1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 
27 package java.util;
28 
29 import java.util.function.Consumer;
30 import java.util.function.Predicate;
31 import java.util.function.UnaryOperator;
32 import jdk.internal.access.SharedSecrets;
33 import jdk.internal.util.ArraysSupport;
34 
35 /**
36  * Resizable-array implementation of the {@code List} interface.  Implements
37  * all optional list operations, and permits all elements, including
38  * {@code null}.  In addition to implementing the {@code List} interface,
39  * this class provides methods to manipulate the size of the array that is
40  * used internally to store the list.  (This class is roughly equivalent to
41  * {@code Vector}, except that it is unsynchronized.)
42  *
43  * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
44  * {@code iterator}, and {@code listIterator} operations run in constant
45  * time.  The {@code add} operation runs in <i>amortized constant time</i>,
46  * that is, adding n elements requires O(n) time.  All of the other operations
47  * run in linear time (roughly speaking).  The constant factor is low compared
48  * to that for the {@code LinkedList} implementation.
49  *
50  * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
51  * the size of the array used to store the elements in the list.  It is always
52  * at least as large as the list size.  As elements are added to an ArrayList,
53  * its capacity grows automatically.  The details of the growth policy are not
54  * specified beyond the fact that adding an element has constant amortized
55  * time cost.
56  *
57  * <p>An application can increase the capacity of an {@code ArrayList} instance
58  * before adding a large number of elements using the {@code ensureCapacity}
59  * operation.  This may reduce the amount of incremental reallocation.
60  *
61  * <p><strong>Note that this implementation is not synchronized.</strong>
62  * If multiple threads access an {@code ArrayList} instance concurrently,
63  * and at least one of the threads modifies the list structurally, it
64  * <i>must</i> be synchronized externally.  (A structural modification is
65  * any operation that adds or deletes one or more elements, or explicitly
66  * resizes the backing array; merely setting the value of an element is not
67  * a structural modification.)  This is typically accomplished by
68  * synchronizing on some object that naturally encapsulates the list.
69  *
70  * If no such object exists, the list should be "wrapped" using the
71  * {@link Collections#synchronizedList Collections.synchronizedList}
72  * method.  This is best done at creation time, to prevent accidental
73  * unsynchronized access to the list:<pre>
74  *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
75  *
76  * <p id="fail-fast">
77  * The iterators returned by this class's {@link #iterator() iterator} and
78  * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
79  * if the list is structurally modified at any time after the iterator is
80  * created, in any way except through the iterator's own
81  * {@link ListIterator#remove() remove} or
82  * {@link ListIterator#add(Object) add} methods, the iterator will throw a
83  * {@link ConcurrentModificationException}.  Thus, in the face of
84  * concurrent modification, the iterator fails quickly and cleanly, rather
85  * than risking arbitrary, non-deterministic behavior at an undetermined
86  * time in the future.
87  *
88  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
89  * as it is, generally speaking, impossible to make any hard guarantees in the
90  * presence of unsynchronized concurrent modification.  Fail-fast iterators
91  * throw {@code ConcurrentModificationException} on a best-effort basis.
92  * Therefore, it would be wrong to write a program that depended on this
93  * exception for its correctness:  <i>the fail-fast behavior of iterators
94  * should be used only to detect bugs.</i>
95  *
96  * <p>This class is a member of the
97  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
98  * Java Collections Framework</a>.
99  *
100  * @param <E> the type of elements in this list
101  *
102  * @author  Josh Bloch
103  * @author  Neal Gafter
104  * @see     Collection
105  * @see     List
106  * @see     LinkedList
107  * @see     Vector
108  * @since   1.2
109  */
110 // Android-changed: CME in iterators;
111 /*
112  * - AOSP commit b10b2a3ab693cfd6156d06ffe4e00ce69b9c9194
113  *   Fix ConcurrentModificationException in ArrayList iterators.
114  */
115 public class ArrayList<E> extends AbstractList<E>
116         implements List<E>, RandomAccess, Cloneable, java.io.Serializable
117 {
118     @java.io.Serial
119     private static final long serialVersionUID = 8683452581122892189L;
120 
121     /**
122      * Default initial capacity.
123      */
124     private static final int DEFAULT_CAPACITY = 10;
125 
126     /**
127      * Shared empty array instance used for empty instances.
128      */
129     private static final Object[] EMPTY_ELEMENTDATA = {};
130 
131     /**
132      * Shared empty array instance used for default sized empty instances. We
133      * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
134      * first element is added.
135      */
136     private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
137 
138     /**
139      * The array buffer into which the elements of the ArrayList are stored.
140      * The capacity of the ArrayList is the length of this array buffer. Any
141      * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
142      * will be expanded to DEFAULT_CAPACITY when the first element is added.
143      */
144     // Android-note: Also accessed from java.util.Collections
145     transient Object[] elementData; // non-private to simplify nested class access
146 
147     /**
148      * The size of the ArrayList (the number of elements it contains).
149      *
150      * @serial
151      */
152     private int size;
153 
154     /**
155      * Constructs an empty list with the specified initial capacity.
156      *
157      * @param  initialCapacity  the initial capacity of the list
158      * @throws IllegalArgumentException if the specified initial capacity
159      *         is negative
160      */
ArrayList(int initialCapacity)161     public ArrayList(int initialCapacity) {
162         if (initialCapacity > 0) {
163             this.elementData = new Object[initialCapacity];
164         } else if (initialCapacity == 0) {
165             this.elementData = EMPTY_ELEMENTDATA;
166         } else {
167             throw new IllegalArgumentException("Illegal Capacity: "+
168                                                initialCapacity);
169         }
170     }
171 
172     /**
173      * Constructs an empty list with an initial capacity of ten.
174      */
ArrayList()175     public ArrayList() {
176         this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
177     }
178 
179     /**
180      * Constructs a list containing the elements of the specified
181      * collection, in the order they are returned by the collection's
182      * iterator.
183      *
184      * @param c the collection whose elements are to be placed into this list
185      * @throws NullPointerException if the specified collection is null
186      */
ArrayList(Collection<? extends E> c)187     public ArrayList(Collection<? extends E> c) {
188         Object[] a = c.toArray();
189         if ((size = a.length) != 0) {
190             if (c.getClass() == ArrayList.class) {
191                 elementData = a;
192             } else {
193                 elementData = Arrays.copyOf(a, size, Object[].class);
194             }
195         } else {
196             // replace with empty array.
197             elementData = EMPTY_ELEMENTDATA;
198         }
199     }
200 
201     /**
202      * Trims the capacity of this {@code ArrayList} instance to be the
203      * list's current size.  An application can use this operation to minimize
204      * the storage of an {@code ArrayList} instance.
205      */
trimToSize()206     public void trimToSize() {
207         modCount++;
208         if (size < elementData.length) {
209             elementData = (size == 0)
210               ? EMPTY_ELEMENTDATA
211               : Arrays.copyOf(elementData, size);
212         }
213     }
214 
215     /**
216      * Increases the capacity of this {@code ArrayList} instance, if
217      * necessary, to ensure that it can hold at least the number of elements
218      * specified by the minimum capacity argument.
219      *
220      * @param minCapacity the desired minimum capacity
221      */
ensureCapacity(int minCapacity)222     public void ensureCapacity(int minCapacity) {
223         if (minCapacity > elementData.length
224             && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
225                  && minCapacity <= DEFAULT_CAPACITY)) {
226             modCount++;
227             grow(minCapacity);
228         }
229     }
230 
231     /**
232      * Increases the capacity to ensure that it can hold at least the
233      * number of elements specified by the minimum capacity argument.
234      *
235      * @param minCapacity the desired minimum capacity
236      * @throws OutOfMemoryError if minCapacity is less than zero
237      */
grow(int minCapacity)238     private Object[] grow(int minCapacity) {
239         int oldCapacity = elementData.length;
240         if (oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
241             int newCapacity = ArraysSupport.newLength(oldCapacity,
242                     minCapacity - oldCapacity, /* minimum growth */
243                     oldCapacity >> 1           /* preferred growth */);
244             return elementData = Arrays.copyOf(elementData, newCapacity);
245         } else {
246             return elementData = new Object[Math.max(DEFAULT_CAPACITY, minCapacity)];
247         }
248     }
249 
grow()250     private Object[] grow() {
251         return grow(size + 1);
252     }
253 
254     /**
255      * Returns the number of elements in this list.
256      *
257      * @return the number of elements in this list
258      */
size()259     public int size() {
260         return size;
261     }
262 
263     /**
264      * Returns {@code true} if this list contains no elements.
265      *
266      * @return {@code true} if this list contains no elements
267      */
isEmpty()268     public boolean isEmpty() {
269         return size == 0;
270     }
271 
272     /**
273      * Returns {@code true} if this list contains the specified element.
274      * More formally, returns {@code true} if and only if this list contains
275      * at least one element {@code e} such that
276      * {@code Objects.equals(o, e)}.
277      *
278      * @param o element whose presence in this list is to be tested
279      * @return {@code true} if this list contains the specified element
280      */
contains(Object o)281     public boolean contains(Object o) {
282         return indexOf(o) >= 0;
283     }
284 
285     /**
286      * Returns the index of the first occurrence of the specified element
287      * in this list, or -1 if this list does not contain the element.
288      * More formally, returns the lowest index {@code i} such that
289      * {@code Objects.equals(o, get(i))},
290      * or -1 if there is no such index.
291      */
indexOf(Object o)292     public int indexOf(Object o) {
293         return indexOfRange(o, 0, size);
294     }
295 
indexOfRange(Object o, int start, int end)296     int indexOfRange(Object o, int start, int end) {
297         Object[] es = elementData;
298         if (o == null) {
299             for (int i = start; i < end; i++) {
300                 if (es[i] == null) {
301                     return i;
302                 }
303             }
304         } else {
305             for (int i = start; i < end; i++) {
306                 if (o.equals(es[i])) {
307                     return i;
308                 }
309             }
310         }
311         return -1;
312     }
313 
314     /**
315      * Returns the index of the last occurrence of the specified element
316      * in this list, or -1 if this list does not contain the element.
317      * More formally, returns the highest index {@code i} such that
318      * {@code Objects.equals(o, get(i))},
319      * or -1 if there is no such index.
320      */
lastIndexOf(Object o)321     public int lastIndexOf(Object o) {
322         return lastIndexOfRange(o, 0, size);
323     }
324 
lastIndexOfRange(Object o, int start, int end)325     int lastIndexOfRange(Object o, int start, int end) {
326         Object[] es = elementData;
327         if (o == null) {
328             for (int i = end - 1; i >= start; i--) {
329                 if (es[i] == null) {
330                     return i;
331                 }
332             }
333         } else {
334             for (int i = end - 1; i >= start; i--) {
335                 if (o.equals(es[i])) {
336                     return i;
337                 }
338             }
339         }
340         return -1;
341     }
342 
343     /**
344      * Returns a shallow copy of this {@code ArrayList} instance.  (The
345      * elements themselves are not copied.)
346      *
347      * @return a clone of this {@code ArrayList} instance
348      */
clone()349     public Object clone() {
350         try {
351             ArrayList<?> v = (ArrayList<?>) super.clone();
352             v.elementData = Arrays.copyOf(elementData, size);
353             v.modCount = 0;
354             return v;
355         } catch (CloneNotSupportedException e) {
356             // this shouldn't happen, since we are Cloneable
357             throw new InternalError(e);
358         }
359     }
360 
361     /**
362      * Returns an array containing all of the elements in this list
363      * in proper sequence (from first to last element).
364      *
365      * <p>The returned array will be "safe" in that no references to it are
366      * maintained by this list.  (In other words, this method must allocate
367      * a new array).  The caller is thus free to modify the returned array.
368      *
369      * <p>This method acts as bridge between array-based and collection-based
370      * APIs.
371      *
372      * @return an array containing all of the elements in this list in
373      *         proper sequence
374      */
toArray()375     public Object[] toArray() {
376         return Arrays.copyOf(elementData, size);
377     }
378 
379     /**
380      * Returns an array containing all of the elements in this list in proper
381      * sequence (from first to last element); the runtime type of the returned
382      * array is that of the specified array.  If the list fits in the
383      * specified array, it is returned therein.  Otherwise, a new array is
384      * allocated with the runtime type of the specified array and the size of
385      * this list.
386      *
387      * <p>If the list fits in the specified array with room to spare
388      * (i.e., the array has more elements than the list), the element in
389      * the array immediately following the end of the collection is set to
390      * {@code null}.  (This is useful in determining the length of the
391      * list <i>only</i> if the caller knows that the list does not contain
392      * any null elements.)
393      *
394      * @param a the array into which the elements of the list are to
395      *          be stored, if it is big enough; otherwise, a new array of the
396      *          same runtime type is allocated for this purpose.
397      * @return an array containing the elements of the list
398      * @throws ArrayStoreException if the runtime type of the specified array
399      *         is not a supertype of the runtime type of every element in
400      *         this list
401      * @throws NullPointerException if the specified array is null
402      */
403     @SuppressWarnings("unchecked")
toArray(T[] a)404     public <T> T[] toArray(T[] a) {
405         if (a.length < size)
406             // Make a new array of a's runtime type, but my contents:
407             return (T[]) Arrays.copyOf(elementData, size, a.getClass());
408         System.arraycopy(elementData, 0, a, 0, size);
409         if (a.length > size)
410             a[size] = null;
411         return a;
412     }
413 
414     // Positional Access Operations
415 
416     @SuppressWarnings("unchecked")
elementData(int index)417     E elementData(int index) {
418         return (E) elementData[index];
419     }
420 
421     @SuppressWarnings("unchecked")
elementAt(Object[] es, int index)422     static <E> E elementAt(Object[] es, int index) {
423         return (E) es[index];
424     }
425 
426     /**
427      * Returns the element at the specified position in this list.
428      *
429      * @param  index index of the element to return
430      * @return the element at the specified position in this list
431      * @throws IndexOutOfBoundsException {@inheritDoc}
432      */
get(int index)433     public E get(int index) {
434         Objects.checkIndex(index, size);
435         return elementData(index);
436     }
437 
438     /**
439      * {@inheritDoc}
440      *
441      * @throws NoSuchElementException {@inheritDoc}
442      * @since 21
443      */
getFirst()444     public E getFirst() {
445         if (size == 0) {
446             throw new NoSuchElementException();
447         } else {
448             return elementData(0);
449         }
450     }
451 
452     /**
453      * {@inheritDoc}
454      *
455      * @throws NoSuchElementException {@inheritDoc}
456      * @since 21
457      */
getLast()458     public E getLast() {
459         int last = size - 1;
460         if (last < 0) {
461             throw new NoSuchElementException();
462         } else {
463             return elementData(last);
464         }
465     }
466 
467     /**
468      * Replaces the element at the specified position in this list with
469      * the specified element.
470      *
471      * @param index index of the element to replace
472      * @param element element to be stored at the specified position
473      * @return the element previously at the specified position
474      * @throws IndexOutOfBoundsException {@inheritDoc}
475      */
set(int index, E element)476     public E set(int index, E element) {
477         Objects.checkIndex(index, size);
478         E oldValue = elementData(index);
479         elementData[index] = element;
480         return oldValue;
481     }
482 
483     /**
484      * This helper method split out from add(E) to keep method
485      * bytecode size under 35 (the -XX:MaxInlineSize default value),
486      * which helps when add(E) is called in a C1-compiled loop.
487      */
add(E e, Object[] elementData, int s)488     private void add(E e, Object[] elementData, int s) {
489         if (s == elementData.length)
490             elementData = grow();
491         elementData[s] = e;
492         size = s + 1;
493     }
494 
495     /**
496      * Appends the specified element to the end of this list.
497      *
498      * @param e element to be appended to this list
499      * @return {@code true} (as specified by {@link Collection#add})
500      */
add(E e)501     public boolean add(E e) {
502         modCount++;
503         add(e, elementData, size);
504         return true;
505     }
506 
507     /**
508      * Inserts the specified element at the specified position in this
509      * list. Shifts the element currently at that position (if any) and
510      * any subsequent elements to the right (adds one to their indices).
511      *
512      * @param index index at which the specified element is to be inserted
513      * @param element element to be inserted
514      * @throws IndexOutOfBoundsException {@inheritDoc}
515      */
add(int index, E element)516     public void add(int index, E element) {
517         rangeCheckForAdd(index);
518         modCount++;
519         final int s;
520         Object[] elementData;
521         if ((s = size) == (elementData = this.elementData).length)
522             elementData = grow();
523         System.arraycopy(elementData, index,
524                          elementData, index + 1,
525                          s - index);
526         elementData[index] = element;
527         size = s + 1;
528     }
529 
530     /**
531      * {@inheritDoc}
532      *
533      * @since 21
534      */
addFirst(E element)535     public void addFirst(E element) {
536         add(0, element);
537     }
538 
539     /**
540      * {@inheritDoc}
541      *
542      * @since 21
543      */
addLast(E element)544     public void addLast(E element) {
545         add(element);
546     }
547 
548     /**
549      * Removes the element at the specified position in this list.
550      * Shifts any subsequent elements to the left (subtracts one from their
551      * indices).
552      *
553      * @param index the index of the element to be removed
554      * @return the element that was removed from the list
555      * @throws IndexOutOfBoundsException {@inheritDoc}
556      */
remove(int index)557     public E remove(int index) {
558         Objects.checkIndex(index, size);
559         final Object[] es = elementData;
560 
561         @SuppressWarnings("unchecked") E oldValue = (E) es[index];
562         fastRemove(es, index);
563 
564         return oldValue;
565     }
566 
567     /**
568      * {@inheritDoc}
569      *
570      * @throws NoSuchElementException {@inheritDoc}
571      * @since 21
572      */
removeFirst()573     public E removeFirst() {
574         if (size == 0) {
575             throw new NoSuchElementException();
576         } else {
577             Object[] es = elementData;
578             @SuppressWarnings("unchecked") E oldValue = (E) es[0];
579             fastRemove(es, 0);
580             return oldValue;
581         }
582     }
583 
584     /**
585      * {@inheritDoc}
586      *
587      * @throws NoSuchElementException {@inheritDoc}
588      * @since 21
589      */
removeLast()590     public E removeLast() {
591         int last = size - 1;
592         if (last < 0) {
593             throw new NoSuchElementException();
594         } else {
595             Object[] es = elementData;
596             @SuppressWarnings("unchecked") E oldValue = (E) es[last];
597             fastRemove(es, last);
598             return oldValue;
599         }
600     }
601 
602     /**
603      * {@inheritDoc}
604      */
equals(Object o)605     public boolean equals(Object o) {
606         if (o == this) {
607             return true;
608         }
609 
610         if (!(o instanceof List)) {
611             return false;
612         }
613 
614         final int expectedModCount = modCount;
615         // ArrayList can be subclassed and given arbitrary behavior, but we can
616         // still deal with the common case where o is ArrayList precisely
617         boolean equal = (o.getClass() == ArrayList.class)
618             ? equalsArrayList((ArrayList<?>) o)
619             : equalsRange((List<?>) o, 0, size);
620 
621         checkForComodification(expectedModCount);
622         return equal;
623     }
624 
equalsRange(List<?> other, int from, int to)625     boolean equalsRange(List<?> other, int from, int to) {
626         final Object[] es = elementData;
627         if (to > es.length) {
628             throw new ConcurrentModificationException();
629         }
630         var oit = other.iterator();
631         for (; from < to; from++) {
632             if (!oit.hasNext() || !Objects.equals(es[from], oit.next())) {
633                 return false;
634             }
635         }
636         return !oit.hasNext();
637     }
638 
equalsArrayList(ArrayList<?> other)639     private boolean equalsArrayList(ArrayList<?> other) {
640         final int otherModCount = other.modCount;
641         final int s = size;
642         boolean equal;
643         if (equal = (s == other.size)) {
644             final Object[] otherEs = other.elementData;
645             final Object[] es = elementData;
646             if (s > es.length || s > otherEs.length) {
647                 throw new ConcurrentModificationException();
648             }
649             for (int i = 0; i < s; i++) {
650                 if (!Objects.equals(es[i], otherEs[i])) {
651                     equal = false;
652                     break;
653                 }
654             }
655         }
656         other.checkForComodification(otherModCount);
657         return equal;
658     }
659 
checkForComodification(final int expectedModCount)660     private void checkForComodification(final int expectedModCount) {
661         if (modCount != expectedModCount) {
662             throw new ConcurrentModificationException();
663         }
664     }
665 
666     /**
667      * {@inheritDoc}
668      */
hashCode()669     public int hashCode() {
670         int expectedModCount = modCount;
671         int hash = hashCodeRange(0, size);
672         checkForComodification(expectedModCount);
673         return hash;
674     }
675 
hashCodeRange(int from, int to)676     int hashCodeRange(int from, int to) {
677         final Object[] es = elementData;
678         if (to > es.length) {
679             throw new ConcurrentModificationException();
680         }
681         int hashCode = 1;
682         for (int i = from; i < to; i++) {
683             Object e = es[i];
684             hashCode = 31 * hashCode + (e == null ? 0 : e.hashCode());
685         }
686         return hashCode;
687     }
688 
689     /**
690      * Removes the first occurrence of the specified element from this list,
691      * if it is present.  If the list does not contain the element, it is
692      * unchanged.  More formally, removes the element with the lowest index
693      * {@code i} such that
694      * {@code Objects.equals(o, get(i))}
695      * (if such an element exists).  Returns {@code true} if this list
696      * contained the specified element (or equivalently, if this list
697      * changed as a result of the call).
698      *
699      * @param o element to be removed from this list, if present
700      * @return {@code true} if this list contained the specified element
701      */
remove(Object o)702     public boolean remove(Object o) {
703         final Object[] es = elementData;
704         final int size = this.size;
705         int i = 0;
706         found: {
707             if (o == null) {
708                 for (; i < size; i++)
709                     if (es[i] == null)
710                         break found;
711             } else {
712                 for (; i < size; i++)
713                     if (o.equals(es[i]))
714                         break found;
715             }
716             return false;
717         }
718         fastRemove(es, i);
719         return true;
720     }
721 
722     /**
723      * Private remove method that skips bounds checking and does not
724      * return the value removed.
725      */
fastRemove(Object[] es, int i)726     private void fastRemove(Object[] es, int i) {
727         modCount++;
728         final int newSize;
729         if ((newSize = size - 1) > i)
730             System.arraycopy(es, i + 1, es, i, newSize - i);
731         es[size = newSize] = null;
732     }
733 
734     /**
735      * Removes all of the elements from this list.  The list will
736      * be empty after this call returns.
737      */
clear()738     public void clear() {
739         modCount++;
740         final Object[] es = elementData;
741         for (int to = size, i = size = 0; i < to; i++)
742             es[i] = null;
743     }
744 
745     /**
746      * Appends all of the elements in the specified collection to the end of
747      * this list, in the order that they are returned by the
748      * specified collection's Iterator.  The behavior of this operation is
749      * undefined if the specified collection is modified while the operation
750      * is in progress.  (This implies that the behavior of this call is
751      * undefined if the specified collection is this list, and this
752      * list is nonempty.)
753      *
754      * @param c collection containing elements to be added to this list
755      * @return {@code true} if this list changed as a result of the call
756      * @throws NullPointerException if the specified collection is null
757      */
addAll(Collection<? extends E> c)758     public boolean addAll(Collection<? extends E> c) {
759         Object[] a = c.toArray();
760         modCount++;
761         int numNew = a.length;
762         if (numNew == 0)
763             return false;
764         Object[] elementData;
765         final int s;
766         if (numNew > (elementData = this.elementData).length - (s = size))
767             elementData = grow(s + numNew);
768         System.arraycopy(a, 0, elementData, s, numNew);
769         size = s + numNew;
770         return true;
771     }
772 
773     /**
774      * Inserts all of the elements in the specified collection into this
775      * list, starting at the specified position.  Shifts the element
776      * currently at that position (if any) and any subsequent elements to
777      * the right (increases their indices).  The new elements will appear
778      * in the list in the order that they are returned by the
779      * specified collection's iterator.
780      *
781      * @param index index at which to insert the first element from the
782      *              specified collection
783      * @param c collection containing elements to be added to this list
784      * @return {@code true} if this list changed as a result of the call
785      * @throws IndexOutOfBoundsException {@inheritDoc}
786      * @throws NullPointerException if the specified collection is null
787      */
addAll(int index, Collection<? extends E> c)788     public boolean addAll(int index, Collection<? extends E> c) {
789         rangeCheckForAdd(index);
790 
791         Object[] a = c.toArray();
792         modCount++;
793         int numNew = a.length;
794         if (numNew == 0)
795             return false;
796         Object[] elementData;
797         final int s;
798         if (numNew > (elementData = this.elementData).length - (s = size))
799             elementData = grow(s + numNew);
800 
801         int numMoved = s - index;
802         if (numMoved > 0)
803             System.arraycopy(elementData, index,
804                              elementData, index + numNew,
805                              numMoved);
806         System.arraycopy(a, 0, elementData, index, numNew);
807         size = s + numNew;
808         return true;
809     }
810 
811     /**
812      * Removes from this list all of the elements whose index is between
813      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
814      * Shifts any succeeding elements to the left (reduces their index).
815      * This call shortens the list by {@code (toIndex - fromIndex)} elements.
816      * (If {@code toIndex==fromIndex}, this operation has no effect.)
817      *
818      * @throws IndexOutOfBoundsException if {@code fromIndex} or
819      *         {@code toIndex} is out of range
820      *         ({@code fromIndex < 0 ||
821      *          toIndex > size() ||
822      *          toIndex < fromIndex})
823      */
removeRange(int fromIndex, int toIndex)824     protected void removeRange(int fromIndex, int toIndex) {
825         if (fromIndex > toIndex) {
826             throw new IndexOutOfBoundsException(
827                     outOfBoundsMsg(fromIndex, toIndex));
828         }
829         modCount++;
830         shiftTailOverGap(elementData, fromIndex, toIndex);
831     }
832 
833     /** Erases the gap from lo to hi, by sliding down following elements. */
shiftTailOverGap(Object[] es, int lo, int hi)834     private void shiftTailOverGap(Object[] es, int lo, int hi) {
835         System.arraycopy(es, hi, es, lo, size - hi);
836         for (int to = size, i = (size -= hi - lo); i < to; i++)
837             es[i] = null;
838     }
839 
840     /**
841      * A version of rangeCheck used by add and addAll.
842      */
rangeCheckForAdd(int index)843     private void rangeCheckForAdd(int index) {
844         if (index > size || index < 0)
845             throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
846     }
847 
848     /**
849      * Constructs an IndexOutOfBoundsException detail message.
850      * Of the many possible refactorings of the error handling code,
851      * this "outlining" performs best with both server and client VMs.
852      */
outOfBoundsMsg(int index)853     private String outOfBoundsMsg(int index) {
854         return "Index: "+index+", Size: "+size;
855     }
856 
857     /**
858      * A version used in checking (fromIndex > toIndex) condition
859      */
outOfBoundsMsg(int fromIndex, int toIndex)860     private static String outOfBoundsMsg(int fromIndex, int toIndex) {
861         return "From Index: " + fromIndex + " > To Index: " + toIndex;
862     }
863 
864     /**
865      * Removes from this list all of its elements that are contained in the
866      * specified collection.
867      *
868      * @param c collection containing elements to be removed from this list
869      * @return {@code true} if this list changed as a result of the call
870      * @throws ClassCastException if the class of an element of this list
871      *         is incompatible with the specified collection
872      * (<a href="Collection.html#optional-restrictions">optional</a>)
873      * @throws NullPointerException if this list contains a null element and the
874      *         specified collection does not permit null elements
875      * (<a href="Collection.html#optional-restrictions">optional</a>),
876      *         or if the specified collection is null
877      * @see Collection#contains(Object)
878      */
removeAll(Collection<?> c)879     public boolean removeAll(Collection<?> c) {
880         return batchRemove(c, false, 0, size);
881     }
882 
883     /**
884      * Retains only the elements in this list that are contained in the
885      * specified collection.  In other words, removes from this list all
886      * of its elements that are not contained in the specified collection.
887      *
888      * @param c collection containing elements to be retained in this list
889      * @return {@code true} if this list changed as a result of the call
890      * @throws ClassCastException if the class of an element of this list
891      *         is incompatible with the specified collection
892      * (<a href="Collection.html#optional-restrictions">optional</a>)
893      * @throws NullPointerException if this list contains a null element and the
894      *         specified collection does not permit null elements
895      * (<a href="Collection.html#optional-restrictions">optional</a>),
896      *         or if the specified collection is null
897      * @see Collection#contains(Object)
898      */
retainAll(Collection<?> c)899     public boolean retainAll(Collection<?> c) {
900         return batchRemove(c, true, 0, size);
901     }
902 
batchRemove(Collection<?> c, boolean complement, final int from, final int end)903     boolean batchRemove(Collection<?> c, boolean complement,
904                         final int from, final int end) {
905         Objects.requireNonNull(c);
906         final Object[] es = elementData;
907         int r;
908         // Optimize for initial run of survivors
909         for (r = from;; r++) {
910             if (r == end)
911                 return false;
912             if (c.contains(es[r]) != complement)
913                 break;
914         }
915         int w = r++;
916         try {
917             for (Object e; r < end; r++)
918                 if (c.contains(e = es[r]) == complement)
919                     es[w++] = e;
920         } catch (Throwable ex) {
921             // Preserve behavioral compatibility with AbstractCollection,
922             // even if c.contains() throws.
923             System.arraycopy(es, r, es, w, end - r);
924             w += end - r;
925             throw ex;
926         } finally {
927             modCount += end - w;
928             shiftTailOverGap(es, w, end);
929         }
930         return true;
931     }
932 
933     /**
934      * Saves the state of the {@code ArrayList} instance to a stream
935      * (that is, serializes it).
936      *
937      * @param s the stream
938      * @throws java.io.IOException if an I/O error occurs
939      * @serialData The length of the array backing the {@code ArrayList}
940      *             instance is emitted (int), followed by all of its elements
941      *             (each an {@code Object}) in the proper order.
942      */
943     @java.io.Serial
writeObject(java.io.ObjectOutputStream s)944     private void writeObject(java.io.ObjectOutputStream s)
945         throws java.io.IOException {
946         // Write out element count, and any hidden stuff
947         int expectedModCount = modCount;
948         s.defaultWriteObject();
949 
950         // Write out size as capacity for behavioral compatibility with clone()
951         s.writeInt(size);
952 
953         // Write out all elements in the proper order.
954         for (int i=0; i<size; i++) {
955             s.writeObject(elementData[i]);
956         }
957 
958         if (modCount != expectedModCount) {
959             throw new ConcurrentModificationException();
960         }
961     }
962 
963     /**
964      * Reconstitutes the {@code ArrayList} instance from a stream (that is,
965      * deserializes it).
966      * @param s the stream
967      * @throws ClassNotFoundException if the class of a serialized object
968      *         could not be found
969      * @throws java.io.IOException if an I/O error occurs
970      */
971     @java.io.Serial
readObject(java.io.ObjectInputStream s)972     private void readObject(java.io.ObjectInputStream s)
973         throws java.io.IOException, ClassNotFoundException {
974 
975         // Read in size, and any hidden stuff
976         s.defaultReadObject();
977 
978         // Read in capacity
979         s.readInt(); // ignored
980 
981         if (size > 0) {
982             // like clone(), allocate array based upon size not capacity
983             SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
984             Object[] elements = new Object[size];
985 
986             // Read in all elements in the proper order.
987             for (int i = 0; i < size; i++) {
988                 elements[i] = s.readObject();
989             }
990 
991             elementData = elements;
992         } else if (size == 0) {
993             elementData = EMPTY_ELEMENTDATA;
994         } else {
995             throw new java.io.InvalidObjectException("Invalid size: " + size);
996         }
997     }
998 
999     /**
1000      * Returns a list iterator over the elements in this list (in proper
1001      * sequence), starting at the specified position in the list.
1002      * The specified index indicates the first element that would be
1003      * returned by an initial call to {@link ListIterator#next next}.
1004      * An initial call to {@link ListIterator#previous previous} would
1005      * return the element with the specified index minus one.
1006      *
1007      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1008      *
1009      * @throws IndexOutOfBoundsException {@inheritDoc}
1010      */
listIterator(int index)1011     public ListIterator<E> listIterator(int index) {
1012         rangeCheckForAdd(index);
1013         return new ListItr(index);
1014     }
1015 
1016     /**
1017      * Returns a list iterator over the elements in this list (in proper
1018      * sequence).
1019      *
1020      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1021      *
1022      * @see #listIterator(int)
1023      */
listIterator()1024     public ListIterator<E> listIterator() {
1025         return new ListItr(0);
1026     }
1027 
1028     /**
1029      * Returns an iterator over the elements in this list in proper sequence.
1030      *
1031      * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1032      *
1033      * @return an iterator over the elements in this list in proper sequence
1034      */
iterator()1035     public Iterator<E> iterator() {
1036         return new Itr();
1037     }
1038 
1039     /**
1040      * An optimized version of AbstractList.Itr
1041      */
1042     private class Itr implements Iterator<E> {
1043         // Android-changed: Add "limit" field to detect end of iteration.
1044         // The "limit" of this iterator. This is the size of the list at the time the
1045         // iterator was created. Adding & removing elements will invalidate the iteration
1046         // anyway (and cause next() to throw) so saving this value will guarantee that the
1047         // value of hasNext() remains stable and won't flap between true and false when elements
1048         // are added and removed from the list.
1049         protected int limit = ArrayList.this.size;
1050 
1051         int cursor;       // index of next element to return
1052         int lastRet = -1; // index of last element returned; -1 if no such
1053         int expectedModCount = modCount;
1054 
1055         // prevent creating a synthetic constructor
Itr()1056         Itr() {}
1057 
hasNext()1058         public boolean hasNext() {
1059             return cursor < limit;
1060         }
1061 
1062         @SuppressWarnings("unchecked")
next()1063         public E next() {
1064             checkForComodification();
1065             int i = cursor;
1066             if (i >= limit)
1067                 throw new NoSuchElementException();
1068             Object[] elementData = ArrayList.this.elementData;
1069             if (i >= elementData.length)
1070                 throw new ConcurrentModificationException();
1071             cursor = i + 1;
1072             return (E) elementData[lastRet = i];
1073         }
1074 
remove()1075         public void remove() {
1076             if (lastRet < 0)
1077                 throw new IllegalStateException();
1078             checkForComodification();
1079 
1080             try {
1081                 ArrayList.this.remove(lastRet);
1082                 cursor = lastRet;
1083                 lastRet = -1;
1084                 expectedModCount = modCount;
1085                 limit--;
1086             } catch (IndexOutOfBoundsException ex) {
1087                 throw new ConcurrentModificationException();
1088             }
1089         }
1090 
1091         @Override
forEachRemaining(Consumer<? super E> action)1092         public void forEachRemaining(Consumer<? super E> action) {
1093             Objects.requireNonNull(action);
1094             final int size = ArrayList.this.size;
1095             int i = cursor;
1096             if (i < size) {
1097                 final Object[] es = elementData;
1098                 if (i >= es.length)
1099                     throw new ConcurrentModificationException();
1100                 for (; i < size && modCount == expectedModCount; i++)
1101                     action.accept(elementAt(es, i));
1102                 // update once at end to reduce heap write traffic
1103                 cursor = i;
1104                 lastRet = i - 1;
1105                 checkForComodification();
1106             }
1107         }
1108 
checkForComodification()1109         final void checkForComodification() {
1110             if (modCount != expectedModCount)
1111                 throw new ConcurrentModificationException();
1112         }
1113     }
1114 
1115     /**
1116      * An optimized version of AbstractList.ListItr
1117      */
1118     private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index)1119         ListItr(int index) {
1120             super();
1121             cursor = index;
1122         }
1123 
hasPrevious()1124         public boolean hasPrevious() {
1125             return cursor != 0;
1126         }
1127 
nextIndex()1128         public int nextIndex() {
1129             return cursor;
1130         }
1131 
previousIndex()1132         public int previousIndex() {
1133             return cursor - 1;
1134         }
1135 
1136         @SuppressWarnings("unchecked")
previous()1137         public E previous() {
1138             checkForComodification();
1139             int i = cursor - 1;
1140             if (i < 0)
1141                 throw new NoSuchElementException();
1142             Object[] elementData = ArrayList.this.elementData;
1143             if (i >= elementData.length)
1144                 throw new ConcurrentModificationException();
1145             cursor = i;
1146             return (E) elementData[lastRet = i];
1147         }
1148 
set(E e)1149         public void set(E e) {
1150             if (lastRet < 0)
1151                 throw new IllegalStateException();
1152             checkForComodification();
1153 
1154             try {
1155                 ArrayList.this.set(lastRet, e);
1156             } catch (IndexOutOfBoundsException ex) {
1157                 throw new ConcurrentModificationException();
1158             }
1159         }
1160 
add(E e)1161         public void add(E e) {
1162             checkForComodification();
1163 
1164             try {
1165                 int i = cursor;
1166                 ArrayList.this.add(i, e);
1167                 cursor = i + 1;
1168                 lastRet = -1;
1169                 expectedModCount = modCount;
1170                 limit++;
1171             } catch (IndexOutOfBoundsException ex) {
1172                 throw new ConcurrentModificationException();
1173             }
1174         }
1175     }
1176 
1177     /**
1178      * Returns a view of the portion of this list between the specified
1179      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
1180      * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1181      * empty.)  The returned list is backed by this list, so non-structural
1182      * changes in the returned list are reflected in this list, and vice-versa.
1183      * The returned list supports all of the optional list operations.
1184      *
1185      * <p>This method eliminates the need for explicit range operations (of
1186      * the sort that commonly exist for arrays).  Any operation that expects
1187      * a list can be used as a range operation by passing a subList view
1188      * instead of a whole list.  For example, the following idiom
1189      * removes a range of elements from a list:
1190      * <pre>
1191      *      list.subList(from, to).clear();
1192      * </pre>
1193      * Similar idioms may be constructed for {@link #indexOf(Object)} and
1194      * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1195      * {@link Collections} class can be applied to a subList.
1196      *
1197      * <p>The semantics of the list returned by this method become undefined if
1198      * the backing list (i.e., this list) is <i>structurally modified</i> in
1199      * any way other than via the returned list.  (Structural modifications are
1200      * those that change the size of this list, or otherwise perturb it in such
1201      * a fashion that iterations in progress may yield incorrect results.)
1202      *
1203      * @throws IndexOutOfBoundsException {@inheritDoc}
1204      * @throws IllegalArgumentException {@inheritDoc}
1205      */
subList(int fromIndex, int toIndex)1206     public List<E> subList(int fromIndex, int toIndex) {
1207         subListRangeCheck(fromIndex, toIndex, size);
1208         return new SubList<>(this, fromIndex, toIndex);
1209     }
1210 
1211     private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1212         private final ArrayList<E> root;
1213         private final SubList<E> parent;
1214         private final int offset;
1215         private int size;
1216 
1217         /**
1218          * Constructs a sublist of an arbitrary ArrayList.
1219          */
SubList(ArrayList<E> root, int fromIndex, int toIndex)1220         public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1221             this.root = root;
1222             this.parent = null;
1223             this.offset = fromIndex;
1224             this.size = toIndex - fromIndex;
1225             this.modCount = root.modCount;
1226         }
1227 
1228         /**
1229          * Constructs a sublist of another SubList.
1230          */
SubList(SubList<E> parent, int fromIndex, int toIndex)1231         private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1232             this.root = parent.root;
1233             this.parent = parent;
1234             this.offset = parent.offset + fromIndex;
1235             this.size = toIndex - fromIndex;
1236             this.modCount = parent.modCount;
1237         }
1238 
set(int index, E element)1239         public E set(int index, E element) {
1240             Objects.checkIndex(index, size);
1241             checkForComodification();
1242             E oldValue = root.elementData(offset + index);
1243             root.elementData[offset + index] = element;
1244             return oldValue;
1245         }
1246 
get(int index)1247         public E get(int index) {
1248             Objects.checkIndex(index, size);
1249             checkForComodification();
1250             return root.elementData(offset + index);
1251         }
1252 
size()1253         public int size() {
1254             checkForComodification();
1255             return size;
1256         }
1257 
add(int index, E element)1258         public void add(int index, E element) {
1259             rangeCheckForAdd(index);
1260             checkForComodification();
1261             root.add(offset + index, element);
1262             updateSizeAndModCount(1);
1263         }
1264 
remove(int index)1265         public E remove(int index) {
1266             Objects.checkIndex(index, size);
1267             checkForComodification();
1268             E result = root.remove(offset + index);
1269             updateSizeAndModCount(-1);
1270             return result;
1271         }
1272 
removeRange(int fromIndex, int toIndex)1273         protected void removeRange(int fromIndex, int toIndex) {
1274             checkForComodification();
1275             root.removeRange(offset + fromIndex, offset + toIndex);
1276             updateSizeAndModCount(fromIndex - toIndex);
1277         }
1278 
addAll(Collection<? extends E> c)1279         public boolean addAll(Collection<? extends E> c) {
1280             return addAll(this.size, c);
1281         }
1282 
addAll(int index, Collection<? extends E> c)1283         public boolean addAll(int index, Collection<? extends E> c) {
1284             rangeCheckForAdd(index);
1285             int cSize = c.size();
1286             if (cSize==0)
1287                 return false;
1288             checkForComodification();
1289             root.addAll(offset + index, c);
1290             updateSizeAndModCount(cSize);
1291             return true;
1292         }
1293 
replaceAll(UnaryOperator<E> operator)1294         public void replaceAll(UnaryOperator<E> operator) {
1295             root.replaceAllRange(operator, offset, offset + size);
1296         }
1297 
removeAll(Collection<?> c)1298         public boolean removeAll(Collection<?> c) {
1299             return batchRemove(c, false);
1300         }
1301 
retainAll(Collection<?> c)1302         public boolean retainAll(Collection<?> c) {
1303             return batchRemove(c, true);
1304         }
1305 
batchRemove(Collection<?> c, boolean complement)1306         private boolean batchRemove(Collection<?> c, boolean complement) {
1307             checkForComodification();
1308             int oldSize = root.size;
1309             boolean modified =
1310                 root.batchRemove(c, complement, offset, offset + size);
1311             if (modified)
1312                 updateSizeAndModCount(root.size - oldSize);
1313             return modified;
1314         }
1315 
removeIf(Predicate<? super E> filter)1316         public boolean removeIf(Predicate<? super E> filter) {
1317             checkForComodification();
1318             int oldSize = root.size;
1319             boolean modified = root.removeIf(filter, offset, offset + size);
1320             if (modified)
1321                 updateSizeAndModCount(root.size - oldSize);
1322             return modified;
1323         }
1324 
toArray()1325         public Object[] toArray() {
1326             checkForComodification();
1327             return Arrays.copyOfRange(root.elementData, offset, offset + size);
1328         }
1329 
1330         @SuppressWarnings("unchecked")
toArray(T[] a)1331         public <T> T[] toArray(T[] a) {
1332             checkForComodification();
1333             if (a.length < size)
1334                 return (T[]) Arrays.copyOfRange(
1335                         root.elementData, offset, offset + size, a.getClass());
1336             System.arraycopy(root.elementData, offset, a, 0, size);
1337             if (a.length > size)
1338                 a[size] = null;
1339             return a;
1340         }
1341 
equals(Object o)1342         public boolean equals(Object o) {
1343             if (o == this) {
1344                 return true;
1345             }
1346 
1347             if (!(o instanceof List)) {
1348                 return false;
1349             }
1350 
1351             boolean equal = root.equalsRange((List<?>)o, offset, offset + size);
1352             checkForComodification();
1353             return equal;
1354         }
1355 
hashCode()1356         public int hashCode() {
1357             int hash = root.hashCodeRange(offset, offset + size);
1358             checkForComodification();
1359             return hash;
1360         }
1361 
indexOf(Object o)1362         public int indexOf(Object o) {
1363             int index = root.indexOfRange(o, offset, offset + size);
1364             checkForComodification();
1365             return index >= 0 ? index - offset : -1;
1366         }
1367 
lastIndexOf(Object o)1368         public int lastIndexOf(Object o) {
1369             int index = root.lastIndexOfRange(o, offset, offset + size);
1370             checkForComodification();
1371             return index >= 0 ? index - offset : -1;
1372         }
1373 
contains(Object o)1374         public boolean contains(Object o) {
1375             return indexOf(o) >= 0;
1376         }
1377 
iterator()1378         public Iterator<E> iterator() {
1379             return listIterator();
1380         }
1381 
listIterator(int index)1382         public ListIterator<E> listIterator(int index) {
1383             checkForComodification();
1384             rangeCheckForAdd(index);
1385 
1386             return new ListIterator<E>() {
1387                 int cursor = index;
1388                 int lastRet = -1;
1389                 int expectedModCount = SubList.this.modCount;
1390 
1391                 public boolean hasNext() {
1392                     return cursor != SubList.this.size;
1393                 }
1394 
1395                 @SuppressWarnings("unchecked")
1396                 public E next() {
1397                     checkForComodification();
1398                     int i = cursor;
1399                     if (i >= SubList.this.size)
1400                         throw new NoSuchElementException();
1401                     Object[] elementData = root.elementData;
1402                     if (offset + i >= elementData.length)
1403                         throw new ConcurrentModificationException();
1404                     cursor = i + 1;
1405                     return (E) elementData[offset + (lastRet = i)];
1406                 }
1407 
1408                 public boolean hasPrevious() {
1409                     return cursor != 0;
1410                 }
1411 
1412                 @SuppressWarnings("unchecked")
1413                 public E previous() {
1414                     checkForComodification();
1415                     int i = cursor - 1;
1416                     if (i < 0)
1417                         throw new NoSuchElementException();
1418                     Object[] elementData = root.elementData;
1419                     if (offset + i >= elementData.length)
1420                         throw new ConcurrentModificationException();
1421                     cursor = i;
1422                     return (E) elementData[offset + (lastRet = i)];
1423                 }
1424 
1425                 public void forEachRemaining(Consumer<? super E> action) {
1426                     Objects.requireNonNull(action);
1427                     final int size = SubList.this.size;
1428                     int i = cursor;
1429                     if (i < size) {
1430                         final Object[] es = root.elementData;
1431                         if (offset + i >= es.length)
1432                             throw new ConcurrentModificationException();
1433                         for (; i < size && root.modCount == expectedModCount; i++)
1434                             action.accept(elementAt(es, offset + i));
1435                         // update once at end to reduce heap write traffic
1436                         cursor = i;
1437                         lastRet = i - 1;
1438                         checkForComodification();
1439                     }
1440                 }
1441 
1442                 public int nextIndex() {
1443                     return cursor;
1444                 }
1445 
1446                 public int previousIndex() {
1447                     return cursor - 1;
1448                 }
1449 
1450                 public void remove() {
1451                     if (lastRet < 0)
1452                         throw new IllegalStateException();
1453                     checkForComodification();
1454 
1455                     try {
1456                         SubList.this.remove(lastRet);
1457                         cursor = lastRet;
1458                         lastRet = -1;
1459                         expectedModCount = SubList.this.modCount;
1460                     } catch (IndexOutOfBoundsException ex) {
1461                         throw new ConcurrentModificationException();
1462                     }
1463                 }
1464 
1465                 public void set(E e) {
1466                     if (lastRet < 0)
1467                         throw new IllegalStateException();
1468                     checkForComodification();
1469 
1470                     try {
1471                         root.set(offset + lastRet, e);
1472                     } catch (IndexOutOfBoundsException ex) {
1473                         throw new ConcurrentModificationException();
1474                     }
1475                 }
1476 
1477                 public void add(E e) {
1478                     checkForComodification();
1479 
1480                     try {
1481                         int i = cursor;
1482                         SubList.this.add(i, e);
1483                         cursor = i + 1;
1484                         lastRet = -1;
1485                         expectedModCount = SubList.this.modCount;
1486                     } catch (IndexOutOfBoundsException ex) {
1487                         throw new ConcurrentModificationException();
1488                     }
1489                 }
1490 
1491                 final void checkForComodification() {
1492                     if (root.modCount != expectedModCount)
1493                         throw new ConcurrentModificationException();
1494                 }
1495             };
1496         }
1497 
subList(int fromIndex, int toIndex)1498         public List<E> subList(int fromIndex, int toIndex) {
1499             subListRangeCheck(fromIndex, toIndex, size);
1500             return new SubList<>(this, fromIndex, toIndex);
1501         }
1502 
rangeCheckForAdd(int index)1503         private void rangeCheckForAdd(int index) {
1504             if (index < 0 || index > this.size)
1505                 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1506         }
1507 
outOfBoundsMsg(int index)1508         private String outOfBoundsMsg(int index) {
1509             return "Index: "+index+", Size: "+this.size;
1510         }
1511 
checkForComodification()1512         private void checkForComodification() {
1513             if (root.modCount != modCount)
1514                 throw new ConcurrentModificationException();
1515         }
1516 
updateSizeAndModCount(int sizeChange)1517         private void updateSizeAndModCount(int sizeChange) {
1518             SubList<E> slist = this;
1519             do {
1520                 slist.size += sizeChange;
1521                 slist.modCount = root.modCount;
1522                 slist = slist.parent;
1523             } while (slist != null);
1524         }
1525 
spliterator()1526         public Spliterator<E> spliterator() {
1527             checkForComodification();
1528 
1529             // This Spliterator needs to late-bind to the subList, not the outer
1530             // ArrayList. Note that it is legal for structural changes to be made
1531             // to a subList after spliterator() is called but before any spliterator
1532             // operations that would causing binding are performed.
1533             return new Spliterator<E>() {
1534                 private int index = offset; // current index, modified on advance/split
1535                 private int fence = -1; // -1 until used; then one past last index
1536                 private int expectedModCount; // initialized when fence set
1537 
1538                 private int getFence() { // initialize fence to size on first use
1539                     int hi; // (a specialized variant appears in method forEach)
1540                     if ((hi = fence) < 0) {
1541                         expectedModCount = modCount;
1542                         hi = fence = offset + size;
1543                     }
1544                     return hi;
1545                 }
1546 
1547                 public ArrayList<E>.ArrayListSpliterator trySplit() {
1548                     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1549                     // ArrayListSpliterator can be used here as the source is already bound
1550                     return (lo >= mid) ? null : // divide range in half unless too small
1551                         root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1552                 }
1553 
1554                 public boolean tryAdvance(Consumer<? super E> action) {
1555                     Objects.requireNonNull(action);
1556                     int hi = getFence(), i = index;
1557                     if (i < hi) {
1558                         index = i + 1;
1559                         @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1560                         action.accept(e);
1561                         if (root.modCount != expectedModCount)
1562                             throw new ConcurrentModificationException();
1563                         return true;
1564                     }
1565                     return false;
1566                 }
1567 
1568                 public void forEachRemaining(Consumer<? super E> action) {
1569                     Objects.requireNonNull(action);
1570                     int i, hi, mc; // hoist accesses and checks from loop
1571                     ArrayList<E> lst = root;
1572                     Object[] a;
1573                     if ((a = lst.elementData) != null) {
1574                         if ((hi = fence) < 0) {
1575                             mc = modCount;
1576                             hi = offset + size;
1577                         }
1578                         else
1579                             mc = expectedModCount;
1580                         if ((i = index) >= 0 && (index = hi) <= a.length) {
1581                             for (; i < hi; ++i) {
1582                                 @SuppressWarnings("unchecked") E e = (E) a[i];
1583                                 action.accept(e);
1584                             }
1585                             if (lst.modCount == mc)
1586                                 return;
1587                         }
1588                     }
1589                     throw new ConcurrentModificationException();
1590                 }
1591 
1592                 public long estimateSize() {
1593                     return getFence() - index;
1594                 }
1595 
1596                 public int characteristics() {
1597                     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1598                 }
1599             };
1600         }
1601     }
1602 
1603     /**
1604      * @throws NullPointerException {@inheritDoc}
1605      */
1606     @Override
1607     public void forEach(Consumer<? super E> action) {
1608         Objects.requireNonNull(action);
1609         final int expectedModCount = modCount;
1610         final Object[] es = elementData;
1611         final int size = this.size;
1612         for (int i = 0; modCount == expectedModCount && i < size; i++)
1613             action.accept(elementAt(es, i));
1614         if (modCount != expectedModCount)
1615             throw new ConcurrentModificationException();
1616     }
1617 
1618     /**
1619      * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1620      * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1621      * list.
1622      *
1623      * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1624      * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1625      * Overriding implementations should document the reporting of additional
1626      * characteristic values.
1627      *
1628      * @return a {@code Spliterator} over the elements in this list
1629      * @since 1.8
1630      */
1631     @Override
1632     public Spliterator<E> spliterator() {
1633         return new ArrayListSpliterator(0, -1, 0);
1634     }
1635 
1636     /** Index-based split-by-two, lazily initialized Spliterator */
1637     final class ArrayListSpliterator implements Spliterator<E> {
1638 
1639         /*
1640          * If ArrayLists were immutable, or structurally immutable (no
1641          * adds, removes, etc), we could implement their spliterators
1642          * with Arrays.spliterator. Instead we detect as much
1643          * interference during traversal as practical without
1644          * sacrificing much performance. We rely primarily on
1645          * modCounts. These are not guaranteed to detect concurrency
1646          * violations, and are sometimes overly conservative about
1647          * within-thread interference, but detect enough problems to
1648          * be worthwhile in practice. To carry this out, we (1) lazily
1649          * initialize fence and expectedModCount until the latest
1650          * point that we need to commit to the state we are checking
1651          * against; thus improving precision. (2) We perform only a single
1652          * ConcurrentModificationException check at the end of forEach
1653          * (the most performance-sensitive method). When using forEach
1654          * (as opposed to iterators), we can normally only detect
1655          * interference after actions, not before. Further
1656          * CME-triggering checks apply to all other possible
1657          * violations of assumptions for example null or too-small
1658          * elementData array given its size(), that could only have
1659          * occurred due to interference.  This allows the inner loop
1660          * of forEach to run without any further checks, and
1661          * simplifies lambda-resolution. While this does entail a
1662          * number of checks, note that in the common case of
1663          * list.stream().forEach(a), no checks or other computation
1664          * occur anywhere other than inside forEach itself.  The other
1665          * less-often-used methods cannot take advantage of most of
1666          * these streamlinings.
1667          */
1668 
1669         private int index; // current index, modified on advance/split
1670         private int fence; // -1 until used; then one past last index
1671         private int expectedModCount; // initialized when fence set
1672 
1673         /** Creates new spliterator covering the given range. */
1674         ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1675             this.index = origin;
1676             this.fence = fence;
1677             this.expectedModCount = expectedModCount;
1678         }
1679 
1680         private int getFence() { // initialize fence to size on first use
1681             int hi; // (a specialized variant appears in method forEach)
1682             if ((hi = fence) < 0) {
1683                 expectedModCount = modCount;
1684                 hi = fence = size;
1685             }
1686             return hi;
1687         }
1688 
1689         public ArrayListSpliterator trySplit() {
1690             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1691             return (lo >= mid) ? null : // divide range in half unless too small
1692                 new ArrayListSpliterator(lo, index = mid, expectedModCount);
1693         }
1694 
1695         public boolean tryAdvance(Consumer<? super E> action) {
1696             if (action == null)
1697                 throw new NullPointerException();
1698             int hi = getFence(), i = index;
1699             if (i < hi) {
1700                 index = i + 1;
1701                 @SuppressWarnings("unchecked") E e = (E)elementData[i];
1702                 action.accept(e);
1703                 if (modCount != expectedModCount)
1704                     throw new ConcurrentModificationException();
1705                 return true;
1706             }
1707             return false;
1708         }
1709 
1710         public void forEachRemaining(Consumer<? super E> action) {
1711             int i, hi, mc; // hoist accesses and checks from loop
1712             Object[] a;
1713             if (action == null)
1714                 throw new NullPointerException();
1715             if ((a = elementData) != null) {
1716                 if ((hi = fence) < 0) {
1717                     mc = modCount;
1718                     hi = size;
1719                 }
1720                 else
1721                     mc = expectedModCount;
1722                 if ((i = index) >= 0 && (index = hi) <= a.length) {
1723                     for (; i < hi; ++i) {
1724                         @SuppressWarnings("unchecked") E e = (E) a[i];
1725                         action.accept(e);
1726                     }
1727                     if (modCount == mc)
1728                         return;
1729                 }
1730             }
1731             throw new ConcurrentModificationException();
1732         }
1733 
1734         public long estimateSize() {
1735             return getFence() - index;
1736         }
1737 
1738         public int characteristics() {
1739             return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1740         }
1741     }
1742 
1743     // A tiny bit set implementation
1744 
1745     private static long[] nBits(int n) {
1746         return new long[((n - 1) >> 6) + 1];
1747     }
1748     private static void setBit(long[] bits, int i) {
1749         bits[i >> 6] |= 1L << i;
1750     }
1751     private static boolean isClear(long[] bits, int i) {
1752         return (bits[i >> 6] & (1L << i)) == 0;
1753     }
1754 
1755     /**
1756      * @throws NullPointerException {@inheritDoc}
1757      */
1758     @Override
1759     public boolean removeIf(Predicate<? super E> filter) {
1760         return removeIf(filter, 0, size);
1761     }
1762 
1763     /**
1764      * Removes all elements satisfying the given predicate, from index
1765      * i (inclusive) to index end (exclusive).
1766      */
1767     boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1768         Objects.requireNonNull(filter);
1769         int expectedModCount = modCount;
1770         final Object[] es = elementData;
1771         // Optimize for initial run of survivors
1772         for (; i < end && !filter.test(elementAt(es, i)); i++)
1773             ;
1774         // Tolerate predicates that reentrantly access the collection for
1775         // read (but writers still get CME), so traverse once to find
1776         // elements to delete, a second pass to physically expunge.
1777         if (i < end) {
1778             final int beg = i;
1779             final long[] deathRow = nBits(end - beg);
1780             deathRow[0] = 1L;   // set bit 0
1781             for (i = beg + 1; i < end; i++)
1782                 if (filter.test(elementAt(es, i)))
1783                     setBit(deathRow, i - beg);
1784             if (modCount != expectedModCount)
1785                 throw new ConcurrentModificationException();
1786             modCount++;
1787             int w = beg;
1788             for (i = beg; i < end; i++)
1789                 if (isClear(deathRow, i - beg))
1790                     es[w++] = es[i];
1791             shiftTailOverGap(es, w, end);
1792             return true;
1793         } else {
1794             if (modCount != expectedModCount)
1795                 throw new ConcurrentModificationException();
1796             return false;
1797         }
1798     }
1799 
1800     @Override
1801     public void replaceAll(UnaryOperator<E> operator) {
1802         replaceAllRange(operator, 0, size);
1803         // TODO(8203662): remove increment of modCount from ...
1804         modCount++;
1805     }
1806 
1807     private void replaceAllRange(UnaryOperator<E> operator, int i, int end) {
1808         Objects.requireNonNull(operator);
1809         final int expectedModCount = modCount;
1810         final Object[] es = elementData;
1811         for (; modCount == expectedModCount && i < end; i++)
1812             es[i] = operator.apply(elementAt(es, i));
1813         if (modCount != expectedModCount)
1814             throw new ConcurrentModificationException();
1815     }
1816 
1817     @Override
1818     @SuppressWarnings("unchecked")
1819     public void sort(Comparator<? super E> c) {
1820         final int expectedModCount = modCount;
1821         Arrays.sort((E[]) elementData, 0, size, c);
1822         if (modCount != expectedModCount)
1823             throw new ConcurrentModificationException();
1824         modCount++;
1825     }
1826 
1827     void checkInvariants() {
1828         // assert size >= 0;
1829         // assert size == elementData.length || elementData[size] == null;
1830     }
1831 }
1832