1 /*
2  * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.util;
27 
28 import java.io.ObjectInputStream;
29 import java.io.ObjectOutputStream;
30 import java.lang.reflect.Array;
31 import java.util.function.BiConsumer;
32 import java.util.function.BiFunction;
33 import java.util.function.Consumer;
34 import jdk.internal.access.SharedSecrets;
35 
36 /**
37  * This class implements the {@code Map} interface with a hash table, using
38  * reference-equality in place of object-equality when comparing keys (and
39  * values).  In other words, in an {@code IdentityHashMap}, two keys
40  * {@code k1} and {@code k2} are considered equal if and only if
41  * {@code (k1==k2)}.  (In normal {@code Map} implementations (like
42  * {@code HashMap}) two keys {@code k1} and {@code k2} are considered equal
43  * if and only if {@code (k1==null ? k2==null : k1.equals(k2))}.)
44  *
45  * <p><b>This class is <i>not</i> a general-purpose {@code Map}
46  * implementation!  While this class implements the {@code Map} interface, it
47  * intentionally violates {@code Map's} general contract, which mandates the
48  * use of the {@code equals} method when comparing objects.  This class is
49  * designed for use only in the rare cases wherein reference-equality
50  * semantics are required.</b>
51  *
52  * <p>A typical use of this class is <i>topology-preserving object graph
53  * transformations</i>, such as serialization or deep-copying.  To perform such
54  * a transformation, a program must maintain a "node table" that keeps track
55  * of all the object references that have already been processed.  The node
56  * table must not equate distinct objects even if they happen to be equal.
57  * Another typical use of this class is to maintain <i>proxy objects</i>.  For
58  * example, a debugging facility might wish to maintain a proxy object for
59  * each object in the program being debugged.
60  *
61  * <p>This class provides all of the optional map operations, and permits
62  * {@code null} values and the {@code null} key.  This class makes no
63  * guarantees as to the order of the map; in particular, it does not guarantee
64  * that the order will remain constant over time.
65  *
66  * <p>This class provides constant-time performance for the basic
67  * operations ({@code get} and {@code put}), assuming the system
68  * identity hash function ({@link System#identityHashCode(Object)})
69  * disperses elements properly among the buckets.
70  *
71  * <p>This class has one tuning parameter (which affects performance but not
72  * semantics): <i>expected maximum size</i>.  This parameter is the maximum
73  * number of key-value mappings that the map is expected to hold.  Internally,
74  * this parameter is used to determine the number of buckets initially
75  * comprising the hash table.  The precise relationship between the expected
76  * maximum size and the number of buckets is unspecified.
77  *
78  * <p>If the size of the map (the number of key-value mappings) sufficiently
79  * exceeds the expected maximum size, the number of buckets is increased.
80  * Increasing the number of buckets ("rehashing") may be fairly expensive, so
81  * it pays to create identity hash maps with a sufficiently large expected
82  * maximum size.  On the other hand, iteration over collection views requires
83  * time proportional to the number of buckets in the hash table, so it
84  * pays not to set the expected maximum size too high if you are especially
85  * concerned with iteration performance or memory usage.
86  *
87  * <p><strong>Note that this implementation is not synchronized.</strong>
88  * If multiple threads access an identity hash map concurrently, and at
89  * least one of the threads modifies the map structurally, it <i>must</i>
90  * be synchronized externally.  (A structural modification is any operation
91  * that adds or deletes one or more mappings; merely changing the value
92  * associated with a key that an instance already contains is not a
93  * structural modification.)  This is typically accomplished by
94  * synchronizing on some object that naturally encapsulates the map.
95  *
96  * If no such object exists, the map should be "wrapped" using the
97  * {@link Collections#synchronizedMap Collections.synchronizedMap}
98  * method.  This is best done at creation time, to prevent accidental
99  * unsynchronized access to the map:<pre>
100  *   Map m = Collections.synchronizedMap(new IdentityHashMap(...));</pre>
101  *
102  * <p>The iterators returned by the {@code iterator} method of the
103  * collections returned by all of this class's "collection view
104  * methods" are <i>fail-fast</i>: if the map is structurally modified
105  * at any time after the iterator is created, in any way except
106  * through the iterator's own {@code remove} method, the iterator
107  * will throw a {@link ConcurrentModificationException}.  Thus, in the
108  * face of concurrent modification, the iterator fails quickly and
109  * cleanly, rather than risking arbitrary, non-deterministic behavior
110  * at an undetermined time in the future.
111  *
112  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
113  * as it is, generally speaking, impossible to make any hard guarantees in the
114  * presence of unsynchronized concurrent modification.  Fail-fast iterators
115  * throw {@code ConcurrentModificationException} on a best-effort basis.
116  * Therefore, it would be wrong to write a program that depended on this
117  * exception for its correctness: <i>fail-fast iterators should be used only
118  * to detect bugs.</i>
119  *
120  * <p>This class is a member of the
121  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
122  * Java Collections Framework</a>.
123  *
124  * @implNote
125  * <p>This is a simple <i>linear-probe</i> hash table,
126  * as described for example in texts by Sedgewick and Knuth.  The array
127  * contains alternating keys and values, with keys at even indexes and values
128  * at odd indexes. (This arrangement has better locality for large
129  * tables than does using separate arrays.)  For many Java implementations
130  * and operation mixes, this class will yield better performance than
131  * {@link HashMap}, which uses <i>chaining</i> rather than linear-probing.
132  *
133  * @see     System#identityHashCode(Object)
134  * @see     Object#hashCode()
135  * @see     Collection
136  * @see     Map
137  * @see     HashMap
138  * @see     TreeMap
139  * @author  Doug Lea and Josh Bloch
140  * @since   1.4
141  */
142 
143 public class IdentityHashMap<K,V>
144     extends AbstractMap<K,V>
145     implements Map<K,V>, java.io.Serializable, Cloneable
146 {
147     /**
148      * The initial capacity used by the no-args constructor.
149      * MUST be a power of two.  The value 32 corresponds to the
150      * (specified) expected maximum size of 21, given a load factor
151      * of 2/3.
152      */
153     private static final int DEFAULT_CAPACITY = 32;
154 
155     /**
156      * The minimum capacity, used if a lower value is implicitly specified
157      * by either of the constructors with arguments.  The value 4 corresponds
158      * to an expected maximum size of 2, given a load factor of 2/3.
159      * MUST be a power of two.
160      */
161     private static final int MINIMUM_CAPACITY = 4;
162 
163     /**
164      * The maximum capacity, used if a higher value is implicitly specified
165      * by either of the constructors with arguments.
166      * MUST be a power of two <= 1<<29.
167      *
168      * In fact, the map can hold no more than MAXIMUM_CAPACITY-1 items
169      * because it has to have at least one slot with the key == null
170      * in order to avoid infinite loops in get(), put(), remove()
171      */
172     private static final int MAXIMUM_CAPACITY = 1 << 29;
173 
174     /**
175      * The table, resized as necessary. Length MUST always be a power of two.
176      */
177     transient Object[] table; // non-private to simplify nested class access
178 
179     /**
180      * The number of key-value mappings contained in this identity hash map.
181      *
182      * @serial
183      */
184     int size;
185 
186     /**
187      * The number of modifications, to support fast-fail iterators
188      */
189     transient int modCount;
190 
191     /**
192      * Value representing null keys inside tables.
193      */
194     static final Object NULL_KEY = new Object();
195 
196     /**
197      * Use NULL_KEY for key if it is null.
198      */
maskNull(Object key)199     private static Object maskNull(Object key) {
200         return (key == null ? NULL_KEY : key);
201     }
202 
203     /**
204      * Returns internal representation of null key back to caller as null.
205      */
unmaskNull(Object key)206     static final Object unmaskNull(Object key) {
207         return (key == NULL_KEY ? null : key);
208     }
209 
210     /**
211      * Constructs a new, empty identity hash map with a default expected
212      * maximum size (21).
213      */
IdentityHashMap()214     public IdentityHashMap() {
215         init(DEFAULT_CAPACITY);
216     }
217 
218     /**
219      * Constructs a new, empty map with the specified expected maximum size.
220      * Putting more than the expected number of key-value mappings into
221      * the map may cause the internal data structure to grow, which may be
222      * somewhat time-consuming.
223      *
224      * @param expectedMaxSize the expected maximum size of the map
225      * @throws IllegalArgumentException if {@code expectedMaxSize} is negative
226      */
IdentityHashMap(int expectedMaxSize)227     public IdentityHashMap(int expectedMaxSize) {
228         if (expectedMaxSize < 0)
229             throw new IllegalArgumentException("expectedMaxSize is negative: "
230                                                + expectedMaxSize);
231         init(capacity(expectedMaxSize));
232     }
233 
234     /**
235      * Returns the appropriate capacity for the given expected maximum size.
236      * Returns the smallest power of two between MINIMUM_CAPACITY and
237      * MAXIMUM_CAPACITY, inclusive, that is greater than (3 *
238      * expectedMaxSize)/2, if such a number exists.  Otherwise returns
239      * MAXIMUM_CAPACITY.
240      */
capacity(int expectedMaxSize)241     private static int capacity(int expectedMaxSize) {
242         // assert expectedMaxSize >= 0;
243         return
244             (expectedMaxSize > MAXIMUM_CAPACITY / 3) ? MAXIMUM_CAPACITY :
245             (expectedMaxSize <= 2 * MINIMUM_CAPACITY / 3) ? MINIMUM_CAPACITY :
246             Integer.highestOneBit(expectedMaxSize + (expectedMaxSize << 1));
247     }
248 
249     /**
250      * Initializes object to be an empty map with the specified initial
251      * capacity, which is assumed to be a power of two between
252      * MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive.
253      */
init(int initCapacity)254     private void init(int initCapacity) {
255         // assert (initCapacity & -initCapacity) == initCapacity; // power of 2
256         // assert initCapacity >= MINIMUM_CAPACITY;
257         // assert initCapacity <= MAXIMUM_CAPACITY;
258 
259         table = new Object[2 * initCapacity];
260     }
261 
262     /**
263      * Constructs a new identity hash map containing the keys-value mappings
264      * in the specified map.
265      *
266      * @param m the map whose mappings are to be placed into this map
267      * @throws NullPointerException if the specified map is null
268      */
IdentityHashMap(Map<? extends K, ? extends V> m)269     public IdentityHashMap(Map<? extends K, ? extends V> m) {
270         // Allow for a bit of growth
271         this((int) ((1 + m.size()) * 1.1));
272         putAll(m);
273     }
274 
275     /**
276      * Returns the number of key-value mappings in this identity hash map.
277      *
278      * @return the number of key-value mappings in this map
279      */
size()280     public int size() {
281         return size;
282     }
283 
284     /**
285      * Returns {@code true} if this identity hash map contains no key-value
286      * mappings.
287      *
288      * @return {@code true} if this identity hash map contains no key-value
289      *         mappings
290      */
isEmpty()291     public boolean isEmpty() {
292         return size == 0;
293     }
294 
295     /**
296      * Returns index for Object x.
297      */
hash(Object x, int length)298     private static int hash(Object x, int length) {
299         int h = System.identityHashCode(x);
300         // Multiply by -254 to use the hash LSB and to ensure index is even
301         return ((h << 1) - (h << 8)) & (length - 1);
302     }
303 
304     /**
305      * Circularly traverses table of size len.
306      */
nextKeyIndex(int i, int len)307     private static int nextKeyIndex(int i, int len) {
308         return (i + 2 < len ? i + 2 : 0);
309     }
310 
311     /**
312      * Returns the value to which the specified key is mapped,
313      * or {@code null} if this map contains no mapping for the key.
314      *
315      * <p>More formally, if this map contains a mapping from a key
316      * {@code k} to a value {@code v} such that {@code (key == k)},
317      * then this method returns {@code v}; otherwise it returns
318      * {@code null}.  (There can be at most one such mapping.)
319      *
320      * <p>A return value of {@code null} does not <i>necessarily</i>
321      * indicate that the map contains no mapping for the key; it's also
322      * possible that the map explicitly maps the key to {@code null}.
323      * The {@link #containsKey containsKey} operation may be used to
324      * distinguish these two cases.
325      *
326      * @see #put(Object, Object)
327      */
328     @SuppressWarnings("unchecked")
get(Object key)329     public V get(Object key) {
330         Object k = maskNull(key);
331         Object[] tab = table;
332         int len = tab.length;
333         int i = hash(k, len);
334         while (true) {
335             Object item = tab[i];
336             if (item == k)
337                 return (V) tab[i + 1];
338             if (item == null)
339                 return null;
340             i = nextKeyIndex(i, len);
341         }
342     }
343 
344     /**
345      * Tests whether the specified object reference is a key in this identity
346      * hash map.
347      *
348      * @param   key   possible key
349      * @return  {@code true} if the specified object reference is a key
350      *          in this map
351      * @see     #containsValue(Object)
352      */
containsKey(Object key)353     public boolean containsKey(Object key) {
354         Object k = maskNull(key);
355         Object[] tab = table;
356         int len = tab.length;
357         int i = hash(k, len);
358         while (true) {
359             Object item = tab[i];
360             if (item == k)
361                 return true;
362             if (item == null)
363                 return false;
364             i = nextKeyIndex(i, len);
365         }
366     }
367 
368     /**
369      * Tests whether the specified object reference is a value in this identity
370      * hash map.
371      *
372      * @param value value whose presence in this map is to be tested
373      * @return {@code true} if this map maps one or more keys to the
374      *         specified object reference
375      * @see     #containsKey(Object)
376      */
containsValue(Object value)377     public boolean containsValue(Object value) {
378         Object[] tab = table;
379         for (int i = 1; i < tab.length; i += 2)
380             if (tab[i] == value && tab[i - 1] != null)
381                 return true;
382 
383         return false;
384     }
385 
386     /**
387      * Tests if the specified key-value mapping is in the map.
388      *
389      * @param   key   possible key
390      * @param   value possible value
391      * @return  {@code true} if and only if the specified key-value
392      *          mapping is in the map
393      */
containsMapping(Object key, Object value)394     private boolean containsMapping(Object key, Object value) {
395         Object k = maskNull(key);
396         Object[] tab = table;
397         int len = tab.length;
398         int i = hash(k, len);
399         while (true) {
400             Object item = tab[i];
401             if (item == k)
402                 return tab[i + 1] == value;
403             if (item == null)
404                 return false;
405             i = nextKeyIndex(i, len);
406         }
407     }
408 
409     /**
410      * Associates the specified value with the specified key in this identity
411      * hash map.  If the map previously contained a mapping for the key, the
412      * old value is replaced.
413      *
414      * @param key the key with which the specified value is to be associated
415      * @param value the value to be associated with the specified key
416      * @return the previous value associated with {@code key}, or
417      *         {@code null} if there was no mapping for {@code key}.
418      *         (A {@code null} return can also indicate that the map
419      *         previously associated {@code null} with {@code key}.)
420      * @see     Object#equals(Object)
421      * @see     #get(Object)
422      * @see     #containsKey(Object)
423      */
put(K key, V value)424     public V put(K key, V value) {
425         final Object k = maskNull(key);
426 
427         retryAfterResize: for (;;) {
428             final Object[] tab = table;
429             final int len = tab.length;
430             int i = hash(k, len);
431 
432             for (Object item; (item = tab[i]) != null;
433                  i = nextKeyIndex(i, len)) {
434                 if (item == k) {
435                     @SuppressWarnings("unchecked")
436                         V oldValue = (V) tab[i + 1];
437                     tab[i + 1] = value;
438                     return oldValue;
439                 }
440             }
441 
442             final int s = size + 1;
443             // Use optimized form of 3 * s.
444             // Next capacity is len, 2 * current capacity.
445             if (s + (s << 1) > len && resize(len))
446                 continue retryAfterResize;
447 
448             modCount++;
449             tab[i] = k;
450             tab[i + 1] = value;
451             size = s;
452             return null;
453         }
454     }
455 
456     /**
457      * Resizes the table if necessary to hold given capacity.
458      *
459      * @param newCapacity the new capacity, must be a power of two.
460      * @return whether a resize did in fact take place
461      */
resize(int newCapacity)462     private boolean resize(int newCapacity) {
463         // assert (newCapacity & -newCapacity) == newCapacity; // power of 2
464         int newLength = newCapacity * 2;
465 
466         Object[] oldTable = table;
467         int oldLength = oldTable.length;
468         if (oldLength == 2 * MAXIMUM_CAPACITY) { // can't expand any further
469             if (size == MAXIMUM_CAPACITY - 1)
470                 throw new IllegalStateException("Capacity exhausted.");
471             return false;
472         }
473         if (oldLength >= newLength)
474             return false;
475 
476         Object[] newTable = new Object[newLength];
477 
478         for (int j = 0; j < oldLength; j += 2) {
479             Object key = oldTable[j];
480             if (key != null) {
481                 Object value = oldTable[j+1];
482                 oldTable[j] = null;
483                 oldTable[j+1] = null;
484                 int i = hash(key, newLength);
485                 while (newTable[i] != null)
486                     i = nextKeyIndex(i, newLength);
487                 newTable[i] = key;
488                 newTable[i + 1] = value;
489             }
490         }
491         table = newTable;
492         return true;
493     }
494 
495     /**
496      * Copies all of the mappings from the specified map to this map.
497      * These mappings will replace any mappings that this map had for
498      * any of the keys currently in the specified map.
499      *
500      * @param m mappings to be stored in this map
501      * @throws NullPointerException if the specified map is null
502      */
putAll(Map<? extends K, ? extends V> m)503     public void putAll(Map<? extends K, ? extends V> m) {
504         int n = m.size();
505         if (n == 0)
506             return;
507         if (n > size)
508             resize(capacity(n)); // conservatively pre-expand
509 
510         for (Entry<? extends K, ? extends V> e : m.entrySet())
511             put(e.getKey(), e.getValue());
512     }
513 
514     /**
515      * Removes the mapping for this key from this map if present.
516      *
517      * @param key key whose mapping is to be removed from the map
518      * @return the previous value associated with {@code key}, or
519      *         {@code null} if there was no mapping for {@code key}.
520      *         (A {@code null} return can also indicate that the map
521      *         previously associated {@code null} with {@code key}.)
522      */
remove(Object key)523     public V remove(Object key) {
524         Object k = maskNull(key);
525         Object[] tab = table;
526         int len = tab.length;
527         int i = hash(k, len);
528 
529         while (true) {
530             Object item = tab[i];
531             if (item == k) {
532                 modCount++;
533                 size--;
534                 @SuppressWarnings("unchecked")
535                     V oldValue = (V) tab[i + 1];
536                 tab[i + 1] = null;
537                 tab[i] = null;
538                 closeDeletion(i);
539                 return oldValue;
540             }
541             if (item == null)
542                 return null;
543             i = nextKeyIndex(i, len);
544         }
545     }
546 
547     /**
548      * Removes the specified key-value mapping from the map if it is present.
549      *
550      * @param   key   possible key
551      * @param   value possible value
552      * @return  {@code true} if and only if the specified key-value
553      *          mapping was in the map
554      */
removeMapping(Object key, Object value)555     private boolean removeMapping(Object key, Object value) {
556         Object k = maskNull(key);
557         Object[] tab = table;
558         int len = tab.length;
559         int i = hash(k, len);
560 
561         while (true) {
562             Object item = tab[i];
563             if (item == k) {
564                 if (tab[i + 1] != value)
565                     return false;
566                 modCount++;
567                 size--;
568                 tab[i] = null;
569                 tab[i + 1] = null;
570                 closeDeletion(i);
571                 return true;
572             }
573             if (item == null)
574                 return false;
575             i = nextKeyIndex(i, len);
576         }
577     }
578 
579     /**
580      * Rehash all possibly-colliding entries following a
581      * deletion. This preserves the linear-probe
582      * collision properties required by get, put, etc.
583      *
584      * @param d the index of a newly empty deleted slot
585      */
closeDeletion(int d)586     private void closeDeletion(int d) {
587         // Adapted from Knuth Section 6.4 Algorithm R
588         Object[] tab = table;
589         int len = tab.length;
590 
591         // Look for items to swap into newly vacated slot
592         // starting at index immediately following deletion,
593         // and continuing until a null slot is seen, indicating
594         // the end of a run of possibly-colliding keys.
595         Object item;
596         for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
597              i = nextKeyIndex(i, len) ) {
598             // The following test triggers if the item at slot i (which
599             // hashes to be at slot r) should take the spot vacated by d.
600             // If so, we swap it in, and then continue with d now at the
601             // newly vacated i.  This process will terminate when we hit
602             // the null slot at the end of this run.
603             // The test is messy because we are using a circular table.
604             int r = hash(item, len);
605             if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
606                 tab[d] = item;
607                 tab[d + 1] = tab[i + 1];
608                 tab[i] = null;
609                 tab[i + 1] = null;
610                 d = i;
611             }
612         }
613     }
614 
615     /**
616      * Removes all of the mappings from this map.
617      * The map will be empty after this call returns.
618      */
clear()619     public void clear() {
620         modCount++;
621         Object[] tab = table;
622         for (int i = 0; i < tab.length; i++)
623             tab[i] = null;
624         size = 0;
625     }
626 
627     /**
628      * Compares the specified object with this map for equality.  Returns
629      * {@code true} if the given object is also a map and the two maps
630      * represent identical object-reference mappings.  More formally, this
631      * map is equal to another map {@code m} if and only if
632      * {@code this.entrySet().equals(m.entrySet())}.
633      *
634      * <p><b>Owing to the reference-equality-based semantics of this map it is
635      * possible that the symmetry and transitivity requirements of the
636      * {@code Object.equals} contract may be violated if this map is compared
637      * to a normal map.  However, the {@code Object.equals} contract is
638      * guaranteed to hold among {@code IdentityHashMap} instances.</b>
639      *
640      * @param  o object to be compared for equality with this map
641      * @return {@code true} if the specified object is equal to this map
642      * @see Object#equals(Object)
643      */
equals(Object o)644     public boolean equals(Object o) {
645         if (o == this) {
646             return true;
647         } else if (o instanceof IdentityHashMap<?, ?> m) {
648             if (m.size() != size)
649                 return false;
650 
651             Object[] tab = m.table;
652             for (int i = 0; i < tab.length; i+=2) {
653                 Object k = tab[i];
654                 if (k != null && !containsMapping(k, tab[i + 1]))
655                     return false;
656             }
657             return true;
658         } else if (o instanceof Map<?, ?> m) {
659             return entrySet().equals(m.entrySet());
660         } else {
661             return false;  // o is not a Map
662         }
663     }
664 
665     /**
666      * Returns the hash code value for this map.  The hash code of a map is
667      * defined to be the sum of the hash codes of each entry in the map's
668      * {@code entrySet()} view.  This ensures that {@code m1.equals(m2)}
669      * implies that {@code m1.hashCode()==m2.hashCode()} for any two
670      * {@code IdentityHashMap} instances {@code m1} and {@code m2}, as
671      * required by the general contract of {@link Object#hashCode}.
672      *
673      * <p><b>Owing to the reference-equality-based semantics of the
674      * {@code Map.Entry} instances in the set returned by this map's
675      * {@code entrySet} method, it is possible that the contractual
676      * requirement of {@code Object.hashCode} mentioned in the previous
677      * paragraph will be violated if one of the two objects being compared is
678      * an {@code IdentityHashMap} instance and the other is a normal map.</b>
679      *
680      * @return the hash code value for this map
681      * @see Object#equals(Object)
682      * @see #equals(Object)
683      */
hashCode()684     public int hashCode() {
685         int result = 0;
686         Object[] tab = table;
687         for (int i = 0; i < tab.length; i +=2) {
688             Object key = tab[i];
689             if (key != null) {
690                 Object k = unmaskNull(key);
691                 result += System.identityHashCode(k) ^
692                           System.identityHashCode(tab[i + 1]);
693             }
694         }
695         return result;
696     }
697 
698     /**
699      * Returns a shallow copy of this identity hash map: the keys and values
700      * themselves are not cloned.
701      *
702      * @return a shallow copy of this map
703      */
clone()704     public Object clone() {
705         try {
706             IdentityHashMap<?,?> m = (IdentityHashMap<?,?>) super.clone();
707             m.entrySet = null;
708             m.table = table.clone();
709             return m;
710         } catch (CloneNotSupportedException e) {
711             throw new InternalError(e);
712         }
713     }
714 
715     private abstract class IdentityHashMapIterator<T> implements Iterator<T> {
716         int index = (size != 0 ? 0 : table.length); // current slot.
717         int expectedModCount = modCount; // to support fast-fail
718         int lastReturnedIndex = -1;      // to allow remove()
719         boolean indexValid; // To avoid unnecessary next computation
720         Object[] traversalTable = table; // reference to main table or copy
721 
hasNext()722         public boolean hasNext() {
723             Object[] tab = traversalTable;
724             for (int i = index; i < tab.length; i+=2) {
725                 Object key = tab[i];
726                 if (key != null) {
727                     index = i;
728                     return indexValid = true;
729                 }
730             }
731             index = tab.length;
732             return false;
733         }
734 
nextIndex()735         protected int nextIndex() {
736             if (modCount != expectedModCount)
737                 throw new ConcurrentModificationException();
738             if (!indexValid && !hasNext())
739                 throw new NoSuchElementException();
740 
741             indexValid = false;
742             lastReturnedIndex = index;
743             index += 2;
744             return lastReturnedIndex;
745         }
746 
remove()747         public void remove() {
748             if (lastReturnedIndex == -1)
749                 throw new IllegalStateException();
750             if (modCount != expectedModCount)
751                 throw new ConcurrentModificationException();
752 
753             expectedModCount = ++modCount;
754             int deletedSlot = lastReturnedIndex;
755             lastReturnedIndex = -1;
756             // back up index to revisit new contents after deletion
757             index = deletedSlot;
758             indexValid = false;
759 
760             // Removal code proceeds as in closeDeletion except that
761             // it must catch the rare case where an element already
762             // seen is swapped into a vacant slot that will be later
763             // traversed by this iterator. We cannot allow future
764             // next() calls to return it again.  The likelihood of
765             // this occurring under 2/3 load factor is very slim, but
766             // when it does happen, we must make a copy of the rest of
767             // the table to use for the rest of the traversal. Since
768             // this can only happen when we are near the end of the table,
769             // even in these rare cases, this is not very expensive in
770             // time or space.
771 
772             Object[] tab = traversalTable;
773             int len = tab.length;
774 
775             int d = deletedSlot;
776             Object key = tab[d];
777             tab[d] = null;        // vacate the slot
778             tab[d + 1] = null;
779 
780             // If traversing a copy, remove in real table.
781             // We can skip gap-closure on copy.
782             if (tab != IdentityHashMap.this.table) {
783                 IdentityHashMap.this.remove(key);
784                 expectedModCount = modCount;
785                 return;
786             }
787 
788             size--;
789 
790             Object item;
791             for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
792                  i = nextKeyIndex(i, len)) {
793                 int r = hash(item, len);
794                 // See closeDeletion for explanation of this conditional
795                 if ((i < r && (r <= d || d <= i)) ||
796                     (r <= d && d <= i)) {
797 
798                     // If we are about to swap an already-seen element
799                     // into a slot that may later be returned by next(),
800                     // then clone the rest of table for use in future
801                     // next() calls. It is OK that our copy will have
802                     // a gap in the "wrong" place, since it will never
803                     // be used for searching anyway.
804 
805                     if (i < deletedSlot && d >= deletedSlot &&
806                         traversalTable == IdentityHashMap.this.table) {
807                         int remaining = len - deletedSlot;
808                         Object[] newTable = new Object[remaining];
809                         System.arraycopy(tab, deletedSlot,
810                                          newTable, 0, remaining);
811                         traversalTable = newTable;
812                         index = 0;
813                     }
814 
815                     tab[d] = item;
816                     tab[d + 1] = tab[i + 1];
817                     tab[i] = null;
818                     tab[i + 1] = null;
819                     d = i;
820                 }
821             }
822         }
823     }
824 
825     private class KeyIterator extends IdentityHashMapIterator<K> {
826         @SuppressWarnings("unchecked")
next()827         public K next() {
828             return (K) unmaskNull(traversalTable[nextIndex()]);
829         }
830     }
831 
832     private class ValueIterator extends IdentityHashMapIterator<V> {
833         @SuppressWarnings("unchecked")
next()834         public V next() {
835             return (V) traversalTable[nextIndex() + 1];
836         }
837     }
838 
839     private class EntryIterator
840         extends IdentityHashMapIterator<Map.Entry<K,V>>
841     {
842         private Entry lastReturnedEntry;
843 
next()844         public Map.Entry<K,V> next() {
845             lastReturnedEntry = new Entry(nextIndex());
846             return lastReturnedEntry;
847         }
848 
remove()849         public void remove() {
850             lastReturnedIndex =
851                 ((null == lastReturnedEntry) ? -1 : lastReturnedEntry.index);
852             super.remove();
853             lastReturnedEntry.index = lastReturnedIndex;
854             lastReturnedEntry = null;
855         }
856 
857         private class Entry implements Map.Entry<K,V> {
858             private int index;
859 
Entry(int index)860             private Entry(int index) {
861                 this.index = index;
862             }
863 
864             @SuppressWarnings("unchecked")
getKey()865             public K getKey() {
866                 checkIndexForEntryUse();
867                 return (K) unmaskNull(traversalTable[index]);
868             }
869 
870             @SuppressWarnings("unchecked")
getValue()871             public V getValue() {
872                 checkIndexForEntryUse();
873                 return (V) traversalTable[index+1];
874             }
875 
876             @SuppressWarnings("unchecked")
setValue(V value)877             public V setValue(V value) {
878                 checkIndexForEntryUse();
879                 V oldValue = (V) traversalTable[index+1];
880                 traversalTable[index+1] = value;
881                 // if shadowing, force into main table
882                 if (traversalTable != IdentityHashMap.this.table)
883                     put((K) traversalTable[index], value);
884                 return oldValue;
885             }
886 
equals(Object o)887             public boolean equals(Object o) {
888                 if (index < 0)
889                     return super.equals(o);
890 
891                 return o instanceof Map.Entry<?, ?> e
892                         && e.getKey() == unmaskNull(traversalTable[index])
893                         && e.getValue() == traversalTable[index+1];
894             }
895 
hashCode()896             public int hashCode() {
897                 if (lastReturnedIndex < 0)
898                     return super.hashCode();
899 
900                 return (System.identityHashCode(unmaskNull(traversalTable[index])) ^
901                        System.identityHashCode(traversalTable[index+1]));
902             }
903 
toString()904             public String toString() {
905                 if (index < 0)
906                     return super.toString();
907 
908                 return (unmaskNull(traversalTable[index]) + "="
909                         + traversalTable[index+1]);
910             }
911 
checkIndexForEntryUse()912             private void checkIndexForEntryUse() {
913                 if (index < 0)
914                     throw new IllegalStateException("Entry was removed");
915             }
916         }
917     }
918 
919     // Views
920 
921     /**
922      * This field is initialized to contain an instance of the entry set
923      * view the first time this view is requested.  The view is stateless,
924      * so there's no reason to create more than one.
925      */
926     private transient Set<Map.Entry<K,V>> entrySet;
927 
928     /**
929      * Returns an identity-based set view of the keys contained in this map.
930      * The set is backed by the map, so changes to the map are reflected in
931      * the set, and vice-versa.  If the map is modified while an iteration
932      * over the set is in progress, the results of the iteration are
933      * undefined.  The set supports element removal, which removes the
934      * corresponding mapping from the map, via the {@code Iterator.remove},
935      * {@code Set.remove}, {@code removeAll}, {@code retainAll}, and
936      * {@code clear} methods.  It does not support the {@code add} or
937      * {@code addAll} methods.
938      *
939      * <p><b>While the object returned by this method implements the
940      * {@code Set} interface, it does <i>not</i> obey {@code Set's} general
941      * contract.  Like its backing map, the set returned by this method
942      * defines element equality as reference-equality rather than
943      * object-equality.  This affects the behavior of its {@code contains},
944      * {@code remove}, {@code containsAll}, {@code equals}, and
945      * {@code hashCode} methods.</b>
946      *
947      * <p><b>The {@code equals} method of the returned set returns {@code true}
948      * only if the specified object is a set containing exactly the same
949      * object references as the returned set.  The symmetry and transitivity
950      * requirements of the {@code Object.equals} contract may be violated if
951      * the set returned by this method is compared to a normal set.  However,
952      * the {@code Object.equals} contract is guaranteed to hold among sets
953      * returned by this method.</b>
954      *
955      * <p>The {@code hashCode} method of the returned set returns the sum of
956      * the <i>identity hashcodes</i> of the elements in the set, rather than
957      * the sum of their hashcodes.  This is mandated by the change in the
958      * semantics of the {@code equals} method, in order to enforce the
959      * general contract of the {@code Object.hashCode} method among sets
960      * returned by this method.
961      *
962      * @return an identity-based set view of the keys contained in this map
963      * @see Object#equals(Object)
964      * @see System#identityHashCode(Object)
965      */
keySet()966     public Set<K> keySet() {
967         Set<K> ks = keySet;
968         if (ks == null) {
969             ks = new KeySet();
970             keySet = ks;
971         }
972         return ks;
973     }
974 
975     private class KeySet extends AbstractSet<K> {
iterator()976         public Iterator<K> iterator() {
977             return new KeyIterator();
978         }
size()979         public int size() {
980             return size;
981         }
contains(Object o)982         public boolean contains(Object o) {
983             return containsKey(o);
984         }
remove(Object o)985         public boolean remove(Object o) {
986             int oldSize = size;
987             IdentityHashMap.this.remove(o);
988             return size != oldSize;
989         }
990         /*
991          * Must revert from AbstractSet's impl to AbstractCollection's, as
992          * the former contains an optimization that results in incorrect
993          * behavior when c is a smaller "normal" (non-identity-based) Set.
994          */
removeAll(Collection<?> c)995         public boolean removeAll(Collection<?> c) {
996             Objects.requireNonNull(c);
997             boolean modified = false;
998             for (Iterator<K> i = iterator(); i.hasNext(); ) {
999                 if (c.contains(i.next())) {
1000                     i.remove();
1001                     modified = true;
1002                 }
1003             }
1004             return modified;
1005         }
clear()1006         public void clear() {
1007             IdentityHashMap.this.clear();
1008         }
hashCode()1009         public int hashCode() {
1010             int result = 0;
1011             for (K key : this)
1012                 result += System.identityHashCode(key);
1013             return result;
1014         }
toArray()1015         public Object[] toArray() {
1016             return toArray(new Object[0]);
1017         }
1018         @SuppressWarnings("unchecked")
toArray(T[] a)1019         public <T> T[] toArray(T[] a) {
1020             int expectedModCount = modCount;
1021             int size = size();
1022             if (a.length < size)
1023                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1024             Object[] tab = table;
1025             int ti = 0;
1026             for (int si = 0; si < tab.length; si += 2) {
1027                 Object key;
1028                 if ((key = tab[si]) != null) { // key present ?
1029                     // more elements than expected -> concurrent modification from other thread
1030                     if (ti >= size) {
1031                         throw new ConcurrentModificationException();
1032                     }
1033                     a[ti++] = (T) unmaskNull(key); // unmask key
1034                 }
1035             }
1036             // fewer elements than expected or concurrent modification from other thread detected
1037             if (ti < size || expectedModCount != modCount) {
1038                 throw new ConcurrentModificationException();
1039             }
1040             // final null marker as per spec
1041             if (ti < a.length) {
1042                 a[ti] = null;
1043             }
1044             return a;
1045         }
1046 
spliterator()1047         public Spliterator<K> spliterator() {
1048             return new KeySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1049         }
1050     }
1051 
1052     /**
1053      * Returns a {@link Collection} view of the values contained in this map.
1054      * The collection is backed by the map, so changes to the map are
1055      * reflected in the collection, and vice-versa.  If the map is
1056      * modified while an iteration over the collection is in progress,
1057      * the results of the iteration are undefined.  The collection
1058      * supports element removal, which removes the corresponding
1059      * mapping from the map, via the {@code Iterator.remove},
1060      * {@code Collection.remove}, {@code removeAll},
1061      * {@code retainAll} and {@code clear} methods.  It does not
1062      * support the {@code add} or {@code addAll} methods.
1063      *
1064      * <p><b>While the object returned by this method implements the
1065      * {@code Collection} interface, it does <i>not</i> obey
1066      * {@code Collection's} general contract.  Like its backing map,
1067      * the collection returned by this method defines element equality as
1068      * reference-equality rather than object-equality.  This affects the
1069      * behavior of its {@code contains}, {@code remove} and
1070      * {@code containsAll} methods.</b>
1071      */
values()1072     public Collection<V> values() {
1073         Collection<V> vs = values;
1074         if (vs == null) {
1075             vs = new Values();
1076             values = vs;
1077         }
1078         return vs;
1079     }
1080 
1081     private class Values extends AbstractCollection<V> {
iterator()1082         public Iterator<V> iterator() {
1083             return new ValueIterator();
1084         }
size()1085         public int size() {
1086             return size;
1087         }
contains(Object o)1088         public boolean contains(Object o) {
1089             return containsValue(o);
1090         }
remove(Object o)1091         public boolean remove(Object o) {
1092             for (Iterator<V> i = iterator(); i.hasNext(); ) {
1093                 if (i.next() == o) {
1094                     i.remove();
1095                     return true;
1096                 }
1097             }
1098             return false;
1099         }
clear()1100         public void clear() {
1101             IdentityHashMap.this.clear();
1102         }
toArray()1103         public Object[] toArray() {
1104             return toArray(new Object[0]);
1105         }
1106         @SuppressWarnings("unchecked")
toArray(T[] a)1107         public <T> T[] toArray(T[] a) {
1108             int expectedModCount = modCount;
1109             int size = size();
1110             if (a.length < size)
1111                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1112             Object[] tab = table;
1113             int ti = 0;
1114             for (int si = 0; si < tab.length; si += 2) {
1115                 if (tab[si] != null) { // key present ?
1116                     // more elements than expected -> concurrent modification from other thread
1117                     if (ti >= size) {
1118                         throw new ConcurrentModificationException();
1119                     }
1120                     a[ti++] = (T) tab[si+1]; // copy value
1121                 }
1122             }
1123             // fewer elements than expected or concurrent modification from other thread detected
1124             if (ti < size || expectedModCount != modCount) {
1125                 throw new ConcurrentModificationException();
1126             }
1127             // final null marker as per spec
1128             if (ti < a.length) {
1129                 a[ti] = null;
1130             }
1131             return a;
1132         }
1133 
spliterator()1134         public Spliterator<V> spliterator() {
1135             return new ValueSpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1136         }
1137     }
1138 
1139     /**
1140      * Returns a {@link Set} view of the mappings contained in this map.
1141      * Each element in the returned set is a reference-equality-based
1142      * {@code Map.Entry}.  The set is backed by the map, so changes
1143      * to the map are reflected in the set, and vice-versa.  If the
1144      * map is modified while an iteration over the set is in progress,
1145      * the results of the iteration are undefined.  The set supports
1146      * element removal, which removes the corresponding mapping from
1147      * the map, via the {@code Iterator.remove}, {@code Set.remove},
1148      * {@code removeAll}, {@code retainAll} and {@code clear}
1149      * methods.  It does not support the {@code add} or
1150      * {@code addAll} methods.
1151      *
1152      * <p>Like the backing map, the {@code Map.Entry} objects in the set
1153      * returned by this method define key and value equality as
1154      * reference-equality rather than object-equality.  This affects the
1155      * behavior of the {@code equals} and {@code hashCode} methods of these
1156      * {@code Map.Entry} objects.  A reference-equality based {@code Map.Entry
1157      * e} is equal to an object {@code o} if and only if {@code o} is a
1158      * {@code Map.Entry} and {@code e.getKey()==o.getKey() &&
1159      * e.getValue()==o.getValue()}.  To accommodate these equals
1160      * semantics, the {@code hashCode} method returns
1161      * {@code System.identityHashCode(e.getKey()) ^
1162      * System.identityHashCode(e.getValue())}.
1163      *
1164      * <p><b>Owing to the reference-equality-based semantics of the
1165      * {@code Map.Entry} instances in the set returned by this method,
1166      * it is possible that the symmetry and transitivity requirements of
1167      * the {@link Object#equals(Object)} contract may be violated if any of
1168      * the entries in the set is compared to a normal map entry, or if
1169      * the set returned by this method is compared to a set of normal map
1170      * entries (such as would be returned by a call to this method on a normal
1171      * map).  However, the {@code Object.equals} contract is guaranteed to
1172      * hold among identity-based map entries, and among sets of such entries.
1173      * </b>
1174      *
1175      * @return a set view of the identity-mappings contained in this map
1176      */
entrySet()1177     public Set<Map.Entry<K,V>> entrySet() {
1178         Set<Map.Entry<K,V>> es = entrySet;
1179         if (es != null)
1180             return es;
1181         else
1182             return entrySet = new EntrySet();
1183     }
1184 
1185     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
iterator()1186         public Iterator<Map.Entry<K,V>> iterator() {
1187             return new EntryIterator();
1188         }
contains(Object o)1189         public boolean contains(Object o) {
1190             return o instanceof Entry<?, ?> entry
1191                     && containsMapping(entry.getKey(), entry.getValue());
1192         }
remove(Object o)1193         public boolean remove(Object o) {
1194             return o instanceof Entry<?, ?> entry
1195                     && removeMapping(entry.getKey(), entry.getValue());
1196         }
size()1197         public int size() {
1198             return size;
1199         }
clear()1200         public void clear() {
1201             IdentityHashMap.this.clear();
1202         }
1203         /*
1204          * Must revert from AbstractSet's impl to AbstractCollection's, as
1205          * the former contains an optimization that results in incorrect
1206          * behavior when c is a smaller "normal" (non-identity-based) Set.
1207          */
removeAll(Collection<?> c)1208         public boolean removeAll(Collection<?> c) {
1209             Objects.requireNonNull(c);
1210             boolean modified = false;
1211             for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); ) {
1212                 if (c.contains(i.next())) {
1213                     i.remove();
1214                     modified = true;
1215                 }
1216             }
1217             return modified;
1218         }
1219 
toArray()1220         public Object[] toArray() {
1221             return toArray(new Object[0]);
1222         }
1223 
1224         @SuppressWarnings("unchecked")
toArray(T[] a)1225         public <T> T[] toArray(T[] a) {
1226             int expectedModCount = modCount;
1227             int size = size();
1228             if (a.length < size)
1229                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1230             Object[] tab = table;
1231             int ti = 0;
1232             for (int si = 0; si < tab.length; si += 2) {
1233                 Object key;
1234                 if ((key = tab[si]) != null) { // key present ?
1235                     // more elements than expected -> concurrent modification from other thread
1236                     if (ti >= size) {
1237                         throw new ConcurrentModificationException();
1238                     }
1239                     a[ti++] = (T) new AbstractMap.SimpleEntry<>(unmaskNull(key), tab[si + 1]);
1240                 }
1241             }
1242             // fewer elements than expected or concurrent modification from other thread detected
1243             if (ti < size || expectedModCount != modCount) {
1244                 throw new ConcurrentModificationException();
1245             }
1246             // final null marker as per spec
1247             if (ti < a.length) {
1248                 a[ti] = null;
1249             }
1250             return a;
1251         }
1252 
spliterator()1253         public Spliterator<Map.Entry<K,V>> spliterator() {
1254             return new EntrySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1255         }
1256     }
1257 
1258     @java.io.Serial
1259     private static final long serialVersionUID = 8188218128353913216L;
1260 
1261     /**
1262      * Saves the state of the {@code IdentityHashMap} instance to a stream
1263      * (i.e., serializes it).
1264      *
1265      * @serialData The <i>size</i> of the HashMap (the number of key-value
1266      *          mappings) ({@code int}), followed by the key (Object) and
1267      *          value (Object) for each key-value mapping represented by the
1268      *          IdentityHashMap.  The key-value mappings are emitted in no
1269      *          particular order.
1270      */
1271     @java.io.Serial
writeObject(ObjectOutputStream s)1272     private void writeObject(ObjectOutputStream s)
1273         throws java.io.IOException  {
1274         // Write out size (number of mappings) and any hidden stuff
1275         s.defaultWriteObject();
1276 
1277         // Write out size again (maintained for backward compatibility)
1278         s.writeInt(size);
1279 
1280         // Write out keys and values (alternating)
1281         Object[] tab = table;
1282         for (int i = 0; i < tab.length; i += 2) {
1283             Object key = tab[i];
1284             if (key != null) {
1285                 s.writeObject(unmaskNull(key));
1286                 s.writeObject(tab[i + 1]);
1287             }
1288         }
1289     }
1290 
1291     /**
1292      * Reconstitutes the {@code IdentityHashMap} instance from a stream (i.e.,
1293      * deserializes it).
1294      */
1295     @java.io.Serial
readObject(ObjectInputStream s)1296     private void readObject(ObjectInputStream s)
1297         throws java.io.IOException, ClassNotFoundException  {
1298         // Size (number of mappings) is written to the stream twice
1299         // Read first size value and ignore it
1300         s.readFields();
1301 
1302         // Read second size value, validate and assign to size field
1303         int size = s.readInt();
1304         if (size < 0)
1305             throw new java.io.StreamCorruptedException
1306                 ("Illegal mappings count: " + size);
1307         int cap = capacity(size);
1308         SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, cap*2);
1309         this.size = size;
1310         init(cap);
1311 
1312         // Read the keys and values, and put the mappings in the table
1313         for (int i=0; i<size; i++) {
1314             @SuppressWarnings("unchecked")
1315                 K key = (K) s.readObject();
1316             @SuppressWarnings("unchecked")
1317                 V value = (V) s.readObject();
1318             putForCreate(key, value);
1319         }
1320     }
1321 
1322     /**
1323      * The put method for readObject.  It does not resize the table,
1324      * update modCount, etc.
1325      */
putForCreate(K key, V value)1326     private void putForCreate(K key, V value)
1327         throws java.io.StreamCorruptedException
1328     {
1329         Object k = maskNull(key);
1330         Object[] tab = table;
1331         int len = tab.length;
1332         int i = hash(k, len);
1333 
1334         Object item;
1335         while ( (item = tab[i]) != null) {
1336             if (item == k)
1337                 throw new java.io.StreamCorruptedException();
1338             i = nextKeyIndex(i, len);
1339         }
1340         tab[i] = k;
1341         tab[i + 1] = value;
1342     }
1343 
1344     @SuppressWarnings("unchecked")
1345     @Override
forEach(BiConsumer<? super K, ? super V> action)1346     public void forEach(BiConsumer<? super K, ? super V> action) {
1347         Objects.requireNonNull(action);
1348         int expectedModCount = modCount;
1349 
1350         Object[] t = table;
1351         for (int index = 0; index < t.length; index += 2) {
1352             Object k = t[index];
1353             if (k != null) {
1354                 action.accept((K) unmaskNull(k), (V) t[index + 1]);
1355             }
1356 
1357             if (modCount != expectedModCount) {
1358                 throw new ConcurrentModificationException();
1359             }
1360         }
1361     }
1362 
1363     @SuppressWarnings("unchecked")
1364     @Override
replaceAll(BiFunction<? super K, ? super V, ? extends V> function)1365     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1366         Objects.requireNonNull(function);
1367         int expectedModCount = modCount;
1368 
1369         Object[] t = table;
1370         for (int index = 0; index < t.length; index += 2) {
1371             Object k = t[index];
1372             if (k != null) {
1373                 t[index + 1] = function.apply((K) unmaskNull(k), (V) t[index + 1]);
1374             }
1375 
1376             if (modCount != expectedModCount) {
1377                 throw new ConcurrentModificationException();
1378             }
1379         }
1380     }
1381 
1382     /**
1383      * Similar form as array-based Spliterators, but skips blank elements,
1384      * and guestimates size as decreasing by half per split.
1385      */
1386     static class IdentityHashMapSpliterator<K,V> {
1387         final IdentityHashMap<K,V> map;
1388         int index;             // current index, modified on advance/split
1389         int fence;             // -1 until first use; then one past last index
1390         int est;               // size estimate
1391         int expectedModCount;  // initialized when fence set
1392 
IdentityHashMapSpliterator(IdentityHashMap<K,V> map, int origin, int fence, int est, int expectedModCount)1393         IdentityHashMapSpliterator(IdentityHashMap<K,V> map, int origin,
1394                                    int fence, int est, int expectedModCount) {
1395             this.map = map;
1396             this.index = origin;
1397             this.fence = fence;
1398             this.est = est;
1399             this.expectedModCount = expectedModCount;
1400         }
1401 
getFence()1402         final int getFence() { // initialize fence and size on first use
1403             int hi;
1404             if ((hi = fence) < 0) {
1405                 est = map.size;
1406                 expectedModCount = map.modCount;
1407                 hi = fence = map.table.length;
1408             }
1409             return hi;
1410         }
1411 
estimateSize()1412         public final long estimateSize() {
1413             getFence(); // force init
1414             return (long) est;
1415         }
1416     }
1417 
1418     static final class KeySpliterator<K,V>
1419         extends IdentityHashMapSpliterator<K,V>
1420         implements Spliterator<K> {
KeySpliterator(IdentityHashMap<K,V> map, int origin, int fence, int est, int expectedModCount)1421         KeySpliterator(IdentityHashMap<K,V> map, int origin, int fence, int est,
1422                        int expectedModCount) {
1423             super(map, origin, fence, est, expectedModCount);
1424         }
1425 
trySplit()1426         public KeySpliterator<K,V> trySplit() {
1427             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1428             return (lo >= mid) ? null :
1429                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1430                                      expectedModCount);
1431         }
1432 
1433         @SuppressWarnings("unchecked")
forEachRemaining(Consumer<? super K> action)1434         public void forEachRemaining(Consumer<? super K> action) {
1435             if (action == null)
1436                 throw new NullPointerException();
1437             int i, hi, mc; Object key;
1438             IdentityHashMap<K,V> m; Object[] a;
1439             if ((m = map) != null && (a = m.table) != null &&
1440                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1441                 for (; i < hi; i += 2) {
1442                     if ((key = a[i]) != null)
1443                         action.accept((K)unmaskNull(key));
1444                 }
1445                 if (m.modCount == expectedModCount)
1446                     return;
1447             }
1448             throw new ConcurrentModificationException();
1449         }
1450 
1451         @SuppressWarnings("unchecked")
tryAdvance(Consumer<? super K> action)1452         public boolean tryAdvance(Consumer<? super K> action) {
1453             if (action == null)
1454                 throw new NullPointerException();
1455             Object[] a = map.table;
1456             int hi = getFence();
1457             while (index < hi) {
1458                 Object key = a[index];
1459                 index += 2;
1460                 if (key != null) {
1461                     action.accept((K)unmaskNull(key));
1462                     if (map.modCount != expectedModCount)
1463                         throw new ConcurrentModificationException();
1464                     return true;
1465                 }
1466             }
1467             return false;
1468         }
1469 
characteristics()1470         public int characteristics() {
1471             return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
1472         }
1473     }
1474 
1475     static final class ValueSpliterator<K,V>
1476         extends IdentityHashMapSpliterator<K,V>
1477         implements Spliterator<V> {
ValueSpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est, int expectedModCount)1478         ValueSpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
1479                          int expectedModCount) {
1480             super(m, origin, fence, est, expectedModCount);
1481         }
1482 
trySplit()1483         public ValueSpliterator<K,V> trySplit() {
1484             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1485             return (lo >= mid) ? null :
1486                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1487                                        expectedModCount);
1488         }
1489 
forEachRemaining(Consumer<? super V> action)1490         public void forEachRemaining(Consumer<? super V> action) {
1491             if (action == null)
1492                 throw new NullPointerException();
1493             int i, hi, mc;
1494             IdentityHashMap<K,V> m; Object[] a;
1495             if ((m = map) != null && (a = m.table) != null &&
1496                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1497                 for (; i < hi; i += 2) {
1498                     if (a[i] != null) {
1499                         @SuppressWarnings("unchecked") V v = (V)a[i+1];
1500                         action.accept(v);
1501                     }
1502                 }
1503                 if (m.modCount == expectedModCount)
1504                     return;
1505             }
1506             throw new ConcurrentModificationException();
1507         }
1508 
tryAdvance(Consumer<? super V> action)1509         public boolean tryAdvance(Consumer<? super V> action) {
1510             if (action == null)
1511                 throw new NullPointerException();
1512             Object[] a = map.table;
1513             int hi = getFence();
1514             while (index < hi) {
1515                 Object key = a[index];
1516                 @SuppressWarnings("unchecked") V v = (V)a[index+1];
1517                 index += 2;
1518                 if (key != null) {
1519                     action.accept(v);
1520                     if (map.modCount != expectedModCount)
1521                         throw new ConcurrentModificationException();
1522                     return true;
1523                 }
1524             }
1525             return false;
1526         }
1527 
characteristics()1528         public int characteristics() {
1529             return (fence < 0 || est == map.size ? SIZED : 0);
1530         }
1531 
1532     }
1533 
1534     static final class EntrySpliterator<K,V>
1535         extends IdentityHashMapSpliterator<K,V>
1536         implements Spliterator<Map.Entry<K,V>> {
EntrySpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est, int expectedModCount)1537         EntrySpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
1538                          int expectedModCount) {
1539             super(m, origin, fence, est, expectedModCount);
1540         }
1541 
trySplit()1542         public EntrySpliterator<K,V> trySplit() {
1543             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1544             return (lo >= mid) ? null :
1545                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1546                                        expectedModCount);
1547         }
1548 
forEachRemaining(Consumer<? super Map.Entry<K, V>> action)1549         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1550             if (action == null)
1551                 throw new NullPointerException();
1552             int i, hi, mc;
1553             IdentityHashMap<K,V> m; Object[] a;
1554             if ((m = map) != null && (a = m.table) != null &&
1555                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1556                 for (; i < hi; i += 2) {
1557                     Object key = a[i];
1558                     if (key != null) {
1559                         @SuppressWarnings("unchecked") K k =
1560                             (K)unmaskNull(key);
1561                         @SuppressWarnings("unchecked") V v = (V)a[i+1];
1562                         action.accept
1563                             (new AbstractMap.SimpleImmutableEntry<>(k, v));
1564 
1565                     }
1566                 }
1567                 if (m.modCount == expectedModCount)
1568                     return;
1569             }
1570             throw new ConcurrentModificationException();
1571         }
1572 
tryAdvance(Consumer<? super Map.Entry<K,V>> action)1573         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1574             if (action == null)
1575                 throw new NullPointerException();
1576             Object[] a = map.table;
1577             int hi = getFence();
1578             while (index < hi) {
1579                 Object key = a[index];
1580                 @SuppressWarnings("unchecked") V v = (V)a[index+1];
1581                 index += 2;
1582                 if (key != null) {
1583                     @SuppressWarnings("unchecked") K k =
1584                         (K)unmaskNull(key);
1585                     action.accept
1586                         (new AbstractMap.SimpleImmutableEntry<>(k, v));
1587                     if (map.modCount != expectedModCount)
1588                         throw new ConcurrentModificationException();
1589                     return true;
1590                 }
1591             }
1592             return false;
1593         }
1594 
characteristics()1595         public int characteristics() {
1596             return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
1597         }
1598     }
1599 
1600 }
1601