1 /* 2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 3 * 4 * This code is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 only, as 6 * published by the Free Software Foundation. Oracle designates this 7 * particular file as subject to the "Classpath" exception as provided 8 * by Oracle in the LICENSE file that accompanied this code. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 */ 24 25 /* 26 * This file is available under and governed by the GNU General Public 27 * License version 2 only, as published by the Free Software Foundation. 28 * However, the following notice accompanied the original version of this 29 * file: 30 * 31 * Written by Josh Bloch of Google Inc. and released to the public domain, 32 * as explained at http://creativecommons.org/publicdomain/zero/1.0/. 33 */ 34 35 package java.util; 36 37 import java.io.Serializable; 38 import java.util.function.Consumer; 39 import java.util.function.Predicate; 40 import jdk.internal.access.SharedSecrets; 41 42 /** 43 * Resizable-array implementation of the {@link Deque} interface. Array 44 * deques have no capacity restrictions; they grow as necessary to support 45 * usage. They are not thread-safe; in the absence of external 46 * synchronization, they do not support concurrent access by multiple threads. 47 * Null elements are prohibited. This class is likely to be faster than 48 * {@link Stack} when used as a stack, and faster than {@link LinkedList} 49 * when used as a queue. 50 * 51 * <p>Most {@code ArrayDeque} operations run in amortized constant time. 52 * Exceptions include 53 * {@link #remove(Object) remove}, 54 * {@link #removeFirstOccurrence removeFirstOccurrence}, 55 * {@link #removeLastOccurrence removeLastOccurrence}, 56 * {@link #contains contains}, 57 * {@link #iterator iterator.remove()}, 58 * and the bulk operations, all of which run in linear time. 59 * 60 * <p>The iterators returned by this class's {@link #iterator() iterator} 61 * method are <em>fail-fast</em>: If the deque is modified at any time after 62 * the iterator is created, in any way except through the iterator's own 63 * {@code remove} method, the iterator will generally throw a {@link 64 * ConcurrentModificationException}. Thus, in the face of concurrent 65 * modification, the iterator fails quickly and cleanly, rather than risking 66 * arbitrary, non-deterministic behavior at an undetermined time in the 67 * future. 68 * 69 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed 70 * as it is, generally speaking, impossible to make any hard guarantees in the 71 * presence of unsynchronized concurrent modification. Fail-fast iterators 72 * throw {@code ConcurrentModificationException} on a best-effort basis. 73 * Therefore, it would be wrong to write a program that depended on this 74 * exception for its correctness: <i>the fail-fast behavior of iterators 75 * should be used only to detect bugs.</i> 76 * 77 * <p>This class and its iterator implement all of the <em>optional</em> methods of the 78 * {@link Collection}, {@link SequencedCollection}, and {@link Iterator} interfaces. 79 * 80 * <p>This class is a member of the 81 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework"> 82 * Java Collections Framework</a>. 83 * 84 * @author Josh Bloch and Doug Lea 85 * @param <E> the type of elements held in this deque 86 * @since 1.6 87 */ 88 public class ArrayDeque<E> extends AbstractCollection<E> 89 implements Deque<E>, Cloneable, Serializable 90 { 91 /* 92 * VMs excel at optimizing simple array loops where indices are 93 * incrementing or decrementing over a valid slice, e.g. 94 * 95 * for (int i = start; i < end; i++) ... elements[i] 96 * 97 * Because in a circular array, elements are in general stored in 98 * two disjoint such slices, we help the VM by writing unusual 99 * nested loops for all traversals over the elements. Having only 100 * one hot inner loop body instead of two or three eases human 101 * maintenance and encourages VM loop inlining into the caller. 102 */ 103 104 /** 105 * The array in which the elements of the deque are stored. 106 * All array cells not holding deque elements are always null. 107 * The array always has at least one null slot (at tail). 108 */ 109 transient Object[] elements; 110 111 /** 112 * The index of the element at the head of the deque (which is the 113 * element that would be removed by remove() or pop()); or an 114 * arbitrary number 0 <= head < elements.length equal to tail if 115 * the deque is empty. 116 */ 117 transient int head; 118 119 /** 120 * The index at which the next element would be added to the tail 121 * of the deque (via addLast(E), add(E), or push(E)); 122 * elements[tail] is always null. 123 */ 124 transient int tail; 125 126 /** 127 * The maximum size of array to allocate. 128 * Some VMs reserve some header words in an array. 129 * Attempts to allocate larger arrays may result in 130 * OutOfMemoryError: Requested array size exceeds VM limit 131 */ 132 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; 133 134 /** 135 * Increases the capacity of this deque by at least the given amount. 136 * 137 * @param needed the required minimum extra capacity; must be positive 138 */ grow(int needed)139 private void grow(int needed) { 140 // overflow-conscious code 141 final int oldCapacity = elements.length; 142 int newCapacity; 143 // Double capacity if small; else grow by 50% 144 int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1); 145 if (jump < needed 146 || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0) 147 newCapacity = newCapacity(needed, jump); 148 // Android-added: preserve reference to the old storage to nullify it later. 149 final Object[] oldElements = elements; 150 final Object[] es = elements = Arrays.copyOf(elements, newCapacity); 151 // Exceptionally, here tail == head needs to be disambiguated 152 if (tail < head || (tail == head && es[head] != null)) { 153 // wrap around; slide first leg forward to end of array 154 int newSpace = newCapacity - oldCapacity; 155 System.arraycopy(es, head, 156 es, head + newSpace, 157 oldCapacity - head); 158 for (int i = head, to = (head += newSpace); i < to; i++) 159 es[i] = null; 160 } 161 // Android-added: Clear old array instance that's about to become eligible for GC. 162 // This ensures that array elements can be eligible for garbage collection even 163 // before the array itself is recognized as being eligible; the latter might 164 // take a while in some GC implementations, if the array instance is longer lived 165 // (its liveness rarely checked) than some of its contents. 166 Arrays.fill(oldElements, null); 167 } 168 169 /** Capacity calculation for edge conditions, especially overflow. */ newCapacity(int needed, int jump)170 private int newCapacity(int needed, int jump) { 171 final int oldCapacity = elements.length, minCapacity; 172 if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) { 173 if (minCapacity < 0) 174 throw new IllegalStateException("Sorry, deque too big"); 175 return Integer.MAX_VALUE; 176 } 177 if (needed > jump) 178 return minCapacity; 179 return (oldCapacity + jump - MAX_ARRAY_SIZE < 0) 180 ? oldCapacity + jump 181 : MAX_ARRAY_SIZE; 182 } 183 184 /** 185 * Constructs an empty array deque with an initial capacity 186 * sufficient to hold 16 elements. 187 */ ArrayDeque()188 public ArrayDeque() { 189 elements = new Object[16 + 1]; 190 } 191 192 /** 193 * Constructs an empty array deque with an initial capacity 194 * sufficient to hold the specified number of elements. 195 * 196 * @param numElements lower bound on initial capacity of the deque 197 */ ArrayDeque(int numElements)198 public ArrayDeque(int numElements) { 199 elements = 200 new Object[(numElements < 1) ? 1 : 201 (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE : 202 numElements + 1]; 203 } 204 205 /** 206 * Constructs a deque containing the elements of the specified 207 * collection, in the order they are returned by the collection's 208 * iterator. (The first element returned by the collection's 209 * iterator becomes the first element, or <i>front</i> of the 210 * deque.) 211 * 212 * @param c the collection whose elements are to be placed into the deque 213 * @throws NullPointerException if the specified collection is null 214 */ ArrayDeque(Collection<? extends E> c)215 public ArrayDeque(Collection<? extends E> c) { 216 this(c.size()); 217 copyElements(c); 218 } 219 220 /** 221 * Circularly increments i, mod modulus. 222 * Precondition and postcondition: 0 <= i < modulus. 223 */ inc(int i, int modulus)224 static final int inc(int i, int modulus) { 225 if (++i >= modulus) i = 0; 226 return i; 227 } 228 229 /** 230 * Circularly decrements i, mod modulus. 231 * Precondition and postcondition: 0 <= i < modulus. 232 */ dec(int i, int modulus)233 static final int dec(int i, int modulus) { 234 if (--i < 0) i = modulus - 1; 235 return i; 236 } 237 238 /** 239 * Circularly adds the given distance to index i, mod modulus. 240 * Precondition: 0 <= i < modulus, 0 <= distance <= modulus. 241 * @return index 0 <= i < modulus 242 */ inc(int i, int distance, int modulus)243 static final int inc(int i, int distance, int modulus) { 244 if ((i += distance) - modulus >= 0) i -= modulus; 245 return i; 246 } 247 248 /** 249 * Subtracts j from i, mod modulus. 250 * Index i must be logically ahead of index j. 251 * Precondition: 0 <= i < modulus, 0 <= j < modulus. 252 * @return the "circular distance" from j to i; corner case i == j 253 * is disambiguated to "empty", returning 0. 254 */ sub(int i, int j, int modulus)255 static final int sub(int i, int j, int modulus) { 256 if ((i -= j) < 0) i += modulus; 257 return i; 258 } 259 260 /** 261 * Returns element at array index i. 262 * This is a slight abuse of generics, accepted by javac. 263 */ 264 @SuppressWarnings("unchecked") elementAt(Object[] es, int i)265 static final <E> E elementAt(Object[] es, int i) { 266 return (E) es[i]; 267 } 268 269 /** 270 * A version of elementAt that checks for null elements. 271 * This check doesn't catch all possible comodifications, 272 * but does catch ones that corrupt traversal. 273 */ nonNullElementAt(Object[] es, int i)274 static final <E> E nonNullElementAt(Object[] es, int i) { 275 @SuppressWarnings("unchecked") E e = (E) es[i]; 276 if (e == null) 277 throw new ConcurrentModificationException(); 278 return e; 279 } 280 281 // The main insertion and extraction methods are addFirst, 282 // addLast, pollFirst, pollLast. The other methods are defined in 283 // terms of these. 284 285 /** 286 * Inserts the specified element at the front of this deque. 287 * 288 * @param e the element to add 289 * @throws NullPointerException if the specified element is null 290 */ addFirst(E e)291 public void addFirst(E e) { 292 if (e == null) 293 throw new NullPointerException(); 294 final Object[] es = elements; 295 es[head = dec(head, es.length)] = e; 296 if (head == tail) 297 grow(1); 298 } 299 300 /** 301 * Inserts the specified element at the end of this deque. 302 * 303 * <p>This method is equivalent to {@link #add}. 304 * 305 * @param e the element to add 306 * @throws NullPointerException if the specified element is null 307 */ addLast(E e)308 public void addLast(E e) { 309 if (e == null) 310 throw new NullPointerException(); 311 final Object[] es = elements; 312 es[tail] = e; 313 if (head == (tail = inc(tail, es.length))) 314 grow(1); 315 } 316 317 /** 318 * Adds all of the elements in the specified collection at the end 319 * of this deque, as if by calling {@link #addLast} on each one, 320 * in the order that they are returned by the collection's iterator. 321 * 322 * @param c the elements to be inserted into this deque 323 * @return {@code true} if this deque changed as a result of the call 324 * @throws NullPointerException if the specified collection or any 325 * of its elements are null 326 */ addAll(Collection<? extends E> c)327 public boolean addAll(Collection<? extends E> c) { 328 final int s, needed; 329 if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0) 330 grow(needed); 331 copyElements(c); 332 return size() > s; 333 } 334 copyElements(Collection<? extends E> c)335 private void copyElements(Collection<? extends E> c) { 336 c.forEach(this::addLast); 337 } 338 339 /** 340 * Inserts the specified element at the front of this deque. 341 * 342 * @param e the element to add 343 * @return {@code true} (as specified by {@link Deque#offerFirst}) 344 * @throws NullPointerException if the specified element is null 345 */ offerFirst(E e)346 public boolean offerFirst(E e) { 347 addFirst(e); 348 return true; 349 } 350 351 /** 352 * Inserts the specified element at the end of this deque. 353 * 354 * @param e the element to add 355 * @return {@code true} (as specified by {@link Deque#offerLast}) 356 * @throws NullPointerException if the specified element is null 357 */ offerLast(E e)358 public boolean offerLast(E e) { 359 addLast(e); 360 return true; 361 } 362 363 /** 364 * @throws NoSuchElementException {@inheritDoc} 365 */ removeFirst()366 public E removeFirst() { 367 E e = pollFirst(); 368 if (e == null) 369 throw new NoSuchElementException(); 370 return e; 371 } 372 373 /** 374 * @throws NoSuchElementException {@inheritDoc} 375 */ removeLast()376 public E removeLast() { 377 E e = pollLast(); 378 if (e == null) 379 throw new NoSuchElementException(); 380 return e; 381 } 382 pollFirst()383 public E pollFirst() { 384 final Object[] es; 385 final int h; 386 E e = elementAt(es = elements, h = head); 387 if (e != null) { 388 es[h] = null; 389 head = inc(h, es.length); 390 } 391 return e; 392 } 393 pollLast()394 public E pollLast() { 395 final Object[] es; 396 final int t; 397 E e = elementAt(es = elements, t = dec(tail, es.length)); 398 if (e != null) 399 es[tail = t] = null; 400 return e; 401 } 402 403 /** 404 * @throws NoSuchElementException {@inheritDoc} 405 */ getFirst()406 public E getFirst() { 407 E e = elementAt(elements, head); 408 if (e == null) 409 throw new NoSuchElementException(); 410 return e; 411 } 412 413 /** 414 * @throws NoSuchElementException {@inheritDoc} 415 */ getLast()416 public E getLast() { 417 final Object[] es = elements; 418 E e = elementAt(es, dec(tail, es.length)); 419 if (e == null) 420 throw new NoSuchElementException(); 421 return e; 422 } 423 peekFirst()424 public E peekFirst() { 425 return elementAt(elements, head); 426 } 427 peekLast()428 public E peekLast() { 429 final Object[] es; 430 return elementAt(es = elements, dec(tail, es.length)); 431 } 432 433 /** 434 * Removes the first occurrence of the specified element in this 435 * deque (when traversing the deque from head to tail). 436 * If the deque does not contain the element, it is unchanged. 437 * More formally, removes the first element {@code e} such that 438 * {@code o.equals(e)} (if such an element exists). 439 * Returns {@code true} if this deque contained the specified element 440 * (or equivalently, if this deque changed as a result of the call). 441 * 442 * @param o element to be removed from this deque, if present 443 * @return {@code true} if the deque contained the specified element 444 */ removeFirstOccurrence(Object o)445 public boolean removeFirstOccurrence(Object o) { 446 if (o != null) { 447 final Object[] es = elements; 448 for (int i = head, end = tail, to = (i <= end) ? end : es.length; 449 ; i = 0, to = end) { 450 for (; i < to; i++) 451 if (o.equals(es[i])) { 452 delete(i); 453 return true; 454 } 455 if (to == end) break; 456 } 457 } 458 return false; 459 } 460 461 /** 462 * Removes the last occurrence of the specified element in this 463 * deque (when traversing the deque from head to tail). 464 * If the deque does not contain the element, it is unchanged. 465 * More formally, removes the last element {@code e} such that 466 * {@code o.equals(e)} (if such an element exists). 467 * Returns {@code true} if this deque contained the specified element 468 * (or equivalently, if this deque changed as a result of the call). 469 * 470 * @param o element to be removed from this deque, if present 471 * @return {@code true} if the deque contained the specified element 472 */ removeLastOccurrence(Object o)473 public boolean removeLastOccurrence(Object o) { 474 if (o != null) { 475 final Object[] es = elements; 476 for (int i = tail, end = head, to = (i >= end) ? end : 0; 477 ; i = es.length, to = end) { 478 for (i--; i > to - 1; i--) 479 if (o.equals(es[i])) { 480 delete(i); 481 return true; 482 } 483 if (to == end) break; 484 } 485 } 486 return false; 487 } 488 489 // *** Queue methods *** 490 491 /** 492 * Inserts the specified element at the end of this deque. 493 * 494 * <p>This method is equivalent to {@link #addLast}. 495 * 496 * @param e the element to add 497 * @return {@code true} (as specified by {@link Collection#add}) 498 * @throws NullPointerException if the specified element is null 499 */ add(E e)500 public boolean add(E e) { 501 addLast(e); 502 return true; 503 } 504 505 /** 506 * Inserts the specified element at the end of this deque. 507 * 508 * <p>This method is equivalent to {@link #offerLast}. 509 * 510 * @param e the element to add 511 * @return {@code true} (as specified by {@link Queue#offer}) 512 * @throws NullPointerException if the specified element is null 513 */ offer(E e)514 public boolean offer(E e) { 515 return offerLast(e); 516 } 517 518 /** 519 * Retrieves and removes the head of the queue represented by this deque. 520 * 521 * This method differs from {@link #poll() poll()} only in that it 522 * throws an exception if this deque is empty. 523 * 524 * <p>This method is equivalent to {@link #removeFirst}. 525 * 526 * @return the head of the queue represented by this deque 527 * @throws NoSuchElementException {@inheritDoc} 528 */ remove()529 public E remove() { 530 return removeFirst(); 531 } 532 533 /** 534 * Retrieves and removes the head of the queue represented by this deque 535 * (in other words, the first element of this deque), or returns 536 * {@code null} if this deque is empty. 537 * 538 * <p>This method is equivalent to {@link #pollFirst}. 539 * 540 * @return the head of the queue represented by this deque, or 541 * {@code null} if this deque is empty 542 */ poll()543 public E poll() { 544 return pollFirst(); 545 } 546 547 /** 548 * Retrieves, but does not remove, the head of the queue represented by 549 * this deque. This method differs from {@link #peek peek} only in 550 * that it throws an exception if this deque is empty. 551 * 552 * <p>This method is equivalent to {@link #getFirst}. 553 * 554 * @return the head of the queue represented by this deque 555 * @throws NoSuchElementException {@inheritDoc} 556 */ element()557 public E element() { 558 return getFirst(); 559 } 560 561 /** 562 * Retrieves, but does not remove, the head of the queue represented by 563 * this deque, or returns {@code null} if this deque is empty. 564 * 565 * <p>This method is equivalent to {@link #peekFirst}. 566 * 567 * @return the head of the queue represented by this deque, or 568 * {@code null} if this deque is empty 569 */ peek()570 public E peek() { 571 return peekFirst(); 572 } 573 574 // *** Stack methods *** 575 576 /** 577 * Pushes an element onto the stack represented by this deque. In other 578 * words, inserts the element at the front of this deque. 579 * 580 * <p>This method is equivalent to {@link #addFirst}. 581 * 582 * @param e the element to push 583 * @throws NullPointerException if the specified element is null 584 */ push(E e)585 public void push(E e) { 586 addFirst(e); 587 } 588 589 /** 590 * Pops an element from the stack represented by this deque. In other 591 * words, removes and returns the first element of this deque. 592 * 593 * <p>This method is equivalent to {@link #removeFirst()}. 594 * 595 * @return the element at the front of this deque (which is the top 596 * of the stack represented by this deque) 597 * @throws NoSuchElementException {@inheritDoc} 598 */ pop()599 public E pop() { 600 return removeFirst(); 601 } 602 603 /** 604 * Removes the element at the specified position in the elements array. 605 * This can result in forward or backwards motion of array elements. 606 * We optimize for least element motion. 607 * 608 * <p>This method is called delete rather than remove to emphasize 609 * that its semantics differ from those of {@link List#remove(int)}. 610 * 611 * @return true if elements near tail moved backwards 612 */ delete(int i)613 boolean delete(int i) { 614 final Object[] es = elements; 615 final int capacity = es.length; 616 final int h, t; 617 // number of elements before to-be-deleted elt 618 final int front = sub(i, h = head, capacity); 619 // number of elements after to-be-deleted elt 620 final int back = sub(t = tail, i, capacity) - 1; 621 if (front < back) { 622 // move front elements forwards 623 if (h <= i) { 624 System.arraycopy(es, h, es, h + 1, front); 625 } else { // Wrap around 626 System.arraycopy(es, 0, es, 1, i); 627 es[0] = es[capacity - 1]; 628 System.arraycopy(es, h, es, h + 1, front - (i + 1)); 629 } 630 es[h] = null; 631 head = inc(h, capacity); 632 return false; 633 } else { 634 // move back elements backwards 635 tail = dec(t, capacity); 636 if (i <= tail) { 637 System.arraycopy(es, i + 1, es, i, back); 638 } else { // Wrap around 639 System.arraycopy(es, i + 1, es, i, capacity - (i + 1)); 640 es[capacity - 1] = es[0]; 641 System.arraycopy(es, 1, es, 0, t - 1); 642 } 643 es[tail] = null; 644 return true; 645 } 646 } 647 648 // *** Collection Methods *** 649 650 /** 651 * Returns the number of elements in this deque. 652 * 653 * @return the number of elements in this deque 654 */ size()655 public int size() { 656 return sub(tail, head, elements.length); 657 } 658 659 /** 660 * Returns {@code true} if this deque contains no elements. 661 * 662 * @return {@code true} if this deque contains no elements 663 */ isEmpty()664 public boolean isEmpty() { 665 return head == tail; 666 } 667 668 /** 669 * Returns an iterator over the elements in this deque. The elements 670 * will be ordered from first (head) to last (tail). This is the same 671 * order that elements would be dequeued (via successive calls to 672 * {@link #remove} or popped (via successive calls to {@link #pop}). 673 * 674 * @return an iterator over the elements in this deque 675 */ iterator()676 public Iterator<E> iterator() { 677 return new DeqIterator(); 678 } 679 descendingIterator()680 public Iterator<E> descendingIterator() { 681 return new DescendingIterator(); 682 } 683 684 private class DeqIterator implements Iterator<E> { 685 /** Index of element to be returned by subsequent call to next. */ 686 int cursor; 687 688 /** Number of elements yet to be returned. */ 689 int remaining = size(); 690 691 /** 692 * Index of element returned by most recent call to next. 693 * Reset to -1 if element is deleted by a call to remove. 694 */ 695 int lastRet = -1; 696 DeqIterator()697 DeqIterator() { cursor = head; } 698 hasNext()699 public final boolean hasNext() { 700 return remaining > 0; 701 } 702 next()703 public E next() { 704 if (remaining <= 0) 705 throw new NoSuchElementException(); 706 final Object[] es = elements; 707 E e = nonNullElementAt(es, cursor); 708 cursor = inc(lastRet = cursor, es.length); 709 remaining--; 710 return e; 711 } 712 postDelete(boolean leftShifted)713 void postDelete(boolean leftShifted) { 714 if (leftShifted) 715 cursor = dec(cursor, elements.length); 716 } 717 remove()718 public final void remove() { 719 if (lastRet < 0) 720 throw new IllegalStateException(); 721 postDelete(delete(lastRet)); 722 lastRet = -1; 723 } 724 725 @Override forEachRemaining(Consumer<? super E> action)726 public void forEachRemaining(Consumer<? super E> action) { 727 Objects.requireNonNull(action); 728 int r; 729 if ((r = remaining) <= 0) 730 return; 731 remaining = 0; 732 final Object[] es = elements; 733 if (es[cursor] == null || sub(tail, cursor, es.length) != r) 734 throw new ConcurrentModificationException(); 735 for (int i = cursor, end = tail, to = (i <= end) ? end : es.length; 736 ; i = 0, to = end) { 737 for (; i < to; i++) 738 action.accept(elementAt(es, i)); 739 if (to == end) { 740 if (end != tail) 741 throw new ConcurrentModificationException(); 742 lastRet = dec(end, es.length); 743 break; 744 } 745 } 746 } 747 } 748 749 private class DescendingIterator extends DeqIterator { DescendingIterator()750 DescendingIterator() { cursor = dec(tail, elements.length); } 751 next()752 public final E next() { 753 if (remaining <= 0) 754 throw new NoSuchElementException(); 755 final Object[] es = elements; 756 E e = nonNullElementAt(es, cursor); 757 cursor = dec(lastRet = cursor, es.length); 758 remaining--; 759 return e; 760 } 761 postDelete(boolean leftShifted)762 void postDelete(boolean leftShifted) { 763 if (!leftShifted) 764 cursor = inc(cursor, elements.length); 765 } 766 forEachRemaining(Consumer<? super E> action)767 public final void forEachRemaining(Consumer<? super E> action) { 768 Objects.requireNonNull(action); 769 int r; 770 if ((r = remaining) <= 0) 771 return; 772 remaining = 0; 773 final Object[] es = elements; 774 if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r) 775 throw new ConcurrentModificationException(); 776 for (int i = cursor, end = head, to = (i >= end) ? end : 0; 777 ; i = es.length - 1, to = end) { 778 // hotspot generates faster code than for: i >= to ! 779 for (; i > to - 1; i--) 780 action.accept(elementAt(es, i)); 781 if (to == end) { 782 if (end != head) 783 throw new ConcurrentModificationException(); 784 lastRet = end; 785 break; 786 } 787 } 788 } 789 } 790 791 /** 792 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em> 793 * and <em>fail-fast</em> {@link Spliterator} over the elements in this 794 * deque. 795 * 796 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED}, 797 * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and 798 * {@link Spliterator#NONNULL}. Overriding implementations should document 799 * the reporting of additional characteristic values. 800 * 801 * @return a {@code Spliterator} over the elements in this deque 802 * @since 1.8 803 */ spliterator()804 public Spliterator<E> spliterator() { 805 return new DeqSpliterator(); 806 } 807 808 final class DeqSpliterator implements Spliterator<E> { 809 private int fence; // -1 until first use 810 private int cursor; // current index, modified on traverse/split 811 812 /** Constructs late-binding spliterator over all elements. */ DeqSpliterator()813 DeqSpliterator() { 814 this.fence = -1; 815 } 816 817 /** Constructs spliterator over the given range. */ DeqSpliterator(int origin, int fence)818 DeqSpliterator(int origin, int fence) { 819 // assert 0 <= origin && origin < elements.length; 820 // assert 0 <= fence && fence < elements.length; 821 this.cursor = origin; 822 this.fence = fence; 823 } 824 825 /** Ensures late-binding initialization; then returns fence. */ getFence()826 private int getFence() { // force initialization 827 int t; 828 if ((t = fence) < 0) { 829 t = fence = tail; 830 cursor = head; 831 } 832 return t; 833 } 834 trySplit()835 public DeqSpliterator trySplit() { 836 final Object[] es = elements; 837 final int i, n; 838 return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0) 839 ? null 840 : new DeqSpliterator(i, cursor = inc(i, n, es.length)); 841 } 842 forEachRemaining(Consumer<? super E> action)843 public void forEachRemaining(Consumer<? super E> action) { 844 if (action == null) 845 throw new NullPointerException(); 846 final int end = getFence(), cursor = this.cursor; 847 final Object[] es = elements; 848 if (cursor != end) { 849 this.cursor = end; 850 // null check at both ends of range is sufficient 851 if (es[cursor] == null || es[dec(end, es.length)] == null) 852 throw new ConcurrentModificationException(); 853 for (int i = cursor, to = (i <= end) ? end : es.length; 854 ; i = 0, to = end) { 855 for (; i < to; i++) 856 action.accept(elementAt(es, i)); 857 if (to == end) break; 858 } 859 } 860 } 861 tryAdvance(Consumer<? super E> action)862 public boolean tryAdvance(Consumer<? super E> action) { 863 Objects.requireNonNull(action); 864 final Object[] es = elements; 865 if (fence < 0) { fence = tail; cursor = head; } // late-binding 866 final int i; 867 if ((i = cursor) == fence) 868 return false; 869 E e = nonNullElementAt(es, i); 870 cursor = inc(i, es.length); 871 action.accept(e); 872 return true; 873 } 874 estimateSize()875 public long estimateSize() { 876 return sub(getFence(), cursor, elements.length); 877 } 878 characteristics()879 public int characteristics() { 880 return Spliterator.NONNULL 881 | Spliterator.ORDERED 882 | Spliterator.SIZED 883 | Spliterator.SUBSIZED; 884 } 885 } 886 887 /** 888 * @throws NullPointerException {@inheritDoc} 889 */ forEach(Consumer<? super E> action)890 public void forEach(Consumer<? super E> action) { 891 Objects.requireNonNull(action); 892 final Object[] es = elements; 893 for (int i = head, end = tail, to = (i <= end) ? end : es.length; 894 ; i = 0, to = end) { 895 for (; i < to; i++) 896 action.accept(elementAt(es, i)); 897 if (to == end) { 898 if (end != tail) throw new ConcurrentModificationException(); 899 break; 900 } 901 } 902 } 903 904 /** 905 * @throws NullPointerException {@inheritDoc} 906 */ removeIf(Predicate<? super E> filter)907 public boolean removeIf(Predicate<? super E> filter) { 908 Objects.requireNonNull(filter); 909 return bulkRemove(filter); 910 } 911 912 /** 913 * @throws NullPointerException {@inheritDoc} 914 */ removeAll(Collection<?> c)915 public boolean removeAll(Collection<?> c) { 916 Objects.requireNonNull(c); 917 return bulkRemove(e -> c.contains(e)); 918 } 919 920 /** 921 * @throws NullPointerException {@inheritDoc} 922 */ retainAll(Collection<?> c)923 public boolean retainAll(Collection<?> c) { 924 Objects.requireNonNull(c); 925 return bulkRemove(e -> !c.contains(e)); 926 } 927 928 /** Implementation of bulk remove methods. */ bulkRemove(Predicate<? super E> filter)929 private boolean bulkRemove(Predicate<? super E> filter) { 930 final Object[] es = elements; 931 // Optimize for initial run of survivors 932 for (int i = head, end = tail, to = (i <= end) ? end : es.length; 933 ; i = 0, to = end) { 934 for (; i < to; i++) 935 if (filter.test(elementAt(es, i))) 936 return bulkRemoveModified(filter, i); 937 if (to == end) { 938 if (end != tail) throw new ConcurrentModificationException(); 939 break; 940 } 941 } 942 return false; 943 } 944 945 // A tiny bit set implementation 946 nBits(int n)947 private static long[] nBits(int n) { 948 return new long[((n - 1) >> 6) + 1]; 949 } setBit(long[] bits, int i)950 private static void setBit(long[] bits, int i) { 951 bits[i >> 6] |= 1L << i; 952 } isClear(long[] bits, int i)953 private static boolean isClear(long[] bits, int i) { 954 return (bits[i >> 6] & (1L << i)) == 0; 955 } 956 957 /** 958 * Helper for bulkRemove, in case of at least one deletion. 959 * Tolerate predicates that reentrantly access the collection for 960 * read (but writers still get CME), so traverse once to find 961 * elements to delete, a second pass to physically expunge. 962 * 963 * @param beg valid index of first element to be deleted 964 */ bulkRemoveModified( Predicate<? super E> filter, final int beg)965 private boolean bulkRemoveModified( 966 Predicate<? super E> filter, final int beg) { 967 final Object[] es = elements; 968 final int capacity = es.length; 969 final int end = tail; 970 final long[] deathRow = nBits(sub(end, beg, capacity)); 971 deathRow[0] = 1L; // set bit 0 972 for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg; 973 ; i = 0, to = end, k -= capacity) { 974 for (; i < to; i++) 975 if (filter.test(elementAt(es, i))) 976 setBit(deathRow, i - k); 977 if (to == end) break; 978 } 979 // a two-finger traversal, with hare i reading, tortoise w writing 980 int w = beg; 981 for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg; 982 ; w = 0) { // w rejoins i on second leg 983 // In this loop, i and w are on the same leg, with i > w 984 for (; i < to; i++) 985 if (isClear(deathRow, i - k)) 986 es[w++] = es[i]; 987 if (to == end) break; 988 // In this loop, w is on the first leg, i on the second 989 for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++) 990 if (isClear(deathRow, i - k)) 991 es[w++] = es[i]; 992 if (i >= to) { 993 if (w == capacity) w = 0; // "corner" case 994 break; 995 } 996 } 997 if (end != tail) throw new ConcurrentModificationException(); 998 circularClear(es, tail = w, end); 999 return true; 1000 } 1001 1002 /** 1003 * Returns {@code true} if this deque contains the specified element. 1004 * More formally, returns {@code true} if and only if this deque contains 1005 * at least one element {@code e} such that {@code o.equals(e)}. 1006 * 1007 * @param o object to be checked for containment in this deque 1008 * @return {@code true} if this deque contains the specified element 1009 */ contains(Object o)1010 public boolean contains(Object o) { 1011 if (o != null) { 1012 final Object[] es = elements; 1013 for (int i = head, end = tail, to = (i <= end) ? end : es.length; 1014 ; i = 0, to = end) { 1015 for (; i < to; i++) 1016 if (o.equals(es[i])) 1017 return true; 1018 if (to == end) break; 1019 } 1020 } 1021 return false; 1022 } 1023 1024 /** 1025 * Removes a single instance of the specified element from this deque. 1026 * If the deque does not contain the element, it is unchanged. 1027 * More formally, removes the first element {@code e} such that 1028 * {@code o.equals(e)} (if such an element exists). 1029 * Returns {@code true} if this deque contained the specified element 1030 * (or equivalently, if this deque changed as a result of the call). 1031 * 1032 * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}. 1033 * 1034 * @param o element to be removed from this deque, if present 1035 * @return {@code true} if this deque contained the specified element 1036 */ remove(Object o)1037 public boolean remove(Object o) { 1038 return removeFirstOccurrence(o); 1039 } 1040 1041 /** 1042 * Removes all of the elements from this deque. 1043 * The deque will be empty after this call returns. 1044 */ clear()1045 public void clear() { 1046 circularClear(elements, head, tail); 1047 head = tail = 0; 1048 } 1049 1050 /** 1051 * Nulls out slots starting at array index i, up to index end. 1052 * Condition i == end means "empty" - nothing to do. 1053 */ circularClear(Object[] es, int i, int end)1054 private static void circularClear(Object[] es, int i, int end) { 1055 // assert 0 <= i && i < es.length; 1056 // assert 0 <= end && end < es.length; 1057 for (int to = (i <= end) ? end : es.length; 1058 ; i = 0, to = end) { 1059 for (; i < to; i++) es[i] = null; 1060 if (to == end) break; 1061 } 1062 } 1063 1064 /** 1065 * Returns an array containing all of the elements in this deque 1066 * in proper sequence (from first to last element). 1067 * 1068 * <p>The returned array will be "safe" in that no references to it are 1069 * maintained by this deque. (In other words, this method must allocate 1070 * a new array). The caller is thus free to modify the returned array. 1071 * 1072 * <p>This method acts as bridge between array-based and collection-based 1073 * APIs. 1074 * 1075 * @return an array containing all of the elements in this deque 1076 */ toArray()1077 public Object[] toArray() { 1078 return toArray(Object[].class); 1079 } 1080 toArray(Class<T[]> klazz)1081 private <T> T[] toArray(Class<T[]> klazz) { 1082 final Object[] es = elements; 1083 final T[] a; 1084 final int head = this.head, tail = this.tail, end; 1085 if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) { 1086 // Uses null extension feature of copyOfRange 1087 a = Arrays.copyOfRange(es, head, end, klazz); 1088 } else { 1089 // integer overflow! 1090 a = Arrays.copyOfRange(es, 0, end - head, klazz); 1091 System.arraycopy(es, head, a, 0, es.length - head); 1092 } 1093 if (end != tail) 1094 System.arraycopy(es, 0, a, es.length - head, tail); 1095 return a; 1096 } 1097 1098 /** 1099 * Returns an array containing all of the elements in this deque in 1100 * proper sequence (from first to last element); the runtime type of the 1101 * returned array is that of the specified array. If the deque fits in 1102 * the specified array, it is returned therein. Otherwise, a new array 1103 * is allocated with the runtime type of the specified array and the 1104 * size of this deque. 1105 * 1106 * <p>If this deque fits in the specified array with room to spare 1107 * (i.e., the array has more elements than this deque), the element in 1108 * the array immediately following the end of the deque is set to 1109 * {@code null}. 1110 * 1111 * <p>Like the {@link #toArray()} method, this method acts as bridge between 1112 * array-based and collection-based APIs. Further, this method allows 1113 * precise control over the runtime type of the output array, and may, 1114 * under certain circumstances, be used to save allocation costs. 1115 * 1116 * <p>Suppose {@code x} is a deque known to contain only strings. 1117 * The following code can be used to dump the deque into a newly 1118 * allocated array of {@code String}: 1119 * 1120 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre> 1121 * 1122 * Note that {@code toArray(new Object[0])} is identical in function to 1123 * {@code toArray()}. 1124 * 1125 * @param a the array into which the elements of the deque are to 1126 * be stored, if it is big enough; otherwise, a new array of the 1127 * same runtime type is allocated for this purpose 1128 * @return an array containing all of the elements in this deque 1129 * @throws ArrayStoreException if the runtime type of the specified array 1130 * is not a supertype of the runtime type of every element in 1131 * this deque 1132 * @throws NullPointerException if the specified array is null 1133 */ 1134 @SuppressWarnings("unchecked") toArray(T[] a)1135 public <T> T[] toArray(T[] a) { 1136 final int size; 1137 if ((size = size()) > a.length) 1138 return toArray((Class<T[]>) a.getClass()); 1139 final Object[] es = elements; 1140 for (int i = head, j = 0, len = Math.min(size, es.length - i); 1141 ; i = 0, len = tail) { 1142 System.arraycopy(es, i, a, j, len); 1143 if ((j += len) == size) break; 1144 } 1145 if (size < a.length) 1146 a[size] = null; 1147 return a; 1148 } 1149 1150 // *** Object methods *** 1151 1152 /** 1153 * Returns a copy of this deque. 1154 * 1155 * @return a copy of this deque 1156 */ clone()1157 public ArrayDeque<E> clone() { 1158 try { 1159 @SuppressWarnings("unchecked") 1160 ArrayDeque<E> result = (ArrayDeque<E>) super.clone(); 1161 result.elements = Arrays.copyOf(elements, elements.length); 1162 return result; 1163 } catch (CloneNotSupportedException e) { 1164 throw new AssertionError(); 1165 } 1166 } 1167 1168 @java.io.Serial 1169 private static final long serialVersionUID = 2340985798034038923L; 1170 1171 /** 1172 * Saves this deque to a stream (that is, serializes it). 1173 * 1174 * @param s the stream 1175 * @throws java.io.IOException if an I/O error occurs 1176 * @serialData The current size ({@code int}) of the deque, 1177 * followed by all of its elements (each an object reference) in 1178 * first-to-last order. 1179 */ 1180 @java.io.Serial writeObject(java.io.ObjectOutputStream s)1181 private void writeObject(java.io.ObjectOutputStream s) 1182 throws java.io.IOException { 1183 s.defaultWriteObject(); 1184 1185 // Write out size 1186 s.writeInt(size()); 1187 1188 // Write out elements in order. 1189 final Object[] es = elements; 1190 for (int i = head, end = tail, to = (i <= end) ? end : es.length; 1191 ; i = 0, to = end) { 1192 for (; i < to; i++) 1193 s.writeObject(es[i]); 1194 if (to == end) break; 1195 } 1196 } 1197 1198 /** 1199 * Reconstitutes this deque from a stream (that is, deserializes it). 1200 * @param s the stream 1201 * @throws ClassNotFoundException if the class of a serialized object 1202 * could not be found 1203 * @throws java.io.IOException if an I/O error occurs 1204 */ 1205 @java.io.Serial readObject(java.io.ObjectInputStream s)1206 private void readObject(java.io.ObjectInputStream s) 1207 throws java.io.IOException, ClassNotFoundException { 1208 s.defaultReadObject(); 1209 1210 // Read in size and allocate array 1211 int size = s.readInt(); 1212 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size + 1); 1213 elements = new Object[size + 1]; 1214 this.tail = size; 1215 1216 // Read in all elements in the proper order. 1217 for (int i = 0; i < size; i++) 1218 elements[i] = s.readObject(); 1219 } 1220 1221 /** debugging */ checkInvariants()1222 void checkInvariants() { 1223 // Use head and tail fields with empty slot at tail strategy. 1224 // head == tail disambiguates to "empty". 1225 try { 1226 int capacity = elements.length; 1227 // assert 0 <= head && head < capacity; 1228 // assert 0 <= tail && tail < capacity; 1229 // assert capacity > 0; 1230 // assert size() < capacity; 1231 // assert head == tail || elements[head] != null; 1232 // assert elements[tail] == null; 1233 // assert head == tail || elements[dec(tail, capacity)] != null; 1234 } catch (Throwable t) { 1235 System.err.printf("head=%d tail=%d capacity=%d%n", 1236 head, tail, elements.length); 1237 System.err.printf("elements=%s%n", 1238 Arrays.toString(elements)); 1239 throw t; 1240 } 1241 } 1242 1243 } 1244