1 /*
2  * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.lang;
27 
28 import java.util.Random;
29 import jdk.internal.math.DoubleConsts;
30 import jdk.internal.vm.annotation.IntrinsicCandidate;
31 
32 /**
33  * The class {@code StrictMath} contains methods for performing basic
34  * numeric operations such as the elementary exponential, logarithm,
35  * square root, and trigonometric functions.
36  *
37  * <p>To help ensure portability of Java programs, the definitions of
38  * some of the numeric functions in this package require that they
39  * produce the same results as certain published algorithms. These
40  * algorithms are available from the well-known network library
41  * {@code netlib} as the package "Freely Distributable Math
42  * Library," <a
43  * href="https://www.netlib.org/fdlibm/">{@code fdlibm}</a>. These
44  * algorithms, which are written in the C programming language, are
45  * then to be understood to be transliterated into Java and executed
46  * with all floating-point and integer operations following the rules
47  * of Java arithmetic. The following transformations are used in the
48  * transliteration:
49  *
50  * <ul>
51  * <li>Extraction and setting of the high and low halves of a 64-bit
52  * {@code double} in C is expressed using Java platform methods that
53  * perform bit-wise conversions {@linkplain
54  * Double#doubleToRawLongBits(double) from {@code double} to {@code
55  * long}} and {@linkplain Double#longBitsToDouble(long) {@code long}
56  * to {@code double}}.
57  *
58  * <li>Unsigned {@code int} values in C are mapped to signed {@code
59  * int} values in Java with updates to operations to replicate
60  * unsigned semantics where the results on the same textual operation
61  * would differ. For example, {@code >>} shifts on unsigned C values
62  * are replaced with {@code >>>} shifts on signed Java values. Sized
63  * comparisons on unsigned C values ({@code <}, {@code <=}, {@code >},
64  * {@code >=}) are replaced with semantically equivalent calls to
65  * {@link Integer#compareUnsigned(int, int) compareUnsigned}.
66  * </ul>
67  *
68  * <p>The Java math library is defined with respect to
69  * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
70  * more than one definition for a function (such as
71  * {@code acos}), use the "IEEE 754 core function" version
72  * (residing in a file whose name begins with the letter
73  * {@code e}).  The methods which require {@code fdlibm}
74  * semantics are {@code sin}, {@code cos}, {@code tan},
75  * {@code asin}, {@code acos}, {@code atan},
76  * {@code exp}, {@code log}, {@code log10},
77  * {@code cbrt}, {@code atan2}, {@code pow},
78  * {@code sinh}, {@code cosh}, {@code tanh},
79  * {@code hypot}, {@code expm1}, and {@code log1p}.
80  *
81  * <p>
82  * The platform uses signed two's complement integer arithmetic with
83  * int and long primitive types.  The developer should choose
84  * the primitive type to ensure that arithmetic operations consistently
85  * produce correct results, which in some cases means the operations
86  * will not overflow the range of values of the computation.
87  * The best practice is to choose the primitive type and algorithm to avoid
88  * overflow. In cases where the size is {@code int} or {@code long} and
89  * overflow errors need to be detected, the methods whose names end with
90  * {@code Exact} throw an {@code ArithmeticException} when the results overflow.
91  *
92  * <h2><a id=Ieee754RecommendedOps>IEEE 754 Recommended
93  * Operations</a></h2>
94  *
95  * The {@link java.lang.Math Math} class discusses how the shared
96  * quality of implementation criteria for selected {@code Math} and
97  * {@code StrictMath} methods <a
98  * href="Math.html#Ieee754RecommendedOps">relate to the IEEE 754
99  * recommended operations</a>.
100  *
101  * @see <a href="https://standards.ieee.org/ieee/754/6210/">
102  *      <cite>IEEE Standard for Floating-Point Arithmetic</cite></a>
103  *
104  * @author  Joseph D. Darcy
105  * @since   1.3
106  */
107 public final class StrictMath {
108 
109     /**
110      * Don't let anyone instantiate this class.
111      */
StrictMath()112     private StrictMath() {}
113 
114     /**
115      * The {@code double} value that is closer than any other to
116      * <i>e</i>, the base of the natural logarithms.
117      */
118     public static final double E = 2.718281828459045;
119 
120     /**
121      * The {@code double} value that is closer than any other to
122      * <i>pi</i> (&pi;), the ratio of the circumference of a circle to its
123      * diameter.
124      */
125     public static final double PI = 3.141592653589793;
126 
127     /**
128      * The {@code double} value that is closer than any other to
129      * <i>tau</i> (&tau;), the ratio of the circumference of a circle
130      * to its radius.
131      *
132      * @apiNote
133      * The value of <i>pi</i> is one half that of <i>tau</i>; in other
134      * words, <i>tau</i> is double <i>pi</i> .
135      *
136      * @since 19
137      */
138     public static final double TAU = 2.0 * PI;
139 
140     /**
141      * Constant by which to multiply an angular value in degrees to obtain an
142      * angular value in radians.
143      */
144     private static final double DEGREES_TO_RADIANS = 0.017453292519943295;
145 
146     /**
147      * Constant by which to multiply an angular value in radians to obtain an
148      * angular value in degrees.
149      */
150 
151     private static final double RADIANS_TO_DEGREES = 57.29577951308232;
152 
153     /**
154      * Returns the trigonometric sine of an angle. Special cases:
155      * <ul><li>If the argument is NaN or an infinity, then the
156      * result is NaN.
157      * <li>If the argument is zero, then the result is a zero with the
158      * same sign as the argument.</ul>
159      *
160      * @param   a   an angle, in radians.
161      * @return  the sine of the argument.
162      */
163     // Android-changed: Reimplement in native
164     // public static double sin(double a) {
165     //     return FdLibm.Sin.compute(a);
166     // }
sin(double a)167     public static native double sin(double a);
168 
169     /**
170      * Returns the trigonometric cosine of an angle. Special cases:
171      * <ul><li>If the argument is NaN or an infinity, then the
172      * result is NaN.
173      * <li>If the argument is zero, then the result is {@code 1.0}.
174      * </ul>
175      *
176      * @param   a   an angle, in radians.
177      * @return  the cosine of the argument.
178      */
179     // Android-changed: Reimplement in native
180     // public static double cos(double a) {
181     //     return FdLibm.Cos.compute(a);
182     // }
cos(double a)183     public static native double cos(double a);
184 
185     /**
186      * Returns the trigonometric tangent of an angle. Special cases:
187      * <ul><li>If the argument is NaN or an infinity, then the result
188      * is NaN.
189      * <li>If the argument is zero, then the result is a zero with the
190      * same sign as the argument.</ul>
191      *
192      * @param   a   an angle, in radians.
193      * @return  the tangent of the argument.
194      */
195     // Android-changed: Reimplement in native
196     // public static double tan(double a) {
197     //     return FdLibm.Tan.compute(a);
198     // }
tan(double a)199     public static native double tan(double a);
200 
201     /**
202      * Returns the arc sine of a value; the returned angle is in the
203      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
204      * <ul><li>If the argument is NaN or its absolute value is greater
205      * than 1, then the result is NaN.
206      * <li>If the argument is zero, then the result is a zero with the
207      * same sign as the argument.</ul>
208      *
209      * @param   a   the value whose arc sine is to be returned.
210      * @return  the arc sine of the argument.
211      */
212     // Android-changed: Reimplement in native
213     // public static double asin(double a) {
214     //     return FdLibm.Asin.compute(a);
215     // }
asin(double a)216     public static native double asin(double a);
217 
218     /**
219      * Returns the arc cosine of a value; the returned angle is in the
220      * range 0.0 through <i>pi</i>.  Special case:
221      * <ul><li>If the argument is NaN or its absolute value is greater
222      * than 1, then the result is NaN.
223      * <li>If the argument is {@code 1.0}, the result is positive zero.
224      * </ul>
225      *
226      * @param   a   the value whose arc cosine is to be returned.
227      * @return  the arc cosine of the argument.
228      */
229     // Android-changed: Reimplement in native
230     // public static double acos(double a) {
231     //     return FdLibm.Acos.compute(a);
232     // }
acos(double a)233     public static native double acos(double a);
234 
235     /**
236      * Returns the arc tangent of a value; the returned angle is in the
237      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
238      * <ul><li>If the argument is NaN, then the result is NaN.
239      * <li>If the argument is zero, then the result is a zero with the
240      * same sign as the argument.
241      * <li>If the argument is {@linkplain Double#isInfinite infinite},
242      * then the result is the closest value to <i>pi</i>/2 with the
243      * same sign as the input.
244      * </ul>
245      *
246      * @param   a   the value whose arc tangent is to be returned.
247      * @return  the arc tangent of the argument.
248      */
249     // Android-changed: Reimplement in native
250     // public static double atan(double a) {
251     //     return FdLibm.Atan.compute(a);
252     // }
atan(double a)253     public static native double atan(double a);
254 
255     /**
256      * Converts an angle measured in degrees to an approximately
257      * equivalent angle measured in radians.  The conversion from
258      * degrees to radians is generally inexact.
259      *
260      * @param   angdeg   an angle, in degrees
261      * @return  the measurement of the angle {@code angdeg}
262      *          in radians.
263      */
toRadians(double angdeg)264     public static strictfp double toRadians(double angdeg) {
265         // Do not delegate to Math.toRadians(angdeg) because
266         // this method has the strictfp modifier.
267         return angdeg * DEGREES_TO_RADIANS;
268     }
269 
270     /**
271      * Converts an angle measured in radians to an approximately
272      * equivalent angle measured in degrees.  The conversion from
273      * radians to degrees is generally inexact; users should
274      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
275      * equal {@code 0.0}.
276      *
277      * @param   angrad   an angle, in radians
278      * @return  the measurement of the angle {@code angrad}
279      *          in degrees.
280      */
toDegrees(double angrad)281     public static strictfp double toDegrees(double angrad) {
282         // Do not delegate to Math.toDegrees(angrad) because
283         // this method has the strictfp modifier.
284         return angrad * RADIANS_TO_DEGREES;
285     }
286 
287     /**
288      * Returns Euler's number <i>e</i> raised to the power of a
289      * {@code double} value. Special cases:
290      * <ul><li>If the argument is NaN, the result is NaN.
291      * <li>If the argument is positive infinity, then the result is
292      * positive infinity.
293      * <li>If the argument is negative infinity, then the result is
294      * positive zero.
295      * <li>If the argument is zero, then the result is {@code 1.0}.
296      * </ul>
297      *
298      * @param   a   the exponent to raise <i>e</i> to.
299      * @return  the value <i>e</i><sup>{@code a}</sup>,
300      *          where <i>e</i> is the base of the natural logarithms.
301      */
302     // BEGIN Android-changed: Reimplement in native
303     /*
304     public static double exp(double a) {
305         return FdLibm.Exp.compute(a);
306     }
307     */
308     // END Android-changed: Reimplement in native
exp(double a)309     public static native double exp(double a);
310 
311     /**
312      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
313      * value. Special cases:
314      * <ul><li>If the argument is NaN or less than zero, then the result
315      * is NaN.
316      * <li>If the argument is positive infinity, then the result is
317      * positive infinity.
318      * <li>If the argument is positive zero or negative zero, then the
319      * result is negative infinity.
320      * <li>If the argument is {@code 1.0}, then the result is positive
321      * zero.
322      * </ul>
323      *
324      * @param   a   a value
325      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
326      *          {@code a}.
327      */
328     // Android-changed: Reimplement in native
329     // public static double log(double a) {
330     //     return FdLibm.Log.compute(a);
331     // }
log(double a)332     public static native double log(double a);
333 
334     /**
335      * Returns the base 10 logarithm of a {@code double} value.
336      * Special cases:
337      *
338      * <ul><li>If the argument is NaN or less than zero, then the result
339      * is NaN.
340      * <li>If the argument is positive infinity, then the result is
341      * positive infinity.
342      * <li>If the argument is positive zero or negative zero, then the
343      * result is negative infinity.
344      * <li>If the argument is equal to 10<sup><i>n</i></sup> for
345      * integer <i>n</i>, then the result is <i>n</i>. In particular,
346      * if the argument is {@code 1.0} (10<sup>0</sup>), then the
347      * result is positive zero.
348      * </ul>
349      *
350      * @param   a   a value
351      * @return  the base 10 logarithm of  {@code a}.
352      * @since 1.5
353      */
354     // Android-changed: Reimplement in native
355     // public static double log10(double a) {
356     //     return FdLibm.Log10.compute(a);
357     // }
log10(double a)358     public static native double log10(double a);
359 
360     /**
361      * Returns the correctly rounded positive square root of a
362      * {@code double} value.
363      * Special cases:
364      * <ul><li>If the argument is NaN or less than zero, then the result
365      * is NaN.
366      * <li>If the argument is positive infinity, then the result is positive
367      * infinity.
368      * <li>If the argument is positive zero or negative zero, then the
369      * result is the same as the argument.</ul>
370      * Otherwise, the result is the {@code double} value closest to
371      * the true mathematical square root of the argument value.
372      *
373      * @param   a   a value.
374      * @return  the positive square root of {@code a}.
375      */
376     @IntrinsicCandidate
377     // Android-changed: Reimplement in native
378     // public static double sqrt(double a) {
379     //     return FdLibm.Sqrt.compute(a);
380     // }
sqrt(double a)381     public static native double sqrt(double a);
382 
383     /**
384      * Returns the cube root of a {@code double} value.  For
385      * positive finite {@code x}, {@code cbrt(-x) ==
386      * -cbrt(x)}; that is, the cube root of a negative value is
387      * the negative of the cube root of that value's magnitude.
388      * Special cases:
389      *
390      * <ul>
391      *
392      * <li>If the argument is NaN, then the result is NaN.
393      *
394      * <li>If the argument is infinite, then the result is an infinity
395      * with the same sign as the argument.
396      *
397      * <li>If the argument is zero, then the result is a zero with the
398      * same sign as the argument.
399      *
400      * </ul>
401      *
402      * @param   a   a value.
403      * @return  the cube root of {@code a}.
404      * @since 1.5
405      */
406     // BEGIN Android-changed: Reimplement in native
407     /*
408     public static double cbrt(double a) {
409         return FdLibm.Cbrt.compute(a);
410     }
411     */
412     // END Android-changed: Reimplement in native
cbrt(double a)413     public static native double cbrt(double a);
414 
415     /**
416      * Computes the remainder operation on two arguments as prescribed
417      * by the IEEE 754 standard.
418      * The remainder value is mathematically equal to
419      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
420      * where <i>n</i> is the mathematical integer closest to the exact
421      * mathematical value of the quotient {@code f1/f2}, and if two
422      * mathematical integers are equally close to {@code f1/f2},
423      * then <i>n</i> is the integer that is even. If the remainder is
424      * zero, its sign is the same as the sign of the first argument.
425      * Special cases:
426      * <ul><li>If either argument is NaN, or the first argument is infinite,
427      * or the second argument is positive zero or negative zero, then the
428      * result is NaN.
429      * <li>If the first argument is finite and the second argument is
430      * infinite, then the result is the same as the first argument.</ul>
431      *
432      * @param   f1   the dividend.
433      * @param   f2   the divisor.
434      * @return  the remainder when {@code f1} is divided by
435      *          {@code f2}.
436      */
437     // Android-changed: Reimplement in native
438     // public static double IEEEremainder(double f1, double f2) {
439     //     return FdLibm.IEEEremainder.compute(f1, f2);
440     // }
IEEEremainder(double f1, double f2)441     public static native double IEEEremainder(double f1, double f2);
442 
443     /**
444      * Returns the smallest (closest to negative infinity)
445      * {@code double} value that is greater than or equal to the
446      * argument and is equal to a mathematical integer. Special cases:
447      * <ul><li>If the argument value is already equal to a
448      * mathematical integer, then the result is the same as the
449      * argument.  <li>If the argument is NaN or an infinity or
450      * positive zero or negative zero, then the result is the same as
451      * the argument.  <li>If the argument value is less than zero but
452      * greater than -1.0, then the result is negative zero.</ul> Note
453      * that the value of {@code StrictMath.ceil(x)} is exactly the
454      * value of {@code -StrictMath.floor(-x)}.
455      *
456      * @param   a   a value.
457      * @return  the smallest (closest to negative infinity)
458      *          floating-point value that is greater than or equal to
459      *          the argument and is equal to a mathematical integer.
460      */
ceil(double a)461     public static double ceil(double a) {
462         return floorOrCeil(a, -0.0, 1.0, 1.0);
463     }
464 
465     /**
466      * Returns the largest (closest to positive infinity)
467      * {@code double} value that is less than or equal to the
468      * argument and is equal to a mathematical integer. Special cases:
469      * <ul><li>If the argument value is already equal to a
470      * mathematical integer, then the result is the same as the
471      * argument.  <li>If the argument is NaN or an infinity or
472      * positive zero or negative zero, then the result is the same as
473      * the argument.</ul>
474      *
475      * @param   a   a value.
476      * @return  the largest (closest to positive infinity)
477      *          floating-point value that less than or equal to the argument
478      *          and is equal to a mathematical integer.
479      */
floor(double a)480     public static double floor(double a) {
481         return floorOrCeil(a, -1.0, 0.0, -1.0);
482     }
483 
484     /**
485      * Internal method to share logic between floor and ceil.
486      *
487      * @param a the value to be floored or ceiled
488      * @param negativeBoundary result for values in (-1, 0)
489      * @param positiveBoundary result for values in (0, 1)
490      * @param sign the sign of the result
491      */
floorOrCeil(double a, double negativeBoundary, double positiveBoundary, double sign)492     private static double floorOrCeil(double a,
493                                       double negativeBoundary,
494                                       double positiveBoundary,
495                                       double sign) {
496         int exponent = Math.getExponent(a);
497 
498         if (exponent < 0) {
499             /*
500              * Absolute value of argument is less than 1.
501              * floorOrCeil(-0.0) => -0.0
502              * floorOrCeil(+0.0) => +0.0
503              */
504             return ((a == 0.0) ? a :
505                     ( (a < 0.0) ?  negativeBoundary : positiveBoundary) );
506         } else if (exponent >= 52) {
507             /*
508              * Infinity, NaN, or a value so large it must be integral.
509              */
510             return a;
511         }
512         // Else the argument is either an integral value already XOR it
513         // has to be rounded to one.
514         assert exponent >= 0 && exponent <= 51;
515 
516         long doppel = Double.doubleToRawLongBits(a);
517         long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;
518 
519         if ( (mask & doppel) == 0L )
520             return a; // integral value
521         else {
522             double result = Double.longBitsToDouble(doppel & (~mask));
523             if (sign*a > 0.0)
524                 result = result + sign;
525             return result;
526         }
527     }
528 
529     /**
530      * Returns the {@code double} value that is closest in value
531      * to the argument and is equal to a mathematical integer. If two
532      * {@code double} values that are mathematical integers are
533      * equally close to the value of the argument, the result is the
534      * integer value that is even. Special cases:
535      * <ul><li>If the argument value is already equal to a mathematical
536      * integer, then the result is the same as the argument.
537      * <li>If the argument is NaN or an infinity or positive zero or negative
538      * zero, then the result is the same as the argument.</ul>
539      *
540      * @param   a   a value.
541      * @return  the closest floating-point value to {@code a} that is
542      *          equal to a mathematical integer.
543      * @author Joseph D. Darcy
544      */
rint(double a)545     public static double rint(double a) {
546         /*
547          * If the absolute value of a is not less than 2^52, it
548          * is either a finite integer (the double format does not have
549          * enough significand bits for a number that large to have any
550          * fractional portion), an infinity, or a NaN.  In any of
551          * these cases, rint of the argument is the argument.
552          *
553          * Otherwise, the sum (twoToThe52 + a ) will properly round
554          * away any fractional portion of a since ulp(twoToThe52) ==
555          * 1.0; subtracting out twoToThe52 from this sum will then be
556          * exact and leave the rounded integer portion of a.
557          */
558         double twoToThe52 = (double)(1L << 52); // 2^52
559         double sign = Math.copySign(1.0, a); // preserve sign info
560         a = Math.abs(a);
561 
562         if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
563             a = ((twoToThe52 + a ) - twoToThe52);
564         }
565 
566         return sign * a; // restore original sign
567     }
568 
569     /**
570      * Returns the angle <i>theta</i> from the conversion of rectangular
571      * coordinates ({@code x},&nbsp;{@code y}) to polar
572      * coordinates (r,&nbsp;<i>theta</i>).
573      * This method computes the phase <i>theta</i> by computing an arc tangent
574      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
575      * cases:
576      * <ul><li>If either argument is NaN, then the result is NaN.
577      * <li>If the first argument is positive zero and the second argument
578      * is positive, or the first argument is positive and finite and the
579      * second argument is positive infinity, then the result is positive
580      * zero.
581      * <li>If the first argument is negative zero and the second argument
582      * is positive, or the first argument is negative and finite and the
583      * second argument is positive infinity, then the result is negative zero.
584      * <li>If the first argument is positive zero and the second argument
585      * is negative, or the first argument is positive and finite and the
586      * second argument is negative infinity, then the result is the
587      * {@code double} value closest to <i>pi</i>.
588      * <li>If the first argument is negative zero and the second argument
589      * is negative, or the first argument is negative and finite and the
590      * second argument is negative infinity, then the result is the
591      * {@code double} value closest to -<i>pi</i>.
592      * <li>If the first argument is positive and the second argument is
593      * positive zero or negative zero, or the first argument is positive
594      * infinity and the second argument is finite, then the result is the
595      * {@code double} value closest to <i>pi</i>/2.
596      * <li>If the first argument is negative and the second argument is
597      * positive zero or negative zero, or the first argument is negative
598      * infinity and the second argument is finite, then the result is the
599      * {@code double} value closest to -<i>pi</i>/2.
600      * <li>If both arguments are positive infinity, then the result is the
601      * {@code double} value closest to <i>pi</i>/4.
602      * <li>If the first argument is positive infinity and the second argument
603      * is negative infinity, then the result is the {@code double}
604      * value closest to 3*<i>pi</i>/4.
605      * <li>If the first argument is negative infinity and the second argument
606      * is positive infinity, then the result is the {@code double} value
607      * closest to -<i>pi</i>/4.
608      * <li>If both arguments are negative infinity, then the result is the
609      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
610      *
611      * @apiNote
612      * For <i>y</i> with a positive sign and finite nonzero
613      * <i>x</i>, the exact mathematical value of {@code atan2} is
614      * equal to:
615      * <ul>
616      * <li>If <i>x</i> {@literal >} 0, atan(abs(<i>y</i>/<i>x</i>))
617      * <li>If <i>x</i> {@literal <} 0, &pi; - atan(abs(<i>y</i>/<i>x</i>))
618      * </ul>
619      *
620      * @param   y   the ordinate coordinate
621      * @param   x   the abscissa coordinate
622      * @return  the <i>theta</i> component of the point
623      *          (<i>r</i>,&nbsp;<i>theta</i>)
624      *          in polar coordinates that corresponds to the point
625      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
626      */
627     // Android-changed: Reimplement in native
628     // public static double atan2(double y, double x) {
629     //     return FdLibm.Atan2.compute(y, x);
630     // }
atan2(double y, double x)631     public static native double atan2(double y, double x);
632 
633     /**
634      * Returns the value of the first argument raised to the power of the
635      * second argument. Special cases:
636      *
637      * <ul><li>If the second argument is positive or negative zero, then the
638      * result is 1.0.
639      * <li>If the second argument is 1.0, then the result is the same as the
640      * first argument.
641      * <li>If the second argument is NaN, then the result is NaN.
642      * <li>If the first argument is NaN and the second argument is nonzero,
643      * then the result is NaN.
644      *
645      * <li>If
646      * <ul>
647      * <li>the absolute value of the first argument is greater than 1
648      * and the second argument is positive infinity, or
649      * <li>the absolute value of the first argument is less than 1 and
650      * the second argument is negative infinity,
651      * </ul>
652      * then the result is positive infinity.
653      *
654      * <li>If
655      * <ul>
656      * <li>the absolute value of the first argument is greater than 1 and
657      * the second argument is negative infinity, or
658      * <li>the absolute value of the
659      * first argument is less than 1 and the second argument is positive
660      * infinity,
661      * </ul>
662      * then the result is positive zero.
663      *
664      * <li>If the absolute value of the first argument equals 1 and the
665      * second argument is infinite, then the result is NaN.
666      *
667      * <li>If
668      * <ul>
669      * <li>the first argument is positive zero and the second argument
670      * is greater than zero, or
671      * <li>the first argument is positive infinity and the second
672      * argument is less than zero,
673      * </ul>
674      * then the result is positive zero.
675      *
676      * <li>If
677      * <ul>
678      * <li>the first argument is positive zero and the second argument
679      * is less than zero, or
680      * <li>the first argument is positive infinity and the second
681      * argument is greater than zero,
682      * </ul>
683      * then the result is positive infinity.
684      *
685      * <li>If
686      * <ul>
687      * <li>the first argument is negative zero and the second argument
688      * is greater than zero but not a finite odd integer, or
689      * <li>the first argument is negative infinity and the second
690      * argument is less than zero but not a finite odd integer,
691      * </ul>
692      * then the result is positive zero.
693      *
694      * <li>If
695      * <ul>
696      * <li>the first argument is negative zero and the second argument
697      * is a positive finite odd integer, or
698      * <li>the first argument is negative infinity and the second
699      * argument is a negative finite odd integer,
700      * </ul>
701      * then the result is negative zero.
702      *
703      * <li>If
704      * <ul>
705      * <li>the first argument is negative zero and the second argument
706      * is less than zero but not a finite odd integer, or
707      * <li>the first argument is negative infinity and the second
708      * argument is greater than zero but not a finite odd integer,
709      * </ul>
710      * then the result is positive infinity.
711      *
712      * <li>If
713      * <ul>
714      * <li>the first argument is negative zero and the second argument
715      * is a negative finite odd integer, or
716      * <li>the first argument is negative infinity and the second
717      * argument is a positive finite odd integer,
718      * </ul>
719      * then the result is negative infinity.
720      *
721      * <li>If the first argument is finite and less than zero
722      * <ul>
723      * <li> if the second argument is a finite even integer, the
724      * result is equal to the result of raising the absolute value of
725      * the first argument to the power of the second argument
726      *
727      * <li>if the second argument is a finite odd integer, the result
728      * is equal to the negative of the result of raising the absolute
729      * value of the first argument to the power of the second
730      * argument
731      *
732      * <li>if the second argument is finite and not an integer, then
733      * the result is NaN.
734      * </ul>
735      *
736      * <li>If both arguments are integers, then the result is exactly equal
737      * to the mathematical result of raising the first argument to the power
738      * of the second argument if that result can in fact be represented
739      * exactly as a {@code double} value.</ul>
740      *
741      * <p>(In the foregoing descriptions, a floating-point value is
742      * considered to be an integer if and only if it is finite and a
743      * fixed point of the method {@link #ceil ceil} or,
744      * equivalently, a fixed point of the method {@link #floor
745      * floor}. A value is a fixed point of a one-argument
746      * method if and only if the result of applying the method to the
747      * value is equal to the value.)
748      *
749      * @apiNote
750      * The special cases definitions of this method differ from the
751      * special case definitions of the IEEE 754 recommended {@code
752      * pow} operation for &plusmn;{@code 1.0} raised to an infinite
753      * power. This method treats such cases as indeterminate and
754      * specifies a NaN is returned. The IEEE 754 specification treats
755      * the infinite power as a large integer (large-magnitude
756      * floating-point numbers are numerically integers, specifically
757      * even integers) and therefore specifies {@code 1.0} be returned.
758      *
759      * @param   a   base.
760      * @param   b   the exponent.
761      * @return  the value {@code a}<sup>{@code b}</sup>.
762      */
763     // BEGIN Android-changed: Reimplement in native
764     /*
765     public static double pow(double a, double b) {
766         return FdLibm.Pow.compute(a, b);
767     }
768     */
769     // END Android-changed: Reimplement in native
pow(double a, double b)770     public static native double pow(double a, double b);
771 
772     /**
773      * Returns the closest {@code int} to the argument, with ties
774      * rounding to positive infinity.
775      *
776      * <p>Special cases:
777      * <ul><li>If the argument is NaN, the result is 0.
778      * <li>If the argument is negative infinity or any value less than or
779      * equal to the value of {@code Integer.MIN_VALUE}, the result is
780      * equal to the value of {@code Integer.MIN_VALUE}.
781      * <li>If the argument is positive infinity or any value greater than or
782      * equal to the value of {@code Integer.MAX_VALUE}, the result is
783      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
784      *
785      * @param   a   a floating-point value to be rounded to an integer.
786      * @return  the value of the argument rounded to the nearest
787      *          {@code int} value.
788      * @see     java.lang.Integer#MAX_VALUE
789      * @see     java.lang.Integer#MIN_VALUE
790      */
round(float a)791     public static int round(float a) {
792         return Math.round(a);
793     }
794 
795     /**
796      * Returns the closest {@code long} to the argument, with ties
797      * rounding to positive infinity.
798      *
799      * <p>Special cases:
800      * <ul><li>If the argument is NaN, the result is 0.
801      * <li>If the argument is negative infinity or any value less than or
802      * equal to the value of {@code Long.MIN_VALUE}, the result is
803      * equal to the value of {@code Long.MIN_VALUE}.
804      * <li>If the argument is positive infinity or any value greater than or
805      * equal to the value of {@code Long.MAX_VALUE}, the result is
806      * equal to the value of {@code Long.MAX_VALUE}.</ul>
807      *
808      * @param   a  a floating-point value to be rounded to a
809      *          {@code long}.
810      * @return  the value of the argument rounded to the nearest
811      *          {@code long} value.
812      * @see     java.lang.Long#MAX_VALUE
813      * @see     java.lang.Long#MIN_VALUE
814      */
round(double a)815     public static long round(double a) {
816         return Math.round(a);
817     }
818 
819     private static final class RandomNumberGeneratorHolder {
820         static final Random randomNumberGenerator = new Random();
821     }
822 
823     /**
824      * Returns a {@code double} value with a positive sign, greater
825      * than or equal to {@code 0.0} and less than {@code 1.0}.
826      * Returned values are chosen pseudorandomly with (approximately)
827      * uniform distribution from that range.
828      *
829      * <p>When this method is first called, it creates a single new
830      * pseudorandom-number generator, exactly as if by the expression
831      *
832      * <blockquote>{@code new java.util.Random()}</blockquote>
833      *
834      * This new pseudorandom-number generator is used thereafter for
835      * all calls to this method and is used nowhere else.
836      *
837      * <p>This method is properly synchronized to allow correct use by
838      * more than one thread. However, if many threads need to generate
839      * pseudorandom numbers at a great rate, it may reduce contention
840      * for each thread to have its own pseudorandom-number generator.
841      *
842      * @return  a pseudorandom {@code double} greater than or equal
843      * to {@code 0.0} and less than {@code 1.0}.
844      * @see Random#nextDouble()
845      */
random()846     public static double random() {
847         return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
848     }
849 
850     /**
851      * Returns the sum of its arguments,
852      * throwing an exception if the result overflows an {@code int}.
853      *
854      * @param x the first value
855      * @param y the second value
856      * @return the result
857      * @throws ArithmeticException if the result overflows an int
858      * @see Math#addExact(int,int)
859      * @since 1.8
860      */
addExact(int x, int y)861     public static int addExact(int x, int y) {
862         return Math.addExact(x, y);
863     }
864 
865     /**
866      * Returns the sum of its arguments,
867      * throwing an exception if the result overflows a {@code long}.
868      *
869      * @param x the first value
870      * @param y the second value
871      * @return the result
872      * @throws ArithmeticException if the result overflows a long
873      * @see Math#addExact(long,long)
874      * @since 1.8
875      */
addExact(long x, long y)876     public static long addExact(long x, long y) {
877         return Math.addExact(x, y);
878     }
879 
880     /**
881      * Returns the difference of the arguments,
882      * throwing an exception if the result overflows an {@code int}.
883      *
884      * @param x the first value
885      * @param y the second value to subtract from the first
886      * @return the result
887      * @throws ArithmeticException if the result overflows an int
888      * @see Math#subtractExact(int,int)
889      * @since 1.8
890      */
subtractExact(int x, int y)891     public static int subtractExact(int x, int y) {
892         return Math.subtractExact(x, y);
893     }
894 
895     /**
896      * Returns the difference of the arguments,
897      * throwing an exception if the result overflows a {@code long}.
898      *
899      * @param x the first value
900      * @param y the second value to subtract from the first
901      * @return the result
902      * @throws ArithmeticException if the result overflows a long
903      * @see Math#subtractExact(long,long)
904      * @since 1.8
905      */
subtractExact(long x, long y)906     public static long subtractExact(long x, long y) {
907         return Math.subtractExact(x, y);
908     }
909 
910     /**
911      * Returns the product of the arguments,
912      * throwing an exception if the result overflows an {@code int}.
913      *
914      * @param x the first value
915      * @param y the second value
916      * @return the result
917      * @throws ArithmeticException if the result overflows an int
918      * @see Math#multiplyExact(int,int)
919      * @since 1.8
920      */
multiplyExact(int x, int y)921     public static int multiplyExact(int x, int y) {
922         return Math.multiplyExact(x, y);
923     }
924 
925     /**
926      * Returns the product of the arguments, throwing an exception if the result
927      * overflows a {@code long}.
928      *
929      * @param x the first value
930      * @param y the second value
931      * @return the result
932      * @throws ArithmeticException if the result overflows a long
933      * @see Math#multiplyExact(long,int)
934      * @since 9
935      */
multiplyExact(long x, int y)936     public static long multiplyExact(long x, int y) {
937         return Math.multiplyExact(x, y);
938     }
939 
940     /**
941      * Returns the product of the arguments,
942      * throwing an exception if the result overflows a {@code long}.
943      *
944      * @param x the first value
945      * @param y the second value
946      * @return the result
947      * @throws ArithmeticException if the result overflows a long
948      * @see Math#multiplyExact(long,long)
949      * @since 1.8
950      */
multiplyExact(long x, long y)951     public static long multiplyExact(long x, long y) {
952         return Math.multiplyExact(x, y);
953     }
954 
955     /**
956      * Returns the quotient of the arguments, throwing an exception if the
957      * result overflows an {@code int}.  Such overflow occurs in this method if
958      * {@code x} is {@link Integer#MIN_VALUE} and {@code y} is {@code -1}.
959      * In contrast, if {@code Integer.MIN_VALUE / -1} were evaluated directly,
960      * the result would be {@code Integer.MIN_VALUE} and no exception would be
961      * thrown.
962      * <p>
963      * If {@code y} is zero, an {@code ArithmeticException} is thrown
964      * (JLS {@jls 15.17.2}).
965      * <p>
966      * The built-in remainder operator "{@code %}" is a suitable counterpart
967      * both for this method and for the built-in division operator "{@code /}".
968      *
969      * @param x the dividend
970      * @param y the divisor
971      * @return the quotient {@code x / y}
972      * @throws ArithmeticException if {@code y} is zero or the quotient
973      * overflows an int
974      * @jls 15.17.2 Division Operator /
975      * @see Math#divideExact(int,int)
976      * @since 18
977      */
divideExact(int x, int y)978     public static int divideExact(int x, int y) {
979         return Math.divideExact(x, y);
980     }
981 
982     /**
983      * Returns the quotient of the arguments, throwing an exception if the
984      * result overflows a {@code long}.  Such overflow occurs in this method if
985      * {@code x} is {@link Long#MIN_VALUE} and {@code y} is {@code -1}.
986      * In contrast, if {@code Long.MIN_VALUE / -1} were evaluated directly,
987      * the result would be {@code Long.MIN_VALUE} and no exception would be
988      * thrown.
989      * <p>
990      * If {@code y} is zero, an {@code ArithmeticException} is thrown
991      * (JLS {@jls 15.17.2}).
992      * <p>
993      * The built-in remainder operator "{@code %}" is a suitable counterpart
994      * both for this method and for the built-in division operator "{@code /}".
995      *
996      * @param x the dividend
997      * @param y the divisor
998      * @return the quotient {@code x / y}
999      * @throws ArithmeticException if {@code y} is zero or the quotient
1000      * overflows a long
1001      * @jls 15.17.2 Division Operator /
1002      * @see Math#divideExact(long,long)
1003      * @since 18
1004      */
divideExact(long x, long y)1005     public static long divideExact(long x, long y) {
1006         return Math.divideExact(x, y);
1007     }
1008 
1009     /**
1010      * Returns the largest (closest to positive infinity)
1011      * {@code int} value that is less than or equal to the algebraic quotient.
1012      * This method is identical to {@link #floorDiv(int,int)} except that it
1013      * throws an {@code ArithmeticException} when the dividend is
1014      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is
1015      * {@code -1} instead of ignoring the integer overflow and returning
1016      * {@code Integer.MIN_VALUE}.
1017      * <p>
1018      * The floor modulus method {@link #floorMod(int,int)} is a suitable
1019      * counterpart both for this method and for the {@link #floorDiv(int,int)}
1020      * method.
1021      * <p>
1022      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
1023      * a comparison to the integer division {@code /} operator.
1024      *
1025      * @param x the dividend
1026      * @param y the divisor
1027      * @return the largest (closest to positive infinity)
1028      * {@code int} value that is less than or equal to the algebraic quotient.
1029      * @throws ArithmeticException if the divisor {@code y} is zero, or the
1030      * dividend {@code x} is {@code Integer.MIN_VALUE} and the divisor {@code y}
1031      * is {@code -1}.
1032      * @see Math#floorDiv(int, int)
1033      * @since 18
1034      */
floorDivExact(int x, int y)1035     public static int floorDivExact(int x, int y) {
1036         return Math.floorDivExact(x, y);
1037     }
1038 
1039     /**
1040      * Returns the largest (closest to positive infinity)
1041      * {@code long} value that is less than or equal to the algebraic quotient.
1042      * This method is identical to {@link #floorDiv(long,long)} except that it
1043      * throws an {@code ArithmeticException} when the dividend is
1044      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is
1045      * {@code -1} instead of ignoring the integer overflow and returning
1046      * {@code Long.MIN_VALUE}.
1047      * <p>
1048      * The floor modulus method {@link #floorMod(long,long)} is a suitable
1049      * counterpart both for this method and for the {@link #floorDiv(long,long)}
1050      * method.
1051      * <p>
1052      * For examples, see {@link Math#floorDiv(int, int) Math.floorDiv}.
1053      *
1054      * @param x the dividend
1055      * @param y the divisor
1056      * @return the largest (closest to positive infinity)
1057      * {@code long} value that is less than or equal to the algebraic quotient.
1058      * @throws ArithmeticException if the divisor {@code y} is zero, or the
1059      * dividend {@code x} is {@code Long.MIN_VALUE} and the divisor {@code y}
1060      * is {@code -1}.
1061      * @see Math#floorDiv(int, int)
1062      * @see Math#floorDiv(long,long)
1063      * @since 18
1064      */
floorDivExact(long x, long y)1065     public static long floorDivExact(long x, long y) {
1066         return Math.floorDivExact(x, y);
1067     }
1068 
1069     /**
1070      * Returns the smallest (closest to negative infinity)
1071      * {@code int} value that is greater than or equal to the algebraic quotient.
1072      * This method is identical to {@link #ceilDiv(int,int)} except that it
1073      * throws an {@code ArithmeticException} when the dividend is
1074      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is
1075      * {@code -1} instead of ignoring the integer overflow and returning
1076      * {@code Integer.MIN_VALUE}.
1077      * <p>
1078      * The ceil modulus method {@link #ceilMod(int,int)} is a suitable
1079      * counterpart both for this method and for the {@link #ceilDiv(int,int)}
1080      * method.
1081      * <p>
1082      * See {@link Math#ceilDiv(int, int) Math.ceilDiv} for examples and
1083      * a comparison to the integer division {@code /} operator.
1084      *
1085      * @param x the dividend
1086      * @param y the divisor
1087      * @return the smallest (closest to negative infinity)
1088      * {@code int} value that is greater than or equal to the algebraic quotient.
1089      * @throws ArithmeticException if the divisor {@code y} is zero, or the
1090      * dividend {@code x} is {@code Integer.MIN_VALUE} and the divisor {@code y}
1091      * is {@code -1}.
1092      * @see Math#ceilDiv(int, int)
1093      * @since 18
1094      */
ceilDivExact(int x, int y)1095     public static int ceilDivExact(int x, int y) {
1096         return Math.ceilDivExact(x, y);
1097     }
1098 
1099     /**
1100      * Returns the smallest (closest to negative infinity)
1101      * {@code long} value that is greater than or equal to the algebraic quotient.
1102      * This method is identical to {@link #ceilDiv(long,long)} except that it
1103      * throws an {@code ArithmeticException} when the dividend is
1104      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is
1105      * {@code -1} instead of ignoring the integer overflow and returning
1106      * {@code Long.MIN_VALUE}.
1107      * <p>
1108      * The ceil modulus method {@link #ceilMod(long,long)} is a suitable
1109      * counterpart both for this method and for the {@link #ceilDiv(long,long)}
1110      * method.
1111      * <p>
1112      * For examples, see {@link Math#ceilDiv(int, int) Math.ceilDiv}.
1113      *
1114      * @param x the dividend
1115      * @param y the divisor
1116      * @return the smallest (closest to negative infinity)
1117      * {@code long} value that is greater than or equal to the algebraic quotient.
1118      * @throws ArithmeticException if the divisor {@code y} is zero, or the
1119      * dividend {@code x} is {@code Long.MIN_VALUE} and the divisor {@code y}
1120      * is {@code -1}.
1121      * @see Math#ceilDiv(int, int)
1122      * @see Math#ceilDiv(long,long)
1123      * @since 18
1124      */
ceilDivExact(long x, long y)1125     public static long ceilDivExact(long x, long y) {
1126         return Math.ceilDivExact(x, y);
1127     }
1128 
1129     /**
1130      * Returns the argument incremented by one,
1131      * throwing an exception if the result overflows an {@code int}.
1132      * The overflow only occurs for {@linkplain Integer#MAX_VALUE the maximum value}.
1133      *
1134      * @param a the value to increment
1135      * @return the result
1136      * @throws ArithmeticException if the result overflows an int
1137      * @see Math#incrementExact(int)
1138      * @since 14
1139      */
incrementExact(int a)1140     public static int incrementExact(int a) {
1141         return Math.incrementExact(a);
1142     }
1143 
1144     /**
1145      * Returns the argument incremented by one,
1146      * throwing an exception if the result overflows a {@code long}.
1147      * The overflow only occurs for {@linkplain Long#MAX_VALUE the maximum value}.
1148      *
1149      * @param a the value to increment
1150      * @return the result
1151      * @throws ArithmeticException if the result overflows a long
1152      * @see Math#incrementExact(long)
1153      * @since 14
1154      */
incrementExact(long a)1155     public static long incrementExact(long a) {
1156         return Math.incrementExact(a);
1157     }
1158 
1159     /**
1160      * Returns the argument decremented by one,
1161      * throwing an exception if the result overflows an {@code int}.
1162      * The overflow only occurs for {@linkplain Integer#MIN_VALUE the minimum value}.
1163      *
1164      * @param a the value to decrement
1165      * @return the result
1166      * @throws ArithmeticException if the result overflows an int
1167      * @see Math#decrementExact(int)
1168      * @since 14
1169      */
decrementExact(int a)1170     public static int decrementExact(int a) {
1171         return Math.decrementExact(a);
1172     }
1173 
1174     /**
1175      * Returns the argument decremented by one,
1176      * throwing an exception if the result overflows a {@code long}.
1177      * The overflow only occurs for {@linkplain Long#MIN_VALUE the minimum value}.
1178      *
1179      * @param a the value to decrement
1180      * @return the result
1181      * @throws ArithmeticException if the result overflows a long
1182      * @see Math#decrementExact(long)
1183      * @since 14
1184      */
decrementExact(long a)1185     public static long decrementExact(long a) {
1186         return Math.decrementExact(a);
1187     }
1188 
1189     /**
1190      * Returns the negation of the argument,
1191      * throwing an exception if the result overflows an {@code int}.
1192      * The overflow only occurs for {@linkplain Integer#MIN_VALUE the minimum value}.
1193      *
1194      * @param a the value to negate
1195      * @return the result
1196      * @throws ArithmeticException if the result overflows an int
1197      * @see Math#negateExact(int)
1198      * @since 14
1199      */
negateExact(int a)1200     public static int negateExact(int a) {
1201         return Math.negateExact(a);
1202     }
1203 
1204     /**
1205      * Returns the negation of the argument,
1206      * throwing an exception if the result overflows a {@code long}.
1207      * The overflow only occurs for {@linkplain Long#MIN_VALUE the minimum value}.
1208      *
1209      * @param a the value to negate
1210      * @return the result
1211      * @throws ArithmeticException if the result overflows a long
1212      * @see Math#negateExact(long)
1213      * @since 14
1214      */
negateExact(long a)1215     public static long negateExact(long a) {
1216         return Math.negateExact(a);
1217     }
1218 
1219     /**
1220      * Returns the value of the {@code long} argument, throwing an exception
1221      * if the value overflows an {@code int}.
1222      *
1223      * @param value the long value
1224      * @return the argument as an int
1225      * @throws ArithmeticException if the {@code argument} overflows an int
1226      * @see Math#toIntExact(long)
1227      * @since 1.8
1228      */
toIntExact(long value)1229     public static int toIntExact(long value) {
1230         return Math.toIntExact(value);
1231     }
1232 
1233     /**
1234      * Returns the exact mathematical product of the arguments.
1235      *
1236      * @param x the first value
1237      * @param y the second value
1238      * @return the result
1239      * @see Math#multiplyFull(int,int)
1240      * @since 9
1241      */
multiplyFull(int x, int y)1242     public static long multiplyFull(int x, int y) {
1243         return Math.multiplyFull(x, y);
1244     }
1245 
1246     /**
1247      * Returns as a {@code long} the most significant 64 bits of the 128-bit
1248      * product of two 64-bit factors.
1249      *
1250      * @param x the first value
1251      * @param y the second value
1252      * @return the result
1253      * @see #unsignedMultiplyHigh
1254      * @see Math#multiplyHigh(long,long)
1255      * @since 9
1256      */
multiplyHigh(long x, long y)1257     public static long multiplyHigh(long x, long y) {
1258         return Math.multiplyHigh(x, y);
1259     }
1260 
1261     /**
1262      * Returns as a {@code long} the most significant 64 bits of the unsigned
1263      * 128-bit product of two unsigned 64-bit factors.
1264      *
1265      * @param x the first value
1266      * @param y the second value
1267      * @return the result
1268      * @see #multiplyHigh
1269      * @see Math#unsignedMultiplyHigh(long,long)
1270      * @since 18
1271      */
unsignedMultiplyHigh(long x, long y)1272     public static long unsignedMultiplyHigh(long x, long y) {
1273         return Math.unsignedMultiplyHigh(x, y);
1274     }
1275 
1276     /**
1277      * Returns the largest (closest to positive infinity)
1278      * {@code int} value that is less than or equal to the algebraic quotient.
1279      * There is one special case: if the dividend is
1280      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
1281      * then integer overflow occurs and
1282      * the result is equal to {@code Integer.MIN_VALUE}.
1283      * <p>
1284      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
1285      * a comparison to the integer division {@code /} operator.
1286      *
1287      * @param x the dividend
1288      * @param y the divisor
1289      * @return the largest (closest to positive infinity)
1290      * {@code int} value that is less than or equal to the algebraic quotient.
1291      * @throws ArithmeticException if the divisor {@code y} is zero
1292      * @see Math#floorDiv(int, int)
1293      * @see Math#floor(double)
1294      * @since 1.8
1295      */
floorDiv(int x, int y)1296     public static int floorDiv(int x, int y) {
1297         return Math.floorDiv(x, y);
1298     }
1299 
1300     /**
1301      * Returns the largest (closest to positive infinity)
1302      * {@code long} value that is less than or equal to the algebraic quotient.
1303      * There is one special case: if the dividend is
1304      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1305      * then integer overflow occurs and
1306      * the result is equal to {@code Long.MIN_VALUE}.
1307      * <p>
1308      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
1309      * a comparison to the integer division {@code /} operator.
1310      *
1311      * @param x the dividend
1312      * @param y the divisor
1313      * @return the largest (closest to positive infinity)
1314      * {@code long} value that is less than or equal to the algebraic quotient.
1315      * @throws ArithmeticException if the divisor {@code y} is zero
1316      * @see Math#floorDiv(long, int)
1317      * @see Math#floor(double)
1318      * @since 9
1319      */
floorDiv(long x, int y)1320     public static long floorDiv(long x, int y) {
1321         return Math.floorDiv(x, y);
1322     }
1323 
1324     /**
1325      * Returns the largest (closest to positive infinity)
1326      * {@code long} value that is less than or equal to the algebraic quotient.
1327      * There is one special case: if the dividend is
1328      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1329      * then integer overflow occurs and
1330      * the result is equal to {@code Long.MIN_VALUE}.
1331      * <p>
1332      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
1333      * a comparison to the integer division {@code /} operator.
1334      *
1335      * @param x the dividend
1336      * @param y the divisor
1337      * @return the largest (closest to positive infinity)
1338      * {@code long} value that is less than or equal to the algebraic quotient.
1339      * @throws ArithmeticException if the divisor {@code y} is zero
1340      * @see Math#floorDiv(long, long)
1341      * @see Math#floor(double)
1342      * @since 1.8
1343      */
floorDiv(long x, long y)1344     public static long floorDiv(long x, long y) {
1345         return Math.floorDiv(x, y);
1346     }
1347 
1348     /**
1349      * Returns the floor modulus of the {@code int} arguments.
1350      * <p>
1351      * The floor modulus is {@code r = x - (floorDiv(x, y) * y)},
1352      * has the same sign as the divisor {@code y} or is zero, and
1353      * is in the range of {@code -abs(y) < r < +abs(y)}.
1354      *
1355      * <p>
1356      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1357      * <ul>
1358      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}</li>
1359      * </ul>
1360      * <p>
1361      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
1362      * a comparison to the {@code %} operator.
1363      *
1364      * @param x the dividend
1365      * @param y the divisor
1366      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1367      * @throws ArithmeticException if the divisor {@code y} is zero
1368      * @see Math#floorMod(int, int)
1369      * @see StrictMath#floorDiv(int, int)
1370      * @since 1.8
1371      */
floorMod(int x, int y)1372     public static int floorMod(int x, int y) {
1373         return Math.floorMod(x , y);
1374     }
1375 
1376     /**
1377      * Returns the floor modulus of the {@code long} and {@code int} arguments.
1378      * <p>
1379      * The floor modulus is {@code r = x - (floorDiv(x, y) * y)},
1380      * has the same sign as the divisor {@code y} or is zero, and
1381      * is in the range of {@code -abs(y) < r < +abs(y)}.
1382      *
1383      * <p>
1384      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1385      * <ul>
1386      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}</li>
1387      * </ul>
1388      * <p>
1389      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
1390      * a comparison to the {@code %} operator.
1391      *
1392      * @param x the dividend
1393      * @param y the divisor
1394      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1395      * @throws ArithmeticException if the divisor {@code y} is zero
1396      * @see Math#floorMod(long, int)
1397      * @see StrictMath#floorDiv(long, int)
1398      * @since 9
1399      */
floorMod(long x, int y)1400     public static int floorMod(long x, int y) {
1401         return Math.floorMod(x , y);
1402     }
1403 
1404     /**
1405      * Returns the floor modulus of the {@code long} arguments.
1406      * <p>
1407      * The floor modulus is {@code r = x - (floorDiv(x, y) * y)},
1408      * has the same sign as the divisor {@code y} or is zero, and
1409      * is in the range of {@code -abs(y) < r < +abs(y)}.
1410      *
1411      * <p>
1412      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1413      * <ul>
1414      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}</li>
1415      * </ul>
1416      * <p>
1417      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
1418      * a comparison to the {@code %} operator.
1419      *
1420      * @param x the dividend
1421      * @param y the divisor
1422      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1423      * @throws ArithmeticException if the divisor {@code y} is zero
1424      * @see Math#floorMod(long, long)
1425      * @see StrictMath#floorDiv(long, long)
1426      * @since 1.8
1427      */
floorMod(long x, long y)1428     public static long floorMod(long x, long y) {
1429         return Math.floorMod(x, y);
1430     }
1431 
1432     /**
1433      * Returns the smallest (closest to negative infinity)
1434      * {@code int} value that is greater than or equal to the algebraic quotient.
1435      * There is one special case: if the dividend is
1436      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
1437      * then integer overflow occurs and
1438      * the result is equal to {@code Integer.MIN_VALUE}.
1439      * <p>
1440      * See {@link Math#ceilDiv(int, int) Math.ceilDiv} for examples and
1441      * a comparison to the integer division {@code /} operator.
1442      *
1443      * @param x the dividend
1444      * @param y the divisor
1445      * @return the smallest (closest to negative infinity)
1446      * {@code int} value that is greater than or equal to the algebraic quotient.
1447      * @throws ArithmeticException if the divisor {@code y} is zero
1448      * @see Math#ceilDiv(int, int)
1449      * @see Math#ceil(double)
1450      * @since 18
1451      */
ceilDiv(int x, int y)1452     public static int ceilDiv(int x, int y) {
1453         return Math.ceilDiv(x, y);
1454     }
1455 
1456     /**
1457      * Returns the smallest (closest to negative infinity)
1458      * {@code long} value that is greater than or equal to the algebraic quotient.
1459      * There is one special case: if the dividend is
1460      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1461      * then integer overflow occurs and
1462      * the result is equal to {@code Long.MIN_VALUE}.
1463      * <p>
1464      * See {@link Math#ceilDiv(int, int) Math.ceilDiv} for examples and
1465      * a comparison to the integer division {@code /} operator.
1466      *
1467      * @param x the dividend
1468      * @param y the divisor
1469      * @return the smallest (closest to negative infinity)
1470      * {@code long} value that is greater than or equal to the algebraic quotient.
1471      * @throws ArithmeticException if the divisor {@code y} is zero
1472      * @see Math#ceilDiv(long, int)
1473      * @see Math#ceil(double)
1474      * @since 18
1475      */
ceilDiv(long x, int y)1476     public static long ceilDiv(long x, int y) {
1477         return Math.ceilDiv(x, y);
1478     }
1479 
1480     /**
1481      * Returns the smallest (closest to negative infinity)
1482      * {@code long} value that is greater than or equal to the algebraic quotient.
1483      * There is one special case: if the dividend is
1484      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
1485      * then integer overflow occurs and
1486      * the result is equal to {@code Long.MIN_VALUE}.
1487      * <p>
1488      * See {@link Math#ceilDiv(int, int) Math.ceilDiv} for examples and
1489      * a comparison to the integer division {@code /} operator.
1490      *
1491      * @param x the dividend
1492      * @param y the divisor
1493      * @return the smallest (closest to negative infinity)
1494      * {@code long} value that is greater than or equal to the algebraic quotient.
1495      * @throws ArithmeticException if the divisor {@code y} is zero
1496      * @see Math#ceilDiv(long, long)
1497      * @see Math#ceil(double)
1498      * @since 18
1499      */
ceilDiv(long x, long y)1500     public static long ceilDiv(long x, long y) {
1501         return Math.ceilDiv(x, y);
1502     }
1503 
1504     /**
1505      * Returns the ceiling modulus of the {@code int} arguments.
1506      * <p>
1507      * The ceiling modulus is {@code r = x - (ceilDiv(x, y) * y)},
1508      * has the opposite sign as the divisor {@code y} or is zero, and
1509      * is in the range of {@code -abs(y) < r < +abs(y)}.
1510      *
1511      * <p>
1512      * The relationship between {@code ceilDiv} and {@code ceilMod} is such that:
1513      * <ul>
1514      *   <li>{@code ceilDiv(x, y) * y + ceilMod(x, y) == x}</li>
1515      * </ul>
1516      * <p>
1517      * See {@link Math#ceilMod(int, int) Math.ceilMod} for examples and
1518      * a comparison to the {@code %} operator.
1519      *
1520      * @param x the dividend
1521      * @param y the divisor
1522      * @return the ceiling modulus {@code x - (ceilDiv(x, y) * y)}
1523      * @throws ArithmeticException if the divisor {@code y} is zero
1524      * @see Math#ceilMod(int, int)
1525      * @see StrictMath#ceilDiv(int, int)
1526      * @since 18
1527      */
ceilMod(int x, int y)1528     public static int ceilMod(int x, int y) {
1529         return Math.ceilMod(x , y);
1530     }
1531 
1532     /**
1533      * Returns the ceiling modulus of the {@code long} and {@code int} arguments.
1534      * <p>
1535      * The ceiling modulus is {@code r = x - (ceilDiv(x, y) * y)},
1536      * has the opposite sign as the divisor {@code y} or is zero, and
1537      * is in the range of {@code -abs(y) < r < +abs(y)}.
1538      *
1539      * <p>
1540      * The relationship between {@code ceilDiv} and {@code ceilMod} is such that:
1541      * <ul>
1542      *   <li>{@code ceilDiv(x, y) * y + ceilMod(x, y) == x}</li>
1543      * </ul>
1544      * <p>
1545      * See {@link Math#ceilMod(int, int) Math.ceilMod} for examples and
1546      * a comparison to the {@code %} operator.
1547      *
1548      * @param x the dividend
1549      * @param y the divisor
1550      * @return the ceiling modulus {@code x - (ceilDiv(x, y) * y)}
1551      * @throws ArithmeticException if the divisor {@code y} is zero
1552      * @see Math#ceilMod(long, int)
1553      * @see StrictMath#ceilDiv(long, int)
1554      * @since 18
1555      */
ceilMod(long x, int y)1556     public static int ceilMod(long x, int y) {
1557         return Math.ceilMod(x , y);
1558     }
1559 
1560     /**
1561      * Returns the ceiling modulus of the {@code long} arguments.
1562      * <p>
1563      * The ceiling modulus is {@code r = x - (ceilDiv(x, y) * y)},
1564      * has the opposite sign as the divisor {@code y} or is zero, and
1565      * is in the range of {@code -abs(y) < r < +abs(y)}.
1566      *
1567      * <p>
1568      * The relationship between {@code ceilDiv} and {@code ceilMod} is such that:
1569      * <ul>
1570      *   <li>{@code ceilDiv(x, y) * y + ceilMod(x, y) == x}</li>
1571      * </ul>
1572      * <p>
1573      * See {@link Math#ceilMod(int, int) Math.ceilMod} for examples and
1574      * a comparison to the {@code %} operator.
1575      *
1576      * @param x the dividend
1577      * @param y the divisor
1578      * @return the ceiling modulus {@code x - (ceilDiv(x, y) * y)}
1579      * @throws ArithmeticException if the divisor {@code y} is zero
1580      * @see Math#ceilMod(long, long)
1581      * @see StrictMath#ceilDiv(long, long)
1582      * @since 18
1583      */
ceilMod(long x, long y)1584     public static long ceilMod(long x, long y) {
1585         return Math.ceilMod(x, y);
1586     }
1587 
1588     /**
1589      * Returns the absolute value of an {@code int} value.
1590      * If the argument is not negative, the argument is returned.
1591      * If the argument is negative, the negation of the argument is returned.
1592      *
1593      * <p>Note that if the argument is equal to the value of {@link
1594      * Integer#MIN_VALUE}, the most negative representable {@code int}
1595      * value, the result is that same value, which is negative. In
1596      * contrast, the {@link StrictMath#absExact(int)} method throws an
1597      * {@code ArithmeticException} for this value.
1598      *
1599      * @param   a   the  argument whose absolute value is to be determined.
1600      * @return  the absolute value of the argument.
1601      * @see Math#absExact(int)
1602      */
abs(int a)1603     public static int abs(int a) {
1604         return Math.abs(a);
1605     }
1606 
1607     /**
1608      * Returns the mathematical absolute value of an {@code int} value
1609      * if it is exactly representable as an {@code int}, throwing
1610      * {@code ArithmeticException} if the result overflows the
1611      * positive {@code int} range.
1612      *
1613      * <p>Since the range of two's complement integers is asymmetric
1614      * with one additional negative value (JLS {@jls 4.2.1}), the
1615      * mathematical absolute value of {@link Integer#MIN_VALUE}
1616      * overflows the positive {@code int} range, so an exception is
1617      * thrown for that argument.
1618      *
1619      * @param  a  the argument whose absolute value is to be determined
1620      * @return the absolute value of the argument, unless overflow occurs
1621      * @throws ArithmeticException if the argument is {@link Integer#MIN_VALUE}
1622      * @see Math#abs(int)
1623      * @see Math#absExact(int)
1624      * @since 15
1625      */
absExact(int a)1626     public static int absExact(int a) {
1627         return Math.absExact(a);
1628     }
1629 
1630     /**
1631      * Returns the absolute value of a {@code long} value.
1632      * If the argument is not negative, the argument is returned.
1633      * If the argument is negative, the negation of the argument is returned.
1634      *
1635      * <p>Note that if the argument is equal to the value of {@link
1636      * Long#MIN_VALUE}, the most negative representable {@code long}
1637      * value, the result is that same value, which is negative. In
1638      * contrast, the {@link StrictMath#absExact(long)} method throws
1639      * an {@code ArithmeticException} for this value.
1640      *
1641      * @param   a   the  argument whose absolute value is to be determined.
1642      * @return  the absolute value of the argument.
1643      * @see Math#absExact(long)
1644      */
abs(long a)1645     public static long abs(long a) {
1646         return Math.abs(a);
1647     }
1648 
1649     /**
1650      * Returns the mathematical absolute value of an {@code long} value
1651      * if it is exactly representable as an {@code long}, throwing
1652      * {@code ArithmeticException} if the result overflows the
1653      * positive {@code long} range.
1654      *
1655      * <p>Since the range of two's complement integers is asymmetric
1656      * with one additional negative value (JLS {@jls 4.2.1}), the
1657      * mathematical absolute value of {@link Long#MIN_VALUE} overflows
1658      * the positive {@code long} range, so an exception is thrown for
1659      * that argument.
1660      *
1661      * @param  a  the argument whose absolute value is to be determined
1662      * @return the absolute value of the argument, unless overflow occurs
1663      * @throws ArithmeticException if the argument is {@link Long#MIN_VALUE}
1664      * @see Math#abs(long)
1665      * @see Math#absExact(long)
1666      * @since 15
1667      */
absExact(long a)1668     public static long absExact(long a) {
1669         return Math.absExact(a);
1670     }
1671 
1672     /**
1673      * Returns the absolute value of a {@code float} value.
1674      * If the argument is not negative, the argument is returned.
1675      * If the argument is negative, the negation of the argument is returned.
1676      * Special cases:
1677      * <ul><li>If the argument is positive zero or negative zero, the
1678      * result is positive zero.
1679      * <li>If the argument is infinite, the result is positive infinity.
1680      * <li>If the argument is NaN, the result is NaN.</ul>
1681      *
1682      * @apiNote As implied by the above, one valid implementation of
1683      * this method is given by the expression below which computes a
1684      * {@code float} with the same exponent and significand as the
1685      * argument but with a guaranteed zero sign bit indicating a
1686      * positive value: <br>
1687      * {@code Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a))}
1688      *
1689      * @param   a   the argument whose absolute value is to be determined
1690      * @return  the absolute value of the argument.
1691      */
abs(float a)1692     public static float abs(float a) {
1693         return Math.abs(a);
1694     }
1695 
1696     /**
1697      * Returns the absolute value of a {@code double} value.
1698      * If the argument is not negative, the argument is returned.
1699      * If the argument is negative, the negation of the argument is returned.
1700      * Special cases:
1701      * <ul><li>If the argument is positive zero or negative zero, the result
1702      * is positive zero.
1703      * <li>If the argument is infinite, the result is positive infinity.
1704      * <li>If the argument is NaN, the result is NaN.</ul>
1705      *
1706      * @apiNote As implied by the above, one valid implementation of
1707      * this method is given by the expression below which computes a
1708      * {@code double} with the same exponent and significand as the
1709      * argument but with a guaranteed zero sign bit indicating a
1710      * positive value: <br>
1711      * {@code Double.longBitsToDouble((Double.doubleToRawLongBits(a)<<1)>>>1)}
1712      *
1713      * @param   a   the argument whose absolute value is to be determined
1714      * @return  the absolute value of the argument.
1715      */
abs(double a)1716     public static double abs(double a) {
1717         return Math.abs(a);
1718     }
1719 
1720     /**
1721      * Returns the greater of two {@code int} values. That is, the
1722      * result is the argument closer to the value of
1723      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1724      * the result is that same value.
1725      *
1726      * @param   a   an argument.
1727      * @param   b   another argument.
1728      * @return  the larger of {@code a} and {@code b}.
1729      */
1730     @IntrinsicCandidate
max(int a, int b)1731     public static int max(int a, int b) {
1732         return Math.max(a, b);
1733     }
1734 
1735     /**
1736      * Returns the greater of two {@code long} values. That is, the
1737      * result is the argument closer to the value of
1738      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1739      * the result is that same value.
1740      *
1741      * @param   a   an argument.
1742      * @param   b   another argument.
1743      * @return  the larger of {@code a} and {@code b}.
1744      */
max(long a, long b)1745     public static long max(long a, long b) {
1746         return Math.max(a, b);
1747     }
1748 
1749     /**
1750      * Returns the greater of two {@code float} values.  That is,
1751      * the result is the argument closer to positive infinity. If the
1752      * arguments have the same value, the result is that same
1753      * value. If either value is NaN, then the result is NaN.  Unlike
1754      * the numerical comparison operators, this method considers
1755      * negative zero to be strictly smaller than positive zero. If one
1756      * argument is positive zero and the other negative zero, the
1757      * result is positive zero.
1758      *
1759      * @param   a   an argument.
1760      * @param   b   another argument.
1761      * @return  the larger of {@code a} and {@code b}.
1762      */
1763     @IntrinsicCandidate
max(float a, float b)1764     public static float max(float a, float b) {
1765         return Math.max(a, b);
1766     }
1767 
1768     /**
1769      * Returns the greater of two {@code double} values.  That
1770      * is, the result is the argument closer to positive infinity. If
1771      * the arguments have the same value, the result is that same
1772      * value. If either value is NaN, then the result is NaN.  Unlike
1773      * the numerical comparison operators, this method considers
1774      * negative zero to be strictly smaller than positive zero. If one
1775      * argument is positive zero and the other negative zero, the
1776      * result is positive zero.
1777      *
1778      * @param   a   an argument.
1779      * @param   b   another argument.
1780      * @return  the larger of {@code a} and {@code b}.
1781      */
1782     @IntrinsicCandidate
max(double a, double b)1783     public static double max(double a, double b) {
1784         return Math.max(a, b);
1785     }
1786 
1787     /**
1788      * Returns the smaller of two {@code int} values. That is,
1789      * the result the argument closer to the value of
1790      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1791      * value, the result is that same value.
1792      *
1793      * @param   a   an argument.
1794      * @param   b   another argument.
1795      * @return  the smaller of {@code a} and {@code b}.
1796      */
1797     @IntrinsicCandidate
min(int a, int b)1798     public static int min(int a, int b) {
1799         return Math.min(a, b);
1800     }
1801 
1802     /**
1803      * Returns the smaller of two {@code long} values. That is,
1804      * the result is the argument closer to the value of
1805      * {@link Long#MIN_VALUE}. If the arguments have the same
1806      * value, the result is that same value.
1807      *
1808      * @param   a   an argument.
1809      * @param   b   another argument.
1810      * @return  the smaller of {@code a} and {@code b}.
1811      */
min(long a, long b)1812     public static long min(long a, long b) {
1813         return Math.min(a, b);
1814     }
1815 
1816     /**
1817      * Returns the smaller of two {@code float} values.  That is,
1818      * the result is the value closer to negative infinity. If the
1819      * arguments have the same value, the result is that same
1820      * value. If either value is NaN, then the result is NaN.  Unlike
1821      * the numerical comparison operators, this method considers
1822      * negative zero to be strictly smaller than positive zero.  If
1823      * one argument is positive zero and the other is negative zero,
1824      * the result is negative zero.
1825      *
1826      * @param   a   an argument.
1827      * @param   b   another argument.
1828      * @return  the smaller of {@code a} and {@code b.}
1829      */
1830     @IntrinsicCandidate
min(float a, float b)1831     public static float min(float a, float b) {
1832         return Math.min(a, b);
1833     }
1834 
1835     /**
1836      * Returns the smaller of two {@code double} values.  That
1837      * is, the result is the value closer to negative infinity. If the
1838      * arguments have the same value, the result is that same
1839      * value. If either value is NaN, then the result is NaN.  Unlike
1840      * the numerical comparison operators, this method considers
1841      * negative zero to be strictly smaller than positive zero. If one
1842      * argument is positive zero and the other is negative zero, the
1843      * result is negative zero.
1844      *
1845      * @param   a   an argument.
1846      * @param   b   another argument.
1847      * @return  the smaller of {@code a} and {@code b}.
1848      */
1849     @IntrinsicCandidate
min(double a, double b)1850     public static double min(double a, double b) {
1851         return Math.min(a, b);
1852     }
1853 
1854     /**
1855      * Clamps the value to fit between min and max. If the value is less
1856      * than {@code min}, then {@code min} is returned. If the value is greater
1857      * than {@code max}, then {@code max} is returned. Otherwise, the original
1858      * value is returned.
1859      * <p>
1860      * While the original value of type long may not fit into the int type,
1861      * the bounds have the int type, so the result always fits the int type.
1862      * This allows to use method to safely cast long value to int with
1863      * saturation.
1864      *
1865      * @param value value to clamp
1866      * @param min minimal allowed value
1867      * @param max maximal allowed value
1868      * @return a clamped value that fits into {@code min..max} interval
1869      * @throws IllegalArgumentException if {@code min > max}
1870      *
1871      * @since 21
1872      */
clamp(long value, int min, int max)1873     public static int clamp(long value, int min, int max) {
1874         return Math.clamp(value, min, max);
1875     }
1876 
1877     /**
1878      * Clamps the value to fit between min and max. If the value is less
1879      * than {@code min}, then {@code min} is returned. If the value is greater
1880      * than {@code max}, then {@code max} is returned. Otherwise, the original
1881      * value is returned.
1882      *
1883      * @param value value to clamp
1884      * @param min minimal allowed value
1885      * @param max maximal allowed value
1886      * @return a clamped value that fits into {@code min..max} interval
1887      * @throws IllegalArgumentException if {@code min > max}
1888      *
1889      * @since 21
1890      */
clamp(long value, long min, long max)1891     public static long clamp(long value, long min, long max) {
1892         return Math.clamp(value, min, max);
1893     }
1894 
1895     /**
1896      * Clamps the value to fit between min and max. If the value is less
1897      * than {@code min}, then {@code min} is returned. If the value is greater
1898      * than {@code max}, then {@code max} is returned. Otherwise, the original
1899      * value is returned. If value is NaN, the result is also NaN.
1900      * <p>
1901      * Unlike the numerical comparison operators, this method considers
1902      * negative zero to be strictly smaller than positive zero.
1903      * E.g., {@code clamp(-0.0, 0.0, 1.0)} returns 0.0.
1904      *
1905      * @param value value to clamp
1906      * @param min minimal allowed value
1907      * @param max maximal allowed value
1908      * @return a clamped value that fits into {@code min..max} interval
1909      * @throws IllegalArgumentException if either of {@code min} and {@code max}
1910      * arguments is NaN, or {@code min > max}, or {@code min} is +0.0, and
1911      * {@code max} is -0.0.
1912      *
1913      * @since 21
1914      */
clamp(double value, double min, double max)1915     public static double clamp(double value, double min, double max) {
1916         return Math.clamp(value, min, max);
1917     }
1918 
1919     /**
1920      * Clamps the value to fit between min and max. If the value is less
1921      * than {@code min}, then {@code min} is returned. If the value is greater
1922      * than {@code max}, then {@code max} is returned. Otherwise, the original
1923      * value is returned. If value is NaN, the result is also NaN.
1924      * <p>
1925      * Unlike the numerical comparison operators, this method considers
1926      * negative zero to be strictly smaller than positive zero.
1927      * E.g., {@code clamp(-0.0f, 0.0f, 1.0f)} returns 0.0f.
1928      *
1929      * @param value value to clamp
1930      * @param min minimal allowed value
1931      * @param max maximal allowed value
1932      * @return a clamped value that fits into {@code min..max} interval
1933      * @throws IllegalArgumentException if either of {@code min} and {@code max}
1934      * arguments is NaN, or {@code min > max}, or {@code min} is +0.0f, and
1935      * {@code max} is -0.0f.
1936      *
1937      * @since 21
1938      */
clamp(float value, float min, float max)1939     public static float clamp(float value, float min, float max) {
1940         return Math.clamp(value, min, max);
1941     }
1942 
1943     /**
1944      * Returns the fused multiply add of the three arguments; that is,
1945      * returns the exact product of the first two arguments summed
1946      * with the third argument and then rounded once to the nearest
1947      * {@code double}.
1948      *
1949      * The rounding is done using the {@linkplain
1950      * java.math.RoundingMode#HALF_EVEN round to nearest even
1951      * rounding mode}.
1952      *
1953      * In contrast, if {@code a * b + c} is evaluated as a regular
1954      * floating-point expression, two rounding errors are involved,
1955      * the first for the multiply operation, the second for the
1956      * addition operation.
1957      *
1958      * <p>Special cases:
1959      * <ul>
1960      * <li> If any argument is NaN, the result is NaN.
1961      *
1962      * <li> If one of the first two arguments is infinite and the
1963      * other is zero, the result is NaN.
1964      *
1965      * <li> If the exact product of the first two arguments is infinite
1966      * (in other words, at least one of the arguments is infinite and
1967      * the other is neither zero nor NaN) and the third argument is an
1968      * infinity of the opposite sign, the result is NaN.
1969      *
1970      * </ul>
1971      *
1972      * <p>Note that {@code fusedMac(a, 1.0, c)} returns the same
1973      * result as ({@code a + c}).  However,
1974      * {@code fusedMac(a, b, +0.0)} does <em>not</em> always return the
1975      * same result as ({@code a * b}) since
1976      * {@code fusedMac(-0.0, +0.0, +0.0)} is {@code +0.0} while
1977      * ({@code -0.0 * +0.0}) is {@code -0.0}; {@code fusedMac(a, b, -0.0)} is
1978      * equivalent to ({@code a * b}) however.
1979      *
1980      * @apiNote This method corresponds to the fusedMultiplyAdd
1981      * operation defined in IEEE 754-2008.
1982      *
1983      * @param a a value
1984      * @param b a value
1985      * @param c a value
1986      *
1987      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
1988      * computed, as if with unlimited range and precision, and rounded
1989      * once to the nearest {@code double} value
1990      *
1991      * @since 9
1992      */
fma(double a, double b, double c)1993     public static double fma(double a, double b, double c) {
1994         return Math.fma(a, b, c);
1995     }
1996 
1997     /**
1998      * Returns the fused multiply add of the three arguments; that is,
1999      * returns the exact product of the first two arguments summed
2000      * with the third argument and then rounded once to the nearest
2001      * {@code float}.
2002      *
2003      * The rounding is done using the {@linkplain
2004      * java.math.RoundingMode#HALF_EVEN round to nearest even
2005      * rounding mode}.
2006      *
2007      * In contrast, if {@code a * b + c} is evaluated as a regular
2008      * floating-point expression, two rounding errors are involved,
2009      * the first for the multiply operation, the second for the
2010      * addition operation.
2011      *
2012      * <p>Special cases:
2013      * <ul>
2014      * <li> If any argument is NaN, the result is NaN.
2015      *
2016      * <li> If one of the first two arguments is infinite and the
2017      * other is zero, the result is NaN.
2018      *
2019      * <li> If the exact product of the first two arguments is infinite
2020      * (in other words, at least one of the arguments is infinite and
2021      * the other is neither zero nor NaN) and the third argument is an
2022      * infinity of the opposite sign, the result is NaN.
2023      *
2024      * </ul>
2025      *
2026      * <p>Note that {@code fma(a, 1.0f, c)} returns the same
2027      * result as ({@code a + c}).  However,
2028      * {@code fma(a, b, +0.0f)} does <em>not</em> always return the
2029      * same result as ({@code a * b}) since
2030      * {@code fma(-0.0f, +0.0f, +0.0f)} is {@code +0.0f} while
2031      * ({@code -0.0f * +0.0f}) is {@code -0.0f}; {@code fma(a, b, -0.0f)} is
2032      * equivalent to ({@code a * b}) however.
2033      *
2034      * @apiNote This method corresponds to the fusedMultiplyAdd
2035      * operation defined in IEEE 754-2008.
2036      *
2037      * @param a a value
2038      * @param b a value
2039      * @param c a value
2040      *
2041      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
2042      * computed, as if with unlimited range and precision, and rounded
2043      * once to the nearest {@code float} value
2044      *
2045      * @since 9
2046      */
fma(float a, float b, float c)2047     public static float fma(float a, float b, float c) {
2048         return Math.fma(a, b, c);
2049     }
2050 
2051     /**
2052      * Returns the size of an ulp of the argument.  An ulp, unit in
2053      * the last place, of a {@code double} value is the positive
2054      * distance between this floating-point value and the {@code
2055      * double} value next larger in magnitude.  Note that for non-NaN
2056      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
2057      *
2058      * <p>Special Cases:
2059      * <ul>
2060      * <li> If the argument is NaN, then the result is NaN.
2061      * <li> If the argument is positive or negative infinity, then the
2062      * result is positive infinity.
2063      * <li> If the argument is positive or negative zero, then the result is
2064      * {@code Double.MIN_VALUE}.
2065      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
2066      * the result is equal to 2<sup>971</sup>.
2067      * </ul>
2068      *
2069      * @param d the floating-point value whose ulp is to be returned
2070      * @return the size of an ulp of the argument
2071      * @author Joseph D. Darcy
2072      * @since 1.5
2073      */
ulp(double d)2074     public static double ulp(double d) {
2075         return Math.ulp(d);
2076     }
2077 
2078     /**
2079      * Returns the size of an ulp of the argument.  An ulp, unit in
2080      * the last place, of a {@code float} value is the positive
2081      * distance between this floating-point value and the {@code
2082      * float} value next larger in magnitude.  Note that for non-NaN
2083      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
2084      *
2085      * <p>Special Cases:
2086      * <ul>
2087      * <li> If the argument is NaN, then the result is NaN.
2088      * <li> If the argument is positive or negative infinity, then the
2089      * result is positive infinity.
2090      * <li> If the argument is positive or negative zero, then the result is
2091      * {@code Float.MIN_VALUE}.
2092      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
2093      * the result is equal to 2<sup>104</sup>.
2094      * </ul>
2095      *
2096      * @param f the floating-point value whose ulp is to be returned
2097      * @return the size of an ulp of the argument
2098      * @author Joseph D. Darcy
2099      * @since 1.5
2100      */
ulp(float f)2101     public static float ulp(float f) {
2102         return Math.ulp(f);
2103     }
2104 
2105     /**
2106      * Returns the signum function of the argument; zero if the argument
2107      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
2108      * argument is less than zero.
2109      *
2110      * <p>Special Cases:
2111      * <ul>
2112      * <li> If the argument is NaN, then the result is NaN.
2113      * <li> If the argument is positive zero or negative zero, then the
2114      *      result is the same as the argument.
2115      * </ul>
2116      *
2117      * @param d the floating-point value whose signum is to be returned
2118      * @return the signum function of the argument
2119      * @author Joseph D. Darcy
2120      * @since 1.5
2121      */
signum(double d)2122     public static double signum(double d) {
2123         return Math.signum(d);
2124     }
2125 
2126     /**
2127      * Returns the signum function of the argument; zero if the argument
2128      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
2129      * argument is less than zero.
2130      *
2131      * <p>Special Cases:
2132      * <ul>
2133      * <li> If the argument is NaN, then the result is NaN.
2134      * <li> If the argument is positive zero or negative zero, then the
2135      *      result is the same as the argument.
2136      * </ul>
2137      *
2138      * @param f the floating-point value whose signum is to be returned
2139      * @return the signum function of the argument
2140      * @author Joseph D. Darcy
2141      * @since 1.5
2142      */
signum(float f)2143     public static float signum(float f) {
2144         return Math.signum(f);
2145     }
2146 
2147     /**
2148      * Returns the hyperbolic sine of a {@code double} value.
2149      * The hyperbolic sine of <i>x</i> is defined to be
2150      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
2151      * where <i>e</i> is {@linkplain Math#E Euler's number}.
2152      *
2153      * <p>Special cases:
2154      * <ul>
2155      *
2156      * <li>If the argument is NaN, then the result is NaN.
2157      *
2158      * <li>If the argument is infinite, then the result is an infinity
2159      * with the same sign as the argument.
2160      *
2161      * <li>If the argument is zero, then the result is a zero with the
2162      * same sign as the argument.
2163      *
2164      * </ul>
2165      *
2166      * @param   x The number whose hyperbolic sine is to be returned.
2167      * @return  The hyperbolic sine of {@code x}.
2168      * @since 1.5
2169      */
2170     // Android-changed: Reimplement in native
2171     // public static double sinh(double x) {
2172     //     return FdLibm.Sinh.compute(x);
2173     // }
sinh(double x)2174     public static native double sinh(double x);
2175 
2176     /**
2177      * Returns the hyperbolic cosine of a {@code double} value.
2178      * The hyperbolic cosine of <i>x</i> is defined to be
2179      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
2180      * where <i>e</i> is {@linkplain Math#E Euler's number}.
2181      *
2182      * <p>Special cases:
2183      * <ul>
2184      *
2185      * <li>If the argument is NaN, then the result is NaN.
2186      *
2187      * <li>If the argument is infinite, then the result is positive
2188      * infinity.
2189      *
2190      * <li>If the argument is zero, then the result is {@code 1.0}.
2191      *
2192      * </ul>
2193      *
2194      * @param   x The number whose hyperbolic cosine is to be returned.
2195      * @return  The hyperbolic cosine of {@code x}.
2196      * @since 1.5
2197      */
2198     // Android-changed: Reimplement in native
2199     // public static double cosh(double x) {
2200     //     return FdLibm.Cosh.compute(x);
2201     // }
cosh(double x)2202     public static native double cosh(double x);
2203 
2204     /**
2205      * Returns the hyperbolic tangent of a {@code double} value.
2206      * The hyperbolic tangent of <i>x</i> is defined to be
2207      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
2208      * in other words, {@linkplain Math#sinh
2209      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
2210      * that the absolute value of the exact tanh is always less than
2211      * 1.
2212      *
2213      * <p>Special cases:
2214      * <ul>
2215      *
2216      * <li>If the argument is NaN, then the result is NaN.
2217      *
2218      * <li>If the argument is zero, then the result is a zero with the
2219      * same sign as the argument.
2220      *
2221      * <li>If the argument is positive infinity, then the result is
2222      * {@code +1.0}.
2223      *
2224      * <li>If the argument is negative infinity, then the result is
2225      * {@code -1.0}.
2226      *
2227      * </ul>
2228      *
2229      * @param   x The number whose hyperbolic tangent is to be returned.
2230      * @return  The hyperbolic tangent of {@code x}.
2231      * @since 1.5
2232      */
2233     // Android-changed: Reimplement in native
2234     // public static double tanh(double x) {
2235     //     return FdLibm.Tanh.compute(x);
2236     // }
tanh(double x)2237     public static native double tanh(double x);
2238 
2239     /**
2240      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
2241      * without intermediate overflow or underflow.
2242      *
2243      * <p>Special cases:
2244      * <ul>
2245      *
2246      * <li> If either argument is infinite, then the result
2247      * is positive infinity.
2248      *
2249      * <li> If either argument is NaN and neither argument is infinite,
2250      * then the result is NaN.
2251      *
2252      * <li> If both arguments are zero, the result is positive zero.
2253      * </ul>
2254      *
2255      * @param x a value
2256      * @param y a value
2257      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
2258      * without intermediate overflow or underflow
2259      * @since 1.5
2260      */
2261     // BEGIN Android-changed: Reimplement in native
2262     /*
2263     public static double hypot(double x, double y) {
2264         return FdLibm.Hypot.compute(x, y);
2265     }
2266     */
2267     // END Android-changed: Reimplement in native
hypot(double x, double y)2268     public static native double hypot(double x, double y);
2269 
2270     /**
2271      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
2272      * <i>x</i> near 0, the exact sum of
2273      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
2274      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
2275      *
2276      * <p>Special cases:
2277      * <ul>
2278      * <li>If the argument is NaN, the result is NaN.
2279      *
2280      * <li>If the argument is positive infinity, then the result is
2281      * positive infinity.
2282      *
2283      * <li>If the argument is negative infinity, then the result is
2284      * -1.0.
2285      *
2286      * <li>If the argument is zero, then the result is a zero with the
2287      * same sign as the argument.
2288      *
2289      * </ul>
2290      *
2291      * @param   x   the exponent to raise <i>e</i> to in the computation of
2292      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
2293      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
2294      * @since 1.5
2295      */
2296     // Android-changed: Reimplement in native
2297     // public static double expm1(double x) {
2298     //     return FdLibm.Expm1.compute(x);
2299     // }
expm1(double x)2300     public static native double expm1(double x);
2301 
2302     /**
2303      * Returns the natural logarithm of the sum of the argument and 1.
2304      * Note that for small values {@code x}, the result of
2305      * {@code log1p(x)} is much closer to the true result of ln(1
2306      * + {@code x}) than the floating-point evaluation of
2307      * {@code log(1.0+x)}.
2308      *
2309      * <p>Special cases:
2310      * <ul>
2311      *
2312      * <li>If the argument is NaN or less than -1, then the result is
2313      * NaN.
2314      *
2315      * <li>If the argument is positive infinity, then the result is
2316      * positive infinity.
2317      *
2318      * <li>If the argument is negative one, then the result is
2319      * negative infinity.
2320      *
2321      * <li>If the argument is zero, then the result is a zero with the
2322      * same sign as the argument.
2323      *
2324      * </ul>
2325      *
2326      * @param   x   a value
2327      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
2328      * log of {@code x}&nbsp;+&nbsp;1
2329      * @since 1.5
2330      */
2331     // Android-changed: Reimplement in native
2332     // public static double log1p(double x) {
2333     //     return FdLibm.Log1p.compute(x);
2334     // }
log1p(double x)2335     public static native double log1p(double x);
2336 
2337     /**
2338      * Returns the first floating-point argument with the sign of the
2339      * second floating-point argument.  For this method, a NaN
2340      * {@code sign} argument is always treated as if it were
2341      * positive.
2342      *
2343      * @param magnitude  the parameter providing the magnitude of the result
2344      * @param sign   the parameter providing the sign of the result
2345      * @return a value with the magnitude of {@code magnitude}
2346      * and the sign of {@code sign}.
2347      * @since 1.6
2348      */
copySign(double magnitude, double sign)2349     public static double copySign(double magnitude, double sign) {
2350         return Math.copySign(magnitude, (Double.isNaN(sign)?1.0d:sign));
2351     }
2352 
2353     /**
2354      * Returns the first floating-point argument with the sign of the
2355      * second floating-point argument.  For this method, a NaN
2356      * {@code sign} argument is always treated as if it were
2357      * positive.
2358      *
2359      * @param magnitude  the parameter providing the magnitude of the result
2360      * @param sign   the parameter providing the sign of the result
2361      * @return a value with the magnitude of {@code magnitude}
2362      * and the sign of {@code sign}.
2363      * @since 1.6
2364      */
copySign(float magnitude, float sign)2365     public static float copySign(float magnitude, float sign) {
2366         return Math.copySign(magnitude, (Float.isNaN(sign)?1.0f:sign));
2367     }
2368     /**
2369      * Returns the unbiased exponent used in the representation of a
2370      * {@code float}.  Special cases:
2371      *
2372      * <ul>
2373      * <li>If the argument is NaN or infinite, then the result is
2374      * {@link Float#MAX_EXPONENT} + 1.
2375      * <li>If the argument is zero or subnormal, then the result is
2376      * {@link Float#MIN_EXPONENT} -1.
2377      * </ul>
2378      * @param f a {@code float} value
2379      * @return the unbiased exponent of the argument
2380      * @since 1.6
2381      */
getExponent(float f)2382     public static int getExponent(float f) {
2383         return Math.getExponent(f);
2384     }
2385 
2386     /**
2387      * Returns the unbiased exponent used in the representation of a
2388      * {@code double}.  Special cases:
2389      *
2390      * <ul>
2391      * <li>If the argument is NaN or infinite, then the result is
2392      * {@link Double#MAX_EXPONENT} + 1.
2393      * <li>If the argument is zero or subnormal, then the result is
2394      * {@link Double#MIN_EXPONENT} -1.
2395      * </ul>
2396      * @param d a {@code double} value
2397      * @return the unbiased exponent of the argument
2398      * @since 1.6
2399      */
getExponent(double d)2400     public static int getExponent(double d) {
2401         return Math.getExponent(d);
2402     }
2403 
2404     /**
2405      * Returns the floating-point number adjacent to the first
2406      * argument in the direction of the second argument.  If both
2407      * arguments compare as equal the second argument is returned.
2408      *
2409      * <p>Special cases:
2410      * <ul>
2411      * <li> If either argument is a NaN, then NaN is returned.
2412      *
2413      * <li> If both arguments are signed zeros, {@code direction}
2414      * is returned unchanged (as implied by the requirement of
2415      * returning the second argument if the arguments compare as
2416      * equal).
2417      *
2418      * <li> If {@code start} is
2419      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
2420      * has a value such that the result should have a smaller
2421      * magnitude, then a zero with the same sign as {@code start}
2422      * is returned.
2423      *
2424      * <li> If {@code start} is infinite and
2425      * {@code direction} has a value such that the result should
2426      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
2427      * same sign as {@code start} is returned.
2428      *
2429      * <li> If {@code start} is equal to &plusmn;
2430      * {@link Double#MAX_VALUE} and {@code direction} has a
2431      * value such that the result should have a larger magnitude, an
2432      * infinity with same sign as {@code start} is returned.
2433      * </ul>
2434      *
2435      * @param start  starting floating-point value
2436      * @param direction value indicating which of
2437      * {@code start}'s neighbors or {@code start} should
2438      * be returned
2439      * @return The floating-point number adjacent to {@code start} in the
2440      * direction of {@code direction}.
2441      * @since 1.6
2442      */
nextAfter(double start, double direction)2443     public static double nextAfter(double start, double direction) {
2444         return Math.nextAfter(start, direction);
2445     }
2446 
2447     /**
2448      * Returns the floating-point number adjacent to the first
2449      * argument in the direction of the second argument.  If both
2450      * arguments compare as equal a value equivalent to the second argument
2451      * is returned.
2452      *
2453      * <p>Special cases:
2454      * <ul>
2455      * <li> If either argument is a NaN, then NaN is returned.
2456      *
2457      * <li> If both arguments are signed zeros, a value equivalent
2458      * to {@code direction} is returned.
2459      *
2460      * <li> If {@code start} is
2461      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
2462      * has a value such that the result should have a smaller
2463      * magnitude, then a zero with the same sign as {@code start}
2464      * is returned.
2465      *
2466      * <li> If {@code start} is infinite and
2467      * {@code direction} has a value such that the result should
2468      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
2469      * same sign as {@code start} is returned.
2470      *
2471      * <li> If {@code start} is equal to &plusmn;
2472      * {@link Float#MAX_VALUE} and {@code direction} has a
2473      * value such that the result should have a larger magnitude, an
2474      * infinity with same sign as {@code start} is returned.
2475      * </ul>
2476      *
2477      * @param start  starting floating-point value
2478      * @param direction value indicating which of
2479      * {@code start}'s neighbors or {@code start} should
2480      * be returned
2481      * @return The floating-point number adjacent to {@code start} in the
2482      * direction of {@code direction}.
2483      * @since 1.6
2484      */
nextAfter(float start, double direction)2485     public static float nextAfter(float start, double direction) {
2486         return Math.nextAfter(start, direction);
2487     }
2488 
2489     /**
2490      * Returns the floating-point value adjacent to {@code d} in
2491      * the direction of positive infinity.  This method is
2492      * semantically equivalent to {@code nextAfter(d,
2493      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
2494      * implementation may run faster than its equivalent
2495      * {@code nextAfter} call.
2496      *
2497      * <p>Special Cases:
2498      * <ul>
2499      * <li> If the argument is NaN, the result is NaN.
2500      *
2501      * <li> If the argument is positive infinity, the result is
2502      * positive infinity.
2503      *
2504      * <li> If the argument is zero, the result is
2505      * {@link Double#MIN_VALUE}
2506      *
2507      * </ul>
2508      *
2509      * @param d starting floating-point value
2510      * @return The adjacent floating-point value closer to positive
2511      * infinity.
2512      * @since 1.6
2513      */
nextUp(double d)2514     public static double nextUp(double d) {
2515         return Math.nextUp(d);
2516     }
2517 
2518     /**
2519      * Returns the floating-point value adjacent to {@code f} in
2520      * the direction of positive infinity.  This method is
2521      * semantically equivalent to {@code nextAfter(f,
2522      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
2523      * implementation may run faster than its equivalent
2524      * {@code nextAfter} call.
2525      *
2526      * <p>Special Cases:
2527      * <ul>
2528      * <li> If the argument is NaN, the result is NaN.
2529      *
2530      * <li> If the argument is positive infinity, the result is
2531      * positive infinity.
2532      *
2533      * <li> If the argument is zero, the result is
2534      * {@link Float#MIN_VALUE}
2535      *
2536      * </ul>
2537      *
2538      * @param f starting floating-point value
2539      * @return The adjacent floating-point value closer to positive
2540      * infinity.
2541      * @since 1.6
2542      */
nextUp(float f)2543     public static float nextUp(float f) {
2544         return Math.nextUp(f);
2545     }
2546 
2547     /**
2548      * Returns the floating-point value adjacent to {@code d} in
2549      * the direction of negative infinity.  This method is
2550      * semantically equivalent to {@code nextAfter(d,
2551      * Double.NEGATIVE_INFINITY)}; however, a
2552      * {@code nextDown} implementation may run faster than its
2553      * equivalent {@code nextAfter} call.
2554      *
2555      * <p>Special Cases:
2556      * <ul>
2557      * <li> If the argument is NaN, the result is NaN.
2558      *
2559      * <li> If the argument is negative infinity, the result is
2560      * negative infinity.
2561      *
2562      * <li> If the argument is zero, the result is
2563      * {@code -Double.MIN_VALUE}
2564      *
2565      * </ul>
2566      *
2567      * @param d  starting floating-point value
2568      * @return The adjacent floating-point value closer to negative
2569      * infinity.
2570      * @since 1.8
2571      */
nextDown(double d)2572     public static double nextDown(double d) {
2573         return Math.nextDown(d);
2574     }
2575 
2576     /**
2577      * Returns the floating-point value adjacent to {@code f} in
2578      * the direction of negative infinity.  This method is
2579      * semantically equivalent to {@code nextAfter(f,
2580      * Float.NEGATIVE_INFINITY)}; however, a
2581      * {@code nextDown} implementation may run faster than its
2582      * equivalent {@code nextAfter} call.
2583      *
2584      * <p>Special Cases:
2585      * <ul>
2586      * <li> If the argument is NaN, the result is NaN.
2587      *
2588      * <li> If the argument is negative infinity, the result is
2589      * negative infinity.
2590      *
2591      * <li> If the argument is zero, the result is
2592      * {@code -Float.MIN_VALUE}
2593      *
2594      * </ul>
2595      *
2596      * @param f  starting floating-point value
2597      * @return The adjacent floating-point value closer to negative
2598      * infinity.
2599      * @since 1.8
2600      */
nextDown(float f)2601     public static float nextDown(float f) {
2602         return Math.nextDown(f);
2603     }
2604 
2605     /**
2606      * Returns {@code d} &times; 2<sup>{@code scaleFactor}</sup>
2607      * rounded as if performed by a single correctly rounded
2608      * floating-point multiply.  If the exponent of the result is
2609      * between {@link Double#MIN_EXPONENT} and {@link
2610      * Double#MAX_EXPONENT}, the answer is calculated exactly.  If the
2611      * exponent of the result would be larger than {@code
2612      * Double.MAX_EXPONENT}, an infinity is returned.  Note that if
2613      * the result is subnormal, precision may be lost; that is, when
2614      * {@code scalb(x, n)} is subnormal, {@code scalb(scalb(x, n),
2615      * -n)} may not equal <i>x</i>.  When the result is non-NaN, the
2616      * result has the same sign as {@code d}.
2617      *
2618      * <p>Special cases:
2619      * <ul>
2620      * <li> If the first argument is NaN, NaN is returned.
2621      * <li> If the first argument is infinite, then an infinity of the
2622      * same sign is returned.
2623      * <li> If the first argument is zero, then a zero of the same
2624      * sign is returned.
2625      * </ul>
2626      *
2627      * @param d number to be scaled by a power of two.
2628      * @param scaleFactor power of 2 used to scale {@code d}
2629      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
2630      * @since 1.6
2631      */
scalb(double d, int scaleFactor)2632     public static double scalb(double d, int scaleFactor) {
2633         return Math.scalb(d, scaleFactor);
2634     }
2635 
2636     /**
2637      * Returns {@code f} &times; 2<sup>{@code scaleFactor}</sup>
2638      * rounded as if performed by a single correctly rounded
2639      * floating-point multiply.  If the exponent of the result is
2640      * between {@link Float#MIN_EXPONENT} and {@link
2641      * Float#MAX_EXPONENT}, the answer is calculated exactly.  If the
2642      * exponent of the result would be larger than {@code
2643      * Float.MAX_EXPONENT}, an infinity is returned.  Note that if the
2644      * result is subnormal, precision may be lost; that is, when
2645      * {@code scalb(x, n)} is subnormal, {@code scalb(scalb(x, n),
2646      * -n)} may not equal <i>x</i>.  When the result is non-NaN, the
2647      * result has the same sign as {@code f}.
2648      *
2649      * <p>Special cases:
2650      * <ul>
2651      * <li> If the first argument is NaN, NaN is returned.
2652      * <li> If the first argument is infinite, then an infinity of the
2653      * same sign is returned.
2654      * <li> If the first argument is zero, then a zero of the same
2655      * sign is returned.
2656      * </ul>
2657      *
2658      * @param f number to be scaled by a power of two.
2659      * @param scaleFactor power of 2 used to scale {@code f}
2660      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
2661      * @since 1.6
2662      */
scalb(float f, int scaleFactor)2663     public static float scalb(float f, int scaleFactor) {
2664         return Math.scalb(f, scaleFactor);
2665     }
2666 }
2667