1 /*
2  * Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.math;
27 
28 /**
29  * A class used to represent multiprecision integers that makes efficient
30  * use of allocated space by allowing a number to occupy only part of
31  * an array so that the arrays do not have to be reallocated as often.
32  * When performing an operation with many iterations the array used to
33  * hold a number is only reallocated when necessary and does not have to
34  * be the same size as the number it represents. A mutable number allows
35  * calculations to occur on the same number without having to create
36  * a new number for every step of the calculation as occurs with
37  * BigIntegers.
38  *
39  * @see     BigInteger
40  * @author  Michael McCloskey
41  * @author  Timothy Buktu
42  * @since   1.3
43  */
44 
45 import static java.math.BigDecimal.INFLATED;
46 import static java.math.BigInteger.LONG_MASK;
47 import java.util.Arrays;
48 
49 class MutableBigInteger {
50     /**
51      * Holds the magnitude of this MutableBigInteger in big endian order.
52      * The magnitude may start at an offset into the value array, and it may
53      * end before the length of the value array.
54      */
55     int[] value;
56 
57     /**
58      * The number of ints of the value array that are currently used
59      * to hold the magnitude of this MutableBigInteger. The magnitude starts
60      * at an offset and offset + intLen may be less than value.length.
61      */
62     int intLen;
63 
64     /**
65      * The offset into the value array where the magnitude of this
66      * MutableBigInteger begins.
67      */
68     int offset = 0;
69 
70     // Constants
71     /**
72      * MutableBigInteger with one element value array with the value 1. Used by
73      * BigDecimal divideAndRound to increment the quotient. Use this constant
74      * only when the method is not going to modify this object.
75      */
76     static final MutableBigInteger ONE = new MutableBigInteger(1);
77 
78     /**
79      * The minimum {@code intLen} for cancelling powers of two before
80      * dividing.
81      * If the number of ints is less than this threshold,
82      * {@code divideKnuth} does not eliminate common powers of two from
83      * the dividend and divisor.
84      */
85     static final int KNUTH_POW2_THRESH_LEN = 6;
86 
87     /**
88      * The minimum number of trailing zero ints for cancelling powers of two
89      * before dividing.
90      * If the dividend and divisor don't share at least this many zero ints
91      * at the end, {@code divideKnuth} does not eliminate common powers
92      * of two from the dividend and divisor.
93      */
94     static final int KNUTH_POW2_THRESH_ZEROS = 3;
95 
96     // Constructors
97 
98     /**
99      * The default constructor. An empty MutableBigInteger is created with
100      * a one word capacity.
101      */
MutableBigInteger()102     MutableBigInteger() {
103         value = new int[1];
104         intLen = 0;
105     }
106 
107     /**
108      * Construct a new MutableBigInteger with a magnitude specified by
109      * the int val.
110      */
MutableBigInteger(int val)111     MutableBigInteger(int val) {
112         value = new int[1];
113         intLen = 1;
114         value[0] = val;
115     }
116 
117     /**
118      * Construct a new MutableBigInteger with the specified value array
119      * up to the length of the array supplied.
120      */
MutableBigInteger(int[] val)121     MutableBigInteger(int[] val) {
122         value = val;
123         intLen = val.length;
124     }
125 
126     /**
127      * Construct a new MutableBigInteger with a magnitude equal to the
128      * specified BigInteger.
129      */
MutableBigInteger(BigInteger b)130     MutableBigInteger(BigInteger b) {
131         intLen = b.mag.length;
132         value = Arrays.copyOf(b.mag, intLen);
133     }
134 
135     /**
136      * Construct a new MutableBigInteger with a magnitude equal to the
137      * specified MutableBigInteger.
138      */
MutableBigInteger(MutableBigInteger val)139     MutableBigInteger(MutableBigInteger val) {
140         intLen = val.intLen;
141         value = Arrays.copyOfRange(val.value, val.offset, val.offset + intLen);
142     }
143 
144     /**
145      * Makes this number an {@code n}-int number all of whose bits are ones.
146      * Used by Burnikel-Ziegler division.
147      * @param n number of ints in the {@code value} array
148      */
ones(int n)149     private void ones(int n) {
150         if (n > value.length)
151             value = new int[n];
152         Arrays.fill(value, -1);
153         offset = 0;
154         intLen = n;
155     }
156 
157     /**
158      * Internal helper method to return the magnitude array. The caller is not
159      * supposed to modify the returned array.
160      */
getMagnitudeArray()161     private int[] getMagnitudeArray() {
162         if (offset > 0 || value.length != intLen) {
163             // Shrink value to be the total magnitude
164             int[] tmp = Arrays.copyOfRange(value, offset, offset + intLen);
165             Arrays.fill(value, 0);
166             offset = 0;
167             intLen = tmp.length;
168             value = tmp;
169         }
170         return value;
171     }
172 
173     /**
174      * Convert this MutableBigInteger to a long value. The caller has to make
175      * sure this MutableBigInteger can be fit into long.
176      */
toLong()177     private long toLong() {
178         assert (intLen <= 2) : "this MutableBigInteger exceeds the range of long";
179         if (intLen == 0)
180             return 0;
181         long d = value[offset] & LONG_MASK;
182         return (intLen == 2) ? d << 32 | (value[offset + 1] & LONG_MASK) : d;
183     }
184 
185     /**
186      * Convert this MutableBigInteger to a BigInteger object.
187      */
toBigInteger(int sign)188     BigInteger toBigInteger(int sign) {
189         if (intLen == 0 || sign == 0)
190             return BigInteger.ZERO;
191         return new BigInteger(getMagnitudeArray(), sign);
192     }
193 
194     /**
195      * Converts this number to a nonnegative {@code BigInteger}.
196      */
toBigInteger()197     BigInteger toBigInteger() {
198         normalize();
199         return toBigInteger(isZero() ? 0 : 1);
200     }
201 
202     /**
203      * Convert this MutableBigInteger to BigDecimal object with the specified sign
204      * and scale.
205      */
toBigDecimal(int sign, int scale)206     BigDecimal toBigDecimal(int sign, int scale) {
207         if (intLen == 0 || sign == 0)
208             return BigDecimal.zeroValueOf(scale);
209         int[] mag = getMagnitudeArray();
210         int len = mag.length;
211         int d = mag[0];
212         // If this MutableBigInteger can't be fit into long, we need to
213         // make a BigInteger object for the resultant BigDecimal object.
214         if (len > 2 || (d < 0 && len == 2))
215             return new BigDecimal(new BigInteger(mag, sign), INFLATED, scale, 0);
216         long v = (len == 2) ?
217             ((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) :
218             d & LONG_MASK;
219         return BigDecimal.valueOf(sign == -1 ? -v : v, scale);
220     }
221 
222     /**
223      * This is for internal use in converting from a MutableBigInteger
224      * object into a long value given a specified sign.
225      * returns INFLATED if value is not fit into long
226      */
toCompactValue(int sign)227     long toCompactValue(int sign) {
228         if (intLen == 0 || sign == 0)
229             return 0L;
230         int[] mag = getMagnitudeArray();
231         int len = mag.length;
232         int d = mag[0];
233         // If this MutableBigInteger can not be fitted into long, we need to
234         // make a BigInteger object for the resultant BigDecimal object.
235         if (len > 2 || (d < 0 && len == 2))
236             return INFLATED;
237         long v = (len == 2) ?
238             ((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) :
239             d & LONG_MASK;
240         return sign == -1 ? -v : v;
241     }
242 
243     /**
244      * Clear out a MutableBigInteger for reuse.
245      */
clear()246     void clear() {
247         offset = intLen = 0;
248         for (int index=0, n=value.length; index < n; index++)
249             value[index] = 0;
250     }
251 
252     /**
253      * Set a MutableBigInteger to zero, removing its offset.
254      */
reset()255     void reset() {
256         offset = intLen = 0;
257     }
258 
259     /**
260      * Compare the magnitude of two MutableBigIntegers. Returns -1, 0 or 1
261      * as this MutableBigInteger is numerically less than, equal to, or
262      * greater than {@code b}.
263      */
compare(MutableBigInteger b)264     final int compare(MutableBigInteger b) {
265         int blen = b.intLen;
266         if (intLen < blen)
267             return -1;
268         if (intLen > blen)
269            return 1;
270 
271         // Add Integer.MIN_VALUE to make the comparison act as unsigned integer
272         // comparison.
273         int[] bval = b.value;
274         for (int i = offset, j = b.offset; i < intLen + offset; i++, j++) {
275             int b1 = value[i] + 0x80000000;
276             int b2 = bval[j]  + 0x80000000;
277             if (b1 < b2)
278                 return -1;
279             if (b1 > b2)
280                 return 1;
281         }
282         return 0;
283     }
284 
285     /**
286      * Returns a value equal to what {@code b.leftShift(32*ints); return compare(b);}
287      * would return, but doesn't change the value of {@code b}.
288      */
compareShifted(MutableBigInteger b, int ints)289     private int compareShifted(MutableBigInteger b, int ints) {
290         int blen = b.intLen;
291         int alen = intLen - ints;
292         if (alen < blen)
293             return -1;
294         if (alen > blen)
295            return 1;
296 
297         // Add Integer.MIN_VALUE to make the comparison act as unsigned integer
298         // comparison.
299         int[] bval = b.value;
300         for (int i = offset, j = b.offset; i < alen + offset; i++, j++) {
301             int b1 = value[i] + 0x80000000;
302             int b2 = bval[j]  + 0x80000000;
303             if (b1 < b2)
304                 return -1;
305             if (b1 > b2)
306                 return 1;
307         }
308         return 0;
309     }
310 
311     /**
312      * Compare this against half of a MutableBigInteger object (Needed for
313      * remainder tests).
314      * Assumes no leading unnecessary zeros, which holds for results
315      * from divide().
316      */
compareHalf(MutableBigInteger b)317     final int compareHalf(MutableBigInteger b) {
318         int blen = b.intLen;
319         int len = intLen;
320         if (len <= 0)
321             return blen <= 0 ? 0 : -1;
322         if (len > blen)
323             return 1;
324         if (len < blen - 1)
325             return -1;
326         int[] bval = b.value;
327         int bstart = 0;
328         int carry = 0;
329         // Only 2 cases left:len == blen or len == blen - 1
330         if (len != blen) { // len == blen - 1
331             if (bval[bstart] == 1) {
332                 ++bstart;
333                 carry = 0x80000000;
334             } else
335                 return -1;
336         }
337         // compare values with right-shifted values of b,
338         // carrying shifted-out bits across words
339         int[] val = value;
340         for (int i = offset, j = bstart; i < len + offset;) {
341             int bv = bval[j++];
342             long hb = ((bv >>> 1) + carry) & LONG_MASK;
343             long v = val[i++] & LONG_MASK;
344             if (v != hb)
345                 return v < hb ? -1 : 1;
346             carry = (bv & 1) << 31; // carray will be either 0x80000000 or 0
347         }
348         return carry == 0 ? 0 : -1;
349     }
350 
351     /**
352      * Return the index of the lowest set bit in this MutableBigInteger. If the
353      * magnitude of this MutableBigInteger is zero, -1 is returned.
354      */
getLowestSetBit()355     private final int getLowestSetBit() {
356         if (intLen == 0)
357             return -1;
358         int j, b;
359         for (j=intLen-1; (j > 0) && (value[j+offset] == 0); j--)
360             ;
361         b = value[j+offset];
362         if (b == 0)
363             return -1;
364         return ((intLen-1-j)<<5) + Integer.numberOfTrailingZeros(b);
365     }
366 
367     /**
368      * Return the int in use in this MutableBigInteger at the specified
369      * index. This method is not used because it is not inlined on all
370      * platforms.
371      */
getInt(int index)372     private final int getInt(int index) {
373         return value[offset+index];
374     }
375 
376     /**
377      * Return a long which is equal to the unsigned value of the int in
378      * use in this MutableBigInteger at the specified index. This method is
379      * not used because it is not inlined on all platforms.
380      */
getLong(int index)381     private final long getLong(int index) {
382         return value[offset+index] & LONG_MASK;
383     }
384 
385     /**
386      * Ensure that the MutableBigInteger is in normal form, specifically
387      * making sure that there are no leading zeros, and that if the
388      * magnitude is zero, then intLen is zero.
389      */
normalize()390     final void normalize() {
391         if (intLen == 0) {
392             offset = 0;
393             return;
394         }
395 
396         int index = offset;
397         if (value[index] != 0)
398             return;
399 
400         int indexBound = index+intLen;
401         do {
402             index++;
403         } while(index < indexBound && value[index] == 0);
404 
405         int numZeros = index - offset;
406         intLen -= numZeros;
407         offset = (intLen == 0 ?  0 : offset+numZeros);
408     }
409 
410     /**
411      * If this MutableBigInteger cannot hold len words, increase the size
412      * of the value array to len words.
413      */
ensureCapacity(int len)414     private final void ensureCapacity(int len) {
415         if (value.length < len) {
416             value = new int[len];
417             offset = 0;
418             intLen = len;
419         }
420     }
421 
422     /**
423      * Convert this MutableBigInteger into an int array with no leading
424      * zeros, of a length that is equal to this MutableBigInteger's intLen.
425      */
toIntArray()426     int[] toIntArray() {
427         int[] result = new int[intLen];
428         for(int i=0; i < intLen; i++)
429             result[i] = value[offset+i];
430         return result;
431     }
432 
433     /**
434      * Sets the int at index+offset in this MutableBigInteger to val.
435      * This does not get inlined on all platforms so it is not used
436      * as often as originally intended.
437      */
setInt(int index, int val)438     void setInt(int index, int val) {
439         value[offset + index] = val;
440     }
441 
442     /**
443      * Sets this MutableBigInteger's value array to the specified array.
444      * The intLen is set to the specified length.
445      */
setValue(int[] val, int length)446     void setValue(int[] val, int length) {
447         value = val;
448         intLen = length;
449         offset = 0;
450     }
451 
452     /**
453      * Sets this MutableBigInteger's value array to a copy of the specified
454      * array. The intLen is set to the length of the new array.
455      */
copyValue(MutableBigInteger src)456     void copyValue(MutableBigInteger src) {
457         int len = src.intLen;
458         if (value.length < len)
459             value = new int[len];
460         System.arraycopy(src.value, src.offset, value, 0, len);
461         intLen = len;
462         offset = 0;
463     }
464 
465     /**
466      * Sets this MutableBigInteger's value array to a copy of the specified
467      * array. The intLen is set to the length of the specified array.
468      */
copyValue(int[] val)469     void copyValue(int[] val) {
470         int len = val.length;
471         if (value.length < len)
472             value = new int[len];
473         System.arraycopy(val, 0, value, 0, len);
474         intLen = len;
475         offset = 0;
476     }
477 
478     /**
479      * Returns true iff this MutableBigInteger has a value of one.
480      */
isOne()481     boolean isOne() {
482         return (intLen == 1) && (value[offset] == 1);
483     }
484 
485     /**
486      * Returns true iff this MutableBigInteger has a value of zero.
487      */
isZero()488     boolean isZero() {
489         return (intLen == 0);
490     }
491 
492     /**
493      * Returns true iff this MutableBigInteger is even.
494      */
isEven()495     boolean isEven() {
496         return (intLen == 0) || ((value[offset + intLen - 1] & 1) == 0);
497     }
498 
499     /**
500      * Returns true iff this MutableBigInteger is odd.
501      */
isOdd()502     boolean isOdd() {
503         return isZero() ? false : ((value[offset + intLen - 1] & 1) == 1);
504     }
505 
506     /**
507      * Returns true iff this MutableBigInteger is in normal form. A
508      * MutableBigInteger is in normal form if it has no leading zeros
509      * after the offset, and intLen + offset <= value.length.
510      */
isNormal()511     boolean isNormal() {
512         if (intLen + offset > value.length)
513             return false;
514         if (intLen == 0)
515             return true;
516         return (value[offset] != 0);
517     }
518 
519     /**
520      * Returns a String representation of this MutableBigInteger in radix 10.
521      */
toString()522     public String toString() {
523         BigInteger b = toBigInteger(1);
524         return b.toString();
525     }
526 
527     /**
528      * Like {@link #rightShift(int)} but {@code n} can be greater than the length of the number.
529      */
safeRightShift(int n)530     void safeRightShift(int n) {
531         if (n/32 >= intLen) {
532             reset();
533         } else {
534             rightShift(n);
535         }
536     }
537 
538     /**
539      * Right shift this MutableBigInteger n bits. The MutableBigInteger is left
540      * in normal form.
541      */
rightShift(int n)542     void rightShift(int n) {
543         if (intLen == 0)
544             return;
545         int nInts = n >>> 5;
546         int nBits = n & 0x1F;
547         this.intLen -= nInts;
548         if (nBits == 0)
549             return;
550         int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]);
551         if (nBits >= bitsInHighWord) {
552             this.primitiveLeftShift(32 - nBits);
553             this.intLen--;
554         } else {
555             primitiveRightShift(nBits);
556         }
557     }
558 
559     /**
560      * Like {@link #leftShift(int)} but {@code n} can be zero.
561      */
safeLeftShift(int n)562     void safeLeftShift(int n) {
563         if (n > 0) {
564             leftShift(n);
565         }
566     }
567 
568     /**
569      * Left shift this MutableBigInteger n bits.
570      */
leftShift(int n)571     void leftShift(int n) {
572         /*
573          * If there is enough storage space in this MutableBigInteger already
574          * the available space will be used. Space to the right of the used
575          * ints in the value array is faster to utilize, so the extra space
576          * will be taken from the right if possible.
577          */
578         if (intLen == 0)
579            return;
580         int nInts = n >>> 5;
581         int nBits = n&0x1F;
582         int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]);
583 
584         // If shift can be done without moving words, do so
585         if (n <= (32-bitsInHighWord)) {
586             primitiveLeftShift(nBits);
587             return;
588         }
589 
590         int newLen = intLen + nInts +1;
591         if (nBits <= (32-bitsInHighWord))
592             newLen--;
593         if (value.length < newLen) {
594             // The array must grow
595             int[] result = new int[newLen];
596             for (int i=0; i < intLen; i++)
597                 result[i] = value[offset+i];
598             setValue(result, newLen);
599         } else if (value.length - offset >= newLen) {
600             // Use space on right
601             for(int i=0; i < newLen - intLen; i++)
602                 value[offset+intLen+i] = 0;
603         } else {
604             // Must use space on left
605             for (int i=0; i < intLen; i++)
606                 value[i] = value[offset+i];
607             for (int i=intLen; i < newLen; i++)
608                 value[i] = 0;
609             offset = 0;
610         }
611         intLen = newLen;
612         if (nBits == 0)
613             return;
614         if (nBits <= (32-bitsInHighWord))
615             primitiveLeftShift(nBits);
616         else
617             primitiveRightShift(32 -nBits);
618     }
619 
620     /**
621      * A primitive used for division. This method adds in one multiple of the
622      * divisor a back to the dividend result at a specified offset. It is used
623      * when qhat was estimated too large, and must be adjusted.
624      */
divadd(int[] a, int[] result, int offset)625     private int divadd(int[] a, int[] result, int offset) {
626         long carry = 0;
627 
628         for (int j=a.length-1; j >= 0; j--) {
629             long sum = (a[j] & LONG_MASK) +
630                        (result[j+offset] & LONG_MASK) + carry;
631             result[j+offset] = (int)sum;
632             carry = sum >>> 32;
633         }
634         return (int)carry;
635     }
636 
637     /**
638      * This method is used for division. It multiplies an n word input a by one
639      * word input x, and subtracts the n word product from q. This is needed
640      * when subtracting qhat*divisor from dividend.
641      */
mulsub(int[] q, int[] a, int x, int len, int offset)642     private int mulsub(int[] q, int[] a, int x, int len, int offset) {
643         long xLong = x & LONG_MASK;
644         long carry = 0;
645         offset += len;
646 
647         for (int j=len-1; j >= 0; j--) {
648             long product = (a[j] & LONG_MASK) * xLong + carry;
649             long difference = q[offset] - product;
650             q[offset--] = (int)difference;
651             carry = (product >>> 32)
652                      + (((difference & LONG_MASK) >
653                          (((~(int)product) & LONG_MASK))) ? 1:0);
654         }
655         return (int)carry;
656     }
657 
658     /**
659      * The method is the same as mulsun, except the fact that q array is not
660      * updated, the only result of the method is borrow flag.
661      */
mulsubBorrow(int[] q, int[] a, int x, int len, int offset)662     private int mulsubBorrow(int[] q, int[] a, int x, int len, int offset) {
663         long xLong = x & LONG_MASK;
664         long carry = 0;
665         offset += len;
666         for (int j=len-1; j >= 0; j--) {
667             long product = (a[j] & LONG_MASK) * xLong + carry;
668             long difference = q[offset--] - product;
669             carry = (product >>> 32)
670                      + (((difference & LONG_MASK) >
671                          (((~(int)product) & LONG_MASK))) ? 1:0);
672         }
673         return (int)carry;
674     }
675 
676     /**
677      * Right shift this MutableBigInteger n bits, where n is
678      * less than 32.
679      * Assumes that intLen > 0, n > 0 for speed
680      */
primitiveRightShift(int n)681     private final void primitiveRightShift(int n) {
682         int[] val = value;
683         int n2 = 32 - n;
684         for (int i=offset+intLen-1, c=val[i]; i > offset; i--) {
685             int b = c;
686             c = val[i-1];
687             val[i] = (c << n2) | (b >>> n);
688         }
689         val[offset] >>>= n;
690     }
691 
692     /**
693      * Left shift this MutableBigInteger n bits, where n is
694      * less than 32.
695      * Assumes that intLen > 0, n > 0 for speed
696      */
primitiveLeftShift(int n)697     private final void primitiveLeftShift(int n) {
698         int[] val = value;
699         int n2 = 32 - n;
700         for (int i=offset, c=val[i], m=i+intLen-1; i < m; i++) {
701             int b = c;
702             c = val[i+1];
703             val[i] = (b << n) | (c >>> n2);
704         }
705         val[offset+intLen-1] <<= n;
706     }
707 
708     /**
709      * Returns a {@code BigInteger} equal to the {@code n}
710      * low ints of this number.
711      */
getLower(int n)712     private BigInteger getLower(int n) {
713         if (isZero()) {
714             return BigInteger.ZERO;
715         } else if (intLen < n) {
716             return toBigInteger(1);
717         } else {
718             // strip zeros
719             int len = n;
720             while (len > 0 && value[offset+intLen-len] == 0)
721                 len--;
722             int sign = len > 0 ? 1 : 0;
723             return new BigInteger(Arrays.copyOfRange(value, offset+intLen-len, offset+intLen), sign);
724         }
725     }
726 
727     /**
728      * Discards all ints whose index is greater than {@code n}.
729      */
keepLower(int n)730     private void keepLower(int n) {
731         if (intLen >= n) {
732             offset += intLen - n;
733             intLen = n;
734         }
735     }
736 
737     /**
738      * Adds the contents of two MutableBigInteger objects.The result
739      * is placed within this MutableBigInteger.
740      * The contents of the addend are not changed.
741      */
add(MutableBigInteger addend)742     void add(MutableBigInteger addend) {
743         int x = intLen;
744         int y = addend.intLen;
745         int resultLen = (intLen > addend.intLen ? intLen : addend.intLen);
746         int[] result = (value.length < resultLen ? new int[resultLen] : value);
747 
748         int rstart = result.length-1;
749         long sum;
750         long carry = 0;
751 
752         // Add common parts of both numbers
753         while(x > 0 && y > 0) {
754             x--; y--;
755             sum = (value[x+offset] & LONG_MASK) +
756                 (addend.value[y+addend.offset] & LONG_MASK) + carry;
757             result[rstart--] = (int)sum;
758             carry = sum >>> 32;
759         }
760 
761         // Add remainder of the longer number
762         while(x > 0) {
763             x--;
764             if (carry == 0 && result == value && rstart == (x + offset))
765                 return;
766             sum = (value[x+offset] & LONG_MASK) + carry;
767             result[rstart--] = (int)sum;
768             carry = sum >>> 32;
769         }
770         while(y > 0) {
771             y--;
772             sum = (addend.value[y+addend.offset] & LONG_MASK) + carry;
773             result[rstart--] = (int)sum;
774             carry = sum >>> 32;
775         }
776 
777         if (carry > 0) { // Result must grow in length
778             resultLen++;
779             if (result.length < resultLen) {
780                 int temp[] = new int[resultLen];
781                 // Result one word longer from carry-out; copy low-order
782                 // bits into new result.
783                 System.arraycopy(result, 0, temp, 1, result.length);
784                 temp[0] = 1;
785                 result = temp;
786             } else {
787                 result[rstart--] = 1;
788             }
789         }
790 
791         value = result;
792         intLen = resultLen;
793         offset = result.length - resultLen;
794     }
795 
796     /**
797      * Adds the value of {@code addend} shifted {@code n} ints to the left.
798      * Has the same effect as {@code addend.leftShift(32*ints); add(addend);}
799      * but doesn't change the value of {@code addend}.
800      */
addShifted(MutableBigInteger addend, int n)801     void addShifted(MutableBigInteger addend, int n) {
802         if (addend.isZero()) {
803             return;
804         }
805 
806         int x = intLen;
807         int y = addend.intLen + n;
808         int resultLen = (intLen > y ? intLen : y);
809         int[] result = (value.length < resultLen ? new int[resultLen] : value);
810 
811         int rstart = result.length-1;
812         long sum;
813         long carry = 0;
814 
815         // Add common parts of both numbers
816         while (x > 0 && y > 0) {
817             x--; y--;
818             int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
819             sum = (value[x+offset] & LONG_MASK) +
820                 (bval & LONG_MASK) + carry;
821             result[rstart--] = (int)sum;
822             carry = sum >>> 32;
823         }
824 
825         // Add remainder of the longer number
826         while (x > 0) {
827             x--;
828             if (carry == 0 && result == value && rstart == (x + offset)) {
829                 return;
830             }
831             sum = (value[x+offset] & LONG_MASK) + carry;
832             result[rstart--] = (int)sum;
833             carry = sum >>> 32;
834         }
835         while (y > 0) {
836             y--;
837             int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
838             sum = (bval & LONG_MASK) + carry;
839             result[rstart--] = (int)sum;
840             carry = sum >>> 32;
841         }
842 
843         if (carry > 0) { // Result must grow in length
844             resultLen++;
845             if (result.length < resultLen) {
846                 int temp[] = new int[resultLen];
847                 // Result one word longer from carry-out; copy low-order
848                 // bits into new result.
849                 System.arraycopy(result, 0, temp, 1, result.length);
850                 temp[0] = 1;
851                 result = temp;
852             } else {
853                 result[rstart--] = 1;
854             }
855         }
856 
857         value = result;
858         intLen = resultLen;
859         offset = result.length - resultLen;
860     }
861 
862     /**
863      * Like {@link #addShifted(MutableBigInteger, int)} but {@code this.intLen} must
864      * not be greater than {@code n}. In other words, concatenates {@code this}
865      * and {@code addend}.
866      */
addDisjoint(MutableBigInteger addend, int n)867     void addDisjoint(MutableBigInteger addend, int n) {
868         if (addend.isZero())
869             return;
870 
871         int x = intLen;
872         int y = addend.intLen + n;
873         int resultLen = (intLen > y ? intLen : y);
874         int[] result;
875         if (value.length < resultLen)
876             result = new int[resultLen];
877         else {
878             result = value;
879             Arrays.fill(value, offset+intLen, value.length, 0);
880         }
881 
882         int rstart = result.length-1;
883 
884         // copy from this if needed
885         System.arraycopy(value, offset, result, rstart+1-x, x);
886         y -= x;
887         rstart -= x;
888 
889         int len = Math.min(y, addend.value.length-addend.offset);
890         System.arraycopy(addend.value, addend.offset, result, rstart+1-y, len);
891 
892         // zero the gap
893         for (int i=rstart+1-y+len; i < rstart+1; i++)
894             result[i] = 0;
895 
896         value = result;
897         intLen = resultLen;
898         offset = result.length - resultLen;
899     }
900 
901     /**
902      * Adds the low {@code n} ints of {@code addend}.
903      */
addLower(MutableBigInteger addend, int n)904     void addLower(MutableBigInteger addend, int n) {
905         MutableBigInteger a = new MutableBigInteger(addend);
906         if (a.offset + a.intLen >= n) {
907             a.offset = a.offset + a.intLen - n;
908             a.intLen = n;
909         }
910         a.normalize();
911         add(a);
912     }
913 
914     /**
915      * Subtracts the smaller of this and b from the larger and places the
916      * result into this MutableBigInteger.
917      */
subtract(MutableBigInteger b)918     int subtract(MutableBigInteger b) {
919         MutableBigInteger a = this;
920 
921         int[] result = value;
922         int sign = a.compare(b);
923 
924         if (sign == 0) {
925             reset();
926             return 0;
927         }
928         if (sign < 0) {
929             MutableBigInteger tmp = a;
930             a = b;
931             b = tmp;
932         }
933 
934         int resultLen = a.intLen;
935         if (result.length < resultLen)
936             result = new int[resultLen];
937 
938         long diff = 0;
939         int x = a.intLen;
940         int y = b.intLen;
941         int rstart = result.length - 1;
942 
943         // Subtract common parts of both numbers
944         while (y > 0) {
945             x--; y--;
946 
947             diff = (a.value[x+a.offset] & LONG_MASK) -
948                    (b.value[y+b.offset] & LONG_MASK) - ((int)-(diff>>32));
949             result[rstart--] = (int)diff;
950         }
951         // Subtract remainder of longer number
952         while (x > 0) {
953             x--;
954             diff = (a.value[x+a.offset] & LONG_MASK) - ((int)-(diff>>32));
955             result[rstart--] = (int)diff;
956         }
957 
958         value = result;
959         intLen = resultLen;
960         offset = value.length - resultLen;
961         normalize();
962         return sign;
963     }
964 
965     /**
966      * Subtracts the smaller of a and b from the larger and places the result
967      * into the larger. Returns 1 if the answer is in a, -1 if in b, 0 if no
968      * operation was performed.
969      */
difference(MutableBigInteger b)970     private int difference(MutableBigInteger b) {
971         MutableBigInteger a = this;
972         int sign = a.compare(b);
973         if (sign == 0)
974             return 0;
975         if (sign < 0) {
976             MutableBigInteger tmp = a;
977             a = b;
978             b = tmp;
979         }
980 
981         long diff = 0;
982         int x = a.intLen;
983         int y = b.intLen;
984 
985         // Subtract common parts of both numbers
986         while (y > 0) {
987             x--; y--;
988             diff = (a.value[a.offset+ x] & LONG_MASK) -
989                 (b.value[b.offset+ y] & LONG_MASK) - ((int)-(diff>>32));
990             a.value[a.offset+x] = (int)diff;
991         }
992         // Subtract remainder of longer number
993         while (x > 0) {
994             x--;
995             diff = (a.value[a.offset+ x] & LONG_MASK) - ((int)-(diff>>32));
996             a.value[a.offset+x] = (int)diff;
997         }
998 
999         a.normalize();
1000         return sign;
1001     }
1002 
1003     /**
1004      * Multiply the contents of two MutableBigInteger objects. The result is
1005      * placed into MutableBigInteger z. The contents of y are not changed.
1006      */
multiply(MutableBigInteger y, MutableBigInteger z)1007     void multiply(MutableBigInteger y, MutableBigInteger z) {
1008         int xLen = intLen;
1009         int yLen = y.intLen;
1010         int newLen = xLen + yLen;
1011 
1012         // Put z into an appropriate state to receive product
1013         if (z.value.length < newLen)
1014             z.value = new int[newLen];
1015         z.offset = 0;
1016         z.intLen = newLen;
1017 
1018         // The first iteration is hoisted out of the loop to avoid extra add
1019         long carry = 0;
1020         for (int j=yLen-1, k=yLen+xLen-1; j >= 0; j--, k--) {
1021                 long product = (y.value[j+y.offset] & LONG_MASK) *
1022                                (value[xLen-1+offset] & LONG_MASK) + carry;
1023                 z.value[k] = (int)product;
1024                 carry = product >>> 32;
1025         }
1026         z.value[xLen-1] = (int)carry;
1027 
1028         // Perform the multiplication word by word
1029         for (int i = xLen-2; i >= 0; i--) {
1030             carry = 0;
1031             for (int j=yLen-1, k=yLen+i; j >= 0; j--, k--) {
1032                 long product = (y.value[j+y.offset] & LONG_MASK) *
1033                                (value[i+offset] & LONG_MASK) +
1034                                (z.value[k] & LONG_MASK) + carry;
1035                 z.value[k] = (int)product;
1036                 carry = product >>> 32;
1037             }
1038             z.value[i] = (int)carry;
1039         }
1040 
1041         // Remove leading zeros from product
1042         z.normalize();
1043     }
1044 
1045     /**
1046      * Multiply the contents of this MutableBigInteger by the word y. The
1047      * result is placed into z.
1048      */
mul(int y, MutableBigInteger z)1049     void mul(int y, MutableBigInteger z) {
1050         if (y == 1) {
1051             z.copyValue(this);
1052             return;
1053         }
1054 
1055         if (y == 0) {
1056             z.clear();
1057             return;
1058         }
1059 
1060         // Perform the multiplication word by word
1061         long ylong = y & LONG_MASK;
1062         int[] zval = (z.value.length < intLen+1 ? new int[intLen + 1]
1063                                               : z.value);
1064         long carry = 0;
1065         for (int i = intLen-1; i >= 0; i--) {
1066             long product = ylong * (value[i+offset] & LONG_MASK) + carry;
1067             zval[i+1] = (int)product;
1068             carry = product >>> 32;
1069         }
1070 
1071         if (carry == 0) {
1072             z.offset = 1;
1073             z.intLen = intLen;
1074         } else {
1075             z.offset = 0;
1076             z.intLen = intLen + 1;
1077             zval[0] = (int)carry;
1078         }
1079         z.value = zval;
1080     }
1081 
1082     /**
1083      * This method is used for division of an n word dividend by a one word
1084      * divisor. The quotient is placed into quotient. The one word divisor is
1085      * specified by divisor.
1086      *
1087      * @return the remainder of the division is returned.
1088      *
1089      */
divideOneWord(int divisor, MutableBigInteger quotient)1090     int divideOneWord(int divisor, MutableBigInteger quotient) {
1091         long divisorLong = divisor & LONG_MASK;
1092 
1093         // Special case of one word dividend
1094         if (intLen == 1) {
1095             long dividendValue = value[offset] & LONG_MASK;
1096             int q = (int) (dividendValue / divisorLong);
1097             int r = (int) (dividendValue - q * divisorLong);
1098             quotient.value[0] = q;
1099             quotient.intLen = (q == 0) ? 0 : 1;
1100             quotient.offset = 0;
1101             return r;
1102         }
1103 
1104         if (quotient.value.length < intLen)
1105             quotient.value = new int[intLen];
1106         quotient.offset = 0;
1107         quotient.intLen = intLen;
1108 
1109         // Normalize the divisor
1110         int shift = Integer.numberOfLeadingZeros(divisor);
1111 
1112         int rem = value[offset];
1113         long remLong = rem & LONG_MASK;
1114         if (remLong < divisorLong) {
1115             quotient.value[0] = 0;
1116         } else {
1117             quotient.value[0] = (int)(remLong / divisorLong);
1118             rem = (int) (remLong - (quotient.value[0] * divisorLong));
1119             remLong = rem & LONG_MASK;
1120         }
1121         int xlen = intLen;
1122         while (--xlen > 0) {
1123             long dividendEstimate = (remLong << 32) |
1124                     (value[offset + intLen - xlen] & LONG_MASK);
1125             int q;
1126             if (dividendEstimate >= 0) {
1127                 q = (int) (dividendEstimate / divisorLong);
1128                 rem = (int) (dividendEstimate - q * divisorLong);
1129             } else {
1130                 long tmp = divWord(dividendEstimate, divisor);
1131                 q = (int) (tmp & LONG_MASK);
1132                 rem = (int) (tmp >>> 32);
1133             }
1134             quotient.value[intLen - xlen] = q;
1135             remLong = rem & LONG_MASK;
1136         }
1137 
1138         quotient.normalize();
1139         // Unnormalize
1140         if (shift > 0)
1141             return rem % divisor;
1142         else
1143             return rem;
1144     }
1145 
1146     /**
1147      * Calculates the quotient of this div b and places the quotient in the
1148      * provided MutableBigInteger objects and the remainder object is returned.
1149      *
1150      */
divide(MutableBigInteger b, MutableBigInteger quotient)1151     MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient) {
1152         return divide(b,quotient,true);
1153     }
1154 
divide(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder)1155     MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) {
1156         if (b.intLen < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD ||
1157                 intLen - b.intLen < BigInteger.BURNIKEL_ZIEGLER_OFFSET) {
1158             return divideKnuth(b, quotient, needRemainder);
1159         } else {
1160             return divideAndRemainderBurnikelZiegler(b, quotient);
1161         }
1162     }
1163 
1164     /**
1165      * @see #divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
1166      */
divideKnuth(MutableBigInteger b, MutableBigInteger quotient)1167     MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient) {
1168         return divideKnuth(b,quotient,true);
1169     }
1170 
1171     /**
1172      * Calculates the quotient of this div b and places the quotient in the
1173      * provided MutableBigInteger objects and the remainder object is returned.
1174      *
1175      * Uses Algorithm D from Knuth TAOCP Vol. 2, 3rd edition, section 4.3.1.
1176      * Many optimizations to that algorithm have been adapted from the Colin
1177      * Plumb C library.
1178      * It special cases one word divisors for speed. The content of b is not
1179      * changed.
1180      *
1181      */
divideKnuth(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder)1182     MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) {
1183         if (b.intLen == 0)
1184             throw new ArithmeticException("BigInteger divide by zero");
1185 
1186         // Dividend is zero
1187         if (intLen == 0) {
1188             quotient.intLen = quotient.offset = 0;
1189             return needRemainder ? new MutableBigInteger() : null;
1190         }
1191 
1192         int cmp = compare(b);
1193         // Dividend less than divisor
1194         if (cmp < 0) {
1195             quotient.intLen = quotient.offset = 0;
1196             return needRemainder ? new MutableBigInteger(this) : null;
1197         }
1198         // Dividend equal to divisor
1199         if (cmp == 0) {
1200             quotient.value[0] = quotient.intLen = 1;
1201             quotient.offset = 0;
1202             return needRemainder ? new MutableBigInteger() : null;
1203         }
1204 
1205         quotient.clear();
1206         // Special case one word divisor
1207         if (b.intLen == 1) {
1208             int r = divideOneWord(b.value[b.offset], quotient);
1209             if(needRemainder) {
1210                 if (r == 0)
1211                     return new MutableBigInteger();
1212                 return new MutableBigInteger(r);
1213             } else {
1214                 return null;
1215             }
1216         }
1217 
1218         // Cancel common powers of two if we're above the KNUTH_POW2_* thresholds
1219         if (intLen >= KNUTH_POW2_THRESH_LEN) {
1220             int trailingZeroBits = Math.min(getLowestSetBit(), b.getLowestSetBit());
1221             if (trailingZeroBits >= KNUTH_POW2_THRESH_ZEROS*32) {
1222                 MutableBigInteger a = new MutableBigInteger(this);
1223                 b = new MutableBigInteger(b);
1224                 a.rightShift(trailingZeroBits);
1225                 b.rightShift(trailingZeroBits);
1226                 MutableBigInteger r = a.divideKnuth(b, quotient);
1227                 r.leftShift(trailingZeroBits);
1228                 return r;
1229             }
1230         }
1231 
1232         return divideMagnitude(b, quotient, needRemainder);
1233     }
1234 
1235     /**
1236      * Computes {@code this/b} and {@code this%b} using the
1237      * <a href="http://cr.yp.to/bib/1998/burnikel.ps"> Burnikel-Ziegler algorithm</a>.
1238      * This method implements algorithm 3 from pg. 9 of the Burnikel-Ziegler paper.
1239      * The parameter beta was chosen to b 2<sup>32</sup> so almost all shifts are
1240      * multiples of 32 bits.<br/>
1241      * {@code this} and {@code b} must be nonnegative.
1242      * @param b the divisor
1243      * @param quotient output parameter for {@code this/b}
1244      * @return the remainder
1245      */
divideAndRemainderBurnikelZiegler(MutableBigInteger b, MutableBigInteger quotient)1246     MutableBigInteger divideAndRemainderBurnikelZiegler(MutableBigInteger b, MutableBigInteger quotient) {
1247         int r = intLen;
1248         int s = b.intLen;
1249 
1250         // Clear the quotient
1251         quotient.offset = quotient.intLen = 0;
1252 
1253         if (r < s) {
1254             return this;
1255         } else {
1256             // Unlike Knuth division, we don't check for common powers of two here because
1257             // BZ already runs faster if both numbers contain powers of two and cancelling them has no
1258             // additional benefit.
1259 
1260             // step 1: let m = min{2^k | (2^k)*BURNIKEL_ZIEGLER_THRESHOLD > s}
1261             int m = 1 << (32-Integer.numberOfLeadingZeros(s/BigInteger.BURNIKEL_ZIEGLER_THRESHOLD));
1262 
1263             int j = (s+m-1) / m;      // step 2a: j = ceil(s/m)
1264             int n = j * m;            // step 2b: block length in 32-bit units
1265             long n32 = 32L * n;         // block length in bits
1266             int sigma = (int) Math.max(0, n32 - b.bitLength());   // step 3: sigma = max{T | (2^T)*B < beta^n}
1267             MutableBigInteger bShifted = new MutableBigInteger(b);
1268             bShifted.safeLeftShift(sigma);   // step 4a: shift b so its length is a multiple of n
1269             MutableBigInteger aShifted = new MutableBigInteger (this);
1270             aShifted.safeLeftShift(sigma);     // step 4b: shift a by the same amount
1271 
1272             // step 5: t is the number of blocks needed to accommodate a plus one additional bit
1273             int t = (int) ((aShifted.bitLength()+n32) / n32);
1274             if (t < 2) {
1275                 t = 2;
1276             }
1277 
1278             // step 6: conceptually split a into blocks a[t-1], ..., a[0]
1279             MutableBigInteger a1 = aShifted.getBlock(t-1, t, n);   // the most significant block of a
1280 
1281             // step 7: z[t-2] = [a[t-1], a[t-2]]
1282             MutableBigInteger z = aShifted.getBlock(t-2, t, n);    // the second to most significant block
1283             z.addDisjoint(a1, n);   // z[t-2]
1284 
1285             // do schoolbook division on blocks, dividing 2-block numbers by 1-block numbers
1286             MutableBigInteger qi = new MutableBigInteger();
1287             MutableBigInteger ri;
1288             for (int i=t-2; i > 0; i--) {
1289                 // step 8a: compute (qi,ri) such that z=b*qi+ri
1290                 ri = z.divide2n1n(bShifted, qi);
1291 
1292                 // step 8b: z = [ri, a[i-1]]
1293                 z = aShifted.getBlock(i-1, t, n);   // a[i-1]
1294                 z.addDisjoint(ri, n);
1295                 quotient.addShifted(qi, i*n);   // update q (part of step 9)
1296             }
1297             // final iteration of step 8: do the loop one more time for i=0 but leave z unchanged
1298             ri = z.divide2n1n(bShifted, qi);
1299             quotient.add(qi);
1300 
1301             ri.rightShift(sigma);   // step 9: a and b were shifted, so shift back
1302             return ri;
1303         }
1304     }
1305 
1306     /**
1307      * This method implements algorithm 1 from pg. 4 of the Burnikel-Ziegler paper.
1308      * It divides a 2n-digit number by a n-digit number.<br/>
1309      * The parameter beta is 2<sup>32</sup> so all shifts are multiples of 32 bits.
1310      * <br/>
1311      * {@code this} must be a nonnegative number such that {@code this.bitLength() <= 2*b.bitLength()}
1312      * @param b a positive number such that {@code b.bitLength()} is even
1313      * @param quotient output parameter for {@code this/b}
1314      * @return {@code this%b}
1315      */
divide2n1n(MutableBigInteger b, MutableBigInteger quotient)1316     private MutableBigInteger divide2n1n(MutableBigInteger b, MutableBigInteger quotient) {
1317         int n = b.intLen;
1318 
1319         // step 1: base case
1320         if (n%2 != 0 || n < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD) {
1321             return divideKnuth(b, quotient);
1322         }
1323 
1324         // step 2: view this as [a1,a2,a3,a4] where each ai is n/2 ints or less
1325         MutableBigInteger aUpper = new MutableBigInteger(this);
1326         aUpper.safeRightShift(32*(n/2));   // aUpper = [a1,a2,a3]
1327         keepLower(n/2);   // this = a4
1328 
1329         // step 3: q1=aUpper/b, r1=aUpper%b
1330         MutableBigInteger q1 = new MutableBigInteger();
1331         MutableBigInteger r1 = aUpper.divide3n2n(b, q1);
1332 
1333         // step 4: quotient=[r1,this]/b, r2=[r1,this]%b
1334         addDisjoint(r1, n/2);   // this = [r1,this]
1335         MutableBigInteger r2 = divide3n2n(b, quotient);
1336 
1337         // step 5: let quotient=[q1,quotient] and return r2
1338         quotient.addDisjoint(q1, n/2);
1339         return r2;
1340     }
1341 
1342     /**
1343      * This method implements algorithm 2 from pg. 5 of the Burnikel-Ziegler paper.
1344      * It divides a 3n-digit number by a 2n-digit number.<br/>
1345      * The parameter beta is 2<sup>32</sup> so all shifts are multiples of 32 bits.<br/>
1346      * <br/>
1347      * {@code this} must be a nonnegative number such that {@code 2*this.bitLength() <= 3*b.bitLength()}
1348      * @param quotient output parameter for {@code this/b}
1349      * @return {@code this%b}
1350      */
divide3n2n(MutableBigInteger b, MutableBigInteger quotient)1351     private MutableBigInteger divide3n2n(MutableBigInteger b, MutableBigInteger quotient) {
1352         int n = b.intLen / 2;   // half the length of b in ints
1353 
1354         // step 1: view this as [a1,a2,a3] where each ai is n ints or less; let a12=[a1,a2]
1355         MutableBigInteger a12 = new MutableBigInteger(this);
1356         a12.safeRightShift(32*n);
1357 
1358         // step 2: view b as [b1,b2] where each bi is n ints or less
1359         MutableBigInteger b1 = new MutableBigInteger(b);
1360         b1.safeRightShift(n * 32);
1361         BigInteger b2 = b.getLower(n);
1362 
1363         MutableBigInteger r;
1364         MutableBigInteger d;
1365         if (compareShifted(b, n) < 0) {
1366             // step 3a: if a1<b1, let quotient=a12/b1 and r=a12%b1
1367             r = a12.divide2n1n(b1, quotient);
1368 
1369             // step 4: d=quotient*b2
1370             d = new MutableBigInteger(quotient.toBigInteger().multiply(b2));
1371         } else {
1372             // step 3b: if a1>=b1, let quotient=beta^n-1 and r=a12-b1*2^n+b1
1373             quotient.ones(n);
1374             a12.add(b1);
1375             b1.leftShift(32*n);
1376             a12.subtract(b1);
1377             r = a12;
1378 
1379             // step 4: d=quotient*b2=(b2 << 32*n) - b2
1380             d = new MutableBigInteger(b2);
1381             d.leftShift(32 * n);
1382             d.subtract(new MutableBigInteger(b2));
1383         }
1384 
1385         // step 5: r = r*beta^n + a3 - d (paper says a4)
1386         // However, don't subtract d until after the while loop so r doesn't become negative
1387         r.leftShift(32 * n);
1388         r.addLower(this, n);
1389 
1390         // step 6: add b until r>=d
1391         while (r.compare(d) < 0) {
1392             r.add(b);
1393             quotient.subtract(MutableBigInteger.ONE);
1394         }
1395         r.subtract(d);
1396 
1397         return r;
1398     }
1399 
1400     /**
1401      * Returns a {@code MutableBigInteger} containing {@code blockLength} ints from
1402      * {@code this} number, starting at {@code index*blockLength}.<br/>
1403      * Used by Burnikel-Ziegler division.
1404      * @param index the block index
1405      * @param numBlocks the total number of blocks in {@code this} number
1406      * @param blockLength length of one block in units of 32 bits
1407      * @return
1408      */
getBlock(int index, int numBlocks, int blockLength)1409     private MutableBigInteger getBlock(int index, int numBlocks, int blockLength) {
1410         int blockStart = index * blockLength;
1411         if (blockStart >= intLen) {
1412             return new MutableBigInteger();
1413         }
1414 
1415         int blockEnd;
1416         if (index == numBlocks-1) {
1417             blockEnd = intLen;
1418         } else {
1419             blockEnd = (index+1) * blockLength;
1420         }
1421         if (blockEnd > intLen) {
1422             return new MutableBigInteger();
1423         }
1424 
1425         int[] newVal = Arrays.copyOfRange(value, offset+intLen-blockEnd, offset+intLen-blockStart);
1426         return new MutableBigInteger(newVal);
1427     }
1428 
1429     /** @see BigInteger#bitLength() */
bitLength()1430     long bitLength() {
1431         if (intLen == 0)
1432             return 0;
1433         return intLen*32L - Integer.numberOfLeadingZeros(value[offset]);
1434     }
1435 
1436     /**
1437      * Internally used  to calculate the quotient of this div v and places the
1438      * quotient in the provided MutableBigInteger object and the remainder is
1439      * returned.
1440      *
1441      * @return the remainder of the division will be returned.
1442      */
divide(long v, MutableBigInteger quotient)1443     long divide(long v, MutableBigInteger quotient) {
1444         if (v == 0)
1445             throw new ArithmeticException("BigInteger divide by zero");
1446 
1447         // Dividend is zero
1448         if (intLen == 0) {
1449             quotient.intLen = quotient.offset = 0;
1450             return 0;
1451         }
1452         if (v < 0)
1453             v = -v;
1454 
1455         int d = (int)(v >>> 32);
1456         quotient.clear();
1457         // Special case on word divisor
1458         if (d == 0)
1459             return divideOneWord((int)v, quotient) & LONG_MASK;
1460         else {
1461             return divideLongMagnitude(v, quotient).toLong();
1462         }
1463     }
1464 
copyAndShift(int[] src, int srcFrom, int srcLen, int[] dst, int dstFrom, int shift)1465     private static void copyAndShift(int[] src, int srcFrom, int srcLen, int[] dst, int dstFrom, int shift) {
1466         int n2 = 32 - shift;
1467         int c=src[srcFrom];
1468         for (int i=0; i < srcLen-1; i++) {
1469             int b = c;
1470             c = src[++srcFrom];
1471             dst[dstFrom+i] = (b << shift) | (c >>> n2);
1472         }
1473         dst[dstFrom+srcLen-1] = c << shift;
1474     }
1475 
1476     /**
1477      * Divide this MutableBigInteger by the divisor.
1478      * The quotient will be placed into the provided quotient object &
1479      * the remainder object is returned.
1480      */
divideMagnitude(MutableBigInteger div, MutableBigInteger quotient, boolean needRemainder )1481     private MutableBigInteger divideMagnitude(MutableBigInteger div,
1482                                               MutableBigInteger quotient,
1483                                               boolean needRemainder ) {
1484         // assert div.intLen > 1
1485         // D1 normalize the divisor
1486         int shift = Integer.numberOfLeadingZeros(div.value[div.offset]);
1487         // Copy divisor value to protect divisor
1488         final int dlen = div.intLen;
1489         int[] divisor;
1490         MutableBigInteger rem; // Remainder starts as dividend with space for a leading zero
1491         if (shift > 0) {
1492             divisor = new int[dlen];
1493             copyAndShift(div.value,div.offset,dlen,divisor,0,shift);
1494             if (Integer.numberOfLeadingZeros(value[offset]) >= shift) {
1495                 int[] remarr = new int[intLen + 1];
1496                 rem = new MutableBigInteger(remarr);
1497                 rem.intLen = intLen;
1498                 rem.offset = 1;
1499                 copyAndShift(value,offset,intLen,remarr,1,shift);
1500             } else {
1501                 int[] remarr = new int[intLen + 2];
1502                 rem = new MutableBigInteger(remarr);
1503                 rem.intLen = intLen+1;
1504                 rem.offset = 1;
1505                 int rFrom = offset;
1506                 int c=0;
1507                 int n2 = 32 - shift;
1508                 for (int i=1; i < intLen+1; i++,rFrom++) {
1509                     int b = c;
1510                     c = value[rFrom];
1511                     remarr[i] = (b << shift) | (c >>> n2);
1512                 }
1513                 remarr[intLen+1] = c << shift;
1514             }
1515         } else {
1516             divisor = Arrays.copyOfRange(div.value, div.offset, div.offset + div.intLen);
1517             rem = new MutableBigInteger(new int[intLen + 1]);
1518             System.arraycopy(value, offset, rem.value, 1, intLen);
1519             rem.intLen = intLen;
1520             rem.offset = 1;
1521         }
1522 
1523         int nlen = rem.intLen;
1524 
1525         // Set the quotient size
1526         final int limit = nlen - dlen + 1;
1527         if (quotient.value.length < limit) {
1528             quotient.value = new int[limit];
1529             quotient.offset = 0;
1530         }
1531         quotient.intLen = limit;
1532         int[] q = quotient.value;
1533 
1534 
1535         // Must insert leading 0 in rem if its length did not change
1536         if (rem.intLen == nlen) {
1537             rem.offset = 0;
1538             rem.value[0] = 0;
1539             rem.intLen++;
1540         }
1541 
1542         int dh = divisor[0];
1543         long dhLong = dh & LONG_MASK;
1544         int dl = divisor[1];
1545 
1546         // D2 Initialize j
1547         for (int j=0; j < limit-1; j++) {
1548             // D3 Calculate qhat
1549             // estimate qhat
1550             int qhat = 0;
1551             int qrem = 0;
1552             boolean skipCorrection = false;
1553             int nh = rem.value[j+rem.offset];
1554             int nh2 = nh + 0x80000000;
1555             int nm = rem.value[j+1+rem.offset];
1556 
1557             if (nh == dh) {
1558                 qhat = ~0;
1559                 qrem = nh + nm;
1560                 skipCorrection = qrem + 0x80000000 < nh2;
1561             } else {
1562                 long nChunk = (((long)nh) << 32) | (nm & LONG_MASK);
1563                 if (nChunk >= 0) {
1564                     qhat = (int) (nChunk / dhLong);
1565                     qrem = (int) (nChunk - (qhat * dhLong));
1566                 } else {
1567                     long tmp = divWord(nChunk, dh);
1568                     qhat = (int) (tmp & LONG_MASK);
1569                     qrem = (int) (tmp >>> 32);
1570                 }
1571             }
1572 
1573             if (qhat == 0)
1574                 continue;
1575 
1576             if (!skipCorrection) { // Correct qhat
1577                 long nl = rem.value[j+2+rem.offset] & LONG_MASK;
1578                 long rs = ((qrem & LONG_MASK) << 32) | nl;
1579                 long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
1580 
1581                 if (unsignedLongCompare(estProduct, rs)) {
1582                     qhat--;
1583                     qrem = (int)((qrem & LONG_MASK) + dhLong);
1584                     if ((qrem & LONG_MASK) >=  dhLong) {
1585                         estProduct -= (dl & LONG_MASK);
1586                         rs = ((qrem & LONG_MASK) << 32) | nl;
1587                         if (unsignedLongCompare(estProduct, rs))
1588                             qhat--;
1589                     }
1590                 }
1591             }
1592 
1593             // D4 Multiply and subtract
1594             rem.value[j+rem.offset] = 0;
1595             int borrow = mulsub(rem.value, divisor, qhat, dlen, j+rem.offset);
1596 
1597             // D5 Test remainder
1598             if (borrow + 0x80000000 > nh2) {
1599                 // D6 Add back
1600                 divadd(divisor, rem.value, j+1+rem.offset);
1601                 qhat--;
1602             }
1603 
1604             // Store the quotient digit
1605             q[j] = qhat;
1606         } // D7 loop on j
1607         // D3 Calculate qhat
1608         // estimate qhat
1609         int qhat = 0;
1610         int qrem = 0;
1611         boolean skipCorrection = false;
1612         int nh = rem.value[limit - 1 + rem.offset];
1613         int nh2 = nh + 0x80000000;
1614         int nm = rem.value[limit + rem.offset];
1615 
1616         if (nh == dh) {
1617             qhat = ~0;
1618             qrem = nh + nm;
1619             skipCorrection = qrem + 0x80000000 < nh2;
1620         } else {
1621             long nChunk = (((long) nh) << 32) | (nm & LONG_MASK);
1622             if (nChunk >= 0) {
1623                 qhat = (int) (nChunk / dhLong);
1624                 qrem = (int) (nChunk - (qhat * dhLong));
1625             } else {
1626                 long tmp = divWord(nChunk, dh);
1627                 qhat = (int) (tmp & LONG_MASK);
1628                 qrem = (int) (tmp >>> 32);
1629             }
1630         }
1631         if (qhat != 0) {
1632             if (!skipCorrection) { // Correct qhat
1633                 long nl = rem.value[limit + 1 + rem.offset] & LONG_MASK;
1634                 long rs = ((qrem & LONG_MASK) << 32) | nl;
1635                 long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
1636 
1637                 if (unsignedLongCompare(estProduct, rs)) {
1638                     qhat--;
1639                     qrem = (int) ((qrem & LONG_MASK) + dhLong);
1640                     if ((qrem & LONG_MASK) >= dhLong) {
1641                         estProduct -= (dl & LONG_MASK);
1642                         rs = ((qrem & LONG_MASK) << 32) | nl;
1643                         if (unsignedLongCompare(estProduct, rs))
1644                             qhat--;
1645                     }
1646                 }
1647             }
1648 
1649 
1650             // D4 Multiply and subtract
1651             int borrow;
1652             rem.value[limit - 1 + rem.offset] = 0;
1653             if(needRemainder)
1654                 borrow = mulsub(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset);
1655             else
1656                 borrow = mulsubBorrow(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset);
1657 
1658             // D5 Test remainder
1659             if (borrow + 0x80000000 > nh2) {
1660                 // D6 Add back
1661                 if(needRemainder)
1662                     divadd(divisor, rem.value, limit - 1 + 1 + rem.offset);
1663                 qhat--;
1664             }
1665 
1666             // Store the quotient digit
1667             q[(limit - 1)] = qhat;
1668         }
1669 
1670 
1671         if (needRemainder) {
1672             // D8 Unnormalize
1673             if (shift > 0)
1674                 rem.rightShift(shift);
1675             rem.normalize();
1676         }
1677         quotient.normalize();
1678         return needRemainder ? rem : null;
1679     }
1680 
1681     /**
1682      * Divide this MutableBigInteger by the divisor represented by positive long
1683      * value. The quotient will be placed into the provided quotient object &
1684      * the remainder object is returned.
1685      */
1686     private MutableBigInteger divideLongMagnitude(long ldivisor, MutableBigInteger quotient) {
1687         // Remainder starts as dividend with space for a leading zero
1688         MutableBigInteger rem = new MutableBigInteger(new int[intLen + 1]);
1689         System.arraycopy(value, offset, rem.value, 1, intLen);
1690         rem.intLen = intLen;
1691         rem.offset = 1;
1692 
1693         int nlen = rem.intLen;
1694 
1695         int limit = nlen - 2 + 1;
1696         if (quotient.value.length < limit) {
1697             quotient.value = new int[limit];
1698             quotient.offset = 0;
1699         }
1700         quotient.intLen = limit;
1701         int[] q = quotient.value;
1702 
1703         // D1 normalize the divisor
1704         int shift = Long.numberOfLeadingZeros(ldivisor);
1705         if (shift > 0) {
1706             ldivisor<<=shift;
1707             rem.leftShift(shift);
1708         }
1709 
1710         // Must insert leading 0 in rem if its length did not change
1711         if (rem.intLen == nlen) {
1712             rem.offset = 0;
1713             rem.value[0] = 0;
1714             rem.intLen++;
1715         }
1716 
1717         int dh = (int)(ldivisor >>> 32);
1718         long dhLong = dh & LONG_MASK;
1719         int dl = (int)(ldivisor & LONG_MASK);
1720 
1721         // D2 Initialize j
1722         for (int j = 0; j < limit; j++) {
1723             // D3 Calculate qhat
1724             // estimate qhat
1725             int qhat = 0;
1726             int qrem = 0;
1727             boolean skipCorrection = false;
1728             int nh = rem.value[j + rem.offset];
1729             int nh2 = nh + 0x80000000;
1730             int nm = rem.value[j + 1 + rem.offset];
1731 
1732             if (nh == dh) {
1733                 qhat = ~0;
1734                 qrem = nh + nm;
1735                 skipCorrection = qrem + 0x80000000 < nh2;
1736             } else {
1737                 long nChunk = (((long) nh) << 32) | (nm & LONG_MASK);
1738                 if (nChunk >= 0) {
1739                     qhat = (int) (nChunk / dhLong);
1740                     qrem = (int) (nChunk - (qhat * dhLong));
1741                 } else {
1742                     long tmp = divWord(nChunk, dh);
1743                     qhat =(int)(tmp & LONG_MASK);
1744                     qrem = (int)(tmp>>>32);
1745                 }
1746             }
1747 
1748             if (qhat == 0)
1749                 continue;
1750 
1751             if (!skipCorrection) { // Correct qhat
1752                 long nl = rem.value[j + 2 + rem.offset] & LONG_MASK;
1753                 long rs = ((qrem & LONG_MASK) << 32) | nl;
1754                 long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
1755 
1756                 if (unsignedLongCompare(estProduct, rs)) {
1757                     qhat--;
1758                     qrem = (int) ((qrem & LONG_MASK) + dhLong);
1759                     if ((qrem & LONG_MASK) >= dhLong) {
1760                         estProduct -= (dl & LONG_MASK);
1761                         rs = ((qrem & LONG_MASK) << 32) | nl;
1762                         if (unsignedLongCompare(estProduct, rs))
1763                             qhat--;
1764                     }
1765                 }
1766             }
1767 
1768             // D4 Multiply and subtract
1769             rem.value[j + rem.offset] = 0;
1770             int borrow = mulsubLong(rem.value, dh, dl, qhat,  j + rem.offset);
1771 
1772             // D5 Test remainder
1773             if (borrow + 0x80000000 > nh2) {
1774                 // D6 Add back
1775                 divaddLong(dh,dl, rem.value, j + 1 + rem.offset);
1776                 qhat--;
1777             }
1778 
1779             // Store the quotient digit
1780             q[j] = qhat;
1781         } // D7 loop on j
1782 
1783         // D8 Unnormalize
1784         if (shift > 0)
1785             rem.rightShift(shift);
1786 
1787         quotient.normalize();
1788         rem.normalize();
1789         return rem;
1790     }
1791 
1792     /**
1793      * A primitive used for division by long.
1794      * Specialized version of the method divadd.
1795      * dh is a high part of the divisor, dl is a low part
1796      */
1797     private int divaddLong(int dh, int dl, int[] result, int offset) {
1798         long carry = 0;
1799 
1800         long sum = (dl & LONG_MASK) + (result[1+offset] & LONG_MASK);
1801         result[1+offset] = (int)sum;
1802 
1803         sum = (dh & LONG_MASK) + (result[offset] & LONG_MASK) + carry;
1804         result[offset] = (int)sum;
1805         carry = sum >>> 32;
1806         return (int)carry;
1807     }
1808 
1809     /**
1810      * This method is used for division by long.
1811      * Specialized version of the method sulsub.
1812      * dh is a high part of the divisor, dl is a low part
1813      */
1814     private int mulsubLong(int[] q, int dh, int dl, int x, int offset) {
1815         long xLong = x & LONG_MASK;
1816         offset += 2;
1817         long product = (dl & LONG_MASK) * xLong;
1818         long difference = q[offset] - product;
1819         q[offset--] = (int)difference;
1820         long carry = (product >>> 32)
1821                  + (((difference & LONG_MASK) >
1822                      (((~(int)product) & LONG_MASK))) ? 1:0);
1823         product = (dh & LONG_MASK) * xLong + carry;
1824         difference = q[offset] - product;
1825         q[offset--] = (int)difference;
1826         carry = (product >>> 32)
1827                  + (((difference & LONG_MASK) >
1828                      (((~(int)product) & LONG_MASK))) ? 1:0);
1829         return (int)carry;
1830     }
1831 
1832     /**
1833      * Compare two longs as if they were unsigned.
1834      * Returns true iff one is bigger than two.
1835      */
1836     private boolean unsignedLongCompare(long one, long two) {
1837         return (one+Long.MIN_VALUE) > (two+Long.MIN_VALUE);
1838     }
1839 
1840     /**
1841      * This method divides a long quantity by an int to estimate
1842      * qhat for two multi precision numbers. It is used when
1843      * the signed value of n is less than zero.
1844      * Returns long value where high 32 bits contain remainder value and
1845      * low 32 bits contain quotient value.
1846      */
1847     static long divWord(long n, int d) {
1848         long dLong = d & LONG_MASK;
1849         long r;
1850         long q;
1851         if (dLong == 1) {
1852             q = (int)n;
1853             r = 0;
1854             return (r << 32) | (q & LONG_MASK);
1855         }
1856 
1857         // Approximate the quotient and remainder
1858         q = (n >>> 1) / (dLong >>> 1);
1859         r = n - q*dLong;
1860 
1861         // Correct the approximation
1862         while (r < 0) {
1863             r += dLong;
1864             q--;
1865         }
1866         while (r >= dLong) {
1867             r -= dLong;
1868             q++;
1869         }
1870         // n - q*dlong == r && 0 <= r <dLong, hence we're done.
1871         return (r << 32) | (q & LONG_MASK);
1872     }
1873 
1874     /**
1875      * Calculate the integer square root {@code floor(sqrt(this))} where
1876      * {@code sqrt(.)} denotes the mathematical square root. The contents of
1877      * {@code this} are <b>not</b> changed. The value of {@code this} is assumed
1878      * to be non-negative.
1879      *
1880      * @implNote The implementation is based on the material in Henry S. Warren,
1881      * Jr., <i>Hacker's Delight (2nd ed.)</i> (Addison Wesley, 2013), 279-282.
1882      *
1883      * @throws ArithmeticException if the value returned by {@code bitLength()}
1884      * overflows the range of {@code int}.
1885      * @return the integer square root of {@code this}
1886      * @since 9
1887      */
1888     MutableBigInteger sqrt() {
1889         // Special cases.
1890         if (this.isZero()) {
1891             return new MutableBigInteger(0);
1892         } else if (this.value.length == 1
1893                 && (this.value[0] & LONG_MASK) < 4) { // result is unity
1894             return ONE;
1895         }
1896 
1897         if (bitLength() <= 63) {
1898             // Initial estimate is the square root of the positive long value.
1899             long v = new BigInteger(this.value, 1).longValueExact();
1900             long xk = (long)Math.floor(Math.sqrt(v));
1901 
1902             // Refine the estimate.
1903             do {
1904                 long xk1 = (xk + v/xk)/2;
1905 
1906                 // Terminate when non-decreasing.
1907                 if (xk1 >= xk) {
1908                     return new MutableBigInteger(new int[] {
1909                         (int)(xk >>> 32), (int)(xk & LONG_MASK)
1910                     });
1911                 }
1912 
1913                 xk = xk1;
1914             } while (true);
1915         } else {
1916             // Set up the initial estimate of the iteration.
1917 
1918             // Obtain the bitLength > 63.
1919             int bitLength = (int) this.bitLength();
1920             if (bitLength != this.bitLength()) {
1921                 throw new ArithmeticException("bitLength() integer overflow");
1922             }
1923 
1924             // Determine an even valued right shift into positive long range.
1925             int shift = bitLength - 63;
1926             if (shift % 2 == 1) {
1927                 shift++;
1928             }
1929 
1930             // Shift the value into positive long range.
1931             MutableBigInteger xk = new MutableBigInteger(this);
1932             xk.rightShift(shift);
1933             xk.normalize();
1934 
1935             // Use the square root of the shifted value as an approximation.
1936             double d = new BigInteger(xk.value, 1).doubleValue();
1937             BigInteger bi = BigInteger.valueOf((long)Math.ceil(Math.sqrt(d)));
1938             xk = new MutableBigInteger(bi.mag);
1939 
1940             // Shift the approximate square root back into the original range.
1941             xk.leftShift(shift / 2);
1942 
1943             // Refine the estimate.
1944             MutableBigInteger xk1 = new MutableBigInteger();
1945             do {
1946                 // xk1 = (xk + n/xk)/2
1947                 this.divide(xk, xk1, false);
1948                 xk1.add(xk);
1949                 xk1.rightShift(1);
1950 
1951                 // Terminate when non-decreasing.
1952                 if (xk1.compare(xk) >= 0) {
1953                     return xk;
1954                 }
1955 
1956                 // xk = xk1
1957                 xk.copyValue(xk1);
1958 
1959                 xk1.reset();
1960             } while (true);
1961         }
1962     }
1963 
1964     /**
1965      * Calculate GCD of this and b. This and b are changed by the computation.
1966      */
1967     MutableBigInteger hybridGCD(MutableBigInteger b) {
1968         // Use Euclid's algorithm until the numbers are approximately the
1969         // same length, then use the binary GCD algorithm to find the GCD.
1970         MutableBigInteger a = this;
1971         MutableBigInteger q = new MutableBigInteger();
1972 
1973         while (b.intLen != 0) {
1974             if (Math.abs(a.intLen - b.intLen) < 2)
1975                 return a.binaryGCD(b);
1976 
1977             MutableBigInteger r = a.divide(b, q);
1978             a = b;
1979             b = r;
1980         }
1981         return a;
1982     }
1983 
1984     /**
1985      * Calculate GCD of this and v.
1986      * Assumes that this and v are not zero.
1987      */
1988     private MutableBigInteger binaryGCD(MutableBigInteger v) {
1989         // Algorithm B from Knuth TAOCP Vol. 2, 3rd edition, section 4.5.2
1990         MutableBigInteger u = this;
1991         MutableBigInteger r = new MutableBigInteger();
1992 
1993         // step B1
1994         int s1 = u.getLowestSetBit();
1995         int s2 = v.getLowestSetBit();
1996         int k = (s1 < s2) ? s1 : s2;
1997         if (k != 0) {
1998             u.rightShift(k);
1999             v.rightShift(k);
2000         }
2001 
2002         // step B2
2003         boolean uOdd = (k == s1);
2004         MutableBigInteger t = uOdd ? v: u;
2005         int tsign = uOdd ? -1 : 1;
2006 
2007         int lb;
2008         while ((lb = t.getLowestSetBit()) >= 0) {
2009             // steps B3 and B4
2010             t.rightShift(lb);
2011             // step B5
2012             if (tsign > 0)
2013                 u = t;
2014             else
2015                 v = t;
2016 
2017             // Special case one word numbers
2018             if (u.intLen < 2 && v.intLen < 2) {
2019                 int x = u.value[u.offset];
2020                 int y = v.value[v.offset];
2021                 x  = binaryGcd(x, y);
2022                 r.value[0] = x;
2023                 r.intLen = 1;
2024                 r.offset = 0;
2025                 if (k > 0)
2026                     r.leftShift(k);
2027                 return r;
2028             }
2029 
2030             // step B6
2031             if ((tsign = u.difference(v)) == 0)
2032                 break;
2033             t = (tsign >= 0) ? u : v;
2034         }
2035 
2036         if (k > 0)
2037             u.leftShift(k);
2038         return u;
2039     }
2040 
2041     /**
2042      * Calculate GCD of a and b interpreted as unsigned integers.
2043      */
2044     static int binaryGcd(int a, int b) {
2045         if (b == 0)
2046             return a;
2047         if (a == 0)
2048             return b;
2049 
2050         // Right shift a & b till their last bits equal to 1.
2051         int aZeros = Integer.numberOfTrailingZeros(a);
2052         int bZeros = Integer.numberOfTrailingZeros(b);
2053         a >>>= aZeros;
2054         b >>>= bZeros;
2055 
2056         int t = (aZeros < bZeros ? aZeros : bZeros);
2057 
2058         while (a != b) {
2059             if ((a+0x80000000) > (b+0x80000000)) {  // a > b as unsigned
2060                 a -= b;
2061                 a >>>= Integer.numberOfTrailingZeros(a);
2062             } else {
2063                 b -= a;
2064                 b >>>= Integer.numberOfTrailingZeros(b);
2065             }
2066         }
2067         return a<<t;
2068     }
2069 
2070     /**
2071      * Returns the modInverse of this mod p. This and p are not affected by
2072      * the operation.
2073      */
2074     MutableBigInteger mutableModInverse(MutableBigInteger p) {
2075         // Modulus is odd, use Schroeppel's algorithm
2076         if (p.isOdd())
2077             return modInverse(p);
2078 
2079         // Base and modulus are even, throw exception
2080         if (isEven())
2081             throw new ArithmeticException("BigInteger not invertible.");
2082 
2083         // Get even part of modulus expressed as a power of 2
2084         int powersOf2 = p.getLowestSetBit();
2085 
2086         // Construct odd part of modulus
2087         MutableBigInteger oddMod = new MutableBigInteger(p);
2088         oddMod.rightShift(powersOf2);
2089 
2090         if (oddMod.isOne())
2091             return modInverseMP2(powersOf2);
2092 
2093         // Calculate 1/a mod oddMod
2094         MutableBigInteger oddPart = modInverse(oddMod);
2095 
2096         // Calculate 1/a mod evenMod
2097         MutableBigInteger evenPart = modInverseMP2(powersOf2);
2098 
2099         // Combine the results using Chinese Remainder Theorem
2100         MutableBigInteger y1 = modInverseBP2(oddMod, powersOf2);
2101         MutableBigInteger y2 = oddMod.modInverseMP2(powersOf2);
2102 
2103         MutableBigInteger temp1 = new MutableBigInteger();
2104         MutableBigInteger temp2 = new MutableBigInteger();
2105         MutableBigInteger result = new MutableBigInteger();
2106 
2107         oddPart.leftShift(powersOf2);
2108         oddPart.multiply(y1, result);
2109 
2110         evenPart.multiply(oddMod, temp1);
2111         temp1.multiply(y2, temp2);
2112 
2113         result.add(temp2);
2114         return result.divide(p, temp1);
2115     }
2116 
2117     /*
2118      * Calculate the multiplicative inverse of this mod 2^k.
2119      */
2120     MutableBigInteger modInverseMP2(int k) {
2121         if (isEven())
2122             throw new ArithmeticException("Non-invertible. (GCD != 1)");
2123 
2124         if (k > 64)
2125             return euclidModInverse(k);
2126 
2127         int t = inverseMod32(value[offset+intLen-1]);
2128 
2129         if (k < 33) {
2130             t = (k == 32 ? t : t & ((1 << k) - 1));
2131             return new MutableBigInteger(t);
2132         }
2133 
2134         long pLong = (value[offset+intLen-1] & LONG_MASK);
2135         if (intLen > 1)
2136             pLong |=  ((long)value[offset+intLen-2] << 32);
2137         long tLong = t & LONG_MASK;
2138         tLong = tLong * (2 - pLong * tLong);  // 1 more Newton iter step
2139         tLong = (k == 64 ? tLong : tLong & ((1L << k) - 1));
2140 
2141         MutableBigInteger result = new MutableBigInteger(new int[2]);
2142         result.value[0] = (int)(tLong >>> 32);
2143         result.value[1] = (int)tLong;
2144         result.intLen = 2;
2145         result.normalize();
2146         return result;
2147     }
2148 
2149     /**
2150      * Returns the multiplicative inverse of val mod 2^32.  Assumes val is odd.
2151      */
2152     static int inverseMod32(int val) {
2153         // Newton's iteration!
2154         int t = val;
2155         t *= 2 - val*t;
2156         t *= 2 - val*t;
2157         t *= 2 - val*t;
2158         t *= 2 - val*t;
2159         return t;
2160     }
2161 
2162     /**
2163      * Returns the multiplicative inverse of val mod 2^64.  Assumes val is odd.
2164      */
2165     static long inverseMod64(long val) {
2166         // Newton's iteration!
2167         long t = val;
2168         t *= 2 - val*t;
2169         t *= 2 - val*t;
2170         t *= 2 - val*t;
2171         t *= 2 - val*t;
2172         t *= 2 - val*t;
2173         assert(t * val == 1);
2174         return t;
2175     }
2176 
2177     /**
2178      * Calculate the multiplicative inverse of 2^k mod mod, where mod is odd.
2179      */
2180     static MutableBigInteger modInverseBP2(MutableBigInteger mod, int k) {
2181         // Copy the mod to protect original
2182         return fixup(new MutableBigInteger(1), new MutableBigInteger(mod), k);
2183     }
2184 
2185     /**
2186      * Calculate the multiplicative inverse of this modulo mod, where the mod
2187      * argument is odd.  This and mod are not changed by the calculation.
2188      *
2189      * This method implements an algorithm due to Richard Schroeppel, that uses
2190      * the same intermediate representation as Montgomery Reduction
2191      * ("Montgomery Form").  The algorithm is described in an unpublished
2192      * manuscript entitled "Fast Modular Reciprocals."
2193      */
2194     private MutableBigInteger modInverse(MutableBigInteger mod) {
2195         MutableBigInteger p = new MutableBigInteger(mod);
2196         MutableBigInteger f = new MutableBigInteger(this);
2197         MutableBigInteger g = new MutableBigInteger(p);
2198         SignedMutableBigInteger c = new SignedMutableBigInteger(1);
2199         SignedMutableBigInteger d = new SignedMutableBigInteger();
2200         MutableBigInteger temp = null;
2201         SignedMutableBigInteger sTemp = null;
2202 
2203         int k = 0;
2204         // Right shift f k times until odd, left shift d k times
2205         if (f.isEven()) {
2206             int trailingZeros = f.getLowestSetBit();
2207             f.rightShift(trailingZeros);
2208             d.leftShift(trailingZeros);
2209             k = trailingZeros;
2210         }
2211 
2212         // The Almost Inverse Algorithm
2213         while (!f.isOne()) {
2214             // If gcd(f, g) != 1, number is not invertible modulo mod
2215             if (f.isZero())
2216                 throw new ArithmeticException("BigInteger not invertible.");
2217 
2218             // If f < g exchange f, g and c, d
2219             if (f.compare(g) < 0) {
2220                 temp = f; f = g; g = temp;
2221                 sTemp = d; d = c; c = sTemp;
2222             }
2223 
2224             // If f == g (mod 4)
2225             if (((f.value[f.offset + f.intLen - 1] ^
2226                  g.value[g.offset + g.intLen - 1]) & 3) == 0) {
2227                 f.subtract(g);
2228                 c.signedSubtract(d);
2229             } else { // If f != g (mod 4)
2230                 f.add(g);
2231                 c.signedAdd(d);
2232             }
2233 
2234             // Right shift f k times until odd, left shift d k times
2235             int trailingZeros = f.getLowestSetBit();
2236             f.rightShift(trailingZeros);
2237             d.leftShift(trailingZeros);
2238             k += trailingZeros;
2239         }
2240 
2241         if (c.compare(p) >= 0) { // c has a larger magnitude than p
2242             MutableBigInteger remainder = c.divide(p,
2243                 new MutableBigInteger());
2244             // The previous line ignores the sign so we copy the data back
2245             // into c which will restore the sign as needed (and converts
2246             // it back to a SignedMutableBigInteger)
2247             c.copyValue(remainder);
2248         }
2249 
2250         if (c.sign < 0) {
2251             c.signedAdd(p);
2252         }
2253 
2254         return fixup(c, p, k);
2255     }
2256 
2257     /**
2258      * The Fixup Algorithm
2259      * Calculates X such that X = C * 2^(-k) (mod P)
2260      * Assumes C<P and P is odd.
2261      */
2262     static MutableBigInteger fixup(MutableBigInteger c, MutableBigInteger p,
2263                                                                       int k) {
2264         MutableBigInteger temp = new MutableBigInteger();
2265         // Set r to the multiplicative inverse of p mod 2^32
2266         int r = -inverseMod32(p.value[p.offset+p.intLen-1]);
2267 
2268         for (int i=0, numWords = k >> 5; i < numWords; i++) {
2269             // V = R * c (mod 2^j)
2270             int  v = r * c.value[c.offset + c.intLen-1];
2271             // c = c + (v * p)
2272             p.mul(v, temp);
2273             c.add(temp);
2274             // c = c / 2^j
2275             c.intLen--;
2276         }
2277         int numBits = k & 0x1f;
2278         if (numBits != 0) {
2279             // V = R * c (mod 2^j)
2280             int v = r * c.value[c.offset + c.intLen-1];
2281             v &= ((1<<numBits) - 1);
2282             // c = c + (v * p)
2283             p.mul(v, temp);
2284             c.add(temp);
2285             // c = c / 2^j
2286             c.rightShift(numBits);
2287         }
2288 
2289         // In theory, c may be greater than p at this point (Very rare!)
2290         if (c.compare(p) >= 0)
2291             c = c.divide(p, new MutableBigInteger());
2292 
2293         return c;
2294     }
2295 
2296     /**
2297      * Uses the extended Euclidean algorithm to compute the modInverse of base
2298      * mod a modulus that is a power of 2. The modulus is 2^k.
2299      */
2300     MutableBigInteger euclidModInverse(int k) {
2301         MutableBigInteger b = new MutableBigInteger(1);
2302         b.leftShift(k);
2303         MutableBigInteger mod = new MutableBigInteger(b);
2304 
2305         MutableBigInteger a = new MutableBigInteger(this);
2306         MutableBigInteger q = new MutableBigInteger();
2307         MutableBigInteger r = b.divide(a, q);
2308 
2309         MutableBigInteger swapper = b;
2310         // swap b & r
2311         b = r;
2312         r = swapper;
2313 
2314         MutableBigInteger t1 = new MutableBigInteger(q);
2315         MutableBigInteger t0 = new MutableBigInteger(1);
2316         MutableBigInteger temp = new MutableBigInteger();
2317 
2318         while (!b.isOne()) {
2319             r = a.divide(b, q);
2320 
2321             if (r.intLen == 0)
2322                 throw new ArithmeticException("BigInteger not invertible.");
2323 
2324             swapper = r;
2325             a = swapper;
2326 
2327             if (q.intLen == 1)
2328                 t1.mul(q.value[q.offset], temp);
2329             else
2330                 q.multiply(t1, temp);
2331             swapper = q;
2332             q = temp;
2333             temp = swapper;
2334             t0.add(q);
2335 
2336             if (a.isOne())
2337                 return t0;
2338 
2339             r = b.divide(a, q);
2340 
2341             if (r.intLen == 0)
2342                 throw new ArithmeticException("BigInteger not invertible.");
2343 
2344             swapper = b;
2345             b =  r;
2346 
2347             if (q.intLen == 1)
2348                 t0.mul(q.value[q.offset], temp);
2349             else
2350                 q.multiply(t0, temp);
2351             swapper = q; q = temp; temp = swapper;
2352 
2353             t1.add(q);
2354         }
2355         mod.subtract(t1);
2356         return mod;
2357     }
2358 }
2359