597 // We assume all methods have code. If they don't currently then we set them to the use the
3598 // resolution trampoline. Abstract methods never have code and so we need to make sure their
3599 // use results in an AbstractMethodError. We use the interpreter to achieve this.
3600 if (UNLIKELY(!orig->IsInvokable())) {
3601 quick_code = GetOatAddress(StubType::kQuickToInterpreterBridge);
3602 } else {
3603 const ImageInfo& image_info = image_infos_[oat_index];
3604 quick_code = GetQuickCode(orig, image_info);
3605
3606 // JNI entrypoint:
3607 if (orig->IsNative()) {
3608 // Find boot JNI stub for those methods that skipped AOT compilation and don't need
3609 // clinit check.
3610 bool still_needs_clinit_check = orig->StillNeedsClinitCheck<kWithoutReadBarrier>();
3611 if (!still_needs_clinit_check &&
3612 !compiler_options_.IsBootImage() &&
3613 quick_code == GetOatAddress(StubType::kQuickGenericJNITrampoline)) {
3614 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3615 const void* boot_jni_stub = class_linker->FindBootJniStub(orig);
3616 if (boot_jni_stub != nullptr) {
3617 quick_code = boot_jni_stub;
3618 }
3619 }
3620 // The native method's pointer is set to a stub to lookup via dlsym.
3621 // Note this is not the code_ pointer, that is handled above.
3622 StubType stub_type = orig->IsCriticalNative() ? StubType::kJNIDlsymLookupCriticalTrampoline
3623 : StubType::kJNIDlsymLookupTrampoline;
3624 copy->SetEntryPointFromJniPtrSize(GetOatAddress(stub_type), target_ptr_size_);
3625 } else if (!orig->HasCodeItem()) {
3626 CHECK(copy->GetDataPtrSize(target_ptr_size_) == nullptr);
3627 } else {
3628 CHECK(copy->GetDataPtrSize(target_ptr_size_) != nullptr);
3629 }
3630 }
3631 }
3632 if (quick_code != nullptr) {
3633 copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
3634 }
3635 }
3636
GetBinSizeSum(Bin up_to) const3637 size_t ImageWriter::ImageInfo::GetBinSizeSum(Bin up_to) const {
3638 DCHECK_LE(static_cast<size_t>(up_to), kNumberOfBins);
3639 return std::accumulate(&bin_slot_sizes_[0],
3640 &bin_slot_sizes_[0] + static_cast<size_t>(up_to),
3641 /*init*/ static_cast<size_t>(0));
3642 }
3643
BinSlot(uint32_t lockword)3644 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
3645 // These values may need to get updated if more bins are added to the enum Bin
3646 static_assert(kBinBits == 3, "wrong number of bin bits");
3647 static_assert(kBinShift == 27, "wrong number of shift");
3648 static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
3649
3650 DCHECK_LT(GetBin(), Bin::kMirrorCount);
3651 DCHECK_ALIGNED(GetOffset(), kObjectAlignment);
3652 }
3653
BinSlot(Bin bin,uint32_t index)3654 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
3655 : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
3656 DCHECK_EQ(index, GetOffset());
3657 }
3658
GetBin() const3659 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
3660 return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
3661 }
3662
GetOffset() const3663 uint32_t ImageWriter::BinSlot::GetOffset() const {
3664 return lockword_ & ~kBinMask;
3665 }
3666
BinTypeForNativeRelocationType(NativeObjectRelocationType type)3667 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
3668 switch (type) {
3669 case NativeObjectRelocationType::kArtFieldArray:
3670 return Bin::kArtField;
3671 case NativeObjectRelocationType::kArtMethodClean:
3672 case NativeObjectRelocationType::kArtMethodArrayClean:
3673 return Bin::kArtMethodClean;
3674 case NativeObjectRelocationType::kArtMethodDirty:
3675 case NativeObjectRelocationType::kArtMethodArrayDirty:
3676 return Bin::kArtMethodDirty;
3677 case NativeObjectRelocationType::kRuntimeMethod:
3678 return Bin::kRuntimeMethod;
3679 case NativeObjectRelocationType::kIMTable:
3680 return Bin::kImTable;
3681 case NativeObjectRelocationType::kIMTConflictTable:
3682 return Bin::kIMTConflictTable;
3683 case NativeObjectRelocationType::kGcRootPointer:
3684 return Bin::kMetadata;
3685 }
3686 }
3687
GetOatIndex(mirror::Object * obj) const3688 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
3689 if (!IsMultiImage()) {
3690 DCHECK(oat_index_map_.empty());
3691 return GetDefaultOatIndex();
3692 }
3693 auto it = oat_index_map_.find(obj);
3694 DCHECK(it != oat_index_map_.end()) << obj;
3695 return it->second;
3696 }
3697
GetOatIndexForDexFile(const DexFile * dex_file) const3698 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
3699 if (!IsMultiImage()) {
3700 return GetDefaultOatIndex();
3701 }
3702 auto it = dex_file_oat_index_map_.find(dex_file);
3703 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
3704 return it->second;
3705 }
3706
GetOatIndexForClass(ObjPtr<mirror::Class> klass) const3707 size_t ImageWriter::GetOatIndexForClass(ObjPtr<mirror::Class> klass) const {
3708 while (klass->IsArrayClass()) {
3709 klass = klass->GetComponentType<kVerifyNone, kWithoutReadBarrier>();
3710 }
3711 if (UNLIKELY(klass->IsPrimitive())) {
3712 DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) == nullptr);
3713 return GetDefaultOatIndex();
3714 } else {
3715 DCHECK((klass->GetDexCache<kVerifyNone, kWithoutReadBarrier>()) != nullptr);
3716 return GetOatIndexForDexFile(&klass->GetDexFile());
3717 }
3718 }
3719
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)3720 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
3721 size_t oat_loaded_size,
3722 size_t oat_data_offset,
3723 size_t oat_data_size) {
3724 DCHECK_GE(oat_loaded_size, oat_data_offset);
3725 DCHECK_GE(oat_loaded_size - oat_data_offset, oat_data_size);
3726
3727 const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
3728 DCHECK(images_end != nullptr); // Image space must be ready.
3729 for (const ImageInfo& info : image_infos_) {
3730 DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
3731 }
3732
3733 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3734 cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
3735 cur_image_info.oat_loaded_size_ = oat_loaded_size;
3736 cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
3737 cur_image_info.oat_size_ = oat_data_size;
3738
3739 if (compiler_options_.IsAppImage()) {
3740 CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
3741 return;
3742 }
3743
3744 // Update the oat_offset of the next image info.
3745 if (oat_index + 1u != oat_filenames_.size()) {
3746 // There is a following one.
3747 ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
3748 next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
3749 }
3750 }
3751
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)3752 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
3753 ImageInfo& cur_image_info = GetImageInfo(oat_index);
3754 cur_image_info.oat_checksum_ = oat_header.GetChecksum();
3755
3756 if (oat_index == GetDefaultOatIndex()) {
3757 // Primary oat file, read the trampolines.
3758 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupTrampoline,
3759 oat_header.GetJniDlsymLookupTrampolineOffset());
3760 cur_image_info.SetStubOffset(StubType::kJNIDlsymLookupCriticalTrampoline,
3761 oat_header.GetJniDlsymLookupCriticalTrampolineOffset());
3762 cur_image_info.SetStubOffset(StubType::kQuickGenericJNITrampoline,
3763 oat_header.GetQuickGenericJniTrampolineOffset());
3764 cur_image_info.SetStubOffset(StubType::kQuickIMTConflictTrampoline,
3765 oat_header.GetQuickImtConflictTrampolineOffset());
3766 cur_image_info.SetStubOffset(StubType::kQuickResolutionTrampoline,
3767 oat_header.GetQuickResolutionTrampolineOffset());
3768 cur_image_info.SetStubOffset(StubType::kQuickToInterpreterBridge,
3769 oat_header.GetQuickToInterpreterBridgeOffset());
3770 cur_image_info.SetStubOffset(StubType::kNterpTrampoline,
3771 oat_header.GetNterpTrampolineOffset());
3772 }
3773 }
3774
ImageWriter(const CompilerOptions & compiler_options,uintptr_t image_begin,ImageHeader::StorageMode image_storage_mode,const std::vector<std::string> & oat_filenames,const HashMap<const DexFile *,size_t> & dex_file_oat_index_map,jobject class_loader,const std::vector<std::string> * dirty_image_objects)3775 ImageWriter::ImageWriter(const CompilerOptions& compiler_options,
3776 uintptr_t image_begin,
3777 ImageHeader::StorageMode image_storage_mode,
3778 const std::vector<std::string>& oat_filenames,
3779 const HashMap<const DexFile*, size_t>& dex_file_oat_index_map,
3780 jobject class_loader,
3781 const std::vector<std::string>* dirty_image_objects)
3782 : compiler_options_(compiler_options),
3783 target_ptr_size_(InstructionSetPointerSize(compiler_options.GetInstructionSet())),
3784 // If we're compiling a boot image and we have a profile, set methods as being shared
3785 // memory (to avoid dirtying them with hotness counter). We expect important methods
3786 // to be AOT, and non-important methods to be run in the interpreter.
3787 mark_memory_shared_methods_(
3788 CompilerFilter::DependsOnProfile(compiler_options_.GetCompilerFilter()) &&
3789 (compiler_options_.IsBootImage() || compiler_options_.IsBootImageExtension())),
3790 boot_image_begin_(Runtime::Current()->GetHeap()->GetBootImagesStartAddress()),
3791 boot_image_size_(Runtime::Current()->GetHeap()->GetBootImagesSize()),
3792 global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
3793 image_objects_offset_begin_(0),
3794 image_infos_(oat_filenames.size()),
3795 jni_stub_map_(JniStubKeyHash(compiler_options.GetInstructionSet()),
3796 JniStubKeyEquals(compiler_options.GetInstructionSet())),
3797 dirty_methods_(0u),
3798 clean_methods_(0u),
3799 app_class_loader_(class_loader),
3800 boot_image_live_objects_(nullptr),
3801 image_roots_(),
3802 image_storage_mode_(image_storage_mode),
3803 oat_filenames_(oat_filenames),
3804 dex_file_oat_index_map_(dex_file_oat_index_map),
3805 dirty_image_objects_(dirty_image_objects) {
3806 DCHECK(compiler_options.IsBootImage() ||
3807 compiler_options.IsBootImageExtension() ||
3808 compiler_options.IsAppImage());
3809 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_begin_ == 0u);
3810 DCHECK_EQ(compiler_options.IsBootImage(), boot_image_size_ == 0u);
3811 CHECK_NE(image_begin, 0U);
3812 std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
3813 CHECK_EQ(compiler_options.IsBootImage(),
3814 Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
3815 << "Compiling a boot image should occur iff there are no boot image spaces loaded";
3816 if (compiler_options_.IsAppImage()) {
3817 // Make sure objects are not crossing region boundaries for app images.
3818 region_size_ = gc::space::RegionSpace::kRegionSize;
3819 }
3820 }
3821
~ImageWriter()3822 ImageWriter::~ImageWriter() {
3823 if (!image_roots_.empty()) {
3824 Thread* self = Thread::Current();
3825 JavaVMExt* vm = down_cast<JNIEnvExt*>(self->GetJniEnv())->GetVm();
3826 for (jobject image_roots : image_roots_) {
3827 vm->DeleteGlobalRef(self, image_roots);
3828 }
3829 }
3830 }
3831
ImageInfo()3832 ImageWriter::ImageInfo::ImageInfo()
3833 : intern_table_(),
3834 class_table_() {}
3835
3836 template <typename DestType>
CopyAndFixupReference(DestType * dest,ObjPtr<mirror::Object> src)3837 void ImageWriter::CopyAndFixupReference(DestType* dest, ObjPtr<mirror::Object> src) {
3838 static_assert(std::is_same<DestType, mirror::CompressedReference<mirror::Object>>::value ||
3839 std::is_same<DestType, mirror::HeapReference<mirror::Object>>::value,
3840 "DestType must be a Compressed-/HeapReference<Object>.");
3841 dest->Assign(GetImageAddress(src.Ptr()));
3842 }
3843
3844 template <typename ValueType>
CopyAndFixupPointer(void ** target,ValueType src_value,PointerSize pointer_size)3845 void ImageWriter::CopyAndFixupPointer(
3846 void** target, ValueType src_value, PointerSize pointer_size) {
3847 DCHECK(src_value != nullptr);
3848 void* new_value = NativeLocationInImage(src_value);
3849 DCHECK(new_value != nullptr);
3850 if (pointer_size == PointerSize::k32) {
3851 *reinterpret_cast<uint32_t*>(target) = reinterpret_cast32<uint32_t>(new_value);
3852 } else {
3853 *reinterpret_cast<uint64_t*>(target) = reinterpret_cast64<uint64_t>(new_value);
3854 }
3855 }
3856
3857 template <typename ValueType>
CopyAndFixupPointer(void ** target,ValueType src_value)3858 void ImageWriter::CopyAndFixupPointer(void** target, ValueType src_value)
3859 REQUIRES_SHARED(Locks::mutator_lock_) {
3860 CopyAndFixupPointer(target, src_value, target_ptr_size_);
3861 }
3862
3863 template <typename ValueType>
CopyAndFixupPointer(void * object,MemberOffset offset,ValueType src_value,PointerSize pointer_size)3864 void ImageWriter::CopyAndFixupPointer(
3865 void* object, MemberOffset offset, ValueType src_value, PointerSize pointer_size) {
3866 void** target =
3867 reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(object) + offset.Uint32Value());
3868 return CopyAndFixupPointer(target, src_value, pointer_size);
3869 }
3870
3871 template <typename ValueType>
CopyAndFixupPointer(void * object,MemberOffset offset,ValueType src_value)3872 void ImageWriter::CopyAndFixupPointer(void* object, MemberOffset offset, ValueType src_value) {
3873 return CopyAndFixupPointer(object, offset, src_value, target_ptr_size_);
3874 }
3875
3876 } // namespace linker
3877 } // namespace art
3878