1 /* 2 * Copyright (c) 1999, 2007, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.math; 27 28 /** 29 * A simple bit sieve used for finding prime number candidates. Allows setting 30 * and clearing of bits in a storage array. The size of the sieve is assumed to 31 * be constant to reduce overhead. All the bits of a new bitSieve are zero, and 32 * bits are removed from it by setting them. 33 * 34 * To reduce storage space and increase efficiency, no even numbers are 35 * represented in the sieve (each bit in the sieve represents an odd number). 36 * The relationship between the index of a bit and the number it represents is 37 * given by 38 * N = offset + (2*index + 1); 39 * Where N is the integer represented by a bit in the sieve, offset is some 40 * even integer offset indicating where the sieve begins, and index is the 41 * index of a bit in the sieve array. 42 * 43 * @see BigInteger 44 * @author Michael McCloskey 45 * @since 1.3 46 */ 47 class BitSieve { 48 /** 49 * Stores the bits in this bitSieve. 50 */ 51 private long bits[]; 52 53 /** 54 * Length is how many bits this sieve holds. 55 */ 56 private int length; 57 58 /** 59 * A small sieve used to filter out multiples of small primes in a search 60 * sieve. 61 */ 62 private static BitSieve smallSieve = new BitSieve(); 63 64 /** 65 * Construct a "small sieve" with a base of 0. This constructor is 66 * used internally to generate the set of "small primes" whose multiples 67 * are excluded from sieves generated by the main (package private) 68 * constructor, BitSieve(BigInteger base, int searchLen). The length 69 * of the sieve generated by this constructor was chosen for performance; 70 * it controls a tradeoff between how much time is spent constructing 71 * other sieves, and how much time is wasted testing composite candidates 72 * for primality. The length was chosen experimentally to yield good 73 * performance. 74 */ BitSieve()75 private BitSieve() { 76 length = 150 * 64; 77 bits = new long[(unitIndex(length - 1) + 1)]; 78 79 // Mark 1 as composite 80 set(0); 81 int nextIndex = 1; 82 int nextPrime = 3; 83 84 // Find primes and remove their multiples from sieve 85 do { 86 sieveSingle(length, nextIndex + nextPrime, nextPrime); 87 nextIndex = sieveSearch(length, nextIndex + 1); 88 nextPrime = 2*nextIndex + 1; 89 } while((nextIndex > 0) && (nextPrime < length)); 90 } 91 92 /** 93 * Construct a bit sieve of searchLen bits used for finding prime number 94 * candidates. The new sieve begins at the specified base, which must 95 * be even. 96 */ BitSieve(BigInteger base, int searchLen)97 BitSieve(BigInteger base, int searchLen) { 98 /* 99 * Candidates are indicated by clear bits in the sieve. As a candidates 100 * nonprimality is calculated, a bit is set in the sieve to eliminate 101 * it. To reduce storage space and increase efficiency, no even numbers 102 * are represented in the sieve (each bit in the sieve represents an 103 * odd number). 104 */ 105 bits = new long[(unitIndex(searchLen-1) + 1)]; 106 length = searchLen; 107 int start = 0; 108 109 int step = smallSieve.sieveSearch(smallSieve.length, start); 110 int convertedStep = (step *2) + 1; 111 112 // Construct the large sieve at an even offset specified by base 113 MutableBigInteger b = new MutableBigInteger(base); 114 MutableBigInteger q = new MutableBigInteger(); 115 do { 116 // Calculate base mod convertedStep 117 start = b.divideOneWord(convertedStep, q); 118 119 // Take each multiple of step out of sieve 120 start = convertedStep - start; 121 if (start%2 == 0) 122 start += convertedStep; 123 sieveSingle(searchLen, (start-1)/2, convertedStep); 124 125 // Find next prime from small sieve 126 step = smallSieve.sieveSearch(smallSieve.length, step+1); 127 convertedStep = (step *2) + 1; 128 } while (step > 0); 129 } 130 131 /** 132 * Given a bit index return unit index containing it. 133 */ unitIndex(int bitIndex)134 private static int unitIndex(int bitIndex) { 135 return bitIndex >>> 6; 136 } 137 138 /** 139 * Return a unit that masks the specified bit in its unit. 140 */ bit(int bitIndex)141 private static long bit(int bitIndex) { 142 return 1L << (bitIndex & ((1<<6) - 1)); 143 } 144 145 /** 146 * Get the value of the bit at the specified index. 147 */ get(int bitIndex)148 private boolean get(int bitIndex) { 149 int unitIndex = unitIndex(bitIndex); 150 return ((bits[unitIndex] & bit(bitIndex)) != 0); 151 } 152 153 /** 154 * Set the bit at the specified index. 155 */ set(int bitIndex)156 private void set(int bitIndex) { 157 int unitIndex = unitIndex(bitIndex); 158 bits[unitIndex] |= bit(bitIndex); 159 } 160 161 /** 162 * This method returns the index of the first clear bit in the search 163 * array that occurs at or after start. It will not search past the 164 * specified limit. It returns -1 if there is no such clear bit. 165 */ sieveSearch(int limit, int start)166 private int sieveSearch(int limit, int start) { 167 if (start >= limit) 168 return -1; 169 170 int index = start; 171 do { 172 if (!get(index)) 173 return index; 174 index++; 175 } while(index < limit-1); 176 return -1; 177 } 178 179 /** 180 * Sieve a single set of multiples out of the sieve. Begin to remove 181 * multiples of the specified step starting at the specified start index, 182 * up to the specified limit. 183 */ sieveSingle(int limit, int start, int step)184 private void sieveSingle(int limit, int start, int step) { 185 while(start < limit) { 186 set(start); 187 start += step; 188 } 189 } 190 191 /** 192 * Test probable primes in the sieve and return successful candidates. 193 */ retrieve(BigInteger initValue, int certainty, java.util.Random random)194 BigInteger retrieve(BigInteger initValue, int certainty, java.util.Random random) { 195 // Examine the sieve one long at a time to find possible primes 196 int offset = 1; 197 for (int i=0; i<bits.length; i++) { 198 long nextLong = ~bits[i]; 199 for (int j=0; j<64; j++) { 200 if ((nextLong & 1) == 1) { 201 BigInteger candidate = initValue.add( 202 BigInteger.valueOf(offset)); 203 if (candidate.primeToCertainty(certainty, random)) 204 return candidate; 205 } 206 nextLong >>>= 1; 207 offset+=2; 208 } 209 } 210 return null; 211 } 212 } 213