1 /*
2  * Copyright (c) 1994, 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import java.lang.annotation.Native;
29 
30 import java.lang.invoke.MethodHandles;
31 import java.lang.constant.Constable;
32 import java.lang.constant.ConstantDesc;
33 import java.util.Optional;
34 
35 import java.math.*;
36 import java.util.Objects;
37 
38 // Android-removed: CDS is not used on Android.
39 // import jdk.internal.misc.CDS;
40 
41 import jdk.internal.vm.annotation.IntrinsicCandidate;
42 
43 
44 /**
45  * The {@code Long} class wraps a value of the primitive type {@code
46  * long} in an object. An object of type {@code Long} contains a
47  * single field whose type is {@code long}.
48  *
49  * <p> In addition, this class provides several methods for converting
50  * a {@code long} to a {@code String} and a {@code String} to a {@code
51  * long}, as well as other constants and methods useful when dealing
52  * with a {@code long}.
53  *
54  * <!-- Android-removed: paragraph on ValueBased
55  * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
56  * class; programmers should treat instances that are
57  * {@linkplain #equals(Object) equal} as interchangeable and should not
58  * use instances for synchronization, or unpredictable behavior may
59  * occur. For example, in a future release, synchronization may fail.
60  * -->
61  *
62  * <p>Implementation note: The implementations of the "bit twiddling"
63  * methods (such as {@link #highestOneBit(long) highestOneBit} and
64  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
65  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
66  * Delight</i>, (Addison Wesley, 2002).
67  *
68  * @author  Lee Boynton
69  * @author  Arthur van Hoff
70  * @author  Josh Bloch
71  * @author  Joseph D. Darcy
72  * @since   1.0
73  */
74 @jdk.internal.ValueBased
75 public final class Long extends Number
76         implements Comparable<Long>, Constable, ConstantDesc {
77     /**
78      * A constant holding the minimum value a {@code long} can
79      * have, -2<sup>63</sup>.
80      */
81     @Native public static final long MIN_VALUE = 0x8000000000000000L;
82 
83     /**
84      * A constant holding the maximum value a {@code long} can
85      * have, 2<sup>63</sup>-1.
86      */
87     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
88 
89     /**
90      * The {@code Class} instance representing the primitive type
91      * {@code long}.
92      *
93      * @since   1.1
94      */
95     @SuppressWarnings("unchecked")
96     public static final Class<Long>     TYPE = (Class<Long>) Class.getPrimitiveClass("long");
97 
98     /**
99      * Returns a string representation of the first argument in the
100      * radix specified by the second argument.
101      *
102      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
103      * or larger than {@code Character.MAX_RADIX}, then the radix
104      * {@code 10} is used instead.
105      *
106      * <p>If the first argument is negative, the first element of the
107      * result is the ASCII minus sign {@code '-'}
108      * ({@code '\u005Cu002d'}). If the first argument is not
109      * negative, no sign character appears in the result.
110      *
111      * <p>The remaining characters of the result represent the magnitude
112      * of the first argument. If the magnitude is zero, it is
113      * represented by a single zero character {@code '0'}
114      * ({@code '\u005Cu0030'}); otherwise, the first character of
115      * the representation of the magnitude will not be the zero
116      * character.  The following ASCII characters are used as digits:
117      *
118      * <blockquote>
119      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
120      * </blockquote>
121      *
122      * These are {@code '\u005Cu0030'} through
123      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
124      * {@code '\u005Cu007a'}. If {@code radix} is
125      * <var>N</var>, then the first <var>N</var> of these characters
126      * are used as radix-<var>N</var> digits in the order shown. Thus,
127      * the digits for hexadecimal (radix 16) are
128      * {@code 0123456789abcdef}. If uppercase letters are
129      * desired, the {@link java.lang.String#toUpperCase()} method may
130      * be called on the result:
131      *
132      * <blockquote>
133      *  {@code Long.toString(n, 16).toUpperCase()}
134      * </blockquote>
135      *
136      * @param   i       a {@code long} to be converted to a string.
137      * @param   radix   the radix to use in the string representation.
138      * @return  a string representation of the argument in the specified radix.
139      * @see     java.lang.Character#MAX_RADIX
140      * @see     java.lang.Character#MIN_RADIX
141      */
toString(long i, int radix)142     public static String toString(long i, int radix) {
143         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
144             radix = 10;
145         if (radix == 10)
146             return toString(i);
147 
148         // BEGIN Android-changed: Use single-byte chars.
149         /*
150         if (COMPACT_STRINGS) {
151          */
152             byte[] buf = new byte[65];
153             int charPos = 64;
154             boolean negative = (i < 0);
155 
156             if (!negative) {
157                 i = -i;
158             }
159 
160             while (i <= -radix) {
161                 buf[charPos--] = (byte)Integer.digits[(int)(-(i % radix))];
162                 i = i / radix;
163             }
164             buf[charPos] = (byte)Integer.digits[(int)(-i)];
165 
166             if (negative) {
167                 buf[--charPos] = '-';
168             }
169         /*
170             return StringLatin1.newString(buf, charPos, (65 - charPos));
171         }
172         return toStringUTF16(i, radix);
173          */
174         return new String(buf, charPos, (65 - charPos));
175         // END Android-changed: Use single-byte chars.
176     }
177 
178     // BEGIN Android-removed: UTF16 version of toString(long i, int radix).
179     /*
180     private static String toStringUTF16(long i, int radix) {
181         byte[] buf = new byte[65 * 2];
182         int charPos = 64;
183         boolean negative = (i < 0);
184         if (!negative) {
185             i = -i;
186         }
187         while (i <= -radix) {
188             StringUTF16.putChar(buf, charPos--, Integer.digits[(int)(-(i % radix))]);
189             i = i / radix;
190         }
191         StringUTF16.putChar(buf, charPos, Integer.digits[(int)(-i)]);
192         if (negative) {
193             StringUTF16.putChar(buf, --charPos, '-');
194         }
195         return StringUTF16.newString(buf, charPos, (65 - charPos));
196     }
197      */
198     // END Android-removed: UTF16 version of toString(long i, int radix).
199 
200     /**
201      * Returns a string representation of the first argument as an
202      * unsigned integer value in the radix specified by the second
203      * argument.
204      *
205      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
206      * or larger than {@code Character.MAX_RADIX}, then the radix
207      * {@code 10} is used instead.
208      *
209      * <p>Note that since the first argument is treated as an unsigned
210      * value, no leading sign character is printed.
211      *
212      * <p>If the magnitude is zero, it is represented by a single zero
213      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
214      * the first character of the representation of the magnitude will
215      * not be the zero character.
216      *
217      * <p>The behavior of radixes and the characters used as digits
218      * are the same as {@link #toString(long, int) toString}.
219      *
220      * @param   i       an integer to be converted to an unsigned string.
221      * @param   radix   the radix to use in the string representation.
222      * @return  an unsigned string representation of the argument in the specified radix.
223      * @see     #toString(long, int)
224      * @since 1.8
225      */
toUnsignedString(long i, int radix)226     public static String toUnsignedString(long i, int radix) {
227         if (i >= 0)
228             return toString(i, radix);
229         else {
230             return switch (radix) {
231                 case 2  -> toBinaryString(i);
232                 case 4  -> toUnsignedString0(i, 2);
233                 case 8  -> toOctalString(i);
234                 case 10 -> {
235                     /*
236                      * We can get the effect of an unsigned division by 10
237                      * on a long value by first shifting right, yielding a
238                      * positive value, and then dividing by 5.  This
239                      * allows the last digit and preceding digits to be
240                      * isolated more quickly than by an initial conversion
241                      * to BigInteger.
242                      */
243                     long quot = (i >>> 1) / 5;
244                     long rem = i - quot * 10;
245                     yield toString(quot) + rem;
246                 }
247                 case 16 -> toHexString(i);
248                 case 32 -> toUnsignedString0(i, 5);
249                 default -> toUnsignedBigInteger(i).toString(radix);
250             };
251         }
252     }
253 
254     /**
255      * Return a BigInteger equal to the unsigned value of the
256      * argument.
257      */
toUnsignedBigInteger(long i)258     private static BigInteger toUnsignedBigInteger(long i) {
259         if (i >= 0L)
260             return BigInteger.valueOf(i);
261         else {
262             int upper = (int) (i >>> 32);
263             int lower = (int) i;
264 
265             // return (upper << 32) + lower
266             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
267                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
268         }
269     }
270 
271     // Android-removed: java.util.HexFormat references in javadoc as not present.
272     /**
273      * Returns a string representation of the {@code long}
274      * argument as an unsigned integer in base&nbsp;16.
275      *
276      * <p>The unsigned {@code long} value is the argument plus
277      * 2<sup>64</sup> if the argument is negative; otherwise, it is
278      * equal to the argument.  This value is converted to a string of
279      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
280      * leading {@code 0}s.
281      *
282      * <p>The value of the argument can be recovered from the returned
283      * string {@code s} by calling {@link
284      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
285      * 16)}.
286      *
287      * <p>If the unsigned magnitude is zero, it is represented by a
288      * single zero character {@code '0'} ({@code '\u005Cu0030'});
289      * otherwise, the first character of the representation of the
290      * unsigned magnitude will not be the zero character. The
291      * following characters are used as hexadecimal digits:
292      *
293      * <blockquote>
294      *  {@code 0123456789abcdef}
295      * </blockquote>
296      *
297      * These are the characters {@code '\u005Cu0030'} through
298      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
299      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
300      * the {@link java.lang.String#toUpperCase()} method may be called
301      * on the result:
302      *
303      * <blockquote>
304      *  {@code Long.toHexString(n).toUpperCase()}
305      * </blockquote>
306      *
307      * @param   i   a {@code long} to be converted to a string.
308      * @return  the string representation of the unsigned {@code long}
309      *          value represented by the argument in hexadecimal
310      *          (base&nbsp;16).
311      * @see #parseUnsignedLong(String, int)
312      * @see #toUnsignedString(long, int)
313      * @since   1.0.2
314      */
toHexString(long i)315     public static String toHexString(long i) {
316         return toUnsignedString0(i, 4);
317     }
318 
319     /**
320      * Returns a string representation of the {@code long}
321      * argument as an unsigned integer in base&nbsp;8.
322      *
323      * <p>The unsigned {@code long} value is the argument plus
324      * 2<sup>64</sup> if the argument is negative; otherwise, it is
325      * equal to the argument.  This value is converted to a string of
326      * ASCII digits in octal (base&nbsp;8) with no extra leading
327      * {@code 0}s.
328      *
329      * <p>The value of the argument can be recovered from the returned
330      * string {@code s} by calling {@link
331      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
332      * 8)}.
333      *
334      * <p>If the unsigned magnitude is zero, it is represented by a
335      * single zero character {@code '0'} ({@code '\u005Cu0030'});
336      * otherwise, the first character of the representation of the
337      * unsigned magnitude will not be the zero character. The
338      * following characters are used as octal digits:
339      *
340      * <blockquote>
341      *  {@code 01234567}
342      * </blockquote>
343      *
344      * These are the characters {@code '\u005Cu0030'} through
345      * {@code '\u005Cu0037'}.
346      *
347      * @param   i   a {@code long} to be converted to a string.
348      * @return  the string representation of the unsigned {@code long}
349      *          value represented by the argument in octal (base&nbsp;8).
350      * @see #parseUnsignedLong(String, int)
351      * @see #toUnsignedString(long, int)
352      * @since   1.0.2
353      */
toOctalString(long i)354     public static String toOctalString(long i) {
355         return toUnsignedString0(i, 3);
356     }
357 
358     /**
359      * Returns a string representation of the {@code long}
360      * argument as an unsigned integer in base&nbsp;2.
361      *
362      * <p>The unsigned {@code long} value is the argument plus
363      * 2<sup>64</sup> if the argument is negative; otherwise, it is
364      * equal to the argument.  This value is converted to a string of
365      * ASCII digits in binary (base&nbsp;2) with no extra leading
366      * {@code 0}s.
367      *
368      * <p>The value of the argument can be recovered from the returned
369      * string {@code s} by calling {@link
370      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
371      * 2)}.
372      *
373      * <p>If the unsigned magnitude is zero, it is represented by a
374      * single zero character {@code '0'} ({@code '\u005Cu0030'});
375      * otherwise, the first character of the representation of the
376      * unsigned magnitude will not be the zero character. The
377      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
378      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
379      *
380      * @param   i   a {@code long} to be converted to a string.
381      * @return  the string representation of the unsigned {@code long}
382      *          value represented by the argument in binary (base&nbsp;2).
383      * @see #parseUnsignedLong(String, int)
384      * @see #toUnsignedString(long, int)
385      * @since   1.0.2
386      */
toBinaryString(long i)387     public static String toBinaryString(long i) {
388         return toUnsignedString0(i, 1);
389     }
390 
391     /**
392      * Format a long (treated as unsigned) into a String.
393      * @param val the value to format
394      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
395      */
toUnsignedString0(long val, int shift)396     static String toUnsignedString0(long val, int shift) {
397         // assert shift > 0 && shift <=5 : "Illegal shift value";
398         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
399         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
400 
401         // BEGIN Android-changed: Use single-byte chars.
402         /*
403         if (COMPACT_STRINGS) {
404          */
405             byte[] buf = new byte[chars];
406             formatUnsignedLong0(val, shift, buf, 0, chars);
407         /*
408             return new String(buf, LATIN1);
409         } else {
410             byte[] buf = new byte[chars * 2];
411             formatUnsignedLong0UTF16(val, shift, buf, 0, chars);
412             return new String(buf, UTF16);
413         }
414         */
415         return new String(buf);
416         // END Android-changed: Use single-byte chars.
417     }
418 
419     /**
420      * Format a long (treated as unsigned) into a byte buffer (LATIN1 version). If
421      * {@code len} exceeds the formatted ASCII representation of {@code val},
422      * {@code buf} will be padded with leading zeroes.
423      *
424      * @param val the unsigned long to format
425      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
426      * @param buf the byte buffer to write to
427      * @param offset the offset in the destination buffer to start at
428      * @param len the number of characters to write
429      */
430     // Android-changed: dropped private modifier
formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len)431     static void formatUnsignedLong0(long val, int shift, byte[] buf, int offset, int len) {
432         int charPos = offset + len;
433         int radix = 1 << shift;
434         int mask = radix - 1;
435         do {
436             buf[--charPos] = (byte)Integer.digits[((int) val) & mask];
437             val >>>= shift;
438         } while (charPos > offset);
439     }
440 
441     // BEGIN Android-removed: UTF16 version of formatUnsignedLong0().
442     /*
443     /** byte[]/UTF16 version    *
444     private static void formatUnsignedLong0UTF16(long val, int shift, byte[] buf, int offset, int len) {
445         int charPos = offset + len;
446         int radix = 1 << shift;
447         int mask = radix - 1;
448         do {
449             StringUTF16.putChar(buf, --charPos, Integer.digits[((int) val) & mask]);
450             val >>>= shift;
451         } while (charPos > offset);
452     }
453      */
454     // END Android-removed: UTF16 version of formatUnsignedLong0().
455 
456     /**
457      * Returns a {@code String} object representing the specified
458      * {@code long}.  The argument is converted to signed decimal
459      * representation and returned as a string, exactly as if the
460      * argument and the radix 10 were given as arguments to the {@link
461      * #toString(long, int)} method.
462      *
463      * @param   i   a {@code long} to be converted.
464      * @return  a string representation of the argument in base&nbsp;10.
465      */
toString(long i)466     public static String toString(long i) {
467         int size = stringSize(i);
468         // BEGIN Android-changed: Always use single-byte buffer.
469         /*
470         if (COMPACT_STRINGS) {
471          */
472             byte[] buf = new byte[size];
473             getChars(i, size, buf);
474         /*
475             return new String(buf, LATIN1);
476         } else {
477             byte[] buf = new byte[size * 2];
478             StringUTF16.getChars(i, size, buf);
479             return new String(buf, UTF16);
480         }
481          */
482         return new String(buf);
483         // END Android-changed: Always use single-byte buffer.
484     }
485 
486     /**
487      * Returns a string representation of the argument as an unsigned
488      * decimal value.
489      *
490      * The argument is converted to unsigned decimal representation
491      * and returned as a string exactly as if the argument and radix
492      * 10 were given as arguments to the {@link #toUnsignedString(long,
493      * int)} method.
494      *
495      * @param   i  an integer to be converted to an unsigned string.
496      * @return  an unsigned string representation of the argument.
497      * @see     #toUnsignedString(long, int)
498      * @since 1.8
499      */
toUnsignedString(long i)500     public static String toUnsignedString(long i) {
501         return toUnsignedString(i, 10);
502     }
503 
504     /**
505      * Places characters representing the long i into the
506      * character array buf. The characters are placed into
507      * the buffer backwards starting with the least significant
508      * digit at the specified index (exclusive), and working
509      * backwards from there.
510      *
511      * @implNote This method converts positive inputs into negative
512      * values, to cover the Long.MIN_VALUE case. Converting otherwise
513      * (negative to positive) will expose -Long.MIN_VALUE that overflows
514      * long.
515      *
516      * @param i     value to convert
517      * @param index next index, after the least significant digit
518      * @param buf   target buffer, Latin1-encoded
519      * @return index of the most significant digit or minus sign, if present
520      */
getChars(long i, int index, byte[] buf)521     static int getChars(long i, int index, byte[] buf) {
522         long q;
523         int r;
524         int charPos = index;
525 
526         boolean negative = (i < 0);
527         if (!negative) {
528             i = -i;
529         }
530 
531         // Get 2 digits/iteration using longs until quotient fits into an int
532         while (i <= Integer.MIN_VALUE) {
533             q = i / 100;
534             r = (int)((q * 100) - i);
535             i = q;
536             buf[--charPos] = Integer.DigitOnes[r];
537             buf[--charPos] = Integer.DigitTens[r];
538         }
539 
540         // Get 2 digits/iteration using ints
541         int q2;
542         int i2 = (int)i;
543         while (i2 <= -100) {
544             q2 = i2 / 100;
545             r  = (q2 * 100) - i2;
546             i2 = q2;
547             buf[--charPos] = Integer.DigitOnes[r];
548             buf[--charPos] = Integer.DigitTens[r];
549         }
550 
551         // We know there are at most two digits left at this point.
552         q2 = i2 / 10;
553         r  = (q2 * 10) - i2;
554         buf[--charPos] = (byte)('0' + r);
555 
556         // Whatever left is the remaining digit.
557         if (q2 < 0) {
558             buf[--charPos] = (byte)('0' - q2);
559         }
560 
561         if (negative) {
562             buf[--charPos] = (byte)'-';
563         }
564         return charPos;
565     }
566 
567     // BEGIN Android-added: char version of getChars(long i, int index, byte[] buf).
568     // for java.lang.AbstractStringBuilder#append(int).
getChars(long i, int index, char[] buf)569     static int getChars(long i, int index, char[] buf) {
570         long q;
571         int r;
572         int charPos = index;
573 
574         boolean negative = (i < 0);
575         if (!negative) {
576             i = -i;
577         }
578 
579         // Get 2 digits/iteration using longs until quotient fits into an int
580         while (i <= Integer.MIN_VALUE) {
581             q = i / 100;
582             r = (int)((q * 100) - i);
583             i = q;
584             buf[--charPos] = (char)Integer.DigitOnes[r];
585             buf[--charPos] = (char)Integer.DigitTens[r];
586         }
587 
588         // Get 2 digits/iteration using ints
589         int q2;
590         int i2 = (int)i;
591         while (i2 <= -100) {
592             q2 = i2 / 100;
593             r  = (q2 * 100) - i2;
594             i2 = q2;
595             buf[--charPos] = (char)Integer.DigitOnes[r];
596             buf[--charPos] = (char)Integer.DigitTens[r];
597         }
598 
599         // We know there are at most two digits left at this point.
600         q2 = i2 / 10;
601         r  = (q2 * 10) - i2;
602         buf[--charPos] = (char)('0' + r);
603 
604         // Whatever left is the remaining digit.
605         if (q2 < 0) {
606             buf[--charPos] = (char)('0' - q2);
607         }
608 
609         if (negative) {
610             buf[--charPos] = (byte)'-';
611         }
612         return charPos;
613     }
614     // END Android-added: char version of getChars(long i, int index, byte[] buf).
615 
616     /**
617      * Returns the string representation size for a given long value.
618      *
619      * @param x long value
620      * @return string size
621      *
622      * @implNote There are other ways to compute this: e.g. binary search,
623      * but values are biased heavily towards zero, and therefore linear search
624      * wins. The iteration results are also routinely inlined in the generated
625      * code after loop unrolling.
626      */
stringSize(long x)627     static int stringSize(long x) {
628         int d = 1;
629         if (x >= 0) {
630             d = 0;
631             x = -x;
632         }
633         long p = -10;
634         for (int i = 1; i < 19; i++) {
635             if (x > p)
636                 return i + d;
637             p = 10 * p;
638         }
639         return 19 + d;
640     }
641 
642     /**
643      * Parses the string argument as a signed {@code long} in the
644      * radix specified by the second argument. The characters in the
645      * string must all be digits of the specified radix (as determined
646      * by whether {@link java.lang.Character#digit(char, int)} returns
647      * a nonnegative value), except that the first character may be an
648      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
649      * indicate a negative value or an ASCII plus sign {@code '+'}
650      * ({@code '\u005Cu002B'}) to indicate a positive value. The
651      * resulting {@code long} value is returned.
652      *
653      * <p>Note that neither the character {@code L}
654      * ({@code '\u005Cu004C'}) nor {@code l}
655      * ({@code '\u005Cu006C'}) is permitted to appear at the end
656      * of the string as a type indicator, as would be permitted in
657      * Java programming language source code - except that either
658      * {@code L} or {@code l} may appear as a digit for a
659      * radix greater than or equal to 22.
660      *
661      * <p>An exception of type {@code NumberFormatException} is
662      * thrown if any of the following situations occurs:
663      * <ul>
664      *
665      * <li>The first argument is {@code null} or is a string of
666      * length zero.
667      *
668      * <li>The {@code radix} is either smaller than {@link
669      * java.lang.Character#MIN_RADIX} or larger than {@link
670      * java.lang.Character#MAX_RADIX}.
671      *
672      * <li>Any character of the string is not a digit of the specified
673      * radix, except that the first character may be a minus sign
674      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
675      * '+'} ({@code '\u005Cu002B'}) provided that the string is
676      * longer than length 1.
677      *
678      * <li>The value represented by the string is not a value of type
679      *      {@code long}.
680      * </ul>
681      *
682      * <p>Examples:
683      * <blockquote><pre>
684      * parseLong("0", 10) returns 0L
685      * parseLong("473", 10) returns 473L
686      * parseLong("+42", 10) returns 42L
687      * parseLong("-0", 10) returns 0L
688      * parseLong("-FF", 16) returns -255L
689      * parseLong("1100110", 2) returns 102L
690      * parseLong("99", 8) throws a NumberFormatException
691      * parseLong("Hazelnut", 10) throws a NumberFormatException
692      * parseLong("Hazelnut", 36) returns 1356099454469L
693      * </pre></blockquote>
694      *
695      * @param      s       the {@code String} containing the
696      *                     {@code long} representation to be parsed.
697      * @param      radix   the radix to be used while parsing {@code s}.
698      * @return     the {@code long} represented by the string argument in
699      *             the specified radix.
700      * @throws     NumberFormatException  if the string does not contain a
701      *             parsable {@code long}.
702      */
parseLong(String s, int radix)703     public static long parseLong(String s, int radix)
704               throws NumberFormatException
705     {
706         if (s == null) {
707             throw new NumberFormatException("Cannot parse null string");
708         }
709 
710         if (radix < Character.MIN_RADIX) {
711             throw new NumberFormatException("radix " + radix +
712                                             " less than Character.MIN_RADIX");
713         }
714         if (radix > Character.MAX_RADIX) {
715             throw new NumberFormatException("radix " + radix +
716                                             " greater than Character.MAX_RADIX");
717         }
718 
719         boolean negative = false;
720         int i = 0, len = s.length();
721         long limit = -Long.MAX_VALUE;
722 
723         if (len > 0) {
724             char firstChar = s.charAt(0);
725             if (firstChar < '0') { // Possible leading "+" or "-"
726                 if (firstChar == '-') {
727                     negative = true;
728                     limit = Long.MIN_VALUE;
729                 } else if (firstChar != '+') {
730                     throw NumberFormatException.forInputString(s, radix);
731                 }
732 
733                 if (len == 1) { // Cannot have lone "+" or "-"
734                     throw NumberFormatException.forInputString(s, radix);
735                 }
736                 i++;
737             }
738             long multmin = limit / radix;
739             long result = 0;
740             while (i < len) {
741                 // Accumulating negatively avoids surprises near MAX_VALUE
742                 int digit = Character.digit(s.charAt(i++),radix);
743                 if (digit < 0 || result < multmin) {
744                     throw NumberFormatException.forInputString(s, radix);
745                 }
746                 result *= radix;
747                 if (result < limit + digit) {
748                     throw NumberFormatException.forInputString(s, radix);
749                 }
750                 result -= digit;
751             }
752             return negative ? result : -result;
753         } else {
754             throw NumberFormatException.forInputString(s, radix);
755         }
756     }
757 
758     /**
759      * Parses the {@link CharSequence} argument as a signed {@code long} in
760      * the specified {@code radix}, beginning at the specified
761      * {@code beginIndex} and extending to {@code endIndex - 1}.
762      *
763      * <p>The method does not take steps to guard against the
764      * {@code CharSequence} being mutated while parsing.
765      *
766      * @param      s   the {@code CharSequence} containing the {@code long}
767      *                  representation to be parsed
768      * @param      beginIndex   the beginning index, inclusive.
769      * @param      endIndex     the ending index, exclusive.
770      * @param      radix   the radix to be used while parsing {@code s}.
771      * @return     the signed {@code long} represented by the subsequence in
772      *             the specified radix.
773      * @throws     NullPointerException  if {@code s} is null.
774      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
775      *             negative, or if {@code beginIndex} is greater than
776      *             {@code endIndex} or if {@code endIndex} is greater than
777      *             {@code s.length()}.
778      * @throws     NumberFormatException  if the {@code CharSequence} does not
779      *             contain a parsable {@code long} in the specified
780      *             {@code radix}, or if {@code radix} is either smaller than
781      *             {@link java.lang.Character#MIN_RADIX} or larger than
782      *             {@link java.lang.Character#MAX_RADIX}.
783      * @since  9
784      */
parseLong(CharSequence s, int beginIndex, int endIndex, int radix)785     public static long parseLong(CharSequence s, int beginIndex, int endIndex, int radix)
786                 throws NumberFormatException {
787         Objects.requireNonNull(s);
788 
789         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
790             throw new IndexOutOfBoundsException();
791         }
792         if (radix < Character.MIN_RADIX) {
793             throw new NumberFormatException("radix " + radix +
794                     " less than Character.MIN_RADIX");
795         }
796         if (radix > Character.MAX_RADIX) {
797             throw new NumberFormatException("radix " + radix +
798                     " greater than Character.MAX_RADIX");
799         }
800 
801         boolean negative = false;
802         int i = beginIndex;
803         long limit = -Long.MAX_VALUE;
804 
805         if (i < endIndex) {
806             char firstChar = s.charAt(i);
807             if (firstChar < '0') { // Possible leading "+" or "-"
808                 if (firstChar == '-') {
809                     negative = true;
810                     limit = Long.MIN_VALUE;
811                 } else if (firstChar != '+') {
812                     throw NumberFormatException.forCharSequence(s, beginIndex,
813                             endIndex, i);
814                 }
815                 i++;
816             }
817             if (i >= endIndex) { // Cannot have lone "+", "-" or ""
818                 throw NumberFormatException.forCharSequence(s, beginIndex,
819                         endIndex, i);
820             }
821             long multmin = limit / radix;
822             long result = 0;
823             while (i < endIndex) {
824                 // Accumulating negatively avoids surprises near MAX_VALUE
825                 int digit = Character.digit(s.charAt(i), radix);
826                 if (digit < 0 || result < multmin) {
827                     throw NumberFormatException.forCharSequence(s, beginIndex,
828                             endIndex, i);
829                 }
830                 result *= radix;
831                 if (result < limit + digit) {
832                     throw NumberFormatException.forCharSequence(s, beginIndex,
833                             endIndex, i);
834                 }
835                 i++;
836                 result -= digit;
837             }
838             return negative ? result : -result;
839         } else {
840             throw new NumberFormatException("");
841         }
842     }
843 
844     /**
845      * Parses the string argument as a signed decimal {@code long}.
846      * The characters in the string must all be decimal digits, except
847      * that the first character may be an ASCII minus sign {@code '-'}
848      * ({@code \u005Cu002D'}) to indicate a negative value or an
849      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
850      * indicate a positive value. The resulting {@code long} value is
851      * returned, exactly as if the argument and the radix {@code 10}
852      * were given as arguments to the {@link
853      * #parseLong(java.lang.String, int)} method.
854      *
855      * <p>Note that neither the character {@code L}
856      * ({@code '\u005Cu004C'}) nor {@code l}
857      * ({@code '\u005Cu006C'}) is permitted to appear at the end
858      * of the string as a type indicator, as would be permitted in
859      * Java programming language source code.
860      *
861      * @param      s   a {@code String} containing the {@code long}
862      *             representation to be parsed
863      * @return     the {@code long} represented by the argument in
864      *             decimal.
865      * @throws     NumberFormatException  if the string does not contain a
866      *             parsable {@code long}.
867      */
parseLong(String s)868     public static long parseLong(String s) throws NumberFormatException {
869         return parseLong(s, 10);
870     }
871 
872     /**
873      * Parses the string argument as an unsigned {@code long} in the
874      * radix specified by the second argument.  An unsigned integer
875      * maps the values usually associated with negative numbers to
876      * positive numbers larger than {@code MAX_VALUE}.
877      *
878      * The characters in the string must all be digits of the
879      * specified radix (as determined by whether {@link
880      * java.lang.Character#digit(char, int)} returns a nonnegative
881      * value), except that the first character may be an ASCII plus
882      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
883      * integer value is returned.
884      *
885      * <p>An exception of type {@code NumberFormatException} is
886      * thrown if any of the following situations occurs:
887      * <ul>
888      * <li>The first argument is {@code null} or is a string of
889      * length zero.
890      *
891      * <li>The radix is either smaller than
892      * {@link java.lang.Character#MIN_RADIX} or
893      * larger than {@link java.lang.Character#MAX_RADIX}.
894      *
895      * <li>Any character of the string is not a digit of the specified
896      * radix, except that the first character may be a plus sign
897      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
898      * string is longer than length 1.
899      *
900      * <li>The value represented by the string is larger than the
901      * largest unsigned {@code long}, 2<sup>64</sup>-1.
902      *
903      * </ul>
904      *
905      *
906      * @param      s   the {@code String} containing the unsigned integer
907      *                  representation to be parsed
908      * @param      radix   the radix to be used while parsing {@code s}.
909      * @return     the unsigned {@code long} represented by the string
910      *             argument in the specified radix.
911      * @throws     NumberFormatException if the {@code String}
912      *             does not contain a parsable {@code long}.
913      * @since 1.8
914      */
parseUnsignedLong(String s, int radix)915     public static long parseUnsignedLong(String s, int radix)
916                 throws NumberFormatException {
917         if (s == null)  {
918             throw new NumberFormatException("Cannot parse null string");
919         }
920 
921         int len = s.length();
922         if (len > 0) {
923             char firstChar = s.charAt(0);
924             if (firstChar == '-') {
925                 throw new
926                     NumberFormatException(String.format("Illegal leading minus sign " +
927                                                        "on unsigned string %s.", s));
928             } else {
929                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
930                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
931                     return parseLong(s, radix);
932                 }
933 
934                 // No need for range checks on len due to testing above.
935                 long first = parseLong(s, 0, len - 1, radix);
936                 int second = Character.digit(s.charAt(len - 1), radix);
937                 if (second < 0) {
938                     throw new NumberFormatException("Bad digit at end of " + s);
939                 }
940                 long result = first * radix + second;
941 
942                 /*
943                  * Test leftmost bits of multiprecision extension of first*radix
944                  * for overflow. The number of bits needed is defined by
945                  * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
946                  * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
947                  * overflow is tested by splitting guard in the ranges
948                  * guard < 92, 92 <= guard < 128, and 128 <= guard, where
949                  * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
950                  * on a value which does not include a prime factor in the legal
951                  * radix range.
952                  */
953                 int guard = radix * (int) (first >>> 57);
954                 if (guard >= 128 ||
955                     (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
956                     /*
957                      * For purposes of exposition, the programmatic statements
958                      * below should be taken to be multi-precision, i.e., not
959                      * subject to overflow.
960                      *
961                      * A) Condition guard >= 128:
962                      * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
963                      * hence always overflow.
964                      *
965                      * B) Condition guard < 92:
966                      * Define left7 = first >>> 57.
967                      * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
968                      * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
969                      * Thus if radix*left7 < 92, radix <= 36, and second < 36,
970                      * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
971                      * never overflow.
972                      *
973                      * C) Condition 92 <= guard < 128:
974                      * first*radix + second >= radix*left7*2^57 + second
975                      * so that first*radix + second >= 92*2^57 + 0 > 2^63
976                      *
977                      * D) Condition guard < 128:
978                      * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
979                      * so
980                      * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
981                      * thus
982                      * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
983                      * whence
984                      * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
985                      *
986                      * E) Conditions C, D, and result >= 0:
987                      * C and D combined imply the mathematical result
988                      * 2^63 < first*radix + second < 2^64 + 2^63. The lower
989                      * bound is therefore negative as a signed long, but the
990                      * upper bound is too small to overflow again after the
991                      * signed long overflows to positive above 2^64 - 1. Hence
992                      * result >= 0 implies overflow given C and D.
993                      */
994                     throw new NumberFormatException(String.format("String value %s exceeds " +
995                                                                   "range of unsigned long.", s));
996                 }
997                 return result;
998             }
999         } else {
1000             throw NumberFormatException.forInputString(s, radix);
1001         }
1002     }
1003 
1004     /**
1005      * Parses the {@link CharSequence} argument as an unsigned {@code long} in
1006      * the specified {@code radix}, beginning at the specified
1007      * {@code beginIndex} and extending to {@code endIndex - 1}.
1008      *
1009      * <p>The method does not take steps to guard against the
1010      * {@code CharSequence} being mutated while parsing.
1011      *
1012      * @param      s   the {@code CharSequence} containing the unsigned
1013      *                 {@code long} representation to be parsed
1014      * @param      beginIndex   the beginning index, inclusive.
1015      * @param      endIndex     the ending index, exclusive.
1016      * @param      radix   the radix to be used while parsing {@code s}.
1017      * @return     the unsigned {@code long} represented by the subsequence in
1018      *             the specified radix.
1019      * @throws     NullPointerException  if {@code s} is null.
1020      * @throws     IndexOutOfBoundsException  if {@code beginIndex} is
1021      *             negative, or if {@code beginIndex} is greater than
1022      *             {@code endIndex} or if {@code endIndex} is greater than
1023      *             {@code s.length()}.
1024      * @throws     NumberFormatException  if the {@code CharSequence} does not
1025      *             contain a parsable unsigned {@code long} in the specified
1026      *             {@code radix}, or if {@code radix} is either smaller than
1027      *             {@link java.lang.Character#MIN_RADIX} or larger than
1028      *             {@link java.lang.Character#MAX_RADIX}.
1029      * @since  9
1030      */
parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)1031     public static long parseUnsignedLong(CharSequence s, int beginIndex, int endIndex, int radix)
1032                 throws NumberFormatException {
1033         Objects.requireNonNull(s);
1034 
1035         if (beginIndex < 0 || beginIndex > endIndex || endIndex > s.length()) {
1036             throw new IndexOutOfBoundsException();
1037         }
1038         int start = beginIndex, len = endIndex - beginIndex;
1039 
1040         if (len > 0) {
1041             char firstChar = s.charAt(start);
1042             if (firstChar == '-') {
1043                 throw new NumberFormatException(String.format("Illegal leading minus sign " +
1044                         "on unsigned string %s.", s.subSequence(start, start + len)));
1045             } else {
1046                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
1047                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
1048                     return parseLong(s, start, start + len, radix);
1049                 }
1050 
1051                 // No need for range checks on end due to testing above.
1052                 long first = parseLong(s, start, start + len - 1, radix);
1053                 int second = Character.digit(s.charAt(start + len - 1), radix);
1054                 if (second < 0) {
1055                     throw new NumberFormatException("Bad digit at end of " +
1056                             s.subSequence(start, start + len));
1057                 }
1058                 long result = first * radix + second;
1059 
1060                 /*
1061                  * Test leftmost bits of multiprecision extension of first*radix
1062                  * for overflow. The number of bits needed is defined by
1063                  * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
1064                  * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
1065                  * overflow is tested by splitting guard in the ranges
1066                  * guard < 92, 92 <= guard < 128, and 128 <= guard, where
1067                  * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
1068                  * on a value which does not include a prime factor in the legal
1069                  * radix range.
1070                  */
1071                 int guard = radix * (int) (first >>> 57);
1072                 if (guard >= 128 ||
1073                         (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
1074                     /*
1075                      * For purposes of exposition, the programmatic statements
1076                      * below should be taken to be multi-precision, i.e., not
1077                      * subject to overflow.
1078                      *
1079                      * A) Condition guard >= 128:
1080                      * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
1081                      * hence always overflow.
1082                      *
1083                      * B) Condition guard < 92:
1084                      * Define left7 = first >>> 57.
1085                      * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
1086                      * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
1087                      * Thus if radix*left7 < 92, radix <= 36, and second < 36,
1088                      * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
1089                      * never overflow.
1090                      *
1091                      * C) Condition 92 <= guard < 128:
1092                      * first*radix + second >= radix*left7*2^57 + second
1093                      * so that first*radix + second >= 92*2^57 + 0 > 2^63
1094                      *
1095                      * D) Condition guard < 128:
1096                      * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
1097                      * so
1098                      * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
1099                      * thus
1100                      * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
1101                      * whence
1102                      * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
1103                      *
1104                      * E) Conditions C, D, and result >= 0:
1105                      * C and D combined imply the mathematical result
1106                      * 2^63 < first*radix + second < 2^64 + 2^63. The lower
1107                      * bound is therefore negative as a signed long, but the
1108                      * upper bound is too small to overflow again after the
1109                      * signed long overflows to positive above 2^64 - 1. Hence
1110                      * result >= 0 implies overflow given C and D.
1111                      */
1112                     throw new NumberFormatException(String.format("String value %s exceeds " +
1113                             "range of unsigned long.", s.subSequence(start, start + len)));
1114                 }
1115                 return result;
1116             }
1117         } else {
1118             throw NumberFormatException.forInputString("", radix);
1119         }
1120     }
1121 
1122     /**
1123      * Parses the string argument as an unsigned decimal {@code long}. The
1124      * characters in the string must all be decimal digits, except
1125      * that the first character may be an ASCII plus sign {@code
1126      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
1127      * is returned, exactly as if the argument and the radix 10 were
1128      * given as arguments to the {@link
1129      * #parseUnsignedLong(java.lang.String, int)} method.
1130      *
1131      * @param s   a {@code String} containing the unsigned {@code long}
1132      *            representation to be parsed
1133      * @return    the unsigned {@code long} value represented by the decimal string argument
1134      * @throws    NumberFormatException  if the string does not contain a
1135      *            parsable unsigned integer.
1136      * @since 1.8
1137      */
parseUnsignedLong(String s)1138     public static long parseUnsignedLong(String s) throws NumberFormatException {
1139         return parseUnsignedLong(s, 10);
1140     }
1141 
1142     /**
1143      * Returns a {@code Long} object holding the value
1144      * extracted from the specified {@code String} when parsed
1145      * with the radix given by the second argument.  The first
1146      * argument is interpreted as representing a signed
1147      * {@code long} in the radix specified by the second
1148      * argument, exactly as if the arguments were given to the {@link
1149      * #parseLong(java.lang.String, int)} method. The result is a
1150      * {@code Long} object that represents the {@code long}
1151      * value specified by the string.
1152      *
1153      * <p>In other words, this method returns a {@code Long} object equal
1154      * to the value of:
1155      *
1156      * <blockquote>
1157      *  {@code new Long(Long.parseLong(s, radix))}
1158      * </blockquote>
1159      *
1160      * @param      s       the string to be parsed
1161      * @param      radix   the radix to be used in interpreting {@code s}
1162      * @return     a {@code Long} object holding the value
1163      *             represented by the string argument in the specified
1164      *             radix.
1165      * @throws     NumberFormatException  If the {@code String} does not
1166      *             contain a parsable {@code long}.
1167      */
valueOf(String s, int radix)1168     public static Long valueOf(String s, int radix) throws NumberFormatException {
1169         return Long.valueOf(parseLong(s, radix));
1170     }
1171 
1172     /**
1173      * Returns a {@code Long} object holding the value
1174      * of the specified {@code String}. The argument is
1175      * interpreted as representing a signed decimal {@code long},
1176      * exactly as if the argument were given to the {@link
1177      * #parseLong(java.lang.String)} method. The result is a
1178      * {@code Long} object that represents the integer value
1179      * specified by the string.
1180      *
1181      * <p>In other words, this method returns a {@code Long} object
1182      * equal to the value of:
1183      *
1184      * <blockquote>
1185      *  {@code new Long(Long.parseLong(s))}
1186      * </blockquote>
1187      *
1188      * @param      s   the string to be parsed.
1189      * @return     a {@code Long} object holding the value
1190      *             represented by the string argument.
1191      * @throws     NumberFormatException  If the string cannot be parsed
1192      *             as a {@code long}.
1193      */
valueOf(String s)1194     public static Long valueOf(String s) throws NumberFormatException
1195     {
1196         return Long.valueOf(parseLong(s, 10));
1197     }
1198 
1199     private static class LongCache {
LongCache()1200         private LongCache() {}
1201 
1202         static final Long[] cache;
1203         static Long[] archivedCache;
1204 
1205         static {
1206             int size = -(-128) + 127 + 1;
1207 
1208             // Load and use the archived cache if it exists
1209             // Android-removed: CDS is not used on Android.
1210             // CDS.initializeFromArchive(LongCache.class);
1211             if (archivedCache == null || archivedCache.length != size) {
1212                 Long[] c = new Long[size];
1213                 long value = -128;
1214                 for(int i = 0; i < size; i++) {
1215                     c[i] = new Long(value++);
1216                 }
1217                 archivedCache = c;
1218             }
1219             cache = archivedCache;
1220         }
1221     }
1222 
1223     /**
1224      * Returns a {@code Long} instance representing the specified
1225      * {@code long} value.
1226      * If a new {@code Long} instance is not required, this method
1227      * should generally be used in preference to the constructor
1228      * {@link #Long(long)}, as this method is likely to yield
1229      * significantly better space and time performance by caching
1230      * frequently requested values.
1231      *
1232      * This method will always cache values in the range -128 to 127,
1233      * inclusive, and may cache other values outside of this range.
1234      *
1235      * @param  l a long value.
1236      * @return a {@code Long} instance representing {@code l}.
1237      * @since  1.5
1238      */
1239     @IntrinsicCandidate
valueOf(long l)1240     public static Long valueOf(long l) {
1241         final int offset = 128;
1242         if (l >= -128 && l <= 127) { // will cache
1243             return LongCache.cache[(int)l + offset];
1244         }
1245         return new Long(l);
1246     }
1247 
1248     /**
1249      * Decodes a {@code String} into a {@code Long}.
1250      * Accepts decimal, hexadecimal, and octal numbers given by the
1251      * following grammar:
1252      *
1253      * <blockquote>
1254      * <dl>
1255      * <dt><i>DecodableString:</i>
1256      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
1257      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
1258      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
1259      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
1260      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
1261      *
1262      * <dt><i>Sign:</i>
1263      * <dd>{@code -}
1264      * <dd>{@code +}
1265      * </dl>
1266      * </blockquote>
1267      *
1268      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
1269      * are as defined in section {@jls 3.10.1} of
1270      * <cite>The Java Language Specification</cite>,
1271      * except that underscores are not accepted between digits.
1272      *
1273      * <p>The sequence of characters following an optional
1274      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
1275      * "{@code #}", or leading zero) is parsed as by the {@code
1276      * Long.parseLong} method with the indicated radix (10, 16, or 8).
1277      * This sequence of characters must represent a positive value or
1278      * a {@link NumberFormatException} will be thrown.  The result is
1279      * negated if first character of the specified {@code String} is
1280      * the minus sign.  No whitespace characters are permitted in the
1281      * {@code String}.
1282      *
1283      * @param     nm the {@code String} to decode.
1284      * @return    a {@code Long} object holding the {@code long}
1285      *            value represented by {@code nm}
1286      * @throws    NumberFormatException  if the {@code String} does not
1287      *            contain a parsable {@code long}.
1288      * @see java.lang.Long#parseLong(String, int)
1289      * @since 1.2
1290      */
decode(String nm)1291     public static Long decode(String nm) throws NumberFormatException {
1292         int radix = 10;
1293         int index = 0;
1294         boolean negative = false;
1295         Long result;
1296 
1297         if (nm.isEmpty())
1298             throw new NumberFormatException("Zero length string");
1299         char firstChar = nm.charAt(0);
1300         // Handle sign, if present
1301         if (firstChar == '-') {
1302             negative = true;
1303             index++;
1304         } else if (firstChar == '+')
1305             index++;
1306 
1307         // Handle radix specifier, if present
1308         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1309             index += 2;
1310             radix = 16;
1311         }
1312         else if (nm.startsWith("#", index)) {
1313             index ++;
1314             radix = 16;
1315         }
1316         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1317             index ++;
1318             radix = 8;
1319         }
1320 
1321         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1322             throw new NumberFormatException("Sign character in wrong position");
1323 
1324         try {
1325             result = Long.valueOf(nm.substring(index), radix);
1326             result = negative ? Long.valueOf(-result.longValue()) : result;
1327         } catch (NumberFormatException e) {
1328             // If number is Long.MIN_VALUE, we'll end up here. The next line
1329             // handles this case, and causes any genuine format error to be
1330             // rethrown.
1331             String constant = negative ? ("-" + nm.substring(index))
1332                                        : nm.substring(index);
1333             result = Long.valueOf(constant, radix);
1334         }
1335         return result;
1336     }
1337 
1338     /**
1339      * The value of the {@code Long}.
1340      *
1341      * @serial
1342      */
1343     private final long value;
1344 
1345     /**
1346      * Constructs a newly allocated {@code Long} object that
1347      * represents the specified {@code long} argument.
1348      *
1349      * @param   value   the value to be represented by the
1350      *          {@code Long} object.
1351      *
1352      * @deprecated
1353      * It is rarely appropriate to use this constructor. The static factory
1354      * {@link #valueOf(long)} is generally a better choice, as it is
1355      * likely to yield significantly better space and time performance.
1356      */
1357     // Android-changed: not yet forRemoval on Android.
1358     @Deprecated(since="9"/*, forRemoval = true*/)
Long(long value)1359     public Long(long value) {
1360         this.value = value;
1361     }
1362 
1363     /**
1364      * Constructs a newly allocated {@code Long} object that
1365      * represents the {@code long} value indicated by the
1366      * {@code String} parameter. The string is converted to a
1367      * {@code long} value in exactly the manner used by the
1368      * {@code parseLong} method for radix 10.
1369      *
1370      * @param      s   the {@code String} to be converted to a
1371      *             {@code Long}.
1372      * @throws     NumberFormatException  if the {@code String} does not
1373      *             contain a parsable {@code long}.
1374      *
1375      * @deprecated
1376      * It is rarely appropriate to use this constructor.
1377      * Use {@link #parseLong(String)} to convert a string to a
1378      * {@code long} primitive, or use {@link #valueOf(String)}
1379      * to convert a string to a {@code Long} object.
1380      */
1381     @Deprecated(since="9"/*, forRemoval = true*/)
Long(String s)1382     public Long(String s) throws NumberFormatException {
1383         this.value = parseLong(s, 10);
1384     }
1385 
1386     /**
1387      * Returns the value of this {@code Long} as a {@code byte} after
1388      * a narrowing primitive conversion.
1389      * @jls 5.1.3 Narrowing Primitive Conversion
1390      */
byteValue()1391     public byte byteValue() {
1392         return (byte)value;
1393     }
1394 
1395     /**
1396      * Returns the value of this {@code Long} as a {@code short} after
1397      * a narrowing primitive conversion.
1398      * @jls 5.1.3 Narrowing Primitive Conversion
1399      */
shortValue()1400     public short shortValue() {
1401         return (short)value;
1402     }
1403 
1404     /**
1405      * Returns the value of this {@code Long} as an {@code int} after
1406      * a narrowing primitive conversion.
1407      * @jls 5.1.3 Narrowing Primitive Conversion
1408      */
intValue()1409     public int intValue() {
1410         return (int)value;
1411     }
1412 
1413     /**
1414      * Returns the value of this {@code Long} as a
1415      * {@code long} value.
1416      */
1417     @IntrinsicCandidate
longValue()1418     public long longValue() {
1419         return value;
1420     }
1421 
1422     /**
1423      * Returns the value of this {@code Long} as a {@code float} after
1424      * a widening primitive conversion.
1425      * @jls 5.1.2 Widening Primitive Conversion
1426      */
floatValue()1427     public float floatValue() {
1428         return (float)value;
1429     }
1430 
1431     /**
1432      * Returns the value of this {@code Long} as a {@code double}
1433      * after a widening primitive conversion.
1434      * @jls 5.1.2 Widening Primitive Conversion
1435      */
doubleValue()1436     public double doubleValue() {
1437         return (double)value;
1438     }
1439 
1440     /**
1441      * Returns a {@code String} object representing this
1442      * {@code Long}'s value.  The value is converted to signed
1443      * decimal representation and returned as a string, exactly as if
1444      * the {@code long} value were given as an argument to the
1445      * {@link java.lang.Long#toString(long)} method.
1446      *
1447      * @return  a string representation of the value of this object in
1448      *          base&nbsp;10.
1449      */
toString()1450     public String toString() {
1451         return toString(value);
1452     }
1453 
1454     /**
1455      * Returns a hash code for this {@code Long}. The result is
1456      * the exclusive OR of the two halves of the primitive
1457      * {@code long} value held by this {@code Long}
1458      * object. That is, the hashcode is the value of the expression:
1459      *
1460      * <blockquote>
1461      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1462      * </blockquote>
1463      *
1464      * @return  a hash code value for this object.
1465      */
1466     @Override
hashCode()1467     public int hashCode() {
1468         return Long.hashCode(value);
1469     }
1470 
1471     /**
1472      * Returns a hash code for a {@code long} value; compatible with
1473      * {@code Long.hashCode()}.
1474      *
1475      * @param value the value to hash
1476      * @return a hash code value for a {@code long} value.
1477      * @since 1.8
1478      */
hashCode(long value)1479     public static int hashCode(long value) {
1480         return (int)(value ^ (value >>> 32));
1481     }
1482 
1483     /**
1484      * Compares this object to the specified object.  The result is
1485      * {@code true} if and only if the argument is not
1486      * {@code null} and is a {@code Long} object that
1487      * contains the same {@code long} value as this object.
1488      *
1489      * @param   obj   the object to compare with.
1490      * @return  {@code true} if the objects are the same;
1491      *          {@code false} otherwise.
1492      */
equals(Object obj)1493     public boolean equals(Object obj) {
1494         if (obj instanceof Long) {
1495             return value == ((Long)obj).longValue();
1496         }
1497         return false;
1498     }
1499 
1500     /**
1501      * Determines the {@code long} value of the system property
1502      * with the specified name.
1503      *
1504      * <p>The first argument is treated as the name of a system
1505      * property.  System properties are accessible through the {@link
1506      * java.lang.System#getProperty(java.lang.String)} method. The
1507      * string value of this property is then interpreted as a {@code
1508      * long} value using the grammar supported by {@link Long#decode decode}
1509      * and a {@code Long} object representing this value is returned.
1510      *
1511      * <p>If there is no property with the specified name, if the
1512      * specified name is empty or {@code null}, or if the property
1513      * does not have the correct numeric format, then {@code null} is
1514      * returned.
1515      *
1516      * <p>In other words, this method returns a {@code Long} object
1517      * equal to the value of:
1518      *
1519      * <blockquote>
1520      *  {@code getLong(nm, null)}
1521      * </blockquote>
1522      *
1523      * @param   nm   property name.
1524      * @return  the {@code Long} value of the property.
1525      * @throws  SecurityException for the same reasons as
1526      *          {@link System#getProperty(String) System.getProperty}
1527      * @see     java.lang.System#getProperty(java.lang.String)
1528      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1529      */
getLong(String nm)1530     public static Long getLong(String nm) {
1531         return getLong(nm, null);
1532     }
1533 
1534     /**
1535      * Determines the {@code long} value of the system property
1536      * with the specified name.
1537      *
1538      * <p>The first argument is treated as the name of a system
1539      * property.  System properties are accessible through the {@link
1540      * java.lang.System#getProperty(java.lang.String)} method. The
1541      * string value of this property is then interpreted as a {@code
1542      * long} value using the grammar supported by {@link Long#decode decode}
1543      * and a {@code Long} object representing this value is returned.
1544      *
1545      * <p>The second argument is the default value. A {@code Long} object
1546      * that represents the value of the second argument is returned if there
1547      * is no property of the specified name, if the property does not have
1548      * the correct numeric format, or if the specified name is empty or null.
1549      *
1550      * <p>In other words, this method returns a {@code Long} object equal
1551      * to the value of:
1552      *
1553      * <blockquote>
1554      *  {@code getLong(nm, new Long(val))}
1555      * </blockquote>
1556      *
1557      * but in practice it may be implemented in a manner such as:
1558      *
1559      * <blockquote><pre>
1560      * Long result = getLong(nm, null);
1561      * return (result == null) ? new Long(val) : result;
1562      * </pre></blockquote>
1563      *
1564      * to avoid the unnecessary allocation of a {@code Long} object when
1565      * the default value is not needed.
1566      *
1567      * @param   nm    property name.
1568      * @param   val   default value.
1569      * @return  the {@code Long} value of the property.
1570      * @throws  SecurityException for the same reasons as
1571      *          {@link System#getProperty(String) System.getProperty}
1572      * @see     java.lang.System#getProperty(java.lang.String)
1573      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1574      */
getLong(String nm, long val)1575     public static Long getLong(String nm, long val) {
1576         Long result = Long.getLong(nm, null);
1577         return (result == null) ? Long.valueOf(val) : result;
1578     }
1579 
1580     /**
1581      * Returns the {@code long} value of the system property with
1582      * the specified name.  The first argument is treated as the name
1583      * of a system property.  System properties are accessible through
1584      * the {@link java.lang.System#getProperty(java.lang.String)}
1585      * method. The string value of this property is then interpreted
1586      * as a {@code long} value, as per the
1587      * {@link Long#decode decode} method, and a {@code Long} object
1588      * representing this value is returned; in summary:
1589      *
1590      * <ul>
1591      * <li>If the property value begins with the two ASCII characters
1592      * {@code 0x} or the ASCII character {@code #}, not followed by
1593      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1594      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1595      * with radix 16.
1596      * <li>If the property value begins with the ASCII character
1597      * {@code 0} followed by another character, it is parsed as
1598      * an octal integer exactly as by the method {@link
1599      * #valueOf(java.lang.String, int)} with radix 8.
1600      * <li>Otherwise the property value is parsed as a decimal
1601      * integer exactly as by the method
1602      * {@link #valueOf(java.lang.String, int)} with radix 10.
1603      * </ul>
1604      *
1605      * <p>Note that, in every case, neither {@code L}
1606      * ({@code '\u005Cu004C'}) nor {@code l}
1607      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1608      * of the property value as a type indicator, as would be
1609      * permitted in Java programming language source code.
1610      *
1611      * <p>The second argument is the default value. The default value is
1612      * returned if there is no property of the specified name, if the
1613      * property does not have the correct numeric format, or if the
1614      * specified name is empty or {@code null}.
1615      *
1616      * @param   nm   property name.
1617      * @param   val   default value.
1618      * @return  the {@code Long} value of the property.
1619      * @throws  SecurityException for the same reasons as
1620      *          {@link System#getProperty(String) System.getProperty}
1621      * @see     System#getProperty(java.lang.String)
1622      * @see     System#getProperty(java.lang.String, java.lang.String)
1623      */
getLong(String nm, Long val)1624     public static Long getLong(String nm, Long val) {
1625         String v = null;
1626         try {
1627             v = System.getProperty(nm);
1628         } catch (IllegalArgumentException | NullPointerException e) {
1629         }
1630         if (v != null) {
1631             try {
1632                 return Long.decode(v);
1633             } catch (NumberFormatException e) {
1634             }
1635         }
1636         return val;
1637     }
1638 
1639     /**
1640      * Compares two {@code Long} objects numerically.
1641      *
1642      * @param   anotherLong   the {@code Long} to be compared.
1643      * @return  the value {@code 0} if this {@code Long} is
1644      *          equal to the argument {@code Long}; a value less than
1645      *          {@code 0} if this {@code Long} is numerically less
1646      *          than the argument {@code Long}; and a value greater
1647      *          than {@code 0} if this {@code Long} is numerically
1648      *           greater than the argument {@code Long} (signed
1649      *           comparison).
1650      * @since   1.2
1651      */
compareTo(Long anotherLong)1652     public int compareTo(Long anotherLong) {
1653         return compare(this.value, anotherLong.value);
1654     }
1655 
1656     /**
1657      * Compares two {@code long} values numerically.
1658      * The value returned is identical to what would be returned by:
1659      * <pre>
1660      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1661      * </pre>
1662      *
1663      * @param  x the first {@code long} to compare
1664      * @param  y the second {@code long} to compare
1665      * @return the value {@code 0} if {@code x == y};
1666      *         a value less than {@code 0} if {@code x < y}; and
1667      *         a value greater than {@code 0} if {@code x > y}
1668      * @since 1.7
1669      */
compare(long x, long y)1670     public static int compare(long x, long y) {
1671         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1672     }
1673 
1674     /**
1675      * Compares two {@code long} values numerically treating the values
1676      * as unsigned.
1677      *
1678      * @param  x the first {@code long} to compare
1679      * @param  y the second {@code long} to compare
1680      * @return the value {@code 0} if {@code x == y}; a value less
1681      *         than {@code 0} if {@code x < y} as unsigned values; and
1682      *         a value greater than {@code 0} if {@code x > y} as
1683      *         unsigned values
1684      * @since 1.8
1685      */
compareUnsigned(long x, long y)1686     public static int compareUnsigned(long x, long y) {
1687         return compare(x + MIN_VALUE, y + MIN_VALUE);
1688     }
1689 
1690 
1691     /**
1692      * Returns the unsigned quotient of dividing the first argument by
1693      * the second where each argument and the result is interpreted as
1694      * an unsigned value.
1695      *
1696      * <p>Note that in two's complement arithmetic, the three other
1697      * basic arithmetic operations of add, subtract, and multiply are
1698      * bit-wise identical if the two operands are regarded as both
1699      * being signed or both being unsigned.  Therefore separate {@code
1700      * addUnsigned}, etc. methods are not provided.
1701      *
1702      * @param dividend the value to be divided
1703      * @param divisor the value doing the dividing
1704      * @return the unsigned quotient of the first argument divided by
1705      * the second argument
1706      * @see #remainderUnsigned
1707      * @since 1.8
1708      */
divideUnsigned(long dividend, long divisor)1709     public static long divideUnsigned(long dividend, long divisor) {
1710         /* See Hacker's Delight (2nd ed), section 9.3 */
1711         if (divisor >= 0) {
1712             final long q = (dividend >>> 1) / divisor << 1;
1713             final long r = dividend - q * divisor;
1714             return q + ((r | ~(r - divisor)) >>> (Long.SIZE - 1));
1715         }
1716         return (dividend & ~(dividend - divisor)) >>> (Long.SIZE - 1);
1717     }
1718 
1719     /**
1720      * Returns the unsigned remainder from dividing the first argument
1721      * by the second where each argument and the result is interpreted
1722      * as an unsigned value.
1723      *
1724      * @param dividend the value to be divided
1725      * @param divisor the value doing the dividing
1726      * @return the unsigned remainder of the first argument divided by
1727      * the second argument
1728      * @see #divideUnsigned
1729      * @since 1.8
1730      */
remainderUnsigned(long dividend, long divisor)1731     public static long remainderUnsigned(long dividend, long divisor) {
1732         /* See Hacker's Delight (2nd ed), section 9.3 */
1733         if (divisor >= 0) {
1734             final long q = (dividend >>> 1) / divisor << 1;
1735             final long r = dividend - q * divisor;
1736             /*
1737              * Here, 0 <= r < 2 * divisor
1738              * (1) When 0 <= r < divisor, the remainder is simply r.
1739              * (2) Otherwise the remainder is r - divisor.
1740              *
1741              * In case (1), r - divisor < 0. Applying ~ produces a long with
1742              * sign bit 0, so >> produces 0. The returned value is thus r.
1743              *
1744              * In case (2), a similar reasoning shows that >> produces -1,
1745              * so the returned value is r - divisor.
1746              */
1747             return r - ((~(r - divisor) >> (Long.SIZE - 1)) & divisor);
1748         }
1749         /*
1750          * (1) When dividend >= 0, the remainder is dividend.
1751          * (2) Otherwise
1752          *      (2.1) When dividend < divisor, the remainder is dividend.
1753          *      (2.2) Otherwise the remainder is dividend - divisor
1754          *
1755          * A reasoning similar to the above shows that the returned value
1756          * is as expected.
1757          */
1758         return dividend - (((dividend & ~(dividend - divisor)) >> (Long.SIZE - 1)) & divisor);
1759     }
1760 
1761     // Bit Twiddling
1762 
1763     /**
1764      * The number of bits used to represent a {@code long} value in two's
1765      * complement binary form.
1766      *
1767      * @since 1.5
1768      */
1769     @Native public static final int SIZE = 64;
1770 
1771     /**
1772      * The number of bytes used to represent a {@code long} value in two's
1773      * complement binary form.
1774      *
1775      * @since 1.8
1776      */
1777     public static final int BYTES = SIZE / Byte.SIZE;
1778 
1779     /**
1780      * Returns a {@code long} value with at most a single one-bit, in the
1781      * position of the highest-order ("leftmost") one-bit in the specified
1782      * {@code long} value.  Returns zero if the specified value has no
1783      * one-bits in its two's complement binary representation, that is, if it
1784      * is equal to zero.
1785      *
1786      * @param i the value whose highest one bit is to be computed
1787      * @return a {@code long} value with a single one-bit, in the position
1788      *     of the highest-order one-bit in the specified value, or zero if
1789      *     the specified value is itself equal to zero.
1790      * @since 1.5
1791      */
highestOneBit(long i)1792     public static long highestOneBit(long i) {
1793         return i & (MIN_VALUE >>> numberOfLeadingZeros(i));
1794     }
1795 
1796     /**
1797      * Returns a {@code long} value with at most a single one-bit, in the
1798      * position of the lowest-order ("rightmost") one-bit in the specified
1799      * {@code long} value.  Returns zero if the specified value has no
1800      * one-bits in its two's complement binary representation, that is, if it
1801      * is equal to zero.
1802      *
1803      * @param i the value whose lowest one bit is to be computed
1804      * @return a {@code long} value with a single one-bit, in the position
1805      *     of the lowest-order one-bit in the specified value, or zero if
1806      *     the specified value is itself equal to zero.
1807      * @since 1.5
1808      */
lowestOneBit(long i)1809     public static long lowestOneBit(long i) {
1810         // HD, Section 2-1
1811         return i & -i;
1812     }
1813 
1814     /**
1815      * Returns the number of zero bits preceding the highest-order
1816      * ("leftmost") one-bit in the two's complement binary representation
1817      * of the specified {@code long} value.  Returns 64 if the
1818      * specified value has no one-bits in its two's complement representation,
1819      * in other words if it is equal to zero.
1820      *
1821      * <p>Note that this method is closely related to the logarithm base 2.
1822      * For all positive {@code long} values x:
1823      * <ul>
1824      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1825      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1826      * </ul>
1827      *
1828      * @param i the value whose number of leading zeros is to be computed
1829      * @return the number of zero bits preceding the highest-order
1830      *     ("leftmost") one-bit in the two's complement binary representation
1831      *     of the specified {@code long} value, or 64 if the value
1832      *     is equal to zero.
1833      * @since 1.5
1834      */
1835     @IntrinsicCandidate
numberOfLeadingZeros(long i)1836     public static int numberOfLeadingZeros(long i) {
1837         int x = (int)(i >>> 32);
1838         return x == 0 ? 32 + Integer.numberOfLeadingZeros((int)i)
1839                 : Integer.numberOfLeadingZeros(x);
1840     }
1841 
1842     /**
1843      * Returns the number of zero bits following the lowest-order ("rightmost")
1844      * one-bit in the two's complement binary representation of the specified
1845      * {@code long} value.  Returns 64 if the specified value has no
1846      * one-bits in its two's complement representation, in other words if it is
1847      * equal to zero.
1848      *
1849      * @param i the value whose number of trailing zeros is to be computed
1850      * @return the number of zero bits following the lowest-order ("rightmost")
1851      *     one-bit in the two's complement binary representation of the
1852      *     specified {@code long} value, or 64 if the value is equal
1853      *     to zero.
1854      * @since 1.5
1855      */
1856     @IntrinsicCandidate
numberOfTrailingZeros(long i)1857     public static int numberOfTrailingZeros(long i) {
1858         int x = (int)i;
1859         return x == 0 ? 32 + Integer.numberOfTrailingZeros((int)(i >>> 32))
1860                 : Integer.numberOfTrailingZeros(x);
1861     }
1862 
1863     /**
1864      * Returns the number of one-bits in the two's complement binary
1865      * representation of the specified {@code long} value.  This function is
1866      * sometimes referred to as the <i>population count</i>.
1867      *
1868      * @param i the value whose bits are to be counted
1869      * @return the number of one-bits in the two's complement binary
1870      *     representation of the specified {@code long} value.
1871      * @since 1.5
1872      */
1873      @IntrinsicCandidate
bitCount(long i)1874      public static int bitCount(long i) {
1875         // HD, Figure 5-2
1876         i = i - ((i >>> 1) & 0x5555555555555555L);
1877         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1878         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1879         i = i + (i >>> 8);
1880         i = i + (i >>> 16);
1881         i = i + (i >>> 32);
1882         return (int)i & 0x7f;
1883      }
1884 
1885     /**
1886      * Returns the value obtained by rotating the two's complement binary
1887      * representation of the specified {@code long} value left by the
1888      * specified number of bits.  (Bits shifted out of the left hand, or
1889      * high-order, side reenter on the right, or low-order.)
1890      *
1891      * <p>Note that left rotation with a negative distance is equivalent to
1892      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1893      * distance)}.  Note also that rotation by any multiple of 64 is a
1894      * no-op, so all but the last six bits of the rotation distance can be
1895      * ignored, even if the distance is negative: {@code rotateLeft(val,
1896      * distance) == rotateLeft(val, distance & 0x3F)}.
1897      *
1898      * @param i the value whose bits are to be rotated left
1899      * @param distance the number of bit positions to rotate left
1900      * @return the value obtained by rotating the two's complement binary
1901      *     representation of the specified {@code long} value left by the
1902      *     specified number of bits.
1903      * @since 1.5
1904      */
rotateLeft(long i, int distance)1905     public static long rotateLeft(long i, int distance) {
1906         return (i << distance) | (i >>> -distance);
1907     }
1908 
1909     /**
1910      * Returns the value obtained by rotating the two's complement binary
1911      * representation of the specified {@code long} value right by the
1912      * specified number of bits.  (Bits shifted out of the right hand, or
1913      * low-order, side reenter on the left, or high-order.)
1914      *
1915      * <p>Note that right rotation with a negative distance is equivalent to
1916      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1917      * distance)}.  Note also that rotation by any multiple of 64 is a
1918      * no-op, so all but the last six bits of the rotation distance can be
1919      * ignored, even if the distance is negative: {@code rotateRight(val,
1920      * distance) == rotateRight(val, distance & 0x3F)}.
1921      *
1922      * @param i the value whose bits are to be rotated right
1923      * @param distance the number of bit positions to rotate right
1924      * @return the value obtained by rotating the two's complement binary
1925      *     representation of the specified {@code long} value right by the
1926      *     specified number of bits.
1927      * @since 1.5
1928      */
rotateRight(long i, int distance)1929     public static long rotateRight(long i, int distance) {
1930         return (i >>> distance) | (i << -distance);
1931     }
1932 
1933     /**
1934      * Returns the value obtained by reversing the order of the bits in the
1935      * two's complement binary representation of the specified {@code long}
1936      * value.
1937      *
1938      * @param i the value to be reversed
1939      * @return the value obtained by reversing order of the bits in the
1940      *     specified {@code long} value.
1941      * @since 1.5
1942      */
reverse(long i)1943     public static long reverse(long i) {
1944         // HD, Figure 7-1
1945         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1946         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1947         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1948 
1949         return reverseBytes(i);
1950     }
1951 
1952     /**
1953      * Returns the signum function of the specified {@code long} value.  (The
1954      * return value is -1 if the specified value is negative; 0 if the
1955      * specified value is zero; and 1 if the specified value is positive.)
1956      *
1957      * @param i the value whose signum is to be computed
1958      * @return the signum function of the specified {@code long} value.
1959      * @since 1.5
1960      */
signum(long i)1961     public static int signum(long i) {
1962         // HD, Section 2-7
1963         return (int) ((i >> 63) | (-i >>> 63));
1964     }
1965 
1966     /**
1967      * Returns the value obtained by reversing the order of the bytes in the
1968      * two's complement representation of the specified {@code long} value.
1969      *
1970      * @param i the value whose bytes are to be reversed
1971      * @return the value obtained by reversing the bytes in the specified
1972      *     {@code long} value.
1973      * @since 1.5
1974      */
1975     @IntrinsicCandidate
reverseBytes(long i)1976     public static long reverseBytes(long i) {
1977         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1978         return (i << 48) | ((i & 0xffff0000L) << 16) |
1979             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1980     }
1981 
1982     /**
1983      * Adds two {@code long} values together as per the + operator.
1984      *
1985      * @param a the first operand
1986      * @param b the second operand
1987      * @return the sum of {@code a} and {@code b}
1988      * @see java.util.function.BinaryOperator
1989      * @since 1.8
1990      */
sum(long a, long b)1991     public static long sum(long a, long b) {
1992         return a + b;
1993     }
1994 
1995     /**
1996      * Returns the greater of two {@code long} values
1997      * as if by calling {@link Math#max(long, long) Math.max}.
1998      *
1999      * @param a the first operand
2000      * @param b the second operand
2001      * @return the greater of {@code a} and {@code b}
2002      * @see java.util.function.BinaryOperator
2003      * @since 1.8
2004      */
max(long a, long b)2005     public static long max(long a, long b) {
2006         return Math.max(a, b);
2007     }
2008 
2009     /**
2010      * Returns the smaller of two {@code long} values
2011      * as if by calling {@link Math#min(long, long) Math.min}.
2012      *
2013      * @param a the first operand
2014      * @param b the second operand
2015      * @return the smaller of {@code a} and {@code b}
2016      * @see java.util.function.BinaryOperator
2017      * @since 1.8
2018      */
min(long a, long b)2019     public static long min(long a, long b) {
2020         return Math.min(a, b);
2021     }
2022 
2023     /**
2024      * Returns an {@link Optional} containing the nominal descriptor for this
2025      * instance, which is the instance itself.
2026      *
2027      * @return an {@link Optional} describing the {@linkplain Long} instance
2028      * @since 12
2029      * @hide
2030      */
2031     @Override
describeConstable()2032     public Optional<Long> describeConstable() {
2033         return Optional.of(this);
2034     }
2035 
2036     /**
2037      * Resolves this instance as a {@link ConstantDesc}, the result of which is
2038      * the instance itself.
2039      *
2040      * @param lookup ignored
2041      * @return the {@linkplain Long} instance
2042      * @since 12
2043      * @hide
2044      */
2045     @Override
resolveConstantDesc(MethodHandles.Lookup lookup)2046     public Long resolveConstantDesc(MethodHandles.Lookup lookup) {
2047         return this;
2048     }
2049 
2050     /** use serialVersionUID from JDK 1.0.2 for interoperability */
2051     @java.io.Serial
2052     @Native private static final long serialVersionUID = 4290774380558885855L;
2053 }
2054