1 /*
2  * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.util;
27 
28 import java.util.function.Consumer;
29 
30 /**
31  * This class provides a skeletal implementation of the {@link List}
32  * interface to minimize the effort required to implement this interface
33  * backed by a "random access" data store (such as an array).  For sequential
34  * access data (such as a linked list), {@link AbstractSequentialList} should
35  * be used in preference to this class.
36  *
37  * <p>To implement an unmodifiable list, the programmer needs only to extend
38  * this class and provide implementations for the {@link #get(int)} and
39  * {@link List#size() size()} methods.
40  *
41  * <p>To implement a modifiable list, the programmer must additionally
42  * override the {@link #set(int, Object) set(int, E)} method (which otherwise
43  * throws an {@code UnsupportedOperationException}).  If the list is
44  * variable-size the programmer must additionally override the
45  * {@link #add(int, Object) add(int, E)} and {@link #remove(int)} methods.
46  *
47  * <p>The programmer should generally provide a void (no argument) and collection
48  * constructor, as per the recommendation in the {@link Collection} interface
49  * specification.
50  *
51  * <p>Unlike the other abstract collection implementations, the programmer does
52  * <i>not</i> have to provide an iterator implementation; the iterator and
53  * list iterator are implemented by this class, on top of the "random access"
54  * methods:
55  * {@link #get(int)},
56  * {@link #set(int, Object) set(int, E)},
57  * {@link #add(int, Object) add(int, E)} and
58  * {@link #remove(int)}.
59  *
60  * <p>The documentation for each non-abstract method in this class describes its
61  * implementation in detail.  Each of these methods may be overridden if the
62  * collection being implemented admits a more efficient implementation.
63  *
64  * <p>This class is a member of the
65  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
66  * Java Collections Framework</a>.
67  *
68  * @param <E> the type of elements in this list
69  *
70  * @author  Josh Bloch
71  * @author  Neal Gafter
72  * @since 1.2
73  */
74 
75 public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {
76     /**
77      * Sole constructor.  (For invocation by subclass constructors, typically
78      * implicit.)
79      */
AbstractList()80     protected AbstractList() {
81     }
82 
83     /**
84      * Appends the specified element to the end of this list (optional
85      * operation).
86      *
87      * <p>Lists that support this operation may place limitations on what
88      * elements may be added to this list.  In particular, some
89      * lists will refuse to add null elements, and others will impose
90      * restrictions on the type of elements that may be added.  List
91      * classes should clearly specify in their documentation any restrictions
92      * on what elements may be added.
93      *
94      * @implSpec
95      * This implementation calls {@code add(size(), e)}.
96      *
97      * <p>Note that this implementation throws an
98      * {@code UnsupportedOperationException} unless
99      * {@link #add(int, Object) add(int, E)} is overridden.
100      *
101      * @param e element to be appended to this list
102      * @return {@code true} (as specified by {@link Collection#add})
103      * @throws UnsupportedOperationException if the {@code add} operation
104      *         is not supported by this list
105      * @throws ClassCastException if the class of the specified element
106      *         prevents it from being added to this list
107      * @throws NullPointerException if the specified element is null and this
108      *         list does not permit null elements
109      * @throws IllegalArgumentException if some property of this element
110      *         prevents it from being added to this list
111      */
add(E e)112     public boolean add(E e) {
113         add(size(), e);
114         return true;
115     }
116 
117     /**
118      * {@inheritDoc}
119      *
120      * @throws IndexOutOfBoundsException {@inheritDoc}
121      */
get(int index)122     public abstract E get(int index);
123 
124     /**
125      * {@inheritDoc}
126      *
127      * @implSpec
128      * This implementation always throws an
129      * {@code UnsupportedOperationException}.
130      *
131      * @throws UnsupportedOperationException {@inheritDoc}
132      * @throws ClassCastException            {@inheritDoc}
133      * @throws NullPointerException          {@inheritDoc}
134      * @throws IllegalArgumentException      {@inheritDoc}
135      * @throws IndexOutOfBoundsException     {@inheritDoc}
136      */
set(int index, E element)137     public E set(int index, E element) {
138         throw new UnsupportedOperationException();
139     }
140 
141     /**
142      * {@inheritDoc}
143      *
144      * @implSpec
145      * This implementation always throws an
146      * {@code UnsupportedOperationException}.
147      *
148      * @throws UnsupportedOperationException {@inheritDoc}
149      * @throws ClassCastException            {@inheritDoc}
150      * @throws NullPointerException          {@inheritDoc}
151      * @throws IllegalArgumentException      {@inheritDoc}
152      * @throws IndexOutOfBoundsException     {@inheritDoc}
153      */
add(int index, E element)154     public void add(int index, E element) {
155         throw new UnsupportedOperationException();
156     }
157 
158     /**
159      * {@inheritDoc}
160      *
161      * @implSpec
162      * This implementation always throws an
163      * {@code UnsupportedOperationException}.
164      *
165      * @throws UnsupportedOperationException {@inheritDoc}
166      * @throws IndexOutOfBoundsException     {@inheritDoc}
167      */
remove(int index)168     public E remove(int index) {
169         throw new UnsupportedOperationException();
170     }
171 
172 
173     // Search Operations
174 
175     /**
176      * {@inheritDoc}
177      *
178      * @implSpec
179      * This implementation first gets a list iterator (with
180      * {@code listIterator()}).  Then, it iterates over the list until the
181      * specified element is found or the end of the list is reached.
182      *
183      * @throws ClassCastException   {@inheritDoc}
184      * @throws NullPointerException {@inheritDoc}
185      */
indexOf(Object o)186     public int indexOf(Object o) {
187         ListIterator<E> it = listIterator();
188         if (o==null) {
189             while (it.hasNext())
190                 if (it.next()==null)
191                     return it.previousIndex();
192         } else {
193             while (it.hasNext())
194                 if (o.equals(it.next()))
195                     return it.previousIndex();
196         }
197         return -1;
198     }
199 
200     /**
201      * {@inheritDoc}
202      *
203      * @implSpec
204      * This implementation first gets a list iterator that points to the end
205      * of the list (with {@code listIterator(size())}).  Then, it iterates
206      * backwards over the list until the specified element is found, or the
207      * beginning of the list is reached.
208      *
209      * @throws ClassCastException   {@inheritDoc}
210      * @throws NullPointerException {@inheritDoc}
211      */
lastIndexOf(Object o)212     public int lastIndexOf(Object o) {
213         ListIterator<E> it = listIterator(size());
214         if (o==null) {
215             while (it.hasPrevious())
216                 if (it.previous()==null)
217                     return it.nextIndex();
218         } else {
219             while (it.hasPrevious())
220                 if (o.equals(it.previous()))
221                     return it.nextIndex();
222         }
223         return -1;
224     }
225 
226 
227     // Bulk Operations
228 
229     /**
230      * Removes all of the elements from this list (optional operation).
231      * The list will be empty after this call returns.
232      *
233      * @implSpec
234      * This implementation calls {@code removeRange(0, size())}.
235      *
236      * <p>Note that this implementation throws an
237      * {@code UnsupportedOperationException} unless {@code remove(int
238      * index)} or {@code removeRange(int fromIndex, int toIndex)} is
239      * overridden.
240      *
241      * @throws UnsupportedOperationException if the {@code clear} operation
242      *         is not supported by this list
243      */
clear()244     public void clear() {
245         removeRange(0, size());
246     }
247 
248     /**
249      * {@inheritDoc}
250      *
251      * @implSpec
252      * This implementation gets an iterator over the specified collection
253      * and iterates over it, inserting the elements obtained from the
254      * iterator into this list at the appropriate position, one at a time,
255      * using {@code add(int, E)}.
256      * Many implementations will override this method for efficiency.
257      *
258      * <p>Note that this implementation throws an
259      * {@code UnsupportedOperationException} unless
260      * {@link #add(int, Object) add(int, E)} is overridden.
261      *
262      * @throws UnsupportedOperationException {@inheritDoc}
263      * @throws ClassCastException            {@inheritDoc}
264      * @throws NullPointerException          {@inheritDoc}
265      * @throws IllegalArgumentException      {@inheritDoc}
266      * @throws IndexOutOfBoundsException     {@inheritDoc}
267      */
addAll(int index, Collection<? extends E> c)268     public boolean addAll(int index, Collection<? extends E> c) {
269         rangeCheckForAdd(index);
270         boolean modified = false;
271         for (E e : c) {
272             add(index++, e);
273             modified = true;
274         }
275         return modified;
276     }
277 
278 
279     // Iterators
280 
281     /**
282      * Returns an iterator over the elements in this list in proper sequence.
283      *
284      * @implSpec
285      * This implementation returns a straightforward implementation of the
286      * iterator interface, relying on the backing list's {@code size()},
287      * {@code get(int)}, and {@code remove(int)} methods.
288      *
289      * <p>Note that the iterator returned by this method will throw an
290      * {@link UnsupportedOperationException} in response to its
291      * {@code remove} method unless the list's {@code remove(int)} method is
292      * overridden.
293      *
294      * <p>This implementation can be made to throw runtime exceptions in the
295      * face of concurrent modification, as described in the specification
296      * for the (protected) {@link #modCount} field.
297      *
298      * @return an iterator over the elements in this list in proper sequence
299      */
iterator()300     public Iterator<E> iterator() {
301         return new Itr();
302     }
303 
304     /**
305      * {@inheritDoc}
306      *
307      * @implSpec
308      * This implementation returns {@code listIterator(0)}.
309      *
310      * @see #listIterator(int)
311      */
listIterator()312     public ListIterator<E> listIterator() {
313         return listIterator(0);
314     }
315 
316     /**
317      * {@inheritDoc}
318      *
319      * @implSpec
320      * This implementation returns a straightforward implementation of the
321      * {@code ListIterator} interface that extends the implementation of the
322      * {@code Iterator} interface returned by the {@code iterator()} method.
323      * The {@code ListIterator} implementation relies on the backing list's
324      * {@code get(int)}, {@code set(int, E)}, {@code add(int, E)}
325      * and {@code remove(int)} methods.
326      *
327      * <p>Note that the list iterator returned by this implementation will
328      * throw an {@link UnsupportedOperationException} in response to its
329      * {@code remove}, {@code set} and {@code add} methods unless the
330      * list's {@code remove(int)}, {@code set(int, E)}, and
331      * {@code add(int, E)} methods are overridden.
332      *
333      * <p>This implementation can be made to throw runtime exceptions in the
334      * face of concurrent modification, as described in the specification for
335      * the (protected) {@link #modCount} field.
336      *
337      * @throws IndexOutOfBoundsException {@inheritDoc}
338      */
listIterator(final int index)339     public ListIterator<E> listIterator(final int index) {
340         rangeCheckForAdd(index);
341 
342         return new ListItr(index);
343     }
344 
345     private class Itr implements Iterator<E> {
346         /**
347          * Index of element to be returned by subsequent call to next.
348          */
349         int cursor = 0;
350 
351         /**
352          * Index of element returned by most recent call to next or
353          * previous.  Reset to -1 if this element is deleted by a call
354          * to remove.
355          */
356         int lastRet = -1;
357 
358         /**
359          * The modCount value that the iterator believes that the backing
360          * List should have.  If this expectation is violated, the iterator
361          * has detected concurrent modification.
362          */
363         int expectedModCount = modCount;
364 
hasNext()365         public boolean hasNext() {
366             return cursor != size();
367         }
368 
next()369         public E next() {
370             checkForComodification();
371             try {
372                 int i = cursor;
373                 E next = get(i);
374                 lastRet = i;
375                 cursor = i + 1;
376                 return next;
377             } catch (IndexOutOfBoundsException e) {
378                 checkForComodification();
379                 throw new NoSuchElementException(e);
380             }
381         }
382 
remove()383         public void remove() {
384             if (lastRet < 0)
385                 throw new IllegalStateException();
386             checkForComodification();
387 
388             try {
389                 AbstractList.this.remove(lastRet);
390                 if (lastRet < cursor)
391                     cursor--;
392                 lastRet = -1;
393                 expectedModCount = modCount;
394             } catch (IndexOutOfBoundsException e) {
395                 throw new ConcurrentModificationException();
396             }
397         }
398 
checkForComodification()399         final void checkForComodification() {
400             if (modCount != expectedModCount)
401                 throw new ConcurrentModificationException();
402         }
403     }
404 
405     private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index)406         ListItr(int index) {
407             cursor = index;
408         }
409 
hasPrevious()410         public boolean hasPrevious() {
411             return cursor != 0;
412         }
413 
previous()414         public E previous() {
415             checkForComodification();
416             try {
417                 int i = cursor - 1;
418                 E previous = get(i);
419                 lastRet = cursor = i;
420                 return previous;
421             } catch (IndexOutOfBoundsException e) {
422                 checkForComodification();
423                 throw new NoSuchElementException(e);
424             }
425         }
426 
nextIndex()427         public int nextIndex() {
428             return cursor;
429         }
430 
previousIndex()431         public int previousIndex() {
432             return cursor-1;
433         }
434 
set(E e)435         public void set(E e) {
436             if (lastRet < 0)
437                 throw new IllegalStateException();
438             checkForComodification();
439 
440             try {
441                 AbstractList.this.set(lastRet, e);
442                 expectedModCount = modCount;
443             } catch (IndexOutOfBoundsException ex) {
444                 throw new ConcurrentModificationException();
445             }
446         }
447 
add(E e)448         public void add(E e) {
449             checkForComodification();
450 
451             try {
452                 int i = cursor;
453                 AbstractList.this.add(i, e);
454                 lastRet = -1;
455                 cursor = i + 1;
456                 expectedModCount = modCount;
457             } catch (IndexOutOfBoundsException ex) {
458                 throw new ConcurrentModificationException();
459             }
460         }
461     }
462 
463     /**
464      * {@inheritDoc}
465      *
466      * @implSpec
467      * This implementation returns a list that subclasses
468      * {@code AbstractList}.  The subclass stores, in private fields, the
469      * size of the subList (which can change over its lifetime), and the
470      * expected {@code modCount} value of the backing list.  There are two
471      * variants of the subclass, one of which implements {@code RandomAccess}.
472      * If this list implements {@code RandomAccess} the returned list will
473      * be an instance of the subclass that implements {@code RandomAccess}.
474      *
475      * <p>The subclass's {@code set(int, E)}, {@code get(int)},
476      * {@code add(int, E)}, {@code remove(int)}, {@code addAll(int,
477      * Collection)} and {@code removeRange(int, int)} methods all
478      * delegate to the corresponding methods on the backing abstract list,
479      * after bounds-checking the index and adjusting for the offset.  The
480      * {@code addAll(Collection c)} method merely returns {@code addAll(size,
481      * c)}.
482      *
483      * <p>The {@code listIterator(int)} method returns a "wrapper object"
484      * over a list iterator on the backing list, which is created with the
485      * corresponding method on the backing list.  The {@code iterator} method
486      * merely returns {@code listIterator()}, and the {@code size} method
487      * merely returns the subclass's {@code size} field.
488      *
489      * <p>All methods first check to see if the actual {@code modCount} of
490      * the backing list is equal to its expected value, and throw a
491      * {@code ConcurrentModificationException} if it is not.
492      *
493      * @throws IndexOutOfBoundsException if an endpoint index value is out of range
494      *         {@code (fromIndex < 0 || toIndex > size)}
495      * @throws IllegalArgumentException if the endpoint indices are out of order
496      *         {@code (fromIndex > toIndex)}
497      */
subList(int fromIndex, int toIndex)498     public List<E> subList(int fromIndex, int toIndex) {
499         subListRangeCheck(fromIndex, toIndex, size());
500         return (this instanceof RandomAccess ?
501                 new RandomAccessSubList<>(this, fromIndex, toIndex) :
502                 new SubList<>(this, fromIndex, toIndex));
503     }
504 
subListRangeCheck(int fromIndex, int toIndex, int size)505     static void subListRangeCheck(int fromIndex, int toIndex, int size) {
506         if (fromIndex < 0)
507             throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
508         if (toIndex > size)
509             throw new IndexOutOfBoundsException("toIndex = " + toIndex);
510         if (fromIndex > toIndex)
511             throw new IllegalArgumentException("fromIndex(" + fromIndex +
512                                                ") > toIndex(" + toIndex + ")");
513     }
514 
515     // Comparison and hashing
516 
517     /**
518      * Compares the specified object with this list for equality.  Returns
519      * {@code true} if and only if the specified object is also a list, both
520      * lists have the same size, and all corresponding pairs of elements in
521      * the two lists are <i>equal</i>.  (Two elements {@code e1} and
522      * {@code e2} are <i>equal</i> if {@code (e1==null ? e2==null :
523      * e1.equals(e2))}.)  In other words, two lists are defined to be
524      * equal if they contain the same elements in the same order.
525      *
526      * @implSpec
527      * This implementation first checks if the specified object is this
528      * list. If so, it returns {@code true}; if not, it checks if the
529      * specified object is a list. If not, it returns {@code false}; if so,
530      * it iterates over both lists, comparing corresponding pairs of elements.
531      * If any comparison returns {@code false}, this method returns
532      * {@code false}.  If either iterator runs out of elements before the
533      * other it returns {@code false} (as the lists are of unequal length);
534      * otherwise it returns {@code true} when the iterations complete.
535      *
536      * @param o the object to be compared for equality with this list
537      * @return {@code true} if the specified object is equal to this list
538      */
equals(Object o)539     public boolean equals(Object o) {
540         if (o == this)
541             return true;
542         if (!(o instanceof List))
543             return false;
544 
545         ListIterator<E> e1 = listIterator();
546         ListIterator<?> e2 = ((List<?>) o).listIterator();
547         while (e1.hasNext() && e2.hasNext()) {
548             E o1 = e1.next();
549             Object o2 = e2.next();
550             if (!(o1==null ? o2==null : o1.equals(o2)))
551                 return false;
552         }
553         return !(e1.hasNext() || e2.hasNext());
554     }
555 
556     /**
557      * Returns the hash code value for this list.
558      *
559      * @implSpec
560      * This implementation uses exactly the code that is used to define the
561      * list hash function in the documentation for the {@link List#hashCode}
562      * method.
563      *
564      * @return the hash code value for this list
565      */
hashCode()566     public int hashCode() {
567         int hashCode = 1;
568         for (E e : this)
569             hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());
570         return hashCode;
571     }
572 
573     /**
574      * Removes from this list all of the elements whose index is between
575      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
576      * Shifts any succeeding elements to the left (reduces their index).
577      * This call shortens the list by {@code (toIndex - fromIndex)} elements.
578      * (If {@code toIndex==fromIndex}, this operation has no effect.)
579      *
580      * <p>This method is called by the {@code clear} operation on this list
581      * and its subLists.  Overriding this method to take advantage of
582      * the internals of the list implementation can <i>substantially</i>
583      * improve the performance of the {@code clear} operation on this list
584      * and its subLists.
585      *
586      * @implSpec
587      * This implementation gets a list iterator positioned before
588      * {@code fromIndex}, and repeatedly calls {@code ListIterator.next}
589      * followed by {@code ListIterator.remove} until the entire range has
590      * been removed.  <b>Note: if {@code ListIterator.remove} requires linear
591      * time, this implementation requires quadratic time.</b>
592      *
593      * @param fromIndex index of first element to be removed
594      * @param toIndex index after last element to be removed
595      */
removeRange(int fromIndex, int toIndex)596     protected void removeRange(int fromIndex, int toIndex) {
597         ListIterator<E> it = listIterator(fromIndex);
598         for (int i=0, n=toIndex-fromIndex; i<n; i++) {
599             it.next();
600             it.remove();
601         }
602     }
603 
604     /**
605      * The number of times this list has been <i>structurally modified</i>.
606      * Structural modifications are those that change the size of the
607      * list, or otherwise perturb it in such a fashion that iterations in
608      * progress may yield incorrect results.
609      *
610      * <p>This field is used by the iterator and list iterator implementation
611      * returned by the {@code iterator} and {@code listIterator} methods.
612      * If the value of this field changes unexpectedly, the iterator (or list
613      * iterator) will throw a {@code ConcurrentModificationException} in
614      * response to the {@code next}, {@code remove}, {@code previous},
615      * {@code set} or {@code add} operations.  This provides
616      * <i>fail-fast</i> behavior, rather than non-deterministic behavior in
617      * the face of concurrent modification during iteration.
618      *
619      * <p><b>Use of this field by subclasses is optional.</b> If a subclass
620      * wishes to provide fail-fast iterators (and list iterators), then it
621      * merely has to increment this field in its {@code add(int, E)} and
622      * {@code remove(int)} methods (and any other methods that it overrides
623      * that result in structural modifications to the list).  A single call to
624      * {@code add(int, E)} or {@code remove(int)} must add no more than
625      * one to this field, or the iterators (and list iterators) will throw
626      * bogus {@code ConcurrentModificationExceptions}.  If an implementation
627      * does not wish to provide fail-fast iterators, this field may be
628      * ignored.
629      */
630     protected transient int modCount = 0;
631 
rangeCheckForAdd(int index)632     private void rangeCheckForAdd(int index) {
633         if (index < 0 || index > size())
634             throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
635     }
636 
outOfBoundsMsg(int index)637     private String outOfBoundsMsg(int index) {
638         return "Index: "+index+", Size: "+size();
639     }
640 
641     /**
642      * An index-based split-by-two, lazily initialized Spliterator covering
643      * a List that access elements via {@link List#get}.
644      *
645      * If access results in an IndexOutOfBoundsException then a
646      * ConcurrentModificationException is thrown instead (since the list has
647      * been structurally modified while traversing).
648      *
649      * If the List is an instance of AbstractList then concurrent modification
650      * checking is performed using the AbstractList's modCount field.
651      */
652     static final class RandomAccessSpliterator<E> implements Spliterator<E> {
653 
654         private final List<E> list;
655         private int index; // current index, modified on advance/split
656         private int fence; // -1 until used; then one past last index
657 
658         // The following fields are valid if covering an AbstractList
659         private final AbstractList<E> alist;
660         private int expectedModCount; // initialized when fence set
661 
RandomAccessSpliterator(List<E> list)662         RandomAccessSpliterator(List<E> list) {
663             assert list instanceof RandomAccess;
664 
665             this.list = list;
666             this.index = 0;
667             this.fence = -1;
668 
669             this.alist = list instanceof AbstractList ? (AbstractList<E>) list : null;
670             this.expectedModCount = alist != null ? alist.modCount : 0;
671         }
672 
673         /** Create new spliterator covering the given  range */
RandomAccessSpliterator(RandomAccessSpliterator<E> parent, int origin, int fence)674         private RandomAccessSpliterator(RandomAccessSpliterator<E> parent,
675                                 int origin, int fence) {
676             this.list = parent.list;
677             this.index = origin;
678             this.fence = fence;
679 
680             this.alist = parent.alist;
681             this.expectedModCount = parent.expectedModCount;
682         }
683 
getFence()684         private int getFence() { // initialize fence to size on first use
685             int hi;
686             List<E> lst = list;
687             if ((hi = fence) < 0) {
688                 if (alist != null) {
689                     expectedModCount = alist.modCount;
690                 }
691                 hi = fence = lst.size();
692             }
693             return hi;
694         }
695 
trySplit()696         public Spliterator<E> trySplit() {
697             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
698             return (lo >= mid) ? null : // divide range in half unless too small
699                     new RandomAccessSpliterator<>(this, lo, index = mid);
700         }
701 
tryAdvance(Consumer<? super E> action)702         public boolean tryAdvance(Consumer<? super E> action) {
703             if (action == null)
704                 throw new NullPointerException();
705             int hi = getFence(), i = index;
706             if (i < hi) {
707                 index = i + 1;
708                 action.accept(get(list, i));
709                 checkAbstractListModCount(alist, expectedModCount);
710                 return true;
711             }
712             return false;
713         }
714 
forEachRemaining(Consumer<? super E> action)715         public void forEachRemaining(Consumer<? super E> action) {
716             Objects.requireNonNull(action);
717             List<E> lst = list;
718             int hi = getFence();
719             int i = index;
720             index = hi;
721             for (; i < hi; i++) {
722                 action.accept(get(lst, i));
723             }
724             checkAbstractListModCount(alist, expectedModCount);
725         }
726 
estimateSize()727         public long estimateSize() {
728             return (long) (getFence() - index);
729         }
730 
characteristics()731         public int characteristics() {
732             return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
733         }
734 
get(List<E> list, int i)735         private static <E> E get(List<E> list, int i) {
736             try {
737                 return list.get(i);
738             } catch (IndexOutOfBoundsException ex) {
739                 throw new ConcurrentModificationException();
740             }
741         }
742 
checkAbstractListModCount(AbstractList<?> alist, int expectedModCount)743         static void checkAbstractListModCount(AbstractList<?> alist, int expectedModCount) {
744             if (alist != null && alist.modCount != expectedModCount) {
745                 throw new ConcurrentModificationException();
746             }
747         }
748     }
749 
750     private static class SubList<E> extends AbstractList<E> {
751         private final AbstractList<E> root;
752         private final SubList<E> parent;
753         private final int offset;
754         protected int size;
755 
756         /**
757          * Constructs a sublist of an arbitrary AbstractList, which is
758          * not a SubList itself.
759          */
SubList(AbstractList<E> root, int fromIndex, int toIndex)760         public SubList(AbstractList<E> root, int fromIndex, int toIndex) {
761             this.root = root;
762             this.parent = null;
763             this.offset = fromIndex;
764             this.size = toIndex - fromIndex;
765             this.modCount = root.modCount;
766         }
767 
768         /**
769          * Constructs a sublist of another SubList.
770          */
SubList(SubList<E> parent, int fromIndex, int toIndex)771         protected SubList(SubList<E> parent, int fromIndex, int toIndex) {
772             this.root = parent.root;
773             this.parent = parent;
774             this.offset = parent.offset + fromIndex;
775             this.size = toIndex - fromIndex;
776             this.modCount = root.modCount;
777         }
778 
set(int index, E element)779         public E set(int index, E element) {
780             Objects.checkIndex(index, size);
781             checkForComodification();
782             return root.set(offset + index, element);
783         }
784 
get(int index)785         public E get(int index) {
786             Objects.checkIndex(index, size);
787             checkForComodification();
788             return root.get(offset + index);
789         }
790 
size()791         public int size() {
792             checkForComodification();
793             return size;
794         }
795 
add(int index, E element)796         public void add(int index, E element) {
797             rangeCheckForAdd(index);
798             checkForComodification();
799             root.add(offset + index, element);
800             updateSizeAndModCount(1);
801         }
802 
remove(int index)803         public E remove(int index) {
804             Objects.checkIndex(index, size);
805             checkForComodification();
806             E result = root.remove(offset + index);
807             updateSizeAndModCount(-1);
808             return result;
809         }
810 
removeRange(int fromIndex, int toIndex)811         protected void removeRange(int fromIndex, int toIndex) {
812             checkForComodification();
813             root.removeRange(offset + fromIndex, offset + toIndex);
814             updateSizeAndModCount(fromIndex - toIndex);
815         }
816 
addAll(Collection<? extends E> c)817         public boolean addAll(Collection<? extends E> c) {
818             return addAll(size, c);
819         }
820 
addAll(int index, Collection<? extends E> c)821         public boolean addAll(int index, Collection<? extends E> c) {
822             rangeCheckForAdd(index);
823             int cSize = c.size();
824             if (cSize==0)
825                 return false;
826             checkForComodification();
827             root.addAll(offset + index, c);
828             updateSizeAndModCount(cSize);
829             return true;
830         }
831 
iterator()832         public Iterator<E> iterator() {
833             return listIterator();
834         }
835 
listIterator(int index)836         public ListIterator<E> listIterator(int index) {
837             checkForComodification();
838             rangeCheckForAdd(index);
839 
840             return new ListIterator<E>() {
841                 private final ListIterator<E> i =
842                         root.listIterator(offset + index);
843 
844                 public boolean hasNext() {
845                     return nextIndex() < size;
846                 }
847 
848                 public E next() {
849                     if (hasNext())
850                         return i.next();
851                     else
852                         throw new NoSuchElementException();
853                 }
854 
855                 public boolean hasPrevious() {
856                     return previousIndex() >= 0;
857                 }
858 
859                 public E previous() {
860                     if (hasPrevious())
861                         return i.previous();
862                     else
863                         throw new NoSuchElementException();
864                 }
865 
866                 public int nextIndex() {
867                     return i.nextIndex() - offset;
868                 }
869 
870                 public int previousIndex() {
871                     return i.previousIndex() - offset;
872                 }
873 
874                 public void remove() {
875                     i.remove();
876                     updateSizeAndModCount(-1);
877                 }
878 
879                 public void set(E e) {
880                     i.set(e);
881                 }
882 
883                 public void add(E e) {
884                     i.add(e);
885                     updateSizeAndModCount(1);
886                 }
887             };
888         }
889 
subList(int fromIndex, int toIndex)890         public List<E> subList(int fromIndex, int toIndex) {
891             subListRangeCheck(fromIndex, toIndex, size);
892             return new SubList<>(this, fromIndex, toIndex);
893         }
894 
rangeCheckForAdd(int index)895         private void rangeCheckForAdd(int index) {
896             if (index < 0 || index > size)
897                 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
898         }
899 
outOfBoundsMsg(int index)900         private String outOfBoundsMsg(int index) {
901             return "Index: "+index+", Size: "+size;
902         }
903 
checkForComodification()904         private void checkForComodification() {
905             if (root.modCount != this.modCount)
906                 throw new ConcurrentModificationException();
907         }
908 
updateSizeAndModCount(int sizeChange)909         private void updateSizeAndModCount(int sizeChange) {
910             SubList<E> slist = this;
911             do {
912                 slist.size += sizeChange;
913                 slist.modCount = root.modCount;
914                 slist = slist.parent;
915             } while (slist != null);
916         }
917     }
918 
919     private static class RandomAccessSubList<E>
920             extends SubList<E> implements RandomAccess {
921 
922         /**
923          * Constructs a sublist of an arbitrary AbstractList, which is
924          * not a RandomAccessSubList itself.
925          */
RandomAccessSubList(AbstractList<E> root, int fromIndex, int toIndex)926         RandomAccessSubList(AbstractList<E> root,
927                 int fromIndex, int toIndex) {
928             super(root, fromIndex, toIndex);
929         }
930 
931         /**
932          * Constructs a sublist of another RandomAccessSubList.
933          */
RandomAccessSubList(RandomAccessSubList<E> parent, int fromIndex, int toIndex)934         RandomAccessSubList(RandomAccessSubList<E> parent,
935                 int fromIndex, int toIndex) {
936             super(parent, fromIndex, toIndex);
937         }
938 
subList(int fromIndex, int toIndex)939         public List<E> subList(int fromIndex, int toIndex) {
940             subListRangeCheck(fromIndex, toIndex, size);
941             return new RandomAccessSubList<>(this, fromIndex, toIndex);
942         }
943     }
944 }
945